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First-principles study of point defects in β-
Ga2O3 

 

Yvette Anguiano, Sung Beom Cho, and Rohan Mishra 

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis 

Abstract 

 Gallium oxide (Ga2O3) has been proposed as a promising candidate for power devices. 

Under the high electric field and high operating temperatures in such power devices, point 

defects are expected to form in Ga2O3 that can limit the device performance. We have calculated 

the thermodynamic stability of intrinsic point defects in stable monoclinic β-Ga2O3, such as VO, 

VGa, Oi, Gai, OGa, and GaO, under various chemical and electron potential using first-principles 

density functional theory calculations. We find that VO, Gai, and GaO exhibit deep donor levels in 

gallium-rich conditions and do not contribute to n-type doping. GaO and Gai have high formation 

energy at low fermi levels in oxygen-rich conditions and can act as electron acceptors. 

I. Introduction 

Semiconductor power switching devices are strongly demanded by today’s society for 

their contribution to energy conversion. The power switching devices are used in energy 

conversion and control systems that consume a tremendous amount of power. Advances in 

power-electronic converters have made it possible to increase energy efficiency and lower the 

cost of converting electrical energy to other forms. Semiconductor power devices directly impact 

the cost and efficiency of connecting electric power to consumers and they have rapidly become 

an important part of the solution to energy saving. As technology advances, the need for these 

devices to keep up with the increasing trends in high power density or higher temperature 
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applications also increases. To catch up with this demand, the device should have low-resistance 

and fast switching in high-voltage and high-current conditions, and should avoid failure at high 

temperatures.  

Present-day devices are comprised of Si-based technologies that are approaching their 

performance limits based on the material properties of Si.1 At temperatures between 150-200oC, 

silicon power devices undergo failure, indicating its inability to keep up with high-power density 

trends.2 Recently, gallium oxide (Ga2O3), a compound oxide semiconductor, has emerged as a 

promising candidate for power devices. Ga2O3 exists in five different polytypes with the most 

stable structure being monoclinic β-Ga2O3.  Monoclinic β-Ga2O3 is an n-type semiconductor and 

has a wide band gap of 4.9 eV.3 This band gap enables power devices to have a higher 

breakdown voltage and efficiency. Ga2O3 bulk crystals and thin films can have carrier 

concentrations in a range of 1015-1019 cm-3 and this carrier concentration is expected to 

contribute the low electric resistance.4-7 For the carrier concentration, the intrinsic defects are 

expected to play a critical role.  

Despite the increase in research on this material in recent years, there is a current lack of 

understanding of the stability of intrinsic and extrinsic point defects in β-Ga2O3 and their effect 

on its electronic properties. Different models report that the n-type conductivity is attributed to 

the presence of dominating oxygen vacancies VO.8,9 Calculations have offered insight into the 

point defects found in Ga2O3, however such studies have not considered all the possible intrinsic 

defects.10,11 To understand more complex behavior under high temperature and high voltage 

conditions, the basic understanding of intrinsic defect is necessary. In this study, we report the 

formation energies of all possible point defects of β-Ga2O3 based on first-principles density 
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functional theory (DFT) calculations. We describe the formation energies of point defects in β-

Ga2O3 and their contribution to conductivity of the material.  

II. Methods 

DFT calculations were performed using the Vienna Ab-initio Simulation Package (VASP).12 

Geometry-optimization calculations were completed using the Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation functional until the maximal applied forces were less than 0.01 eV/Å.13 

Core-electron interactions were modeled using the projector-augmented wave method (PAW).14 

The Ga d-electrons were treated as valence electrons. The cutoff energy for the plane-wave basis 

was set to 400 eV for the PBE calculations. A 160-atom supercell and a 1 × 4 × 2 mesh of 

Monkhorst-Pack k-points for Ga2O3 was used for all the calculations.  

Corrections were included in these calculations to account for the finite-size effects that 

result from long-range Coulomb interaction of charged defects in a homogenous neutralizing 

background.15  

Formation energies (Ef) provide full information about the defect structure and can show the 

impurity and defect concentrations, the stability of different charge states, and the electronic 

transition levels. We considered all possible intrinsic point defects of β-Ga2O3: VO, VGa, Gai, Oi, 

GaO, and OGa.  The formation energy for a point defect (ΔHf) in Ga2O3 is given by the following:  

∆𝐻𝑓 = 𝐸𝐷 − 𝐸𝐷𝐹[Ga2O3] + 𝑛𝜇𝐷 + 𝑞(𝜖𝐹 + 𝜀𝑉𝐵𝑀) +  𝐸𝑐𝑜𝑟𝑟   (1) 

where ED represents the total energy of the supercell containing the point defect and 

EDF[Ga2O3] is the total energy of the defect-free supercell, 𝜇𝐷 is the chemical potential of the 

defect in a reservoir, which is affected by the phase-stability in β-Ga2O3. The O2 molecule (O-rich 

condition) and the Ga metal (Ga-rich condition) are the standard state of limiting elements in this 
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case. The chemical potential is defined as (a) Ga-rich limit, where μGa = μGa(bulk) and μO = EGa2O3 – 

μGa(bulk) with μGa(bulk) being the energy of a Ga atom within the Ga crystal and EGa2O3 being the 

energy of one formula unit of ideal Ga2O3 without defects, and (b) I-rich limit, where μO = EO and 

μGa = EGa2O3 – EO with EO being the energy of one oxygen molecule in its most stable triplet state. 

The n is the number of species removed from the supercell to create the point defects. q is the 

charge state of the supercell that is introduced by the point defect. 𝜀𝑉𝐵𝑀 is the eigenvalue of the 

valence band maximum and ϵF is the Fermi level defined as zero at 𝜀𝑉𝐵𝑀 and varies from 0 to the 

energy of the optical band gap. 𝐸𝑐𝑜𝑟𝑟 is the energy correction which accounts for the finite-size 

effects which are due to coulomb interactions in charged point defects.  

For this study, the defects were modeled using a supercell with period boundary conditions. 

This supercell approximation creates artificial interactions between charged defects; thus we used 

a scheme proposed by Freysoldt and Van de Walle based on analysis of the electrostatics in 

dielectric media to correct such interactions.15 The correction method can be described by the 

following equation: 

𝐸𝑐𝑜𝑟𝑟 =  𝐸𝑙𝑎𝑡 − 𝑞∆𝑉𝑎/𝑏     (2) 

where 𝐸𝑙𝑎𝑡 is the electrostatic interaction due to image charges and 𝑞∆𝑉𝑎/𝑏 corrects for the offset 

in the VBM due to the presence of the defect. 

The charge distribution modeled in 𝐸𝑙𝑎𝑡 can be described by the following equation: 

𝐸𝑙𝑎𝑡 =  ∫ [
1

2
𝑞(𝑉̃𝑞

𝑙𝑟 − 𝑉𝑞
𝑙𝑟)] 𝑑3𝒓

Ω
     (3) 

where 𝑉̃𝑞
𝑙𝑟 is the long-range potential of the model charge distribution defect and 𝑉𝑞

𝑙𝑟 is the 

corresponding quantity in the periodic cell. The 𝑞∆𝑉𝑎/𝑏 is evaluated from the offset in the zero-
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point reference energy. Because the zero-point reference energy depends on the average charge 

state of the cell, this should be also considered in long-range potential. This is found using the 

equation below: 

Δ𝑉𝑞/𝑏 =  𝑉̃𝑞/𝑏 − 𝑉̃𝑞
𝑙𝑟      (4) 

where 𝑉̃𝑞/𝑏 is the difference between the potential in the defect-free bulk configuration.  

𝐸𝑐𝑜𝑟𝑟 is found using the relaxed bulk neutral defect supercell and the energy of the bulk 

charged defect supercell. Using the sxdefectalign script written in VASP, the inputs are an ecut 

of 30, the charge corresponding to the defect, 10 for the dieletric constant for Ga2O3, the lattice 

vector of the defect, and the LOCPOT of the charged and neutral defect supercells.12 Figure 1, 

shows an example of the generated vline-eV.dat data file for charged defect Gai
+1. 

 

FIG. 1 The vline-eV.dat file depicting the plotted data showing the plateau value 

for the charged defect at -0.125. 

 

This model shows the plateau value for a Gai
+1 in relation to the neutral defect with a value 

of -0.125. This value is input into the correction script with the tag –C to generate the correction. 
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This value can be used in the formation energy calculation using equation 1 for the defect 

structure.  

III. Results and Discussion 

A. Type of defects 

a

 

b 

 

c 

 

d

 

FIG. 2 The positions for point defects in a 160 atom supercell of β-Ga2O3. a) Gallium 

and oxygen are placed at one interstitial site, b) a gallium and oxygen vacancy site is 

chosen for both atoms, c) an oxygen is placed at a gallium antisite, and d) a gallium is 

placed at an oxygen antisite. 

 

VGa 

VO 

Gai / Oi 

OGa 

GaO 
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 In Fig. 2, the different gallium and oxygen vacancies, interstitials, and antisites are displayed. 

For the interstitial point defect calculations, the lowest energy configuration for Gai and Oi was 

identified to one of the 4i sites. For the vacancies, a different location is chosen for the gallium 

and oxygen. Lastly, antisites were considered in this study of point defects. OGa and GaO point 

defects are studied along with their corresponding charge defects.   

 

B. Formation Energies of single point defects 

The calculated formation energies for Vo, VGa, Gai, Oi, OGa, and Gao are shown in Fig. 3.  

 

FIG. 3 Formation energy vs. Fermi energy for the point defects in β-Ga2O3. Values for Ga-rich 

and O-rich conditions are shown. 

 

The formation energies are considered as a function of two variables, the chemical potential of 

elements and the Fermi energy. For the gallium-rich and oxygen-rich conditions, the energies are 
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plotted against the Fermi-level. From the definition of formation energy in eq. (1), the slope of 

the formation energy corresponds to the charge state of the defects. 

The VO can be seen to have very low formation energies in Ga-rich conditions and it is 

expected to be the most dominant defect than any other defect.  VO can play a role as a donor, 

but its neutral state near the conduction band indicates its ‘deep’ nature, which cannot contribute 

to n-type conductivity. These results are in agreement with the previous reported character of 

VO.16-18 VGa and Oi can be seen to have low formation energies near the conduction band under 

both of O-rich and Ga-rich conditions for higher Fermi levels. This means, when n-type doping 

is tried with external dopants, those defects can easily form and generate holes to compensate 

extra n-type carrier formation. On the other hand, they show neutrality near the valence band, so 

that it doesn’t trigger intrinsic p-type doping. Similarly, two antisite defects, GaO and OGa, and 

Gai are deep level defects and they are expected to act as compensators.  

C. Previous study provides comparison for VO, VGa, Oi, and Gai—not for GaO and OGa 

Zacherle’s study on intrinsic point defects in the β-Ga2O3 structure reviewed oxygen and gallium 

vacancies and interstitials.19 Our study shows similar trends compared to their PBE functional 

even though there is a slight difference. They used a 360-atom supercell and we chose a smaller 

160-atom cell. They overestimated the O2 binding energy by GGA functional (-6.0 eV), but we 

used the experimental value of -5.12 eV. For the Freysoldt correction, they used a dielectric 

constant of 12.7 obtained from DFPT calculation, while we used the experimental value of 10. 

We didn’t include the effect of entropy, but they considered configurational and vibrational 

entropy at different temperatures. Although there is a slight difference, the gallium and oxygen 

interstitials and vacancies display similar trends in this study compared to our study. Using 

GGA, VO has the lowest formation energy in the Ga-rich conditions and VGa is dominant in the 
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O-rich condition. One difference is that the formation energy of VO, their value is -2.25 and ours 

is -3.13 , but it is because of the choice of O2 binding energy. 

Zacherle’s study also showed the defect energetics obtained using the HSE06 hybrid functional. 

The PBE functional has been found to predict a band gap half the size of the experimental value, 

which is why the result should be validated with HSE06. The HSE06 formation energies show 

similar trends as the GGA calculations. A large difference between those two studies is that the 

transitions between different charge states are at higher Fermi levels for the hybrid functional. 

Another difference is that the VO has positive formation energy near the CBM region. In future, 

we plan to use HSE functional for the calculation of formation energies of defects in β -Ga2O3.  

IV. Conclusion 

In this study, the finite-size corrected defect formation energies for several point defects in β-

Ga2O3 were calculated using the PBE functional. It was found that VO has low formation 

energies in Ga-rich conditions and do not contribute to n-type conductivity, since they are deep 

donors. Other favorable antisite and interstitials are also deep level defects. This result indicates 

that the VO is the most dominant defect in the high temperature and high voltage operation 

condition. In future, we plan to calculate the migration barrier of VO and investigate their 

tendency to form defect complexes, which will help us understand the defect behavior under 

operating conditions. 
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