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Abstract 

Throughout the eukaryotic world, kinesins serve as molecular motors for the directional transport 

of cellular cargo along microtubule tracks. Plants contain a large number of kinesins that have 

conserved as well as specialized functions. These functions depend on mechanisms that regulate 

when, where and what kinesins transport. In this review, we highlight recent studies that have 

revealed conserved modes of regulation between plant kinesins and their non-photosynthetic 

counterparts. These findings lay the groundwork for understanding how plant kinesins are 

differentially engaged in various cellular processes that underlie plant growth and development. 

 

  



Highlights 

�  Kinesins are motor proteins that transport cargos along microtubule tracks 

�  Plants contain a large number of kinesins, which have important functions during the cell 

cycle 

�  Kinesin activity is regulated by protein-protein interactions and covalent modifications to 

ensure that cargos are delivered at the right time to the right place. 

�  Better understanding of these regulatory mechanisms is essential to learn how kinesins 

mediate vital cellular processes. 

  



Introduction 

Directional transport of cellular material is essential for the form and function of cells. This is 

largely driven by molecular motors, which use the chemical energy from ATP hydrolysis as fuel 

to move on cytoskeletal filaments [1-2]. The kinesin and dynein molecular motors move along 

microtubules, whereas myosins move on actin filaments. In plants, most of the long-distance 

intracellular transport during interphase is mediated by the actin-myosin cytoskeletal system [3]. 

However, kinesins are emerging as important players during interphase, both for cortical 

microtubule organization and for cell wall assembly [4]. In addition, kinesins have essential roles 

during mitosis, orchestrating the assembly and function of the preprophase band, spindle 

apparatus and phragmoplast [4-5]. 

Kinesins primarily work as plus-end-directed motors (Box 1), whereas dyneins are 

responsible for the bulk of minus-end-directed transport in animal cells. Genome sequencing has 

revealed that land plants lack dynein and encode for a large number of kinesins, many of which 

are predicted to be minus-end-directed motors that might compensate for the lack of dynein [6-

8]. Several recent reviews have summarized the identity, phylogenetic relationships and 

functions of plant kinesins [4,9-12]. Here, we focus on mechanisms that regulate kinesin activity, 

which collectively ensure that kinesins function at the right time and place in a cell. 

  



• Box 1: Kinesin structure and motor properties 
The basic functional unit of most kinesins is a dimer of two kinesin heavy chains (KHCs) that 

consist of motor, neck-linker, stalk and tail domains (Figure 1). The globular motor domain is the 

catalytic core with both ATP- and microtubule-binding sites. The neck-linker acts as a lever arm 

that changes conformation upon ATP binding in the leading motor domain to thrust the lagging 

motor domain forward. The amino-acid sequence of the neck-linker also specifies the 

directionality of kinesin movement. The extended stalk domain is primarily composed of a 

coiled-coil and leads to the tail domain that mediates cargo binding. The tail domain is highly 

divergent between different kinesins and is thought to at least partly underlie the ability of 

distinct kinesins to transport different cargos. Apart from these canonical domains, some plant 

KHCs also contain unique domains (e.g.  calponin homology, armadillo repeat, myosin tail 

homology and band 4.1 domains) [6,7] that might be important for plant-specific functions. 

While most kinesins are homodimers, the kinesin-1 subfamily is a heterotetramer of two KHCs 

and two kinesin light chains (KLCs). The KLCs associate with the coiled-coil of the stalk 

domain and contribute to cargo recruitment and regulation of motor activity. 

Kinesins move along microtubules in a directional manner.  In general, kinesins with an 

N-terminal motor domain move towards the microtubule plus-end (the β-tubulin end), whereas 

kinesins with a C-terminal motor domain move towards the microtubule minus-end (the α-

tubulin end). In contrast, kinesins with a centrally located motor domain generally are not motile 

and instead depolymerize microtubules from the ends. In most motile kinesins, the microtubule 

binding and unbinding activities of the two motor domains are coordinated, allowing for long-

distance or processive movement of kinesins along microtubule tracks. 

 

  



Regulation of kinesin function 

For motile kinesins, the basic functional steps are: binding to appropriate cargo and/or 

recruitment to the correct subcellular location, activation of motility and release of cargo at the 

correct destination. Together, these steps ensure that different cargos are transported to their 

proper cellular locations. Work in animal and yeast systems has shown that these steps involve 

different domains of kinesins: the motor and neck-linker domains determine the speed, distance 

and directionality of transport whereas cargo binding typically occurs via the tail domain [2,13]. 

However, the tail domain can also interact with the motor domain in the absence of cargo to 

regulate motor activity. In addition, other non-motor regulatory domains have been identified 

that either positively or negatively regulate motor activity depending on protein-protein 

interactions, phosphorylation, Ca
2+

-calmodulin activity and proteolysis. Together, these 

regulatory mechanisms directly act on kinesins to coordinate the complex process of kinesin-

cargo coupling, transport and cargo unloading [1,13]. 

Recently, several studies have begun to uncover mechanisms for regulating kinesin 

activity in plants. Comparison of these mechanisms between plants and animals reveals many 

conserved regulatory features as well as new ones that might be unique to plants. These are 

discussed below based on their mode of action. 

 

• Autoinhibition and KLC-mediated regulation 
Kinesin motor activity is autoinhibited in the absence of cargo to prevent futile consumption of 

ATP and overcrowding of microtubule tracks that might lead to traffic jams. Autoinhibition 

happens primarily by two mechanisms: 1) kinesin adopts a folded conformation that enables the 

tail domain or certain internal segments to interact with the motor domain and block microtubule 

binding and ATPase activity [14-20]; and 2) KLCs inhibit the processive motility of kinesin by 

preventing coordinated movement of the two motor domains [14,21]. In metazoan kinesins, a 

hinge region in the stalk domain allows the molecule to fold for autoinhibition. Release of 

autoinhibition is accomplished by cargo binding to the tail domain and/or to KLCs [13]. 

Alternatively, motor activation can also occur by phosphorylation of specific residues in the tail 

domain [22-23]. 

Based on sequence and structural homology with the mammalian KLC subunits, 

Arabidopsis is thought to encode for three KLC-related (KLCR) proteins [24
••
]. The function of 

these proteins is not clear since plants do not have a bona fide kinesin-1, of which KLC is 

normally a subunit. Recently, KLCR1 was found to directly interact with a plant-specific 

calmodulin-binding protein called IQD1 (IQ67 Domain1) [24
••
]. IQD1 localizes to interphase 

cortical microtubules when transiently expressed in tobacco leaves and is necessary for KLCR1 

localization to microtubules in this heterologous system. Based on these data, IQD1 has been 

proposed to work as a scaffolding protein that recruits kinesin motors via KLCR1 to particular 

cellular cargo (Figure 2A). However, whether KLCR1 binds to a kinesin motor protein and 

regulates its motility and cargo loading remains to be determined. IQD1 can bind to artificial 

single-stranded nucleic acids in vitro, raising the possibility that it might serve as an adaptor for 

kinesin-mediated transport of ribonucleoprotein complexes, similar to kinesin-1-mediated 

transport of messenger RNA is mouse neurons [25-27]. However, this activity needs to be 

experimentally demonstrated in plant cells. 

 

• Regulation by phosphorylation 



Kinesins are known phosphoproteins and phosphorylation can regulate both kinesin motor 

activity and cargo loading and unloading [1,13]. In mammals, phosphorylation of kinesin-1 

motors by the JUN amino-terminal kinase (JNK) weakens microtubule affinity, thus reducing 

motor activity [28]. Conversely, for kinesin-5 and kinesin-7 members, phosphorylation in the 

inhibitory C-terminal domain has been shown to unfold these motors, thus stimulating their 

motility [22-23]. In Arabidopsis, the kinesin-14 family members, Kinesin CDKA-Associated 1 

and 2 (KCA1 and KCA2) have been shown to interact with the cell cycle-dependent protein 

kinase CDKA;1 both in vitro and in vivo [29]. These kinesins are implicated in marking the cell 

division site defined by the preprophase band [30]. Phosphomimetic mutations at two consensus 

CDKA;1 phosphorylation sites in the tail domain of the KCA kinesins prevent interaction with 

wild-type C-terminal tail fragments of KCA1 and KCA2 in directed yeast two-hybrid assays 

[29]. These data suggest that phosphorylation of the tail domain of KCA1 and KCA2 by 

CDKA;1 might regulate motor activity by affecting their dimerization and/or conformation. 

However, these kinesins do not show detectable microtubule-binding activity in sedimentation 

assays, probably due to lack of canonical microtubule-binding residues in their motor domains 

[31
•
]. Therefore, it is possible that KCA1 and KCA2 are not motile kinesins and function in other 

ways. Recently, KCA1 and KCA2 were found to be important for light- and actin-dependent 

chloroplast movement and it was proposed that this function might depend on binding to F-actin 

through their C-terminal domain [31
•
]. It will be informative to determine whether the 

phosphomimetic versions of KCA1 and KCA2 are significantly affected in their ability to bind to 

F-actin and support light-dependent chloroplast movement. These data might also inform our 

understanding of KCA1 and KCA2 function during cell division since the KCA1/2-depleted 

cortical zone that is proposed to mark the cell division site [30] mirrors the actin-depleted zone 

that is thought to perform a similar function [32]. 

In plants, the turnover of phragmoplast microtubules during cytokinesis is controlled by a 

mitogen-activated protein kinase (MAPK) cascade. Initiation of this MAPK cascade depends on 

kinesin-like proteins called NACK1 and NACK2 (NPK1-activating kinesin-like protein 1 and 2), 

which directly interact with and activate the MAP kinase kinase kinase protein, NPK1 (nucleus- 

and phragmoplast-localized protein kinase 1) [33]. The interaction of NACK1/NACK2 with 

NPK1 in turn is regulated by cyclin-dependent kinases (CDKs). Both NACK1 and NPK1 are 

phosphorylated by CDKs at the onset of mitosis, which inhibits their interaction and blocks 

progression into cytokinesis [34
••
]. During late metaphase, when CDK activity becomes low, 

NACK1 and NPK1 become dephosphorylated and interact, thus mediating the transition from 

metaphase to cytokinesis (Figure 2B). An elegant test of this model was employed using a 

phosphomimetic mutant version of NACK1, which failed to rescue the cytokinesis defect of 

Arabidopsis atnack1-1 mutants [34
••
]. 

CDK-mediated regulation is likely to be common for kinesins involved in mitosis [35]. The 

rice BC12 kinesin contains conserved CDKA phosphorylation sites in its tail domain and 

interacts with CDKA;3 in yeast two-hybrid assays [36]. In addition, the bc12 mutant shows 

delayed cell cycle progression. These data suggest that CDKA might regulate BC12 activity 

during the cell cycle, but whether BC12 is phosphorylated and whether this affects its activity 

remains to be determined. Other mitotic plant kinesins such as AtKINUa (At1g12430), AtPOKs 

(At3g17360 and At3g19050), AtKinG (At1g63640) also contain putative CDKA 

phosphorylation sites, but their role remains unknown [12,35,37
•
]. Phosphomimetic and 

phosphodefective mutations should shed light on whether and how these sites regulate kinesin 

function. 



 

• Regulation by the Ca
2+

/Calmodulin pathway 
Ca

2+
-calmodulin (Ca

2+
/CaM) mediated regulation has been mostly attributed to cargo binding 

and dissociation in mammalian cells [13]. In plants, our knowledge of Ca
2+

/CaM-dependent 

regulation of kinesin activity comes primarily from a plant-specific, minus-end-directed kinesin 

called KCBP (Kinesin-like calmodulin-binding protein) [38,39]. KCBP has a CaM-binding 

domain following its C-terminal motor domain and biochemical studies have shown that 

Arabidopsis KCBP can bind at least three different CaMs [40]. KCBP binds microtubules in the 

absence of Ca
2+

/CaM, whereas in the presence of Ca
2+

/CaM the microtubule binding affinity and 

ATPase activity of KCBP is reduced [41,42]. Another Ca
2+

-binding protein, KIC (KCBP-

interacting Ca
2+

-binding protein), was also found to regulate KCBP in a similar manner [43]. The 

crystal structure of KCBP has provided insight into the mechanism of Ca
2+

/CaM and Ca
2+

/KIC 

mediated regulation [44-46]. The Ca
2+

/CaM-binding helix of KCBP is linked to the motor 

domain by a polypeptide segment that resembles the motor neck domain. When Ca
2+

 levels are 

low, this neck mimic binds to the motor domain and positions the CaM-binding helix such that it 

is available to bind to CaM. In the presence of Ca
2+

, activated CaM binds this exposed helix and 

greatly decreases microtubule binding affinity by sterically blocking residues important for 

motor-microtubule contact and by enabling the negatively charged extreme C-terminus of KCBP 

to associate with the microtubule-binding interface of the motor domain (Figure 2C). Ca
2+

/KIC-

based regulation operates through a slightly different mechanism. Binding of active KIC to the 

exposed regulatory helix of KCBP causes the neck mimic to interact with KIC and traps the 

motor domain in the ADP state, which has low affinity for microtubules.  

An analogous pathway for Ca
2+

/CaM-mediated deactivation of kinesin-1 has been 

described in Drosophila [47]. In Drosophila neurons, kinesin-1 is important for distribution of 

mitochondria along the axon length. Kinesin-1 interacts with a mitochondrial membrane protein 

Miro through an adaptor protein called Milton. At resting Ca
2+

 levels, kinesin-1 transports 

mitochondria along axonal microtubules. At elevated Ca
2+

 levels, Ca
2+

-bound Miro directly 

interacts with the kinesin-1 motor domain thereby dissociating kinesin-1 from microtubules and 

preventing mitochondrial transport [47]. It will be interesting to determine whether Ca
2+

/CaM 

and Ca
2+

/KIC locally regulate KCBP activity to control cargo transport in cells. In addition, it is 

not clear why multiple Ca
2+

-based regulatory mechanisms exist for KCBP. One possibility is that 

these are differentially engaged in different cell types or at different stages of the cell cycle to 

control microtubule bundling and/or sliding activity of KCBP, which might be important for the 

assembly and/or stabilization of microtubule arrays [4]. 

 

• Regulation by the proteasome pathway 
Targeted degradation of proteins by ubiquitination and proteasome-mediated proteolysis is 

important for proper progression through the cell cycle. As kinesins are major players during cell 

division, their activity might be regulated by the proteasome system [35]. The first example of 

proteasome-based kinesin regulation in plants comes from an ungrouped kinesin called 

AtKINUa/ARK3 (Figure 2D).  AtKINUa contains a destruction box (D-box) motif as part of its 

motor domain [37
•
,48]. The D-box is a recognition motif for the ubiquitination machinery during 

mitosis [49], which might lead to degradation of AtKINUa in a cell-cycle-stage dependent 

manner. Consistent with this expectation, AtKINUa protein accumulates in the preprophase band 

and its levels decline sharply after nuclear envelope breakdown in prometaphase. Importantly, 

mutation of the D-box motif inhibited the loss of AtKINUa during mitosis, indicating that 



targeted degradation is likely to be important for regulating AtKINUa function [37
•
]. Recently, 

the KCBP homologue of the microalgae Dunaliella salina was reported to interact with a 26S 

proteasome subunit Rpn8 in yeast two-hybrid assays [50]. This KCBP was found to be 

polyubiquitinated and undergo degradation by the proteasome system. Therefore, proteasome-

mediated kinesin regulation is likely to be a widely used mechanism in the plant kingdom. 
 

Conclusions 

While genome sequencing has greatly facilitated kinesin discovery in plants, our understanding 

of the function and regulation of plant kinesins is restricted to just a small subset. Nonetheless, 

published data show that multiple regulatory mechanisms exist to control kinesin activity in 

plants, similar to the situation in animal cells. While we have discussed these mechanisms 

separately, it is important to note that they may act in concert to fine-tune motor activity. For 

example, IQD1 activity is regulated by Ca
2+

/CaM, which in turn could control KLCR1-based 

kinesin activation and transport. Understanding the pathways that engage the different regulatory 

mechanisms and their functional consequences on kinesin activity are major challenges for future 

research. 
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Figure 1: Schematic representation of kinesin structure. A heterotetrameric kinesin is 

depicted to illustrate the various functional domains of kinesins. For simplicity, only a single 

protofilament of the microtubule is shown here. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mechanisms for regulating plant kinesins. (A) The scaffold protein IQD1 binds to 

interphase cortical microtubules and possibly to nucleic acids (NA). IQD1 also binds to KLCR1 

(kinesin light chain related 1), which is proposed to recruit kinesin motors for transport. (B) 

During prophase, phosphorylation of the kinesin NACK1 and its binding partner NPK1 by 

CDK1 inhibits their interaction. Dephosphorylation of these proteins during late metaphase 

allows them to interact, initiating a signaling cascade that is necessary for phragmoplast 

assembly and cytokinesis. (C) The KCBP kinesin has a CaM-binding domain following its C-

terminal motor domain and can bind at least three different CaMs. Increased Ca
2+

 levels activate 

CaMs, which then directly bind to the CaM binding domain thereby deactivating the motor by 

reducing its affinity for microtubules. (D) The AtKINUa kinesin possesses a destruction-box (D-

box) motif in its motor domain. Based on the disappearance of this kinesin upon nuclear 

envelope breakdown, it is proposed that the D-box acts as a recognition motif for 

polyubiquitination and subsequent proteasome-mediated degradation at prometaphase. 
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