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NC Automorphisms of nc-bounded domains

John E. McCarthy ∗ Richard Timoney†

May 22, 2015

Abstract

We establish rigidity (or uniqueness) theorems for nc automor-
phisms which are natural extensions of clasical results of H. Cartan
and are improvements of recent results. We apply our results to nc-
domains consisting of unit balls of rectangular matrices.

1 Introduction

Holomorphic automorphisms of domains in Cd have been studied since the
work of H. and E. Cartan in the 1930’s [7], [6]. A holomorphic function can
be thought of as a generalized polynomial, and they can be evaluated not just
on tuples of complex numbers, but also on tuples of commuting matrices or
commuting operators whose spectrum is in the domain of the function [21].
An nc-function (nc stands for non-commutative) is a generalization of a free
polynomial, (i.e. a polynomial in non-commuting variables), and it is natural
to evaluate them on tuples of matrices or operators.

To describe nc-functions (following [13] for instance), we must first es-
tablish some notation. Let Mn denote the n-by-n complex matrices, and Md

n

the d-tuples of n-by-n matrices. We shall let M[d] denote the disjoint union
∪∞n=1Md

n. Given x = (x1, . . . , xd) in Md
n and y = (y1, . . . , yd) in Md

m, by x⊕ y
we mean the element (x1⊕y1, . . . , xd⊕yd) of Md

m+n. If x ∈Md
n and s, t ∈Mn,

by sxt we mean (sx1t, . . . , sxdt).

∗Partially supported by National Science Foundation Grant DMS 1300280
†Supported by the Science Foundation Ireland under grant 11/RFP/MTH3187.
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A free polynomial p in d variables can be thought of as a function defined
on M[d], and as such it has the following properties:

(i) If x is in Md
n, then p(x) ∈Mn.

(ii) If x and y are in M[d], then p(x⊕ y) = p(x)⊕ p(y).
(iii) If x ∈Md

n and s ∈Mn is invertible, then p(s−1xs) = s−1p(x)s.

Definition 1. An nc-set is a set Ω ⊆ M[d] such that Ωn := Ω ∩Md
n is an

open set for each n, and such that Ω is closed with respect to direct sums
and joint unitary equivalence (i.e. for all x ∈ Ωn and for all u unitary in Mn,
we have u−1xu ∈ Ω). If an nc-set Ω has the property that Ωn is connected
for every n, we shall call it an nc-domain.

An nc-function is a function on an nc-set that mimics the properties (i)
- (iii) above of free polynomials.

Definition 2. An nc-function f on an nc-set Ω is a function with the fol-
lowing three properties:

(i) If x is in Ωn, then f(x) ∈Mn (we say f is graded if this occurs).
(ii) If x and y are in Ω, then f(x⊕ y) = f(x)⊕ f(y).
(iii) If x ∈ Ωn, s ∈ Mn is invertible, and s−1xs ∈ Ω, then f(s−1xs) =

s−1f(x)s.

An nc-map Φ on an nc-domain Ω ⊆ M[d] is a d-tuple of nc-functions.
If Φ is an nc-map on Ω that is also a bijection onto Ω, we call it an nc-
automorphism.

Bounded symmetric domains in Cd have been characterized by E. Cartan
[6], and in the course of the proof automorphisms of such domains were
described.

We are interested in the following questions about nc-automorphisms.

Question 1. (Rigidity) If Φ is an nc-automorphism of Ω, is it uniquely deter-
mined by its action on Ω ∩Md

n for some fixed n?

Question 2. (Extendibility) If F : Ω∩Md
n → Ω∩Md

n is a biholomorphic map
which respects similarities, is there an nc-automorphism Φ : Ω → Ω such
that Φ|Ω∩Md

n
= F?

Question 3. What groups can arise as the automorphism group of an nc-
domain?

A set Ω ⊂ M[d] is called nc-bounded if for each n, there exists a constant
Mn such that

∀ z ∈ Ωn, ‖z‖ < Mn.
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In Theorem 7 we show that one always has rigidity on nc-bounded do-
mains that contain the origin. For such domains, the possible automorphism
groups are therefore no more than certain subgroups of the automorphism
groups of bounded domains (and we substantially answer questions 1, 2 and
3 for circular bounded domains that contain the origin). In Example 15, we
show that many different domains can have the same automorphism groups.

In Section 4, we consider the Cartan domain of type I, the set Rpq of
p-by-q contractive matrices. The obvious nc-domain containing this, where
numbers are replaced by n-by-n matrices, we call Rpq. In Theorem 13, we
show that when p 6= q, all automorphisms of Rpq extend; but when p = q,
only those automorphisms that do not involve the transpose extend.

In this paper, we restrict our attention to nc-bounded domains, as the
unbounded case is much more complicated (see e.g. Example 9).

This note continues work of Popescu in [17, 18, 19] and of Helton, Klep,
McCullough and Slinglend, in [12].

2 Background on nc-functions

The recent monograph [13] by D. Kaliuzhnyi-Verbovetskyi & V. Vinnikov
gives an introduction to nc-functions. Unless an additional hypothesis of
continuity (or boundedness) is added, nc-functions can behave badly.

Example 3. Let d = 1, and define a function f on Jordan blocks by sending
a Jordan block with 0 eigenvalues to the zero matrix of the same size, and
a Jordan block with non-zero eigenvalues to the identity matrix of that size.
Extend f by direct sums to any matrix in Jordan canonical form, and then
by similarity to any matrix. The function f is then an nc-function which is
manifestly discontinuous.

Let σ denote the disjoint union topology on M[d]: a set U is in σ if and
only if U ∩Md

n is open for every n. (This topology is called the finitely open
topology in [13]).

It was proved in [1] that if an nc-function f on an nc-set Ω is σ locally
bounded, in the sense that

∀ z ∈ Ω, ∃ U ∈ σ s.t. z ∈ U and f |Ω∩U is bounded,

then f : Ω → M[1] is σ-σ continuous, and in [10], it was shown that this in
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turn implied that f was holomorphic, in the sense that

∀n ∈ N, ∀z ∈ Ωn, ∀h ∈Md
n, ∃ Df(z)[h] = lim

t→0

1

t
[f(z+ th)− f(z)]. (2.1)

Putting these results together, we conclude

Proposition 4. An nc-map f into an nc-bounded domain is automatically
σ-σ continuous, and holomorphic in the sense of (2.1).

3 Rigidity

A domain is called circular if it is invariant under multiplication by unimod-
ular scalars.

The following lemmas are classical and due to H. Cartan.

Lemma 5 (H. Cartan ([8, Théorème VII, p. 30])). Let D ⊆ Cd be a bounded
domain, z0 ∈ D and φ : D → D a biholomorphic automorphism with φ(z0) =
z0 and φ′(z0) = In. Then φ is the identity.

Lemma 6 ([7], [8, Théorème VI]). If D is a bounded circular domain in Cd

containing 0, and F : D → D is a biholomorphic automorphism of D with
F (0) = 0, then F is the restriction to D of an invertible linear map.

Theorem 7. Let Ω be an nc-domain that is nc-bounded. Let Φ = (Φ1, . . . ,Φd)
be an nc-automorphism of Ω. Suppose that for some m ∈ N, we have
0 ∈ Ω ∩Md

m and (Φ|Ωm)(0) = 0.

(i) If in addition (Φ|Ωm)′(0) is the identity, then Φ is the identity on all of
Ω.

(ii) If instead we suppose also that Ω is a circular nc-domain, then there
is an invertible linear map F on Cd such that Φ(Z) = (F ⊗ idn)(Z)
for Z ∈ Ωn (by which we mean that each d-tuple (Φ(Z))i,j formed from
the (i, j) coordinates of the d-tuple of n × n matrices Φ(Z) is given
by F (Zi,j) where Z = (Z1, . . . , Zd), and Zi,j = (Z1

i,j, . . . , Z
d
i,j) again

denotes the (i, j) coordinates).

Proof. (i) By Lemma 5, Φ|Ωm is the identity.

As Ωm = Ω ∩ Md
m is open, there is some ε > 0 such that if z =

(z1, . . . , zd) ∈Md
m has each ‖zj‖ < ε, then z ∈ Ωm.
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Now, fix a positive integer k. For Zj ∈ Mkm, we write Ẑj for the d-
tuple (Z1, . . . , Zd) ∈ Md

km that has Zi = 0 when i 6= j, and whose
jth entry is Zj. If Zj is the direct sum of k matrices from Mm, and if
‖Zj‖ ≤ ε, then Φ(Ẑj) = Ẑj, by the direct sum property of nc-maps.
As this applies to ζZj for |ζ| < 1 (ζ ∈ C), it follows that the directional
derivative ((Φ|Ωkm

)′(0))(Ẑj) = Ẑj. By linearity of the Fréchet derivative
(Φ|Ωkm

)′(0) we may drop the restriction that ‖Zj‖ < ε. In particular
the conclusion holds when Zj ∈Mkm is a diagonal matrix.

By the chain rule and similarity invariance

(Φ|Ωkm
)(s−1Zs) = s−1(Φ|Ωkm

)(Z)s

of the map Φ|Ωkm
(valid for all sufficiently small Z once s is fixed), we

must have that (Φ|Ωkm
)′(0) has the invariance property

((Φ|Ωkm
)′(0))(s−1Zs) = s−1(((Φ|Ωkm

)′(0))(Z))s (3.1)

Choosing Zj diagonalisable and s such that s−1Zjs is diagonal (3.1)
yields s−1(((Φ|Ωkm

)′(0))(Ẑj))s = s−1Ẑjs and hence ((Φ|Ωkm
)′(0))(Ẑj) =

Ẑj provided Zj is diagonalisable. By density of the diagonalisable ma-
trices we can then make the same conclusion with Zj arbitrary and
then linearity of (Φ|Ωkm

)′(0) forces it to be the identity.

By Lemma 5 again, Φ|Ωkm
must be the identity.

Now choose some n, not necessarily a multiple of m, such that Ωn is
non-empty. Let Z ∈ Ωn. The direct sum of m copies of Z is in Ωmn,
and Φ(⊕mi=1Z) = ⊕mi=1Z by the first part of the proof. As Φ preserves
direct sums, this means that Φ(Z) = Z.

(ii) By Lemma 6, we know Φ|Ωm is linear, If m = 1 we take F to be Φ|Ωm .
For m > 1 we need a brief argument to find F .

Similarity invariance

(Φ|Ωm)(s−1Zs) = s−1(Φ|Ωm)(Z)s

(guaranteed by Definition 2 to hold for Z, s−1Zs ∈ Ωm) must hold
globally for Z ∈ Md

m in view of linearity. Let Ei,k denote the standard
matrix units in Mm and choose Z = (z1E1,1, . . . , z

dE1,1) (so that Z is
supported on the (1, 1) entries). Consider a block diagonal s = 1 ⊕ t
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with 1 in the (1, 1) entry but arbitrary invertible (m − 1) × (m − 1)
block t. Since the matrices that commute with all such 1⊕ t are those
of the form F ⊕αIm−1 (for scalars F and α) we see that Φ|Ωm(Z) must
take the form

(F 1(z)⊕ α1(z)Im−1, . . . , F
d(z)⊕ αd(z)Im−1), with z = (z1, . . . , zd),

for some scalar-valued linear F 1, . . . , F d, α1, . . . , αd : Cd → C.

However, notice that (by Lemma 6) we also know that Φ|Ω2m is linear,
and by the direct sum property Φ(Z ⊕ 0) = Φ(Z) ⊕ 0. The similarity
argument applied to Md

2m forces αj = 0 (1 ≤ j ≤ d). Thus

Φ|Ωm(z1E1,1, . . . , z
dE1,1) = (F 1(z)E1,1, . . . , F

d(z)E1,1)

(with z = (z1, . . . , zd)). Using similarity with s a transposition allows
us to conclude that the same must hold for Ek,k replacing E1,1. Taking
s = In − Ei,k for i 6= k we have s−1Eiis = Eii − Eik, and together with
linearity we deduce the relation with Ek,k replaced by Ei,k. Clearly
F = (F 1, . . . , F d) : Cd → Cd must be invertible (since Φ is) and we
have the desired conclusion on Ωm.

By Lemma 6, we know Φ|Ωkm
is linear for each k ∈ N. For Zj ∈Mkm, if

Zj is diagonal we must have Φ(Ẑj) of the required form. The similarity
property and density of the diagonalisable matrices in Mkm allows us
to extend to arbitrary nonzero Zj. Then by linearity this extends to
arbitrary d-tuples Z = (Z1, . . . , Zd) ∈Md

km.

Finally if Ωn is nonempty for some n we can apply the result just
obtained for Ωnm together with the direct sum property for Z⊕0⊕· · ·⊕0
(where Z ∈ Mn and we have (m− 1) zero summands) to establish the
desired conclusion for Φ|Ωn .

Popescu’s Cartan uniqueness results [18, §1] can be viewed as similar in
spirit for the case of special domains (row contractions) to Theorem 7. In the
case m = 1, the result of [10, Corollary 4.1 (2)] is part (i) while [11, Theorem
21] implies (ii).

Example 8. The matrix polydisk. This is the set

D = {x ∈M[d] : ‖xj‖ < 1, 1 ≤ j ≤ d}.
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The set of automorphisms of D is the set

{Φ(x) = σ ◦ (m1(x1), . . . ,md(xd)) : σ ∈ Sd,m
j ∈ Aut(D)}. (3.2)

Here Sd is the symmetric group on d variables, and Aut(D) is the Möbius
group of automorphisms of the disk. Each Möbius transformation of the form

m(z) = eiθ
z − a
1− āz

extends to matrices in the obvious way:

m(Z) = eiθ(Z − aI)(1− āZ)−1.

Indeed, by von Neumann’s inequality, every Φ in (3.2) extends to an auto-
morphism of D. That this comprises everything follows from observing that
all automorphisms of the polydisk Dd = D ∩ Md

1 are of this form, and so
by Theorem 7 they have a unique extension to higher levels. As they are
invertible, they must be automorphisms. C

Example 9. Theorem 7 fails if boundedness is dropped. Consider, for exam-
ple, the nc-set

Ω = {(x, y, z) ∈M[3] : ‖xy − yx‖ < 1}.

Let
Φ(x, y, z) = (x, y, z + h(xy − yx)),

where h : C→ C is any non-constant entire function mapping 0 to 0. Then
Φ is an automorphism, and Φ|Ω∩M3

1
is the identity, but Φ is not the identity

on level 2. C

4 Extendibility in Rpq

Let Rpq denote the p-by-q matrices of norm less than 1. We shall extend this
to an nc-domain in M[d], where d = pq, by

Rpq :=
∞⋃
n=1

{(x1, x2, . . . , xd) ∈Md
n :

∥∥∥∥∥∥∥∥∥


x1 . . . xq

xq+1 . . . x2q

...
x(p−1)q+1 . . . xpq


∥∥∥∥∥∥∥∥∥ < 1}.
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Let γ : Md
n → Md

pq be the map that takes d matrices and makes them into
a block p-by-q matrix, filling in left to right and then top to bottom. Then
Rpq = {x : ‖γ(x)‖ < 1}. When we speak of an nc automorphism of Rpq,
strictly speaking we mean an nc automorphism of γ−1(Rpq).

In the special case q = 1, Rp1 is just the unit ball in Cp, and its auto-
morphisms are well-known (see e.g. [20, Thm. 2.2.5]). The set R1q, the
row-contractions, was studied by G. Popescu in [16, 17] and [18].

The automorphisms of Rpq are given by a similar formula to the case of
the ball. L. Harris showed [9] that they are of the following form.

Theorem 10. [Harris] Every holomorphic automorphism of Rpq is of the
form LHA where L is a linear isometric automorphism of Rpq, A is an ele-
ment of Rpq, and

HA(x) = (Ip − AA∗)−1/2(x+ A)(Iq + A∗x)−1(Iq − A∗A)1/2.

First, let us consider that automorphisms that map 0 to 0, which are the
linear ones. K. Morita [14] classified the linear isometries of Rpq, and the
square case differs from the rectangular case, because the transpose is an
isometry.

Theorem 11. [Morita] If p 6= q, all linear automorphisms of Rpq are of the
form x 7→ UxV , where U is a p-by-p unitary and V is a q-by-q unitary. If
p = q, the set of linear automorphisms consists of x 7→ UxV and x 7→ UxtV .

The map x 7→ UxV extends to the nc automorphism of Rpq given by
Z 7→ (id⊗ U)Z(id⊗ V ); but the transpose does not extend.

Lemma 12. If p > 1, the map x 7→ xt does not extend to an nc automor-
phism of Rpp.

Proof. Using Theorem 7, if the transpose did extend, the extension would
map (Xi,j) ∈ Mp(Mn(C)) to (Xj,i), and so this reduces to the well-known
fact that the transpose map is not a complete isometry of Mp.

Let us turn now to HA. The map HA extends to an nc map from Rpq to
Rpq given by

HA(Z) = (In,p−id⊗AA∗)−1/2(Z+id⊗A)(In,q+(id⊗A∗)Z)−1(In,q−id⊗A∗A)1/2

(4.1)
Here, id means idCn , and In,r denotes idCn⊗Cr .
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A calculation shows that

id−HA(W )∗HA(Z) = (In,q − id⊗ A∗A)1/2(In,q +W ∗(id⊗ A))−1

(In,q −W ∗Z)(In,q + (id⊗ A∗)Z)−1(In,q − id⊗ A∗A)1/2. (4.2)

Letting W = Z proves that HA maps Rpq to Rpq, and as H−A is the inverse
of HA, it must be an automorphism.

Putting these results together, we get the following theorem. The case
p = 1 was proved by Popescu [18, Thm. 1.5]. The general case was proved
by Helton, Klep, McCullough and Slinglend [12, Thm. 1.7], though their
hypotheses are stronger. The linear case was proved by D. Blecher and D.
Hay [5].

Theorem 13. If p 6= q, then every automorphism of Rpq extends uniquely
to an automorphism of Rpq. If p = q, the automorphisms of the form x 7→
UHA(x)V extend uniquely to Rpp, and the automorphisms of the form x 7→
UHA(x)tV (when p > 1) do not extend to automorphisms of Rpp.

By a result of J. Ball and V. Bolotnikov [4], (see also [3] and [2]) HA

extends to an endomorphism of the commuting elements of γ−1(Rpq) if and
only if there is some function F so that

I −HA(w)∗HA(z) = F (w)∗(I − w∗z)F (z)

as a kernel on Rpq. This is true, as (4.2) shows. So the nc automorphisms
of {x ∈ γ−1(Rpq) : xixj = xjxi,∀1 ≤ i, j ≤ d} are the same as the nc
automorphisms of γ−1(Rpq). This phenomenon has also been explored in [1].

Question 4. The automorphisms of Rpq are not transitive at any level n ≥ 2.
What can one say about the orbits?

Theorem 13 can be extended slightly. For S a subset of N that is closed
under addition, let Rpq(S) be defined by Rpq(S) ∩Md

n is Rpq ∩Md
n if n ∈ S,

and empty otherwise.

Proposition 14. Let S be any non-empty sub-semigroup of N. Then the
automorphisms of Rpq(S) are the same as the automorphisms of Rpq, and
are uniquely determined by their action on any non-empty level.

Example 15. Extendibility can fail if the pieces of Ω at different levels are not
somehow alike. For example, let d = 1, and R > 1. Define Ω by Ω∩M1 = D,
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and Ω∩Mn = {x : ‖x‖ < R}. The automorphisms of Ω∩M1 are the Möbius
maps, but only multiplication by eiθ extends to be an automorphism of Ω.

But there are many other choices of nc-domain Ω ⊃ R11 that have the
same automorphism group. For example, let r1 = 1, and let (rn)∞n=1 be any
non-decreasing sequence. Define Ω by

Ωn = {x ∈Mn : ∃s ∈Mn, with ‖s‖‖s−1‖ ≤ rn, and ‖s−1xs‖ < 1}. (4.3)

Then Ω is an nc-domain, and its automorphism group is the set of Möbius
maps. C

Question 5. Let U ⊂ Cd be a bounded symmetric domain. Is there an nc-
domain Ω ⊂ M[d] such that Ω1 = U and such that the automorphism group
of Ω equals the automorphism group of U?

Remark added in proof. In the recent preprint [15], Popescu studies
automorphisms of a special class of nc-bounded circular nc-domains which he
calls noncommutative polyballs. These are domains of the form R1q1 × · · · ×
R1qm , with the restriction that elements from distinct factors commute. For
these domains, he proves among other things a version of Theorem 7 above,
and characterizes all their automorphisms.
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