
Washington University in St. Louis
Washington University Open Scholarship

All Computer Science and Engineering Research Computer Science and Engineering

Report Number: WUCSE-2010-23

2010

Split and Merge Functions for Supporting Multiple
Processing Pipelines in Mercury BLASTN
Authors: Jwalant Ahir, Jeremy Buhler, and Roger D. Chamberlain

Biosequence similarity search is an important application in computational biology. Mercury BLASTN, an
FPGA-based implementation of BLAST for DNA, is one of the alternatives for fast DNA sequence
comparison. The re-design of BLAST into a streaming application combined with a high-throughput
hardware pipeline have enabled Mercury BLAST to emerge as one of the fastest implementations of bio-
sequence similarity search. This performance can be further enhanced by exploiting the data-level parallelism
present within the application. Here we present a multiple FPGA-based Mercury BLASTN design in order to
double the speed and throughput of DNA sequence computation. This paper describes a dual Mercury
BLASTN design, the detailed design of the split and merge functions, and simulation results.

Follow this and additional works at: http://openscholarship.wustl.edu/cse_research

Part of the Computer Engineering Commons, and the Computer Sciences Commons

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

Recommended Citation
Ahir, Jwalant; Buhler, Jeremy; and Chamberlain, Roger D., "Split and Merge Functions for Supporting Multiple Processing Pipelines in
Mercury BLASTN" Report Number: WUCSE-2010-23 (2010). All Computer Science and Engineering Research.
http://openscholarship.wustl.edu/cse_research/39

http://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openscholarship.wustl.edu/cse_research/39?utm_source=openscholarship.wustl.edu%2Fcse_research%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Department of Computer Science & Engineering

2010-23

Split and Merge Functions for Supporting Multiple Processing Pipelines in
Mercury BLASTN

Authors: Jwalant Ahir; Jeremy Buhler; Roger D. Chamberlain

Corresponding Author: roger@wustl.edu

Abstract: Biosequence similarity search is an important application in computational biology. Mercury BLASTN,
an FPGA-based implementation of BLAST for DNA, is one of the alternatives for fast DNA sequence
comparison. The re-design of BLAST into a streaming application combined with a high-throughput hardware
pipeline have enabled Mercury BLAST to emerge as one of the fastest implementations of bio-sequence
similarity search. This performance can be further enhanced by exploiting the data-level parallelism present
within the application. Here we present a multiple FPGA-based Mercury BLASTN design in order to double the
speed and throughput of DNA sequence computation. This paper describes a dual Mercury BLASTN design, the
detailed design of the split and merge functions, and simulation results.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

1

 Split and Merge Functions for Supporting Multiple
Processing Pipelines in Mercury BLASTN

Jwalant Ahir1, Jeremy Buhler2, and Roger D. Chamberlain1,2

1BECS Technology, Inc., St. Louis, MO
2Dept. of Computer Science and Engineering, Washington University, St. Louis, MO

Abstract

Biosequence similarity search is an important application in computational biology. Mercury
BLASTN, an FPGA-based implementation of BLAST for DNA, is one of the alternatives for fast
DNA sequence comparison [3,4,5]. The re-design of BLAST into a streaming application
combined with a high-throughput hardware pipeline have enabled Mercury BLAST to emerge as
one of the fastest implementations of bio-sequence similarity search. This performance can be
further enhanced by exploiting the data-level parallelism present within the application. Here we
present a multiple FPGA-based Mercury BLASTN design in order to double the speed and
throughput of DNA sequence computation. This paper describes a dual Mercury BLASTN
design, the detailed design of the split and merge functions, and simulation results.

Introduction

Bio-sequence similarity search has emerged as one of the central problems in computational
biology, and a significant amount of effort has been dedicated to increase its performance. The
popular application BLAST (Basic Local Alignment Search Tool) used for bio-sequence
similarity search employs a combination of heuristics and algorithmic improvements to
accelerate the search by orders of magnitude [1,2]. However, the exponential growth in size of
the input data sets makes the application compute-intensive, thus creating the need for further
performance enhancements. Improvements to the architecture, algorithm, and data-path design,
as well as increasing the efficiency of the underlying application topology, can therefore play a
major role in saving computational time. Mercury BLASTN, the FPGA accelerator for the
BLAST family of DNA comparison algorithms based on NCBI (National Center for Biological
Information) BLASTN for traditional CPU based platforms, has shown remarkable increase in
performance[ref]. These encouraging results have motivated us to speedup Mercury BLASTN by
an additional factor of two by multiplexing two concurrent processing pipelines. This report
describes the multiplexing design in order to achieve increased throughput with Mercury
BLASTN.

After loading a query into the hardware pipeline, the current version of Mercury BLASTN
consumes a stream of database symbols to identify and extend regions of similarity between the
query and database. The idea explored here is to deliver a single copy of the database stream into
two copies of the FPGA pipeline for computation. The resultant data streams output from the
pipeline are multiplexed prior to delivery back to the software. An FPGA can support one
Mercury BLASTN pipeline, and hence in our approach we require two FPGAs. An FPGA-to-
FPGA Interface (FFI) is used to communicate between two FPGAs. The available hardware
platform is a high-performance server motherboard with one or more AMD Opteron processors
and two Xilinx Vertex-4 FPGAs on a PCI-X board.

2

This report describes the split and merge functions designed to support doubling the throughput
of BLASTN. To simplify the exposition and initial simulation investigation, the split and merge
functions are explored without having the actual BLASTN pipelines present.

Architecture

Figure 1 shows the high-level view of the FPGA design with two BLASTN pipelines. The IRD
on the left provides the interface to the PCI-X bus (and subsequently to the processor). Incoming
data to FPGA1 is split (replicated), and one path goes to the BLASTN pipeline on the same
FPGA and the other path goes to a second BLASTN pipeline loaded onto FPGA2. The results
out of the back end of each of these pipelines is merged for delivery back to software (via the
IRD).

Figure 1: Dual FPGA approach to double the throughput of BLASTN

Operation

The objective is to compare a given query sequence against the database. Hence, the database
sequences are sent along with commands and valid signals through the PCI-X bus to the split
module via FPGA interface. The split module generates two identical copies of the input data
and passes a copy to each BLASTN module in its respective FPGA. The data streams are
processed by both BLASTN modules, and results are temporarily stored in their respective input
buffers (FIFO BUF). Data from the input buffers is dequeued by control of the multiplexer’s
select lines. Here, we describe the internal design of the merge function.

Two counters – toggle counter (toggle_cnt) and VW counter (vw_cnt) – control the select lines
of the multiplexer. Toggle counter is a down counter that determines when to switch between
input buffers (FIFO BUF). VW counter is used for a special-purpose command called the VW
(variable word) command. It is used to mark the beginning of a command block containing one
or more 64-bit words transmitted on the command channel. Each BLASTN module preserves its
output data in the respective input buffers. 64-bit control signal is processed when control valid
(ctrl_vld) signal is asserted, whereas 64-bit data is processed when the data valid (data_vld)
signal is asserted. When an input buffer gets full, the module generates a backpressure signal
(wait_upstrm) signal indicating that it cannot accept additional input from the BLASTN pipeline.
Another important signal is wait_dnstrm, generated when there is any back pressure from
downstream in the pipeline.

3

Since only one copy of BLASTN fits on a single FPGA, we use two FPGAs and therefore
require FPGA-to-FPGA communication. to know about the FFI module. FFI (FPGA-to-FPGA
Interface module) consists of two separate components: a controller that parses commands
targeted to the FFI module, and an FPGA-to FPGA component that is responsible for sending
and receiving data to and from an FPGA. FFIs are typically used in pairs and structurally are
complementary to each other. The transfer of data from main memory to the FPGA is under the
control of a firmware socket (DMA / IRD). In the current system, this firmware socket issues
transactions on the PCI-X bus to perform DMA transfer to the main memory.

Figure 2: Experimental block diagram to check simulation results of a Split-Merge module

To test the system with minimum algorithmic overhead, we instantiated a design that invokes the
Split and Merge modules but does not include any intervening processing. Input data is
replicated and passed to the respective input buffers (FIFO BUF) as shown in Figure 2. The Mux
select lines are selected by toggle_cnt and vw_cnt in order to read the input buffers alternately.
The design was functionally verified successfully, and then we instantiated a single BLASTN
module in FPGA1 is shown in Figure 3. Figures 4, 5, and 6 are portions of the entire simulation
results that demonstrate the behavior of the system.

Figure 3: Experimental block diagram to check simulation results of a Split-Merge module
with BLASTN

4

Figure 4: Simulation waveform 1

Figure 5: Simulation waveform 2

Figure 4 shows that input data (din_split) splits into two identical copies fifodata_in1 and
fifodata_in2. Control valid (fifoctrl_vld_out), data valid (fifodata_vld) and output data (data_out)
from mux are transferred at every clock cycle and FIFO is switched when toggle_cnt is reached
to zero. Figure 5 is a zoom out of split copies of input data. Figure 6 shows the switching
behavior of the FIFO; the 64-bit signal generated by Split-Merge module indicates which FIFO it
switched from. Figure 7 is a Finite State Machine that demonstrates different states of operation
of the Split-Merge design. A pseudo code followed by the FSM provides better idea of design
operation.

5

Figure 6: Simulation waveform 3

Figure 7: Finite State Machine to demonstrate inner operation of Split-Merge module

6

Pseudo code

case (state)
 SF1: // Sending FIFO1 data
 begin
 if (toggle_cnt != 0)
 data_out = fifodata_out1;
 if (toggle_cnt = 0 & VW_count != 0)
 begin
 data_out = fifodata_out1;
 next_state = PF2-SF1;
 end
 end

 PF2-SF1: // Pending FIFO2_Sending FIFO1 data
 begin
 if (VW_count != 0)
 data_out = fifodata_out1;
 if (VW_count = 0 & ~fifo2_empty)
 next_state = SC2;
 end

 SC2: //Switch FIFO1 to FIFO2
 begin
 data_out = 0;
 next_state = SF2;
 end

 SF2: //Sending FIFO2 data
 begin
 if (toggle_cnt != 0)
 data_out = fifodata_out2;
 if (toggle_cnt = 0 & VW_count != 0)
 begin
 data_out = fifodata_out2;
 next_state = PF1-SF2;
 end
 end

 PF1-SF2: // Pending FIFO1_Sending FIFO2 data
 begin
 if (VW_count != 0)
 data_out = fifodata_out2;
 if (VW_count = 0 & ~fifo1_empty)
 next_state = SC1;
 end

 SC1: //Switch FIFO2 to FIFO1
 begin
 data_out = 0;
 next_state = SF1;
 end
endcase

7

Conclusion

This paper presents the design of a Split-Merge module that supports Mercury BLASTN on two
FPGAs multiplexed in such a way that achieves double the speed and throughput of biosequence
search application compared to single Mercury BLASTN system. So far, we have successfully
prototyped the Split-Merge module with one BLASTN module on a single FPGA. The design is
being extended to the two FPGA system that is shown in Figure 1. Simulation results are very
encouraging. The comparison of the final results produced by the implementation will be
performed shortly to observe the improvement in performance.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, et al., Basic local alignment search tool.

Journal of Molecular Biology, 215:403–10, 1990.

[2] S. F. Altschul, T. L. Madden, A. A. Sch¨affer, J. Zhang, Z. Zhang, W. Miller, and D. J.

Lipman, Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Research, 25:3389–402, 1997.

[3] Jeremy Buhler, Joseph Lancaster, Arpith Jacob, and Roger Chamberlain, “Mercury

BLASTN: Faster DNA Sequence Comparison using a Streaming Hardware
Architecture,” in Proceedings of Reconfigurable Systems Summer Institute, July 2007.

[4] Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame

Gyang, Arpith Jacob, and Joseph Lancaster, “Biosequence Similarity Search on the
Mercury System,” Journal of VLSI Signal Processing, 49(1):101-121, October 2007.

[5] Joseph Lancaster, Jeremy Buhler, and Roger D. Chamberlain, “Acceleration of Ungapped

Extension in Mercury BLAST,” Microprocessors and Microsystems, 33(4):281-289, June
2009.

	Washington University in St. Louis
	Washington University Open Scholarship
	Report Number: WUCSE-2010-23
	2010

	Split and Merge Functions for Supporting Multiple Processing Pipelines in Mercury BLASTN
	Recommended Citation

	tmp.1425500019.pdf.5lrgL

