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COMMUTATORS IN THE TWO-WEIGHT SETTING

IRINA HOLMES, MICHAEL T. LACEY†, AND BRETT D. WICK‡

Abstract. Let R be the vector of Riesz transforms on Rn, and let µ, λ ∈ Ap be two weights
on Rn, 1 < p <∞. The two-weight norm inequality for the commutator ‖[b, R] : Lp(µ) 7→
Lp(λ)‖ is shown to be equivalent to the function b being in a BMO space adapted to µ and
λ. This is a common extension of a result of Coifman-Rochberg-Weiss in the case of both λ
and µ being Lebesgue measure, and Bloom in the case of dimension one.
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1. Introduction and Statement of Main Results

The foundational paper of Coifman-Rochberg-Weiss [6] set out a real-variable counterpart
to a classical theorem of Nehari [27]. It characterized BMO, the real-variable space of
functions with bounded mean oscillation, in terms of commutators with Riesz transforms.
Several lines of investigation came out of this work: generalizations to spaces of homogeneous
type, [31], multi-parameter extensions, [7, 9, 21, 22], connections to factorization of function
spaces, [1, 3, 5,12], div-curl lemmas, [4, 20] and additional interpretations in operator theory
[26,27,32].

In 1985, Bloom [2] proved a two-weight extension of the Nehari [27] result in one dimension.
In particular, for the Hilbert transform,

Hf(x) := p.v.
1

π

∫
R

f(y)

x− y
dy,

a choice of 1 < p <∞, and two weights µ and λ in Muckenhoupt’s Ap class, (see Section 2.3
for the definitions of these weights), the commutator [b,H](f) = bHf − H(bf) is bounded
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2 IRINA HOLMES, MICHAEL T. LACEY, AND BRETT D. WICK

from Lp(µ) to Lp(ν) if and only if the function b satisfies

‖b‖BMO(ν) := sup
Q

(∫
Q
|b− 〈b〉Q | dx∫

Q
ν dx

)
<∞,

where ν = µ
1
pλ−

1
p . If µ = λ, the BMO(ν) space is the classical one, and the result is well-

known. But, in full generality, this is a subtle result, as it is a characterization in the triple
of µ, λ and b.

The purpose of this paper is to extend Bloom’s result to the setting of Coifman-Rochberg-
Weiss. Recall that a Calderón–Zygmund operator associated to a kernel K(x, y) is an integral
operator:

Tf(x) :=

∫
Rn
K(x, y)f(y) dy, x /∈ suppf,

and that the kernel satisfies the standard size and smoothness estimates

|K(x, y)| ≤ C

|x− y|n
,

|K(x+ h, y)−K(x, y)|+ |K(x, y + h)−K(x, y)| ≤ C
|h|δ

|x− y|n+δ
,

for all |x− y| > 2 |h| > 0 and a fixed δ ∈ (0, 1].
Our first main result is the following upper bound for the commutator, [b, T ](f) := bTf −

T (bf), with a Calderón–Zygmund operators.

Theorem 1.1. Let T be a Calderón-Zygmund operator on Rn and µ, λ ∈ Ap with 1 < p <∞.

Suppose b ∈ BMO(ν), where ν = µ
1
pλ−

1
p . Then

‖[b, T ] : Lp(µ)→ Lp(λ)‖ ≤ c‖b‖BMO(ν),

where c is a constant depending on the dimension n, the operator T , and µ, λ, and p.

Recall that the Riesz transforms are defined by:

Rj(f)(x) := p.v.
Γ
(
n+1

2

)
π
n+1
2

∫
Rn
f(y)

xj − yj
|x− y|n+1 dy, j = 1, . . . , n.

Specializing to the Riesz transforms, we are able to characterize BMO(ν) in terms of the
boundedness of the commutators. This gives a joint generalization of Bloom and Coifman-
Rochberg-Weiss, which is the main result of the paper.

Theorem 1.2. For 1 < p < ∞, and µ, λ ∈ Ap, set ν = µ
1
pλ−

1
p . Then there are constants

0 < c < C <∞, depending only on n, p, µ and λ, for which

(1.1) c‖b‖BMO(ν) ≤
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ ≤ C‖b‖BMO(ν).

Similar to [6], the equivalence above yields a weak-factorization result for weighted Hardy
spaces.

Corollary 1.3. Under the hypotheses and notation of Theorems 1.1 and 1.2, let λ′ ··= λ1−q

and T be a Calderón-Zygmund operator on Rn. We have the inequality

‖g1(Tg2)− (T ∗g1)g2‖H1(ν) ≤ c‖g1‖Lq(λ′)‖g2‖Lp(µ),
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where c is a constant depending on the dimension, the operator T , and on µ, λ, and p.
Conversely, there exists a constant c so that every f ∈ H1(ν) can be written as

(1.2) f(x) =
n∑
i=1

∞∑
j=1

gij(x)Rih
i
j(x) + hij(x)Rig

i
j(x),

where Ri is the Riesz transform in the ith variable, and gij ∈ Lq(λ′), hij ∈ Lp(µ) with

n∑
i=1

∞∑
j=1

‖gij‖Lq(λ′)‖hij‖Lp(µ) ≤ c‖f‖H1(ν).

In the special case of the Hilbert transform, and p = 2, the paper [13] gives a ‘modern’
proof of Bloom’s result. We follow the outlines of that proof in the current setting. Using
a Haar shift representation of T , a commutator can written out as a sum of several terms.
Most of these are paraproducts, with symbol b, but there are error terms as well. For
the paraproducts, one needs a two-weight criteria of the boundedness. These criteria come
in several different forms, but the additional structure of µ, λ ∈ Ap forces these ostensibly
different criteria to be jointly finite. There are several error terms to handle. A comprehensive
treatment of all terms depends upon an H1-BMO duality, which fortunately has already been
developed.

Here is an outline of the paper. Section 2 collects all the necessary background that will
be used throughout the paper. This includes background on Ap weights, and weighted H1.
Section 3 introduces the paraproduct operators of interest and proves they are bounded
in terms of Bloom’s BMO. We are able to mimic certain unweighted proofs by using a
duality statement for weighted BMO spaces. In Section 4 we provide a family of equivalent
conditions for a function to belong to the dyadic BMO(ν). Some of these equivalences are
more useful when obtaining lower bounds as in Theorem 1.2, while others are more important
in the proof of the upper bound in Theorem 1.1. In particular, there is seemingly no canonical
form of the definition of Bloom’s BMO space. We have followed Bloom’s presentation in the
definition above, and find other forms of the definition more convenient at different points
of the proof. We do not track Ap constants, since the sharp bound would depend upon
the choice of norm for BMO(ν). Section 5 contains the proof of Theorems 1.1 and 1.2 and
Corollary 1.3. For the upper bound, we will use the Hytönen Representation Theorem, [14],
to decompose the Calderón–Zygmund operator into Haar shift operators. Then we carefully
analyze the commutator with each Haar shift to prove the desired statement in Theorem
1.1. A similar proof strategy can be found in [7]. For the lower bound, we follow the original
proof of Coifman, Rochberg, and Weiss, [6], but with suitable modifications. The proof of
Corollary 1.3 is then a standard application of well-known techniques.

2. Notation and Background

Throughout this paper, we use the standard notation “A . B” to denote A ≤ cB for some
constant c that depends only on the dimension n and, in the case of a weighted inequality,
on p and the Ap constants of µ, and λ. And, “A ≈ B” means that A . B and B . A. We
let “··=” mean equal by definition.

2.1. Dyadic Grids. Recall the standard dyadic grid on Rn:

D0 ··=
{

2−k ([0, 1)n +m) : k ∈ Z;m ∈ Zn
}
.
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For every ω = (ωj)j∈Z ∈ ({0, 1}n)Z we may translate D0 by letting

Dω ··=
{
Q
·

+ ω : Q ∈ D0
}
,

where

Q
·

+ ω ··= Q+
∑

j:2−j<l(Q)

2−jωj.

Here l(Q) will denote the side length of a cube Q in Rn. We will only need to pay attention to
ω when dealing with Eω, which denotes expectation with respect to the standard probability
measure on the set of parameters ω. We denote a generic dyadic grid Dω on Rn by D.

Any such D has the standard nestedness properties:

• For every P,Q ∈ D, P ∩Q is one of P , Q, and ∅.
• All Q ∈ D with l(Q) = 2−k for some fixed k ∈ Z partition Rn.

For every Q ∈ D and every non-negative integer k, we denote:

• Q(k): the kth generation ancestor of Q in D, i.e. the unique element of D that contains
Q and has side length 2kl(Q).
• Q(k): the collection of kth generation descendants of Q in D, i.e. the 2kn disjoint

subcubes of Q in D with side length 2−kl(Q).

2.2. The Haar System. Recall that every dyadic interval I ⊂ R is associated with two
Haar functions:

h0
I
··=

1√
|I|
(
1I− − 1I+

)
, and h1

I
··=

1√
|I|
1I .

Note that h0
I is cancellative, while h1

I is non-cancellative. The cancellative Haar functions
associated to a dyadic system on R form an orthonormal basis for L2(R).

More generally, let Q = Q1 × · · · × Qn be a dyadic cube in Rn – here all Qi are dyadic
intervals in R with common length l(Q). Then Q is associated with 2n Haar functions:

hεQ(x) ··= h
(ε1,...,εn)
Q1×···×Qn(x1, . . . , xn) ··=

n∏
i=1

hεiQi(xi),

where ε = (ε1, . . . , εn) ∈ {0, 1}n is called the signature of hεQ. We write ε ≡ 1 when εi = 1
for all i; in this case,

h1
Q
··=

1√
|Q|

1Q

is non-cancellative. All the other 2n− 1 Haar functions hεQ with ε 6≡ 1 associated with Q are
cancellative. Moreover, as in the one-dimensional case, all the cancellative Haar functions
associated with a dyadic grid D on Rn form an orthonormal basis for L2(Rn). In other words,
every f ∈ L2(Rn) has the expansion:

f =
∑

Q∈D,ε 6≡1

f̂(Q, ε)hεQ,

where f̂(Q, ε) ··=
〈
f, hεQ

〉
. Throughout this paper we use 〈·, ·〉 to denote the usual inner

product on L2(Rn).
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We make a few simple but useful observations about Haar functions. First, note that hεQ
is constant on any subcube P ( Q of Q in D; we denote this value by hεQ(P ). Then for any
integer k ≥ 1, we can express hεQ as:

hεQ =
∑

P∈Q(k)

hεQ(P )1P .

Second, a simple calculation shows that:

hεQh
η
Q =

1√
|Q|

hε+ηQ ,

where for ε, η ∈ {0, 1}n we define ε+ η ∈ {0, 1}n as:

(2.1) (ε+ η)i ··= δ(εi,ηi) =

{
0, if εi 6= ηi
1, if εi = ηi.

It is easy to see from this definition that ε+ η ≡ 1 if and only if ε = η, and ε+ η = ε if and
only if η ≡ 1.

Third, we note that the average of a function f over a dyadic cube Q:

〈f〉Q ··=
1

|Q|

∫
Q

f dx,

can be expressed as:

〈f〉Q =
∑

P∈D,P)Q
ε6≡1

f̂(P, ε)hεP (Q).

In turn, this yields the following useful expression:

(2.2) 〈f〉Q − 〈f〉Q(i) =
∑

P,Q∈D,ε6≡1

Q(P⊂Q(i)

f̂(P, ε)hεP (Q) =
∑
1≤k≤i
ε6≡1

f̂(Q(k), ε)hεQ(k)(Q),

which we shall use later in the proof of our main result.

2.3. Ap Weights. Let w be a weight on Rn, i.e. w is an almost everywhere positive, locally
integrable function. For 1 < p <∞, let Lp(w) ··= Lp(Rn;w) be the space of functions f that
satisfy:

‖f‖Lp(w) ··=
(∫

Rn
|f(x)|p dw(x)

) 1
p

<∞,

where we also use w to denote the measure w(x) dx. For a cube Q in Rn, we let

w(Q) ··=
∫
Q

w(x) dx and 〈w〉Q ··=
w(Q)

|Q|
.

We say that w belongs to the Muckenhoupt class of Ap weights for some 1 < p <∞ provided
that:

[w]Ap ··= sup
Q
〈w〉Q

〈
w1−q〉p−1

Q
<∞,

where q denotes the Hölder conjugate of p and the supremum above is over all cubes Q
in Rn with sides parallel to the axes. The quantity [w]Ap is called the Ap (Muckenhoupt)
characteristic of w.
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If w ∈ Ap, then the ‘conjugate’ weight

(2.3) w′ ··= w1−q ∈ Aq,
with Aq characteristic [w′]Aq = [w]q−1

Ap
. In other words:

1 ≤ 〈w〉Q 〈w
′〉p−1
Q ≤ [w]Ap and 1 ≤ 〈w′〉Q 〈w〉

q−1
Q ≤ [w]q−1

Ap
,

for all w ∈ Ap and all cubes Q in Rn. We shall make much use of the duality relationship:

(2.4) (Lp(w))∗ ≡ Lq(w′), with pairing 〈f, g〉 , for all f ∈ Lp(w), g ∈ Lq(w′),
and

‖f‖Lp(w) = sup
g∈Lq(w′)
‖g‖Lq(w′)≤1

| 〈f, g〉 |.

The case p = 2 is particularly easy to work with, as w′ = w−1 for w ∈ A2.
A crucial property of Ap weights that we shall use repeatedly is the Lp(w)-boundedness

of the maximal function:
Mf ··= sup

Q cubes in Rn

(
〈|f |〉Q 1Q

)
.

Muckenhoupt [24] showed that

(2.5) ‖Mf‖Lp(w) . ‖f‖Lp(w),

Another pivotal development in Ap weight theory was the Extrapolation Theorem - see
[8] - which, in particular, allows one to deduce the Lp(w)-boundedness of an operator for
all w ∈ Ap solely from its L2(w)-boundedness for all w ∈ A2. This is an extremely useful
tool because, as we shall see, L2-estimates for A2 weights are usually much ‘easier’ than
Lp-estimates for Ap weights. We shall use the following form of this theorem:

Theorem 2.1. Suppose an operator T satisfies:

‖Tf‖L2(w) ≤ AC(w)‖f‖L2(w)

for all w ∈ A2, for some fixed A > 0 and α > 0. Then:

‖Tf‖Lp(w) ≤ AC(w, p)‖f‖Ap
for all 1 < p <∞ and all w ∈ Ap.

We are keeping track of the constant A here because in the proof of our main result later,
we will need to keep track of some constants of the form 2i appearing in these bounds (see
for instance Lemma 2.2).

2.4. Dyadic Square Functions. Given a dyadic grid D on Rn, the dyadic square function
SD is defined by:

SDf ··=

[ ∑
Q∈D,ε6=1

|f̂(Q, ε)|2 1Q
|Q|

] 1
2

.

A crucial property of this operator is the equivalence of norms

(2.6) ‖f‖Lp(w) ' ‖SDf‖Lp(w),

for w ∈ Ap, 1 < p <∞.
At points below we will also need to have a weighted estimate for a shifted square function.

This is the content of the following Lemma.
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Lemma 2.2. For a dyadic grid D on Rn and a pair (i, j) of non-negative integers, define:

S̃D
i,j
f ··=

 ∑
Q∈D,ε6≡1

 ∑
P∈(Q(j))(i)

|f̂(P, ε)|

2

1Q

|Q|


1
2

.

Then for every weight w ∈ Ap, with 1 < p <∞:

(2.7)
∥∥∥S̃Di,j : Lp(w)→ Lp(w)

∥∥∥ . 2
n
2

(i+j).

Remark that for i = j = 0, this is just the usual dyadic square function SD.

Proof. In light of the Extrapolation Theorem 2.1, it suffices to prove an upper bound that
is linear in [w]A2 for all A2 weights w. So let w ∈ A2 and note that

‖S̃D
i,j
f‖2

L2(w) =
∑

Q∈D,ε6≡1

 ∑
P∈(Q(j))(i)

|f̂(P, ε)|

2

〈w〉Q

=
∑

R∈D,ε 6≡1

 ∑
P∈R(i)

|f̂(P, ε)|

2 ∑
Q∈R(j)

〈w〉Q .

Now ∑
P∈R(i)

|f̂(P, ε)| =
∑
P∈R(i)

|f̂(P, ε)| 〈w
−1〉

1
2
P

〈w−1〉
1
2
P

≤

 ∑
P∈R(i)

|f̂(P, ε)|2 1

〈w−1〉P
×
∑
P∈R(i)

〈
w−1

〉
P

 1
2

,

so, appealing to the square function bound (2.6),

‖S̃D
i,j
f‖2

L2(w) ≤ 2n(i+j)
∑

R∈D,ε 6≡1

∑
P∈R(i)

|f̂(P, ε)|2 1

〈w−1〉P

〈
w−1

〉
R
〈w〉R

≤ 2n(i+j)
∑

P∈D,ε 6≡1

|f̂(P, ε)|2 1

〈w−1〉P
. 2n(i+j)‖f‖2

L2(w).

�

2.5. Hytönen’s Representation Theorem. Fix a dyadic grid Dω on Rn. For every pair
i, j of non-negative integers, a dyadic shift operator with parameters (i, j) is an operator of
the form:

Sijω f ··=
∑
R∈D

ε,η∈{0,1}n

∑
P∈R(i)

Q∈R(j)

aεηPQRf̂(P, ε)hηQ,

where aεηPQR are coefficients with

|aεηPQR| ≤
√
|P ||Q|
|R|

= 2−
n
2

(i+j).
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The operator Sijω is called cancellative if all Haar functions appearing in its definition are
cancellative. Otherwise, Sijω is called non-cancellative. The parameters κ = (i, j) are a
measure of the complexity of the shift. As is well-known, the dependence of norm estimates
upon complexity must be tracked, but is only linear in

(2.8) κij ··= max(i, j, 1),

whereas there is exponential decay in κ, in the celebrated representation theorem of Hytönen
[14,15,17]:

Theorem 2.3. Let T be a Calderón-Zygmund operator associated with a δ-standard kernel.
Then there exist dyadic shift operators Sijω with parameters (i, j) for all non-negative integers
i, j such that

〈Tf, g〉 = c Eω
∞∑

i,j=0

2−κi,j
δ
2

〈
Sijω f, g

〉
,

for all bounded, compactly supported functions f and g, where c is a constant depending on
the dimension n and on T . Here all Sijω with (i, j) 6= (0, 0) are cancellative, but the shifts S00

ω

may be non-cancellative.

The statement of this Theorem involves a random choice of grids. However, in all applica-
tions of this result, one analyzes the norm behavior of the Haar shift operators, establishing
bounds that are uniform with respect to the choice of dyadic grid. The exact manner in
which the random dyadic grid are formed is not relevant to us. We will discuss the case
i = j = 0 in more detail in Section 5.2.

Another useful tool for us will be the weighted estimate below, which can be found in
[16,19,30].

Theorem 2.4. Let Sijω be a dyadic shift operator with complexity κij. Then for any weight
w ∈ Ap with p > 1:

(2.9)
∥∥Sijω : Lp(w)→ Lp(w)

∥∥ . κij[w]
max(1, 1

p−1)
Ap

.

2.6. Weighted BMO-H1 duality. For a weight w on Rn, the weighted BMO spaceBMO(w)
is defined to be the space of all locally integrable functions b that satisfy:

‖b‖BMO(w) ··= sup
Q

1

w(Q)

∫
Q

|b− 〈b〉Q | dx <∞,

where the supremum is over all cubes Q in Rn with sides parallel to the axes. For a general
weight, the definition of the BMO norm is highly dependent on its L1 average. But, if the
weight is A∞, one is free to replace the L1-norm by larger averages. Namely, defining

‖b‖BMOq(w) ··= sup
Q

(
1

w(Q)

∫
Q

|b− 〈b〉Q |
q dw′

) 1
q

.

it is shown in [25] that

(2.10) ‖b‖BMO(w) ≤ ‖b‖BMOq(w) ≤ C(n, p, [w]A∞)‖b‖BMO(w).

The first inequality is a straightforward application of Hölder’s inequality, but the second
one requires a stopping time argument.
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For a dyadic grid D on Rn, we define the dyadic versions of the norms above by taking
supremum over Q ∈ D instead of over all cubes Q in Rn, and denote these spaces by
BMOD(w) and BMOq

D(w). Clearly BMO(w) ⊂ BMOD(w) for any choice of D, and the
equivalence in (2.10) also holds for the dyadic versions of these spaces.

Now fix a dyadic grid D on Rn and a weight w ∈ A∞. Define the dyadic weighted Hardy
space H1

D(w) (see [11]) to be the space of all Φ that satisfy:

‖Φ‖H1
D(w)
··= ‖SDΦ‖L1(w) <∞.

The dual space of H1
D(w) is the weighted Carleson measure space CM1

D(w), that is, the space
of all locally integrable functions g such that:

‖g‖CM1
D(w)
··= sup

Q∈D

 1

w(Q)

∑
P⊂Q∈D
ε 6=1

|ĝ(P, ε)|2

〈w〉P


1
2

<∞,

with duality pairing 〈g,Φ〉 for g ∈ CM1
D(w) and Φ ∈ H1

D(w) see [23,33]. We have then

|〈g,Φ〉| ≤ ‖g‖CM1
D(w)‖SDΦ‖L1(w).

Specializing to the case of w ∈ A2, we have an H1-BMO duality.

Lemma 2.5. If w ∈ A2, there holds

(2.11) |〈b,Φ〉| . ‖b‖BMO2
D(w)‖SDΦ‖L1(w).

Proof. The inequality is equivalent to the assertion that if b ∈ BMO2
D(w) for w ∈ A2, then

b ∈ CM1
D(w) with ‖b‖CM1

D(w) . [w]A2‖b‖BMO2
D(w). But observe that fixing a cube Q, and

expanding b in the Haar basis, we have

(b− 〈b〉Q)1Q =
∑

P⊂Q∈D,ε 6=1

b̂(P, ε)hεP =: BQ.

Then, by (2.6),∫
Q

|b− 〈b〉Q |
2 dw−1 = ‖BQ‖2

L2(w−1)

& ‖SDBQ‖2
L2(w−1)

=
∑

P⊂Q∈D,ε6=1

|̂b(P, ε)|2
〈
w−1

〉
P

&
∑

P⊂Q∈D,ε 6=1

|̂b(P, ε)|2 1

〈w〉P
.

And so the Lemma follows. �

2.7. Bloom’s BMO(ν). From here on, fix 1 < p <∞ and two Ap weights µ and λ on Rn,
and define Bloom’s weight

ν ··= µ
1
pλ−

1
p .
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Lemma 2.6. The weight ν belongs to the A2 class. In particular:

[ν]A2 ≤ [µ]
1
p

Ap
[λ]

1
p

Ap
.

Moreover

(2.12) |〈b,Φ〉| . ‖b‖BMO2
D(ν)‖SDΦ‖L1(ν).

Proof. The second inequality is immediate from (2.11). For the first, by Hölder’s inequality:

〈ν〉Q ≤ 〈µ〉
1
p

Q 〈λ
′〉

1
q

Q and
〈
ν−1
〉
Q
≤ 〈µ′〉

1
q

Q 〈λ〉
1
p

Q ,

so

〈ν〉Q
〈
ν−1
〉
Q
≤
(
〈µ〉Q 〈µ

′〉p−1
Q

) 1
p
(
〈λ〉Q 〈λ

′〉p−1
Q

) 1
p

But the terms in parentheses are at most [µ]Ap and [λ]Ap . Hence ν ∈ A2. �

We record here a simple inequality.

(2.13) 〈µ〉
1
p

Q 〈λ
′〉

1
q

Q .
1

〈µ′〉
1
q

Q 〈λ〉
1
p

Q

.
1

〈ν−1〉Q
. 〈ν〉Q .

3. Two-Weight Inequalities for Paraproduct Operators

3.1. Paraproducts. For a fixed dyadic grid D on Rn, the ‘paraproduct’ operators with
symbol b are defined by:

ΠDb f ··=
∑

Q∈D,ε 6=1

b̂(Q, ε) 〈f〉Q h
ε
Q,(3.1)

Π∗Db f ··=
∑

Q∈D,ε 6=1

b̂(Q, ε)f̂(Q, ε)
1Q

|Q|
,

and ΓDb f ··=
∑
Q∈D

∑
ε,η 6=1

ε6=η

b̂(Q, ε)f̂(Q, η)
1√
|Q|

hε+ηQ .(3.2)

For ease of notation, we fix D through the rest of this section and suppress the subscript D
from the paraproducts.

Commutators are a difference of products, and the product of two functions is decomposed
into paraproducts as follows:

(3.3) bf = Πbf + Πfb+ Π∗bf + Γbf.

To see the decomposition in (3.3), express b and f in terms of the Haar expansions:

bf =
∑
R,Q∈D

∑
ε,η 6=1

b̂(Q, ε)f̂(R, η)hεQh
η
R

and analyze the sum over the three different cases R ( Q, R ) Q, and Q = R. The latter
case easily yields:∑

Q∈D,ε 6=1

b̂(Q, ε)f̂(Q, ε)
1Q

|Q|
+

∑
Q∈D,ε 6≡1

∑
η 6≡1,ε6=η

b̂(Q, ε)f̂(Q, η)
1√
|Q|

hε+ηQ = Π∗bf + Γbf.
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To illustrate one of the other two cases:∑
Q(R∈D;ε,η 6=1

b̂(Q, ε)f̂(R, η)hεQh
η
R =

∑
Q(R∈D;ε,η 6=1

b̂(Q, ε)f̂(R, η)hεQh
η
R(Q)

=
∑

Q∈D,ε6=1

b̂(Q, ε)hεQ
∑

R)Q,η 6=1

f̂(R, η)hηR(Q)

=
∑

Q∈D,ε6=1

b̂(Q, ε) 〈f〉Q h
ε
Q = Πbf.

Similarly, the case R ( Q yields Πfb.
We pause here for a moment to remark that the term Γb disappears in the one-dimensional

case, where the familiar decomposition is bf = Πbf+Πfb+Π∗bf . By definition (2.1), ε+η = 1
if and only if ε = η, so while Π∗bf maintains its one-dimensional structure and contains all the
non-cancellative Haar functions, the term Γb contains only the cancellative Haar functions.
Moreover, as in the one-dimensional case, Π∗b is the adjoint of Πb in unweighted L2(Rn), while
the third paraproduct Γb is self-adjoint in L2(Rn):

〈Πbf, g〉 = 〈f,Π∗bg〉 and 〈Γbf, g〉 = 〈f,Γbg〉 .

3.2. Two-weight Inequalities for Paraproducts. Next, we discuss boundedness of the
paraproducts as operators from Lp(µ)→ Lp(λ). Before we proceed, we make the interesting
observation that the adjointness statements about the three paraproducts in unweighted
L2(dx) extend to this case, in the sense of Banach space adjoints. Specifically

The adjoint of Πb : Lp(µ)→ Lp(λ) is Π∗b : Lq(λ′)→ Lq(µ′);

The adjoint of Π∗b : Lp(µ)→ Lp(λ) is Πb : Lq(λ′)→ Lq(µ′);

The adjoint of Γb : Lp(µ)→ Lp(λ) is Γb : Lq(λ′)→ Lq(µ′).

Here, λ′ is the conjugate weight, as in (2.3).
These follow from (2.4). For instance, the adjoint of Πb : Lp(µ) → Lp(λ) is the unique

operator T : Lq(λ′)→ Lq(µ′) such that

〈Πbf, g〉 = 〈f, Tg〉 , for all f ∈ Lp(µ), g ∈ Lq(λ′).

But this is just the inner product in unweighted L2(dx), so 〈Πbf, g〉 = 〈f,Π∗bg〉, and T = Π∗b .
The second statement above follows identically, and the third statement follows from the
self-adjointness of Γb in L2(dx).

This is a two-weight result for paraproducts, fundamental for us.

Theorem 3.1. Let D be a fixed dyadic grid on Rn, and suppose b ∈ BMO2
D(ν). Then:

‖Πb : Lp(µ)→ Lp(λ)‖ = ‖Π∗b : Lq(λ′)→ Lq(µ′)‖ . ‖b‖BMO2
D(ν),(3.4)

‖Π∗b : Lp(µ)→ Lp(λ)‖ = ‖Πb : Lq(λ′)→ Lq(µ′)‖ . ‖b‖BMO2
D(ν),(3.5)

‖Γb : Lp(µ)→ Lp(λ)‖ = ‖Γb : Lq(λ′)→ Lq(µ′)‖ . ‖b‖BMO2
D(ν).(3.6)

Proof. The proof is by duality, exploiting the H1-BMO duality inequality (2.12) to gain the
term ‖b‖BMO2

D(ν). This will leave us with a bilinear square function involving f and g, which
will be controlled by a product of a maximal function and a linear square function. The
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details are as follows. We let f ∈ Lp(µ) and g ∈ Lq(λ′). Then

| 〈Πbf, g〉 | =

∣∣∣∣∣ ∑
Q∈D,ε 6=1

b̂(Q, ε) 〈f〉Q ĝ(Q, ε)

∣∣∣∣∣
= | 〈b,Φ〉 | where Φ ··=

∑
Q∈D,ε 6=1

〈f〉Q ĝ(Q, ε)hεQ

. ‖b‖BMO2
D(ν)‖SDΦ‖L1(ν) by (2.12).

Now, SDΦ is bilinear in f and g, and is no more than

(SDΦ)2 =
∑

Q∈D,ε 6=1

| 〈f〉Q |
2|ĝ(Q, ε)|2 1Q

|Q|
≤ (Mf)2

∑
Q∈D,ε6=1

|ĝ(Q, ε)|2 1Q
|Q|

= (Mf)2(SDg)2.

A straight forward application of Hölder’s inequality, and bounds for the maximal and square
functions will complete the proof.

‖SDΦ‖L1(ν) ≤
∫

(Mf)(SDg) dµ
1
pλ−

1
p

≤ ‖Mf‖Lp(µ)‖SDg‖Lq(λ′) . ‖f‖Lp(µ)‖g‖Lq(λ′)
by (2.5), (2.6). This completes the proof of (3.4).

The second set of inequalities (3.5) are equivalent to the first, by a simple duality argument.
Concerning the last set of inequalities, (3.6), they are different in that the operator only has
cancellative Haar functions. One can bound Haar coefficients by maximal functions, doing
so on either f or g.

�

4. Equivalences for Dyadic Bloom BMO

Bloom’s BMO space has several equivalent formulations, which is a key fact in proof of
the main theorems. Those that we need are summarized here. For a fixed dyadic grid D on
Rn define the quantities:

BD1 (b, µ, λ) ··= sup
Q∈D

(
1

µ(Q)

∫
Q

|b− 〈b〉Q |
p dλ

) 1
p

;

BD2 (b, µ′, λ′) ··= sup
Q∈D

(
1

λ′(Q)

∫
Q

|b− 〈b〉Q |
q dµ′

) 1
q

.

We provide several equivalent statements for the dyadic version of Bloom’s BMO space
BMOD(ν).

Theorem 4.1. Let D be a fixed dyadic grid on Rn. The following are equivalent:

(1) b ∈ BMO2
D(ν).

(2) The operator Πb : Lp(µ)→ Lp(λ) is bounded.
(3) The operator Π∗b : Lp(µ)→ Lp(λ) is bounded.
(4) The operators Πb and Π∗b are bounded L2(ν)→ L2(ν−1).
(5) BD1 (b, µ, λ) <∞.
(6) BD2 (b, µ′, λ′) <∞.
(7) b ∈ BMOD(ν).
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Proof. (1)⇒ (2) and (3). This is the core of Theorem 3.1.

(2) ⇒ (5) and (3) ⇒ (6): These two assertions are the same by duality, and we consider
the first implication. Assuming the paraproduct Πb is bounded, we test the norm of this
operator on indicators of intervals, and get the condition in (5). By the Littlewood-Paley
inequalities in weighted Lp spaces, (2.6), we have

‖1Q(b− 〈b〉Q)‖Lp(λ) . ‖SD[1Q(b− 〈b〉Q)]‖Lp(λ)

≤ ‖SD(Πb1Q)‖Lp(λ)

Above, we have the square function of Πb1Q, which follows from the identity

Πb1Q =
∑

P⊂Q,ε 6≡1

b̂(P, ε)hεP +
∑

P)Q,ε 6≡1

b̂(P, ε)
|Q|
|P |

hεP .

Again by the Littlewood-Paley inequalities,

‖SD(Πb1Q)‖Lp(λ) . ‖Πb1Q‖Lp(λ).

But, the assumption of the norm boundedness of the paraproduct implies that we have

λ(Q)−1/p‖SD[1Q(b− 〈b〉Q)]‖Lp(λ) . ‖Πb : Lp(µ)→ Lp(λ)‖.

(5) or (6)⇒ (7): Suppose BD1 (b, µ, λ) <∞, the case of BD2 (b, µ′, λ′) <∞ being similar. Then∫
Q

|b− 〈b〉Q | dx ≤
(∫

Q

|b− 〈b〉Q |
p dλ

) 1
p
(∫

Q

dλ′
) 1

q

. BD1 (b, µ, λ)µ(Q)
1
pλ′(Q)

1
q

. BD1 (b, µ, λ)ν(Q) by (2.13).

That is, we have shown ‖b‖BMOD(ν) ≤ BD1 (b, µ, λ).

(7)⇔ (1): As discussed in Section 2.6, this is proved in [25].

(1) ⇒ (4): Suppose b ∈ BMO2
D(ν). We make use of the duality (L2(ν))∗ ≡ L2(ν−1), with

the usual unweighted L2 inner product as the duality pairing, and let f, g ∈ L2(ν). Then

| 〈Πbf, g〉 | = | 〈b,Φ〉 | . ‖b‖BMO2
D(ν)‖SDΦ‖L1(ν),

where Φ =
∑

P,ε 〈f〉P ĝ(P, ε)hεP . It follows easily that SDΦ ≤ (Mf)(SDg), and then from

(2.5) and (2.6):

‖SDΦ‖L1(ν) ≤ ‖Mf‖L2(ν)‖SDf‖L2(ν) . ‖f‖L2(ν)‖g‖L2(ν).

Then

‖Πb : L2(ν)→ L2(ν−1)‖ . ‖b‖BMO2
D(ν).

The same statement for Π∗b follows by noting that Π∗b : L2(ν) → L2(ν−1) is the adjoint of
Πb : L2(ν)→ L2(ν−1).

(4)⇒ (1): Suppose Πb : L2(ν)→ L2(ν−1) is bounded. Then

‖Πb1Q‖L2(ν−1) ≤ Aν(Q)
1
2 and ‖Π∗b1Q‖L2(ν−1) ≤ Aν(Q)

1
2 .
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In this situation we know that both paraproducts are bounded, so we can get to the
BMO2

D(ν) norm of b faster than in the square function approach, by noting that

(4.1) 1Q(b− 〈b〉Q) = 1Q (Πb1Q − Π∗b1Q) .

Then ∫
Q

|b− 〈b〉Q |
2 dν−1 =

∫
Q

|Πb1Q − Π∗b1Q|
2 dν−1

≤ 2‖Πb1Q‖2
L2(ν−1) + 2‖Π∗b1Q‖2

L2(ν−1)

≤ 4A2ν(Q),

which gives exactly ‖b‖BMO2
D(ν) ≤ 2A. �

We note here that the equivalence (1) ⇔ (4) in fact holds for any A2 weight. Moreover,
the strategy used in proving this last equivalence above can be employed to give more precise
bounds for the quantities BD1 (b, µ, λ) and BD2 (b, µ′, λ′) when b ∈ BMO2

D(ν). For in this case,
we know from Theorem 3.1 that

‖Πb1Q‖Lp(λ) + ‖Π∗b1Q‖Lp(λ) . ‖b‖BMO2
D(ν)µ(Q)

1
p ,

‖Πb1Q‖Lq(µ′) + ‖Π∗b1Q‖Lq(µ′) . ‖b‖BMO2
D(ν)λ

′(Q)
1
q .

Then, using (4.1), we have for any Q ∈ D:(∫
Q

|b− 〈b〉Q |
p dλ

) 1
p

= ‖1Q(Πb1Q − Π∗b1Q)‖Lp(λ)

≤ ‖Πb1Q‖Lp(λ) + ‖Π∗b1Q‖Lp(λ)

. ‖b‖BMO2
D(ν)µ(Q)

1
p .

The similar statement for BD2 (b, µ′, λ′) follows immediately by considering the paraproducts
as operators Lq(λ′)→ Lq(µ′). We state this result separately.

Proposition 4.2. Let µ, λ ∈ Ap with 1 < p <∞ and put ν ··= µ
1
pλ−

1
p . Then for any dyadic

grid D on Rn and any b ∈ BMO2
D(ν):

BD1 (b, µ, λ) . ‖b‖BMO2
D(ν), and BD2 (b, µ′, λ′) . ‖b‖BMO2

D(ν).

5. Two-Weight Inequalities for Commutators with Calderón-Zygmund
Operators

We prove Theorem 1.1, our upper bound on commutators. By the Hytönen Representation
Theorem 2.3,

〈[b, T ]f, g〉 = c(n, T ) Eω
∞∑

i,j=0

2−κi,j
δ
2

〈
[b,Sijω ]f, g

〉
,

for all bounded, compactly supported f , g, so it suffices to show that the commutators [b,Sijω ]
are bounded Lp(µ)→ Lp(λ) uniformly in ω. We claim that for any choice of Dω:

(5.1)
∥∥[b, Sijω ] : Lp(µ)→ Lp(λ)

∥∥ . κij‖b‖BMO(ν),
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for all non-negative integers i, j, where recall that κi,j is defined in (2.8), and in particular is
at most linear in i+ j. The linear growth in complexity in the second estimate is dominated
by the exponential decay in complexity in the first. Hence we conclude an upper bound on
the norm of the commutator, completing the proof of Theorem 1.1.

In what follows, consider D ··= Dω to be fixed and simply write Sij. The commutator
[b,Sij]f = bSijf − Sij(bf). Expand the products into paraproducts as in (3.3) and obtain

[b, Sij]f = T1f + T2f +Rijf,

where T1f ··= (Πb + Π∗b + Γb)(Sijf), T2f ··= Sij(Πb + Π∗b + Γb)f,

and Rijf ··= ΠSijfb− SijΠfb.

In this equality, the principal terms are T1 and T2. Using (2.9) and Theorem 3.1, we easily
obtain ‖Tk : Lp(µ) → Lp(λ)‖ . κij‖b‖BMO(ν) for k = 1, 2. So we only need to analyze the
remainder term Rij. In what follows, we will show that

(5.2)
∥∥Rij : Lp(µ)→ Lp(λ)

∥∥ . κij‖b‖BMO(ν),

for all i, j. Then (5.1) follows.

5.1. Remainder Estimate for (i, j) 6= (0, 0). In this case, the dyadic shift Sij is cancella-
tive:

Sijf ··=
∑
R∈D
ε,η 6≡1

∑
P∈R(i)

Q∈R(j)

aεηPQRf̂(P, ε)hηQ.

Then for any N ∈ D and γ 6≡ 1:

SijhγN =
∑
η 6≡1

∑
Q∈(N(i))(j)

aγη
NQN(i)h

η
Q and

〈
Sijf, hγN

〉
=
∑
ε 6≡1

∑
P∈(N(j))(i)

aεγ
PNP (i) f̂(P, ε).

These expressions give us the two terms in the remainder as

(5.3) ΠSijfb =
∑
R∈D
ε,η 6≡1

∑
P∈R(i)

Q∈R(j)

aεηPQRf̂(P, ε) 〈b〉Q h
η
Q, SijΠfb =

∑
R∈D
ε,η 6≡1

∑
P∈R(i)

Q∈R(j)

aεηPQRf̂(P, ε) 〈b〉P h
η
Q.

From (5.3):

Rijf =
∑
R∈D
ε,η 6≡1

∑
P∈R(i)

Q∈R(j)

aεηPQRf̂(P, ε)
(
〈b〉Q − 〈b〉P

)
hηQ.

The difference in the averages of b is an essential term, but the cubes P and Q above are
just descendants of R. They need not intersect.

We continue our analysis of the remainder in terms of the relative sizes of i and j, but
the cases of i ≤ j and j ≤ i are dual, and so we only consider the former. Each Q ∈ R(j) is
contained in a unique N ∈ R(i), and then Q ∈ N(j−i). (Note that N = Q if i = j.) Rewrite
Rijf by grouping the Q’s this way:

Rijf =
∑
R∈D
ε,η 6≡1

∑
P,N∈R(i)

f̂(P, ε)
∑

Q∈N(j−i)

aεηPQR
(
〈b〉Q − 〈b〉P

)
hηQ,
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and write

〈b〉Q − 〈b〉P = (〈b〉Q − 〈b〉N) + (〈b〉N − 〈b〉R) + (〈b〉R − 〈b〉P ) .

Note that the first term disappears if i = j, and also the expansion (2.2) applies to each of
the terms in the parentheses above. The remainder is the sum of three terms.

Rijf =

j−i∑
k=1

∑
R∈D

ε,η,γ 6≡1

∑
P∈R(i)

N∈R(j−k)

f̂(P, ε)̂b(N, γ)
∑

Q∈N(k)

aεηPQRh
γ
N(Q)hηQ

+
i∑

k=1

∑
R∈D

ε,η,γ 6≡1

∑
P∈R(i)

N∈R(i−k)

f̂(P, ε)̂b(N, γ)
∑

Q∈N(j−i+k)

aεηPQRh
γ
N(Q)hηQ

−
i∑

k=1

∑
R∈D

ε,η,γ 6≡1

∑
N∈R(i−k)
Q∈R(j)

 ∑
P∈N(k)

f̂(P, ε)hγN(P )

 b̂(N, γ)aεηPQRh
η
Q.

We relabel the second term by replacing k with k− j + i, and then combine it with the first
term. Finally, we may write

(5.4) Rijf =

j∑
k=1

Akf −
i∑

k=1

Bkf,

where:

Akf ··=
∑
R∈D

ε,η,γ 6≡1

∑
P∈R(i)

N∈R(j−k)

f̂(P, ε)̂b(N, γ)
∑

Q∈N(k)

aεηPQRh
γ
N(Q)hηQ,

and

Bkf ··=
∑
R∈D

ε,η,γ 6≡1

∑
N∈R(i−k)
Q∈R(j)

 ∑
P∈N(k)

aεηPQRf̂(P, ε)hγN(P )

 b̂(N, γ)hηQ.

It suffices to prove that ‖Ak : L2(µ)→ L2(λ)‖ + ‖Bk : L2(µ)→ L2(λ)‖ . ‖b‖BMO(ν), be-
cause then from (5.4) we obtain:∥∥Rij : L2(µ)→ L2(λ)

∥∥ ≤ j
∥∥Ak : L2(µ)→ L2(λ)

∥∥+i
∥∥Bk : L2(µ)→ L2(λ)

∥∥ . κij‖b‖BMO(ν),

which is nothing other than (5.2). We now turn to computing the norms of Ak and Bk.
We begin with Ak and again proceed by duality. We let f ∈ Lp(µ) and g ∈ Lq(λ′) and

appeal to H1-BMO duality, as expressed in (2.12), to get the BMOν norm.

| 〈Akf, g〉 | = | 〈b,Φ〉 | . [ν]A2‖b‖BMO2
D(ν)‖SDΦ‖L1(ν),

where, as before, Φ is a bilinear expression involving f and g.

Φ ··=
∑
R∈D

ε,η,γ 6≡1

∑
P∈R(i)

N∈R(j−k)

f̂(P, ε)

 ∑
Q∈N(k)

aεηPQRh
γ
N(Q)ĝ(Q, η)

hγN .
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This is a Haar series, and we pass to its square function, summing over the cubes N .

(SDΦ)2 . 2−n(i+j)
∑
N∈D
ε,η 6≡1

 ∑
P∈(N(j−k))(i)

|f̂(P, ε)|
∑

Q∈N(k)

1√
|N |
|ĝ(Q, η)|

2

1N

|N |
.

The term 2−n(i+j) comes from the decay of the Haar shift coefficients. The sum involving g
is bounded by ∑

Q∈N(k)

1√
|N |
|ĝ(Q, η)| ≤ 2

kn
2

|N |
∑

Q∈N(k)

∫
Q

|g| dx = 2
kn
2 〈|g|〉N .

So the square function is bounded by

(SDΦ)2 . 2−n(i+j−k)(Mg)2
∑

N∈D,ε 6≡1

 ∑
P∈(N(j−k))(i)

|f̂(P, ε)|

2

1N

|N |

= 2−n(i+j−k)(Mg)2
(
S̃D

i,j−k
f
)2

.

The maximal function is controlled by Muckenhoupt’s bound, and the square function by
the estimate (2.7). We have

‖SDf‖L1(ν) . 2−
n
2

(i+j−k)

∫
Rn

(Mg)(S̃D
i,j−k

f) dν

≤ 2−
n
2

(i+j−k)‖Mg‖Lq(λ′)
∥∥∥S̃Di,j−kf∥∥∥

Lp(µ)

. 2−
n
2

(i+j−k)‖g‖Lq(λ′)2
n
2

(i+j−k)‖f‖Lp(µ) = ‖f‖Lp(µ)‖g‖Lq(λ′).
The completes the proof of ‖Ak : Lp(µ)→ Lp(λ)‖ . ‖b‖BMO(ν).

Similarly for Bk:

| 〈Bkf, g〉 | = | 〈b,Φ〉 | . ‖b‖BMO2
D(ν)‖SDΦ‖L1(ν),

where

Φ ··=
∑
R∈D

ε,η,γ 6≡1

∑
N∈R(i−k)
Q∈R(j)

 ∑
P∈N(k)

f̂(P, ε)hγN(P )aεηPQR

 ĝ(Q, η)hγN .

The analysis of the square function SDΦ is symmetric with respect to the roles of f and g.
The proof is analogous, and so omitted.

5.2. Remainder Estimate for i = j = 0. A precise analysis of the case i = j = 0 in
Theorem 2.3 is given in [14], where it is shown that S00 is of the form

S00 = S00
c + Πa + Π∗d,

where S00
c is a cancellative dyadic shift with parameters (0, 0), and Πa, Π∗d are paraproducts

with symbols a, d ∈ BMOD with ‖a‖BMOD ≤ 1; ‖d‖BMOD ≤ 1. (The definition of the
paraproduct is in (3.1).) Here BMOD denotes the unweighted dyadic BMO space. The
functions a and d come from the T1 theorem of David-Journé. The remainder R00 then has
the form

R00 = R00
c +Ra +R∗d,
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where

R00
c f ··= ΠS00c fb− S00

c Πfb; Raf ··= ΠΠafb− ΠaΠfb; R∗df ··= ΠΠ∗df
b− Π∗dΠfb.

Now, S00
c is cancellative, so

S00
c f =

∑
R∈D

∑
ε,η 6≡1

aεηR f̂(R, ε)hηR,

for some |aεηR | ≤ 1. It is easy to check that

ΠS00c fb = S00
c Πfb =

∑
R∈D

∑
ε,η 6≡1

aεηR f̂(R, ε) 〈b〉R h
η
R.

So the term R00
c = 0, and we only need to look at Ra and R∗d.

We recall the Ap bounds for paraproduct operators, which is classical. Namely, for a ∈
BMOD and a weight w ∈ Ap with 1 < p <∞ we have:

(5.5) ‖Πaf‖Lp(w) . ‖a‖BMOD‖f‖Lp(w).

Let us look at the term Raf :

Raf =
∑

Q∈D,ε 6≡1

â(Q, ε)hεQ
∑

R)Q,η 6≡1

f̂(R, η)
[
〈b〉Q − 〈b〉R

]
hηR(Q).

We write

〈b〉Q − 〈b〉R =
∑
N∈D

Q(N⊆R

∑
γ 6≡1

b̂(N, γ)hγN(Q),

and express Raf as a sum of three terms, which we analyze separately. Specifically, we look
at the cases N ( R, N = R with γ 6= η and N = R with γ = η. For the first case:

A ··=
∑

Q∈D,ε 6≡1

â(Q, ε)hεQ
∑

R)Q,η 6≡1

∑
Q(N(R

∑
γ 6≡1

b̂(N, γ)f̂(R, η)hγN(Q)hηR(Q)

=
∑

Q∈D,ε 6≡1

â(Q, ε)hεQ
∑

N)Q,γ 6≡1

b̂(N, γ) 〈f〉N h
γ
N(Q)

=
∑

Q∈D,ε 6≡1

â(Q, ε) 〈Πbf〉Q h
ε
Q = ΠaΠbf.

The second case similarly gives:

B ··=
∑

Q∈D,ε6≡1

â(Q, ε)hεQ
∑

R)Q,η 6≡1

∑
γ 6≡1,γ 6=η

b̂(R, γ)f̂(R, η)hγR(Q)hηR(Q)

=
∑

Q∈D,ε 6≡1

â(Q, ε) 〈Γbf〉Q h
ε
Q = ΠaΓbf.
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Here, Γb is defined in (3.2). Finally, the case N = R, γ = η yields:

C ··=
∑

Q∈D,ε6≡1

â(Q, ε)hεQ
∑

R)Q,η 6≡1

b̂(R, η)f̂(R, η)
1

|R|

=
∑

Q∈D,ε 6≡1

â(Q, ε)hεQ

(
〈Π∗bf〉Q −

1

|Q|
∑

P⊆Q,η 6≡1

b̂(P, η)f̂(P, η)

)
= ΠaΠ

∗
bf − Λa,bf,

where Λa,bf ··=
∑

Q∈D,ε6≡1

â(Q, ε)
1

|Q|

( ∑
P⊆Q,η 6≡1

b̂(P, η)f̂(P, η)

)
hεQ.

In summary

(5.6) Ra = ΠaΠb + ΠaΓb + ΠaΠ
∗
b − Λa,b.

A similar analysis of R∗d shows that

R∗d = Λ∗d,b − ΠbΠ
∗
d − ΓbΠ

∗
d − Π∗bΠ

∗
d,(5.7)

where Λ∗d,bf ··=
∑

Q∈D,ε 6≡1

d̂(Q, ε)f̂(Q, ε)
1

|Q|

( ∑
P⊆Q,η 6≡1

b̂(P, η)hηP

)
.

We need to compute the Lp(ν)-norm for the terms in (5.6) and (5.7). For the terms that
involve the composition of paraproducts and Γ, first use the two-weight inequalities of The-
orem 3.1, and then (5.5). It remains to show that Λa,b is bounded.

Lemma 5.1. Let a ∈ BMOD and b ∈ BMO2
D(ν). These inequalities hold.

‖Λa,b : Lp(µ)→ Lp(λ)‖ . ‖a‖BMOD‖b‖BMO2
D(ν),(5.8) ∥∥Λ∗a,b : Lp(µ)→ Lp(λ)

∥∥ . ‖a‖BMOD‖b‖BMO2
D(ν).(5.9)

Proof. The proof of the first set of inequalities is given, with the other set following by similar
reasoning. We argue by duality, so that the appeal to weighted H1-BMO duality is easy.
For f ∈ Lp(µ), and g ∈ Lp′(λ′), we have

〈Λa,bf, g〉 =
∑

Q∈D,ε 6≡1

â(Q, ε)
1

|Q|
∑

P⊆Q,η 6≡1

b̂(P, η)f̂(P, η)ĝ(Q, ε)

=
∑

P∈D,η 6≡1

b̂(P, η)f̂(P, η)ΨP

where ΨP ··=
∑

Q⊇P,ε6≡1

â(Q, ε)
1

|Q|
ĝ(Q, ε).

Recall that if we multiply the coefficients â(Q, ε) by choices of signs, we do not increase the
BMO norm of a. The same remark applies to b ∈ BMO(ν). Therefore, since f and g are
fixed, we are free to assume that each individual summand above is non-negative. This only
requires that we modify the Haar wavelet expansions of b and a by choices of signs, but this
fact is suppressed in the notation.

The key fact that this gives us is a control of the terms ΨP , namely

ΨP ≤ 〈Π∗ag〉P ≤ inf
x∈P

M(Π∗ag)(x).
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Here, we are using the adjoint paraproduct of applied to g, as defined in (3.1). And, then,
using the weighted H1-BMO duality, as expressed in (2.11), we have

〈Λa,bf, 〉 ≤ ‖b‖BMO2
D(ν)‖SΦ‖L1(ν),

where Φ ··=
∑

P∈D,η 6≡1

f̂(P, η)ΨPh
ε
P .

And, last of all, using the definition of µ and Hölder’s inequality, and weighted inequalities
for the maximal function and paraproduct operators,

‖SΦ‖L1(ν) .
∫
Sf ·M(Π∗ag) µ

1
pλ−

1
p dx

≤ ‖Sf‖Lp(µ)‖M(Π∗ag)‖Lp′ (λ′)
. ‖a‖BMOD‖f‖Lp(µ)‖g‖Lp′ (λ′).

�

Now we may combine the results in (5.8) and (5.9) with the rest of the terms in (5.6) and
(5.7), which are controlled by (5.5) and Theorem 3.1, and obtain: ‖Ra : Lp(µ)→ Lp(λ)‖ .
‖b‖BMO(ν), and ‖R∗d : Lp(µ)→ Lp(λ)‖ . ‖b‖BMO(ν). Then (5.2) for the non-cancellative case
follows.

5.3. Characterization of Bloom BMO by Commutators with the Riesz Trans-
forms. In this section we prove Theorem 1.2. Note the the first part follow directly from
Theorem 1.1, and so it only remains to prove the lower bound. Suppose

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ <∞, i = 1, . . . , n,

where Ri are the Riesz transforms. Then, since [b, RiRj] = [b, Ri]Rj + Ri[b, Rj] and Ri :
Lr(w)→ Lr(w) is bounded for all i = 1, . . . , n and all w ∈ Ar with 1 < r <∞ [28], we have
that [b,K] is bounded Lp(µ)→ Lp(λ) for all K that are polynomials in the Riesz transforms.

We employ the standard computation in [6]. Let {Yk} be an orthonormal basis for the
space of spherical harmonics of degree n. Then∑

k

|Yk(x)|2 = cn|x|2n,

and, by homogeneity,

Yk(x− y) =
∑

|α|+|β|=n

akαβx
αyβ,

where we are using standard multi-index notation. As shown in [6]:

(5.10) |Q|
∣∣∣(b− 〈b〉Q)1Q

∣∣∣ (x) =
1

cn

∑
k,α,β

akαβx
αΓQ(x)

(
[b, R(k)]yβ1Q(y)

)
(x),

for all cubes Q centered at the origin, where ΓQ ··= 1Qsgn(b−〈b〉Q) and R(k) is the polynomial

in the Riesz transforms associated with Yk(x)|x|−n. Note that, since Q is centered at the
origin

|xα| . l(Q)|α|,
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for all x ∈ Q. Then from (5.10):

|Q|
(∫

Q

|b− 〈b〉Q |
p dλ

) 1
p

.
∑
k,α,β

l(Q)|α|
∥∥[b, R(k)]yβ1Q(y)

∥∥
Lp(λ)

.
∑
k,α,β

l(Q)|α|
∥∥[b, R(k)] : Lp(µ)→ Lp(λ)

∥∥
Lp(λ)

∥∥yβ1Q(y)
∥∥
Lp(µ)

.
∑
α,β

l(Q)|α|

(
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖

)
l(Q)|β|µ(Q)

1
p

. |Q|

(
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖

)
µ(Q)

1
p .

Since the argument is translation-invariant, we may conclude that(
1

µ(Q)

∫
Q

|b− 〈b〉Q |
p dλ

) 1
p

.
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ ,

for all cubes Q ⊂ Rn. Then

BD1 (b, µ, λ) .
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖

for all dyadic grids D on Rn. By Theorem 4.1,

(5.11) b ∈ BMOD(ν) with ‖b‖BMOD(ν) .
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ ,

for all D.
To see how this implies that b ∈ BMO(ν), recall that there exist 2n dyadic grids Dω such

that for any cube Q ⊂ Rn there is Qω ∈ Dω such that

Q ⊂ Qω and l(Qω) ≤ 6l(Q).

See the proof in [18, Proof of Theorem 1.10]. Now from (5.11)

| 〈b〉Qω − 〈b〉Q | ≤
1

|Q|

∫
Q

|b− 〈b〉Qω | dx .
ν(Qω)

|Q|

n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ ,

so ∫
Q

|b− 〈b〉Q | dx . ν(Qω)
n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ .

But, using the doubling property of Ap weights

ν(Qω) ≤ [ν]A2

(
|Qω|
|Q|

)2

ν(Q) . ν(Q),

hence

sup
Q

(
1

ν(Q)

∫
Q

|b− 〈b〉Q | dx
)
.

n∑
i=1

‖[b, Ri] : Lp(µ)→ Lp(λ)‖ ,

which is exactly the lower bound in (1.1).
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5.4. Proof of Corollary 1.3. The first part of the proof will use the following duality
statement, which can be found in [10]: (H1(ν))∗ ≡ BMO2(ν), in the sense that every
element of (H1(ν))∗ is of the form

Λb : H1(ν) 3 h 7→ Λbh ··=
∫
Rn
b(x)h(x) dx,

for a unique b ∈ BMO2(ν), with ‖b‖BMO2(ν) . ‖Λb‖. In terms of maximal functions, the
weighted Hardy space H1(ν) is defined as follows: let ϕ ∈ S(Rn) with

∫
Rn ϕ(x) dx = 1 and

set ϕr(x) ··= r−nϕ(x/r) for r > 0 and x ∈ Rn. Then

H1(ν) ··=
{
f ∈ S ′(Rn) : f ∗ ∈ L1(ν)

}
, with ‖f‖H1(ν) ··= ‖f ∗‖L1(ν),

where f ∗(x) ··= supr>0 |f ∗ ϕr(x)| is the maximal function. There are many equivalent ways
to define the weighted Hardy spaces – in terms of the square function, or in terms of an
atomic decomposition – see [11,29].

Now let f ··= g1(Tg2)−(T ∗g1)g2. Then for g1 ∈ Lq(λ′), g2 ∈ Lp(µ), and any b ∈ BMO2(ν):∣∣∣∣∫
Rn
b(x)f(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rn
g1(x)[b, T ]g2(x) dx

∣∣∣∣(5.12)

≤ ‖g1‖Lq(λ′) ‖[b, T ]g2‖Lp(λ)

. ‖g1‖Lq(λ′)‖g2‖Lp(µ)‖b‖BMO2(ν) by Theorem 1.1.

Then clearly f ∈ H1(ν), with ‖f‖H1(ν) . ‖g1‖Lq(λ′)‖g2‖Lp(µ).
The second statement follows identically as in [6], with the appropriate modifications. We

consider the Banach space of functions f ∈ L1(ν) which admit a decomposition as in (1.2),
normed by

|||f |||H1(ν) ··= inf

{
n∑
i=1

∞∑
j=1

‖gij‖Lq(λ′)‖hij‖Lp(µ)

}
,

where the infimum is over all possible decompositions of f . Part one of this corollary shows
that this is a subspace of H1(ν). Now (5.12) and Theorem 1.2 show that

sup

{∣∣∣∣∫
Rn
b(x)f(x) dx

∣∣∣∣ : |||f |||H1(ν) = 1

}
≈ ‖b‖BMO2(ν),

which implies the norms ||| · |||H1(ν) and ‖ · ‖H1(ν) are equivalent (see [4] for the simple
functional analysis argument that yields this). This completes the proof.
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[10] J. Garćıa-Cuerva, Weighted Hardy spaces, Harmonic analysis in Euclidean spaces (Proc.
Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Proc. Sympos. Pure
Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 253–261. ↑22
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