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A seasonal, density-dependent model for the management
of an invasive weed

ESTHER SHYU,1,3 ELEANOR A. PARDINI,2 TIFFANY M. KNIGHT,2 AND HAL CASWELL
1

1Biology Department MS-34, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA
2Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130 USA

Abstract. The population effects of harvest depend on complex interactions between
density dependence, seasonality, stage structure, and management timing. Here we present a
periodic nonlinear matrix population model that incorporates seasonal density dependence
with stage-selective and seasonally selective harvest. To this model, we apply newly developed
perturbation analyses to determine how population densities respond to changes in harvest
and demographic parameters. We use the model to examine the effects of popular control
strategies and demographic perturbations on the invasive weed garlic mustard (Alliaria
petiolata). We find that seasonality is a major factor in harvest outcomes, because population
dynamics may depend significantly on both the season of management and the season of
observation. Strategies that reduce densities in one season can drive increases in another, with
strategies giving positive sensitivities of density in the target seasons leading to compensatory
effects that invasive species managers should avoid. Conversely, demographic parameters to
which density is very elastic (e.g., seeding survival, second-year rosette spring survival, and the
flowering to fruiting adult transition for maximum summer densities) may indicate promising
management targets.

Key words: Alliaria petiolata; Ceutorhynchus scrobicollis; compensatory mortality; density depen-
dence; garlic mustard; harvest; invasive species; periodic matrix models; perturbation analysis; seasonality.

INTRODUCTION

Harvest, the often-selective removal of individuals

from a population, appears in many ecological contexts,

including maintaining resource species, controlling

invasive pests, and anticipating the conservation effects

of inadvertent casualties (e.g., bycatch, ship strikes). In

each case, modeling the population effects of harvest is

crucial for management. These effects are determined by

interactions with density dependence, seasonality, stage

structure, and management timing.

Density dependence plays a sometimes counterintu-

itive role in population dynamics. If harvest increases

resource availability, mortality due to that harvest

may be counterbalanced by density-dependent increas-

es in survival and fertility (compensatory mortality

and natality). Harvest may even increase overall

density (overcompensation; e.g., Jonzén and Lundberg

1999, Zipkin et al. 2009). Compensation and over-

compensation have been observed in many pest

species (e.g., Buckley et al. 2001, Jonzén et al. 2002,

Zipkin et al. 2008, Pardini et al. 2009) and may

underlie the persistence of invasive populations under

management.

Seasonality produces dramatic environmental

changes that drive the life cycles of many species.

Populations thus vary on two time scales: a seasonal

time scale that depends on changes within the year,

and an interannual time scale that depends on changes

between years. The interaction of these two time

scales generates rich dynamics that are obscured in

strictly interannual models (e.g., Kot and Schaeffer

1984, Åström et al. 1996). The relative timing of

seasonal mortality and density-dependent processes

can, for instance, produce compensation and over-

compensation (Boyce et al. 1999, Jonzén and Lund-

berg 1999, Ratikainen et al. 2008). Harvest models

that neglect seasonality, forcing mortality and density

dependence to operate simultaneously (e.g., Sinclair

and Pech 1996), often cannot account for compensa-

tory effects.

Stage structure may change significantly depending on

both season and harvest. Stage-specific harvest may also

interact with density dependence to increase the densities

of nontargeted stages and overall population abundanc-

es, as shown in both experimental cultures (Nicholson

1957, Cameron and Benton 2004) and field studies

(Pardini et al. 2008, Zipkin et al. 2008).

Timing of harvest affects yield, density (Kokko and

Lindström 1998, Boyce et al. 1999), and population

persistence (Tang and Chen 2004). Timing also influ-

ences compensatory effects, in that harvest prior to

reproduction often leads to compensation, whereas later

harvests are more effective in reducing populations

(Buckley et al. 2001, Ratikainen et al. 2008).
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In this paper, we present a harvest model framework

that uses periodic nonlinear matrix population models.

The model is seasonally explicit and incorporates

harvest selectivity with respect to both stage and timing.

We use newly developed perturbation analyses for

nonlinear matrix models (Caswell 2008, Caswell and

Shyu 2012) to obtain the sensitivity and elasticity of

population densities (equilibria or cycles, on both

seasonal and interannual time scales) to changes in

demographic or management parameters.

We apply this modeling framework to garlic mustard

(Alliaria petiolata), an invasive European weed that is

aggressively displacing North American woodland flora.

We develop a harvest model to simulate garlic mustard’s

seasonal dynamics and evaluate the long-term popula-

tion density effects of various management approaches

and demographic perturbations (see Supplement).

STUDY SPECIES

Garlic mustard (Alliaria petiolata; Brassicaceae) is a

Eurasian herb that invades North American forests and

edge habitats, forming dense monotypic stands and

producing allelopathic toxins that displace native flora

(Cavers et al. 1979, Nuzzo 1991, Anderson et al. 1996).

Because of its tolerance to many growth conditions,

extensive seed dispersal, and ability to self-fertilize, this

species has become a pervasive weed in the midwestern

and northeastern United States and some parts of

Canada (Nuzzo 2000). Although vulnerable to at least

69 insect species and seven fungi in its native range (Hinz

and Gerber 1998), garlic mustard experiences minimal

pressure from North American herbivores and patho-

gens (Blossey et al. 2001). Its density-dependent survival

and fecundity (Pardini et al. 2008) produce compensa-

tory responses that complicate management efforts.

Garlic mustard is an obligate biennial with a life

cycle strongly coupled to the seasons (e.g., Cavers et

al. 1979, Roberts and Boddrell 1983, Anderson et al.

1996, Nuzzo 2000, Pardini et al. 2008). As shown in

Fig. 1, seeds germinate into seedlings from March to

May and mature into vegetative rosettes by June.

Rosettes overwinter and develop into flowering adults

the following March. Mature fruits (seed-containing

siliques) develop by June. If plants are clipped in early

summer before fruit formation completes, they may

resprout with reduced fecundity. Adults die after

setting seed. New seeds disperse in the fall and require

cold stratification to sprout. Some germinate in the

spring, while others remain in a seed bank for up to

10 years (V. Nuzzo and B. Blossey, personal commu-

nication).

Demographic parameters in our garlic mustard model

(Table 1) are based on data from the Tyson Research

Center (Eureka, Missouri, USA), a deciduous forest first

invaded by garlic mustard in 2000, with supplemental

values from other North American studies (Pardini et al.

2008, 2009).

MODELING SEASONALITY AND DENSITY DEPENDENCE

Model structure

The model includes seven stages and four seasons, as
shown in Fig. 1. As always, these choices are based on

major life cycle transitions (e.g., the difference between
vegetative and reproductive stages), management targets

(e.g., the difference between clipping plants early or late
in the growing season), and available data. Note that, as

in this example, seasons need not be the same length,
and the same stages need not be present in every season.
We write the population vector in season i of year t as

ni(t), with the structure:

niðtÞ ¼

new seeds

bank seeds

seedlings

rosettes

flowering adults

fruiting adults

resprouting adults

0
BBBBBBBB@

1
CCCCCCCCA

ð1Þ

and collect the demographic parameters from all seasons
(summarized in Table 1) in a parameter vector h. We

write the parameter vector in season i as hi. If, as in our
case, some parameters in h have no effect on the

dynamics in season i, their value in hi is irrelevant and
can be set to 0, e.g., for

h ¼ ðs1 s5 b1 s2 a r b2 s3 f fr b3 s4 v g1 g2 b4Þ>: ð2Þ

Here, h1 depends only on parameters for the transition

from season 1 to 2:

h1 ¼ ð s1 s5 b1 0 . . . 0 Þ>: ð3Þ

We write the matrix projecting the population from

season i to season i þ 1 as Bi[hi, ni], which allows
demography to depend on both the parameters and

densities in season i. Because the model is periodic, the
matrix B4 projects from season 4 to 1.

The annual matrix A, which projects the population
from one year to the next, is the product of the seasonal

projection matrices. For a projection starting in season 1,

n1ðt þ 1Þ ¼ B4½h4; n4ðtÞ�B3½h3; n3ðtÞ�

3 B2½h2; n2ðtÞ�B1½h1; n1ðtÞ�n1ðtÞ ð4Þ

¼ A1n1ðtÞ ð5Þ

where the subscript on A1 indicates an interannual
projection starting in season 1. Similar expressions can

be obtained for projections starting in other seasons via
cyclic permutation of the matrices (e.g., Caswell

2001:346–376, Smith et al. 2005).
In this formulation, dynamics on the seasonal time

scale are given by the sequence of population vectors
n1(t), n2(t), n3(t), n4(t), n1(tþ 1), and so forth. Dynamics

on the interannual time scale are given by the sequence
of vectors for a specific season in successive years, e.g.,
n1(t), n1(t þ 1), n1(t þ 2), and so forth. For the garlic

ESTHER SHYU ET AL.1894 Ecological Applications
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mustard model, which has four seasons, a fixed point on

the interannual time scale is a four-cycle on the seasonal

time scale with points n̂1, n̂2, n̂3, and n̂4. A two-cycle on

the interannual time scale is an eight-cycle on the

seasonal time scale with points

n̂1 ¼ n1ðtÞ n̂5 ¼ n1ðt þ 1Þ
n̂2 ¼ n2ðtÞ n̂6 ¼ n2ðt þ 1Þ
n̂3 ¼ n3ðtÞ n̂7 ¼ n3ðt þ 1Þ
n̂4 ¼ n4ðtÞ n̂8 ¼ n4ðt þ 1Þ:

Although we previously assumed, in Eq. 4, that Bi is

only a function of ni (i.e., seasonal projections depend

only on density in the current season), density

dependence may be delayed if factors in one season

affect an individual’s status in later seasons (Ratikai-

nen et al. 2008). The Bi could thus be functions of

any seasonal densities over the previous year, for

example:

B1 ¼ B1½h1; n1ðtÞ; n4ðt � 1Þ; n3ðt � 1Þ; n2ðt � 1Þ�: ð6Þ

FIG. 1. Life cycle diagram for garlic mustard (Alliaria petiolata). Parameters are as shown in Table 1; density-dependent
parameters are boxed. Due to garlic mustard’s biennial life cycle, two separate cohorts (top and middle) and a seed bank (bottom)
are present in each season.

TABLE 1. Seasonal demographic parameters (Pardini et al. 2008, 2009) and density-dependent functions (Evans and Davis 2011,
Pardini et al. 2011) for garlic mustard (Alliaria petiolata).

Parameter Description Matrix Value/function

a) Constant parameters

v new seed survival B4 0.8228
g1 new seed germination B4 0.55034
g2 bank seed germination B4 0.31705
s1 seedling to 1st-year rosette transition B1 0.131
s3 1st-year rosette survival B3 1
s5 2nd-year rosette to flowering adult transition B1 1
a flowering to fruiting adult transition B2 1
r resprout probability B2 0.54
fr resprout fertility reduction B3 0.95
b1 bank seed survival B1 0.9833
b2 bank seed survival B2 0.9917
b3 bank seed survival B3 0.9917
b4 bank seed survival B4 0.9333

b) Density-dependent parameters

s2 1st-year rosette survival B2 1/(1 þ exp – (0.11635 – 0.01612A2 – 0.00144R2 – 0.00092A2R2))
s4 1st-year to 2nd-year rosette transition B4 1/(1 þ exp – (1.32702 – 0.50269ln(R4 þ 1)))
f fertility (seeds/fruiting adult) B3 exp(7.48933 – 0.03893R1)

Notes: Here, Ai and Ri denote the densities of adults and rosettes, respectively, in season i. Functions for s2 (first-year rosette
May–June survival) and s4 (second-year rosette August–March survival) are based on measurements made in May and August.
Due to lack of intermediary data, we have set s3 (first-year rosette June–August survival), s5 (second-year rosette March–May
survival), and a to 1. Seed bank parameters b1, b2, b3, b4 were determined assuming temporally uniform decay with complete
degradation after 10 years (V. Nuzzo and B. Blossey, personal communication).
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In practice, it is unlikely that each Bi will depend on

all previous seasonal densities. In the case of garlic

mustard, Table 1 shows that B1 does not depend on

density, whereas B2 and B4 depend only on densities

in the current season. Only B3 exhibits delayed

density dependence, as it contains a fecundity

parameter f that depends on season 1 (spring)

densities (rosettes that are overcrowded in season 1

become stunted, less fertile adults; e.g., Pardini et al.

2009).

Taking all density effects into account, Eq. 4 can be

rewritten for garlic mustard as

n1ðt þ 1Þ ¼ B4½h4; n4ðtÞ�B3½h3; n1ðtÞ�
3 B2½h2; n2ðtÞ�B1½h1�n1ðtÞ: ð7Þ

The four seasonal projection matrices are

B1½h1� ¼

0 0 0 0 0 0 0

0 b1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 s1 0 0 0 0

0 0 0 s5 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð8Þ

B2½h2; n2ðtÞ� ¼

0 0 0 0 0 0 0

0 b2 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 s2½n2ðtÞ� 0 0 0

0 0 0 0 0 0 0

0 0 0 0 a 0 0

0 0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

ð9Þ

B3½h3; n1ðtÞ�

¼

0 0 0 0 0 f ½n1ðtÞ� f ½n1ðtÞ�ð1� frÞ
0 b3 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 s3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
ð10Þ

B4½h4; n4ðtÞ�

¼

0 0 0 0 0 0 0

vð1� g1Þ b4ð1� g2Þ 0 0 0 0 0

vg1 g2 0 0 0 0 0

0 0 0 s4½n4ðtÞ� 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
:

ð11Þ

Results: seasonal dynamics of unmanaged populations

When parameterized with the values in Table 1, the

model produces a stable two-cycle on the interannual

time scale, resulting in a biennial eight-cycle on the

seasonal time scale (Figs. 2 and 4a). Such interannual

two-cycles, i.e., alternating years of high-density

vegetative (rosettes, seedlings, bank seeds) and repro-

ductive stages (adults, new seeds), have been observed

in both field and experimental studies (Nuzzo 1991,

Winterer et al. 2005, Pardini et al. 2009).

MODELING MANAGEMENT

Management matrices

We describe each management strategy by a matrix

M. In most cases, M only describes survival and is a

diagonal matrix with main diagonal diag(M)¼m. The

entries mi of vector m give the proportion of stage i

FIG. 2. Simulated dynamics for each stage (individuals per
square meter) in an unmanaged garlic mustard population,
demonstrating convergence to a seasonal eight-cycle, interan-
nual two-cycle (‘‘adults’’ refers to the sum of fruiting, flowering,
and resprouting stages). Simulations were initialized with 10
bank seeds; reasonable initial distributions (i.e., not consisting
only of stages present in other seasons) did not change
asymptotic dynamics.

ESTHER SHYU ET AL.1896 Ecological Applications
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surviving management. However, M may also include

other transitions induced by management actions.

Assuming management is repeated annually, prior to

any censuses or density-dependent processes in the

managed season, M is inserted into the periodic

matrix product (7) after the matrix projecting to the

managed season. For example, if management occurs

every season 1, the post-management season 1

population is given by

n1ðt þ 1Þ ¼MB4B3B2B1n1ðtÞ ð12Þ

¼ A1n1ðtÞ: ð13Þ

We focus on four control strategies, as represented by

the following management matrices.

Pulling at ground level can achieve up to 99%

mortality of summer flowering plants (Nuzzo 1991).

However, this strategy requires intensive hand labor

and stem bagging to prevent seed release (Solis 1998,

Pardini et al. 2008). We model pulling as a harvest of

season 2 flowering adults (reduction by a proportion

p2) using the management matrix Mp2
:

diagðMp2
Þ ¼ ½1; 1; 1; 1; ð1� p2Þ; 1; 1� ð14Þ

A1 ¼ B4B3B2Mp2
B1: ð15Þ

Clipping at midheight (15 cm above ground) can be

done by a single person using a string trimmer, but

may also harm native flora. Plants clipped early in the

growing season resprout, with reduced fertility, with a

probability r (Pardini et al. 2008). Plants clipped later

in the season usually cannot resprout, although their

stems must be carefully removed to prevent seed

dispersal. Management matrices for early clipping

(reducing season 2 flowering adults by a proportion

c2) and late clipping (reducing season 3 fruiting adults

by a proportion c3) are

diagðMc2
Þ ¼ ½1; 1; 1; 1; ð1� c2Þ; 1; 1� ð16Þ

Mc2
ð7; 5Þ ¼ c2r ð17Þ

A1 ¼ B4B3B2Mc2
B1 ð18Þ

diagðMc3
Þ ¼ ½1; 1; 1; 1; 1; ð1� c3Þ; 1� ð19Þ

A1 ¼ B4B3Mc3
B2B1: ð20Þ

Herbicides such as glyphosate (Roundup) can be

cheaply applied to large areas, but may also kill

native species. They are usually used in the early

spring, before other species have germinated, or in

late fall, when other species are dormant (Nuzzo 1991,

2000, Slaughter et al. 2007). We model spring

herbicide as a reduction in season 1 seedlings and

rosettes (by a proportion h1), and fall herbicide as a

reduction in season 4 rosettes (by a proportion h4):

diagðMh1
Þ ¼ ½1; 1; ð1� h1Þ; ð1� h1Þ; 1; 1; 1� ð21Þ

A1 ¼Mh1
B4B3B2B1 ð22Þ

diagðMh4
Þ ¼ ½1; 1; 1; ð1� h4Þ; 1; 1; 1� ð23Þ

A1 ¼ B4Mh4
B3B2B1: ð24Þ

Biocontrol agents for garlic mustard include monoph-

agous Ceutorhynchus weevils (Blossey et al. 2001,

Davis et al. 2006, Gerber et al. 2009), most

prominently C. scrobicollis. The effects of C. scrobi-

collis are modeled as a reduction in new seeds (by a

proportion ws) and second-year rosettes (by a pro-

portion wr) during season 4. We assume a linear

relationship between these two effects with the ranges

in Davis et al. (2006) (9–43% rosette mortality, 11–

49% seed reduction; wr ¼ 0.895ws � 0.008):

diagðMw4
Þ ¼ ½ð1� wsÞ; 1; 1; ð1� wrÞ; 1; 1; 1� ð25Þ

A1 ¼ B4Mw4
B3B2B1: ð26Þ

Bifurcation analysis

The effects of management were analyzed using

bifurcation diagrams, which show the asymptotic

population dynamics as a function of some parameter:

in our case, as a harvest parameter is varied from 0 to

1 (0% to 100% mortality). Simulations at each value

of the bifurcation parameter were run for 3000

seasons to achieve asymptotic dynamics. The densities

(individuals per square meter) of rosettes plus adults,

the stages with the most biomass and invasive impact,

from an additional 300 seasons were plotted. Other

parameters were maintained at the same values as in

the unmanaged model.

Results: Dynamic responses to management

We present bifurcation diagrams (Fig. 3a) for the

effects of each management strategy on season 2

(early summer) populations. This is the time of year

when garlic mustard’s invasive impacts are most

significant, because season 2 has the highest densities

of rosettes and adults (see Plate 1) and is the active

growing season of many native species.

At low mortality for each strategy, managed

populations exhibit the same interannual two-cycles

as unmanaged populations. Increasing mortality re-

sults in a flip bifurcation (subcritical for fall herbicide,

supercritical for all other strategies) that collapses

each two-cycle into a single interannual equilibrium;

this bifurcation point differs among strategies, occur-

ring at the lowest level of management for spring

herbicide (h1). Very high levels of management

mortality (.90% for h1 and ws, nearly 100% for the

other strategies) are needed to reduce density to zero,

December 2013 1897POPULATION DYNAMICS OF GARLIC MUSTARD



representing long-term eradication of the garlic

mustard population.

Beyond these qualitative similarities, details of the

response to increased management differ between

strategies. Increasing fall herbicide mortality (h4) from

0% to 70% actually increases densities in season 2, an

example of overcompensation generated by density

dependence (Fig. 3a). Conversely, increasing spring

FIG. 3. (a) Bifurcation diagrams showing asymptotic garlic mustard densities under different management practices. The x-axis
gives the proportion of mortality (0 to 1) induced by the given management strategy; the y-axis shows the corresponding population
densities of rosettes plus adults pooled in season 2 (early summer). Dashed lines for the biocontrol parameter ws indicate ranges for
the weevil Ceutorhynchus scrobicollis (Davis et al. 2006). (b) Bifurcation diagrams for garlic mustard densities, in each season,
under the fall herbicide treatment (h4).

ESTHER SHYU ET AL.1898 Ecological Applications
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herbicide mortality (h1) consistently reduces density

and eradicates the population at the lowest mortality

of all the strategies. These results may explain why fall

herbicide has been less effective than spring herbicide

in reducing garlic mustard (Nuzzo 1991, Slaughter et

al. 2007) and highlight the need to consider the

seasonal timing of harvest.

Responses to harvest differ not only with the season

of harvest, but also with the season of observation.

While flip bifurcations and eradication occur at the

same management levels regardless of season, other

population dynamics can change significantly depend-

ing on the time of year. Increasing fall herbicide (h4)

from 80% to 95% mortality, for example, decreases

densities in seasons 1, 2, and 4, but counteractively

raises them in season 3 (Fig. 3b).

We note that management by pulling ( p2) or early

clipping (c2) of season 2 adults gives identical

bifurcation diagrams (Fig. 3a), even though the latter

strategy allows resprouts. This result may alleviate

concerns about resprouts counteracting management

(Pardini et al. 2008), potentially making early clipping

favorable to more labor-intensive pulling.

PERTURBATION ANALYSIS

Sensitivity of seasonal cycles

Fig. 3 uses bifurcation analysis to document qualitative

changes in dynamics resulting from management mor-

tality. However, the effects of changes in all of the

demographic parameters may also be of interest.

Perturbation analysis (sensitivity and elasticity) calculates

the effects of such changes, which may be due to natural

environmental change (including spatial differences

between habitats or temporal change in environmental

conditions), as well as management actions and other

human impacts. The sensitivity of population density to

mortalities, in particular, provides a way to measure

compensatory effects. Whereas bifurcation analysis

provides a qualitative picture of the global response to

a single parameter, sensitivity analysis provides a

quantitative measure of the local response to all

parameters. Even though sensitivity and elasticity anal-

yses are carried out using derivatives, it is well known that

they provide useful information about the effects of even

moderately large perturbations (Caswell 2001).

For a long time, perturbation analyses were available

primarily for the growth rate of linear models (Caswell

1978, 2001). Because our model is nonlinear, the relevant

index of population performance is the attractor to which

population density asymptotically converges. This attrac-

tormay be either a fixed point or a cycle on the interannual

time scale, both of which are cycles on the seasonal time

scale. The necessary theory for the sensitivity of these

attractors is developed in detail inCaswell (2008, 2009) and

Caswell and Shyu (2012); for an introduction to matrix

calculus methods and notation, see Appendix 1 of Caswell

(2007).

To calculate the sensitivities of seasonal population

densities, we must first determine the cycle of population

vectors describing the asymptotic dynamics. A fixed point

on the interannual time scale (as for a garlic mustard

population under high management mortality) corre-

sponds to a four-cycle on the seasonal time scale satisfying

n̂1 ¼M1B4½h4; n̂4� n̂4

n̂2 ¼M2B1½h1� n̂1

n̂3 ¼M3B2½h2; n̂2� n̂2

n̂4 ¼M4B3½h3; n̂1� n̂3 ð27Þ

where Mi refers to any management matrix with harvest

occurring in season i.

If a population has more complex attracting dynamics,

the set of seasonal population vectors must be expanded

accordingly. A two-cycle on the interannual time scale (as

for a garlic mustard population under low management

mortality) corresponds to an eight-cycle on the seasonal

time scale satisfying

n̂1 ¼M1B4½h4; n̂8�n̂8 n̂5 ¼M1B4½h4; n̂4�n̂4

n̂2 ¼M2B1½h1�n̂1 n̂6 ¼M2B1½h1�n̂5

n̂3 ¼M3B2½h2; n̂2�n̂2 n̂7 ¼M3B2½h2; n̂6�n̂6

n̂4 ¼M4B3½h3; n̂1�n̂3 n̂8 ¼M4B3½h3; n̂5�n̂7:

ð28Þ

For a systemwith k seasonal population vectors, eachwith

s stages, define the product matrices C1 . . . Ck so that

n̂1 ¼M1Bkn̂k ð29Þ

¼ Ckn̂k ð30Þ

n̂i ¼MiBi�1n̂i�1 i ¼ 2; . . . ; k ð31Þ

¼ Ci�1n̂i�1: ð32Þ

To obtain the sensitivity of the n̂i, differentiate Eqs. 30 and

32 with respect to h and apply the vec operator (which

stacks the matrix columns into a column vector). For the

four-cycle example in (27), the result is

dn̂1

dh>
¼ ðn̂>4 � IsÞ

]vecC4

]h>
þ
X4

j¼1

]vecC4

]n̂>j

dn̂j

dh>

 !

þ C4

dn̂4

dh>

� �
ð33Þ

dn̂i

dh>
¼ ðn̂>i�1 � IsÞ

]vecCi�1

]h>
þ
X4

j¼1

]vecCi�1

]n̂>j

dn̂j

dh>

 !

þ Ci�1

dn̂i�1

dh>

� �
i ¼ 2; . . . ; 4 ð34Þ
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where � denotes the Kronecker product and Is is a s 3 s

identity matrix.

It is convenient to rewrite (34) using block matrices.

We compile the seasonal population vectors in (27)

into the vector

N ¼

n̂1

n̂2

n̂3

n̂4

0
BB@

1
CCA ð35Þ

and define the matrices

Hi ¼ n̂>i � Is i ¼ 1; . . . ; 4: ð36Þ

We write the block matrices

B ¼

0 0 0 C4

C1 0 0 0

0 C2 0 0

0 0 C3 0

0
BB@

1
CCA ð37Þ

H ¼

0 0 0 H4

H1 0 0 0

0 H2 0 0

0 0 H3 0

0
BB@

1
CCA ð38Þ

C ¼

]vecC1

]n>1
. . .

]vecC1

]n>4

..

. . .
. ..

.

]vecC4

]n>1
. . .

]vecC4

]n>4

0
BBBBBB@

1
CCCCCCA

¼

0 0 0 0

0
]vecC2

]n>2
0 0

]vecC3

]n>1
0 0 0

0 0 0
]vecC4

]n>4

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð39Þ

D ¼

]vecC1

]h>

]vecC2

]h>

]vecC3

]h>

]vecC4

]h>

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð40Þ

The structures of B, H, and D depend only on the

period of the seasonal cycle. However, the matrix C in

(39) is determined by the density dependencies in each of

the Ci. In the case of garlic mustard, C2, C3, and C4

depend only on n2, n1, and n4, respectively, making the

corresponding derivatives the only nonzero entries in C.

The matrix dN/dh> contains the sensitivity of every

stage in each season (all the entries of N) to every

parameter in h, and is given by

dN

dh>
¼ dni

dhj

� �
ð41Þ

¼ ½Iks � B�HC��1
HD ð42Þ

where Iks is a ks 3 ks identity matrix (see Caswell 2008,

Caswell and Shyu 2012).

The corresponding matrix of elasticities is

eN

eh>
¼ hj

ni

dni

dhj

� �
ð43Þ

¼ diagðNÞ�1 dN

dh>
diagðhÞ: ð44Þ

Depending on the management criteria, it may be

convenient to obtain the sensitivities of the average

densities taken over multiple stages or seasons. To

calculate sensitivities of weighted average stage densities,

define c as a vector of weights for each stage (as based on

stage biomass, harvest value, etc.) and N̂i ¼ c>n̂i as the

weighted average stage density (scalar) for phase i of the

population vector cycle. Then,

dN̂

dh>
¼ ðIs � c>Þ dN

dh>
: ð45Þ

To calculate sensitivities of weighted-average seasonal

densities (e.g., annually averaged densities), define b as a

vector of weights for each season (e.g., their relative

lengths) and �n ¼
Pk

i¼1 bin̂i as the seasonally averaged

population vector. Then

d�n

dh>
¼ ðb> � IkÞ

dN

dh>
: ð46Þ

To calculate both stage- and seasonally averaged

sensitivities, take the seasonal averages of the weighted

average stage values to obtain �N ¼
Pk

i¼1 bic
>n̂i: Then

d �N

dh>
¼ ðb> � c>Þ dN

dh>
: ð47Þ

For the garlic mustard model, we consider the sensitiv-

ities and elasticities of stage-averaged population

densities (number of rosettes plus adults, equally

weighted, per square meter) to demographic and

management parameters. These sensitivities and elastic-

ities are found for the seasonal and annually averaged

densities of an initially unmanaged population.

Results: Effects of management and demographic

perturbations

Perturbation analyses can reveal when management in

one season has different effects in other seasons. As

shown in Fig. 4a, unmanaged populations experience

one series of seasonal densities in the first year of each

ESTHER SHYU ET AL.1900 Ecological Applications
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interannual two-cycle (year 1) and a different series of

densities in the second year (year 2). These densities (in

terms of rosettes plus adults) reach their maximum in

season 2 (early summer) of year 1 and then fall to zero in

season 4 of year 2 and season 1 of year 1 (fall to spring).

The sensitivities of these densities to management

perturbations, and their elasticities to demographic

perturbations, are shown in Fig. 4b, c. These results

indicate that perturbations that decrease densities in one

season may not affect, or will even increase, densities at

other times of year. As a result, optimal management

strategies may shift depending on the season(s) of

interest. For example, the maximum garlic mustard

population (year 1, season 2 in Fig. 4a) has large

positive elasticities to seed viability (v), seedling survival

(s1), second-year rosette spring survival (s5), and the

flowering-to-fruiting adult transition (a) (Fig. 4c). These

transitions may accordingly be effective targets for

FIG. 4. (a) Densities (number of rosettes plus adults per square meter) in an unmanaged population over the interannual two-
cycle (seasonal eight-cycle). Seasons 1–4 along the line correspond to spring, early summer, late summer, and fall/winter as in Fig.
1. (b) Sensitivities of the eight seasonal densities in panel (a), and of the average annual density, to management parameters shown
in Fig. 3. (c) Elasticities of these densities to demographic parameters listed in Table 1; for these analyses, populations are initially
unmanaged (all management parameters at 0).
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mitigating the maximum density, although some may be

easier to perturb than others (changing seed viability, for

instance, is probably unfeasible). Most of the perturba-

tions that reduce the maximum density also reduce the

average annual density. However, although the average

density has its largest positive elasticity to the survival of

first-year rosettes in late summer (s3), the maximum

density has a negative elasticity to s3. Thus, while killing

summertime rosettes may be the most effective way to

reduce the average annual density, it would do so at the

cost of raising the maximum seasonal density.

Positive sensitivities of density to management per-

turbations reveal overcompensatory effects of the

management harvest (i.e., increasing the mortality

increases, rather than decreases, population density).

Our sensitivity results show that increasing fall herbicide

(h4) would increase season 2 densities in both year 1 and

2 (as previously noted from the bifurcation results).

Similarly, spring herbicide (h1) would increase seasons 3

and 4 densities in year 1, while pulling ( p2) and clipping

(c2, c3) would increase densities in season 1 of both years

and in seasons 3 and 4 of year 1.

DISCUSSION

Many species are affected by seasonal density-

dependent processes. These processes may interact with

management to produce complex, potentially counter-

intuitive dynamics. The model that we present here

accommodates seasonal and interannual variability,

density dependence, arbitrary stages, and harvest, as

well as delayed density effects (Ratikainen et al. 2008).

This approach also provides substantial detail about

how population structure in each season will respond to

perturbations. In particular, Eqs. 42 and 44 give the

sensitivities and elasticities, respectively, of every stage

in every season to every parameter in the model

(whether demographic or management-based). Using

Eqs. 45, 46, and 47, one can also calculate the sensitivity

of population densities averaged over stages, seasons, or

both.

When applied to garlic mustard, our model produces

biennial oscillations similar to those observed in

unmanaged populations. Bifurcation and perturbation

analyses demonstrate that the seasonal timing of harvest

affects long-term densities, and that some strategies

drive compensation or overcompensation in certain

seasons. Previous nonlinear models for garlic mustard

(Pardini et al. 2009, 2011) have also suggested potential

overcompensatory responses to management. Our peri-

odic model elucidates the seasonal harvest strategies

under which overcompensation occurs and quantifies

seasonal population increases using sensitivity analysis.

Because management effects in one season can produce

different, and even opposing, effects at other times of

year, control programs should consider season specific-

ity in both management objectives and actions. An

optimal harvest strategy may depend on whether

managers prioritize season-specific goals (e.g., reduced

densities in season 2) or more evenly distributed density

reductions throughout the year. The concept of ‘‘densi-

ty’’ here deserves some additional discussion. It is often

interpreted as total numbers, but in a structured

population, total numbers may be irrelevant if different

stages produce very different impacts because of

differences in size, behavior, energetics, or other factors

(Caswell 2008). These impacts can be incorporated into

sensitivity calculations through the weighting vectors in

Eqs. 45–47. Our definition of density in terms of rosettes

and adults uses a particular case of such a weighting

vector.

Even more interesting is the potential ability to

incorporate nonlinear measures of impact (e.g., Yoko-

mizo et al. 2009). Suppose that the impact of an invasive

species is given by a function u¼ f(N) of the population

vector N. The function f(�) might reflect an accelerating

response, in which the invasive species has little effect

until it reaches some threshold density, or a decelerating

response, in which there is a rapidly increasing effect at

low densities, but no further increase at higher densities.

The sensitivity of the impact u to model parameters can

be written directly as

du

dh>
¼ dN

dh>
du

dN
ð48Þ

where dN/dh> is given by (42). This calculation invites

the explicit quantification of the impacts of invasive

species, which will certainly involve not only purely

biological effects, but also social and bioeconomic

concerns.

Indeed, while population models can identify poten-

tially promising strategies, managers must also consider

factors such as cost and feasibility. Given a goal of

reducing season 2 densities, one might reason from Fig.

3a that all strategies, except for fall herbicide (h4), give

qualitatively similar results and should have equal

priority for implementation. In practice, however,

pulling ( p2) and late clipping (c3) are labor intensive

compared to the other treatments, whereas biocontrol

(ws) is limited by its agents. We find that C. scrobicollis,

for instance, would not even push populations past the

flip bifurcation, even though our assumption of fixed

biocontrol mortality probably overestimates biocon-

trol’s long-term efficacy. When all of these factors are

taken into account, spring herbicide (h1) and early

clipping (c2) might emerge as the most practical options.

Results from models like ours can be used to inform

related cost considerations (for examples of sensitivity

analyses that incorporate economic costs, see Baxter et

al. 2006).

Although our results focus on asymptotic dynamics,

a population may need a significant amount of time to

converge to its long-term behavior. Our model

simulations suggest that an initially unmanaged

population will take 5–10 years to reach its new

attractor under management (results not shown). As a

result, evaluating the management effects that we have
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projected may require population monitoring over

time scales at least this long. It may accordingly be

useful to simulate transient dynamics, especially in an

adaptive management context. Although all treat-

ments can be stopped if populations are eradicated,

only spring herbicide (h1) and biocontrol (ws) achieve

eradication at less than near 100% annual mortality

(Fig. 3a), and even these strategies require at least

90% annual mortality, over a period of decades, to

reduce the long-lived seed bank to negligible levels. It

may thus be more feasible to retain densities at

manageable levels through annual harvest, rather than

to attempt eradication.

As with many pest control models, we describe

management tactics as factors that influence mortality,

but have no individual dynamics. Biocontrol agents,

however, are populations in their own right, and their

effects may depend on feedback from the target species.

The effectiveness of C. scrobicollis, for example, might

decrease with the density of garlic mustard, and seasons

with low aboveground biomass (e.g., season 4 of year 2

and season 1 of year 1 in Fig. 4a) might lead to local

extinctions of the biocontrol agent. Accounting for these

interactions would require a fully coupled two-species

model for the biocontrol agent and target species (e.g.,

Buckley et al. 2005).

Several additional management options deserve

further consideration. One option is to simultaneously

implement multiple strategies. In the presence of

highly effective constant biocontrol (ws ¼ 0.43, wr ¼
0.49), we find that all five other strategies reach the

flip bifurcation (and, in some cases, population

eradication) at lower management levels (Fig. 5),

suggesting that combining management efforts may

help to achieve difficult control goals. Another

possibility is to alternate strategies between years. As

sensitivities and elasticities vary for year 1 and year 2

populations (Fig. 4b and c), differential treatments

every other year may more effectively reduce target

populations. Based on the number and placement of

management matrices in the annual matrix product,

our modeling framework can be used to analyze these

more complex harvest programs.

Because conclusions from any analyses of popula-

tion management strategies are projections condition-

al upon model structure and parameter values

(Caswell 2001:626), their generality depends on how

widely applicable their model structure and parame-

ters are. The structure of our model (Fig. 1) applies

generally to garlic mustard in North American

temperate forests. Parameter values in other habitats,

however, will differ from those measured in our

Missouri field population (Table 1). Our modeling

framework could be reapplied to other garlic mustard

populations with sufficient demographic data. Even in

the absence of such data for other populations, our

results still provide qualitative insights about respons-

es to management (e.g., seasonal differences, compen-

satory effects) that can inform control efforts. Many

of our qualitative findings (bifurcations of interannual

two-cycles into single equilibria with increasing

harvest, compensatory behavior for h4 in season 2,

and so forth) are robust to a range of North American

parameter values (e.g., those from Evans and Davis

2011).

Our approach is also applicable to other harvest

scenarios. In addition to controlling invasive pests,

harvest events affect the sustainability of resource

populations and can be important even when uninten-

tional, as in the case of incidental bycatch or ship strikes.

Forecasting population responses in these situations is

crucial for developing effective management policies.

Compensatory responses have been documented for

many resource species, including waterfowl and game

animals (e.g., Burnham and Anderson 1984, Nichols et

al. 1984). In such cases, compensation allows ‘‘surplus’’

individuals to be harvested without changing the

remaining population size, whereas overcompensation

leads to maximum population densities at intermediate

harvest levels. By explicitly including seasonality and

density dependence, models like ours can provide insight

FIG. 5. Bifurcation diagrams showing the effects of spring herbicide, pulling, and early clipping when paired with highly
effective biocontrol (proportional reduction in new seeds, ws ¼ 0.43; proportional reduction in rosettes, wr ¼ 0.49). Initially
unmanaged populations are in black. Populations initially at the new attractor under biocontrol are in gray.
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into the management of resource, pest, and conserved

populations alike.
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SUPPLEMENTAL MATERIAL

Supplement

Annotated MATLAB code for the garlic mustard time series simulations (Fig. 2), bifurcation diagrams (Figs. 3 and 5), and
sensitivity analysis (Fig. 4) (Ecological Archives A023-091-A1).
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