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Abstract 

Individuals with schizophrenia demonstrate cognitive deficits in a number of 

domains, including episodic memory (EM). Memory for both individual items and 

associations between items is impaired in schizophrenia, with some indication of a more 

severe deficit in associative memory. Furthermore, such memory impairments have been 

consistently linked with abnormalities in brain activation during both encoding and 

retrieval. However, certain experimental manipulations at the encoding and retrieval 

stages of EM significantly benefit memory performance in schizophrenia, suggesting that 

a strategic processing deficit may underlie memory impairment in schizophrenia. 

Additionally, the provision of beneficial encoding strategies increases encoding-related 

brain activity in key memory processing regions in schizophrenia participants, although 

such manipulations have not yet been tested in participants with schizophrenia during 

retrieval. The goal of the current study was to examine the impact of encoding and 

retrieval strategies on associative memory function and brain activity in schizophrenia. 

Behavioral and functional neuroimaging data were collected from 23 DSM-IV diagnosed 

participants with schizophrenia and 24 demographically equivalent comparison subjects 

while performing associative memory encoding and recall tasks in the fMRI scanner. 

Two factors of interest were manipulated and studied: 1) orientation to the semantic 

relatedness of associative pairs; and 2) provision of memory cues at subsequent recall. 

Behaviorally, schizophrenia participants (like controls) demonstrated significant memory 

benefits from both the provision of support for effective encoding (orientation to 

semantic relatedness) and retrieval strategies (provision of memory cues). In addition, 

support for the use of an effective encoding strategy was also associated with increased 
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brain activity in a variety of brain areas in schizophrenia participants, whereas the 

manipulation of retrieval strategies did not serve to increase retrieval-related brain 

activity among individuals with schizophrenia. Lastly, both groups showed significant 

associations between inherent semantic processing ability and episodic memory 

performance. Schizophrenia participants also demonstrated significant associations 

between semantic processing ability and semantic encoding-related brain activity in 

prefrontal cortex, whereas controls did not show any such relationships. Overall, these 

findings suggest that memory performance in schizophrenia can be improved via 

manipulations at the encoding and retrieval stages, and that brain activity enhancements 

are observed under supportive encoding conditions as well. These data also provide 

evidence that individual differences in cognitive abilities among individuals with 

schizophrenia can significantly affect behavioral and neurobiological responses to 

strategic memory interventions. Finally, the current findings suggest that individuals with 

schizophrenia and healthy individuals rely on partially overlapping networks of brain 

regions to support EM processes under supportive conditions. Although certain deficits in 

memory performance and brain activation persist, it is clear that orientation to 

advantageous memory strategies can partially ameliorate EM function among individuals 

with schizophrenia. 
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Chapter 1: Introduction and Overview 

Schizophrenia is a neuropsychiatric disease that is characterized by profound 

impairments in a number of cognitive abilities. Among these, deficits in episodic memory 

(EM) function are some of the most salient. Episodic memory is a past-oriented memory 

system, likely unique to humans, which allows for mental time travel and supports 

memory for unique events (Tulving, 2002). As such, EM encompasses both item memory 

(memory for individual items) and associative memory (memory for associations between 

items). Individuals with schizophrenia demonstrate deficits in both forms of memory. For 

example, significantly lower recognition and recall rates of individual items have been 

found for participants with schizophrenia, as compared to healthy control participants 

(Barch et al., 2002; J. M. Gold et al., 1992; Hazlett et al., 2000; Jessen et al., 2003). 

Others have reported impaired performance on associative memory tasks in participants 

with schizophrenia, relative to controls (Bazin & Perruchet, 1996; Danion et al., 1999; 

Elvevag et al., 2000; Waters et al., 2004).  

 EM deficits found in schizophrenia may be related, at least in part, to memory 

strategy deficits at the encoding and retrieval stages. For example, individuals with 

schizophrenia fail to encode stimuli as deeply as controls and are less likely to generate 

effective strategies to learn new information (Brebion et al., 1997; Iddon et al., 1998). 

Individuals with schizophrenia also fail to benefit from commonalities among to-be-

learned material (such as semantic relatedness) in order to facilitate learning (Hazlett et 

al., 2000; Nohara et al., 2000). Thus, there is convincing evidence that strategy deficits 

and memory impairments are linked to some degree in schizophrenia.  
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 Importantly, however, studies that have constrained encoding strategy use or 

provided advantageous schemas at encoding have shown that participants with 

schizophrenia show memory benefits from such interventions. For example, studies that 

have utilized the levels-of-processing paradigm (Craik & Lockhart, 1972) in 

schizophrenia have shown that members of this group recognize words that have been 

processed “deeply” significantly better than those they have processed in a “shallow” 

manner (Bonner-Jackson et al., 2005; Kubicki et al., 2003; Paul et al., 2005; Ragland et 

al., 2005; Ragland et al., 2003). Such evidence indicates that memory dysfunction in 

schizophrenia may be related to an underlying impairment in strategic memory 

processing, rather than being a permanent fixture of the disease. Of note, however, is the 

finding that although such encoding manipulations benefit individuals with 

schizophrenia, they do not fully “normalize” memory performance. This may be 

attributable to the fact that participants with schizophrenia are not typically provided with 

an effective strategy or framework with which to retrieve information. Therefore, 

supportive conditions at both the encoding and retrieval stages may be required in order 

for memory performance in individuals with schizophrenia to be equivalent to that of 

control participants. Indeed, the presence of support or cues at retrieval has been shown 

to profoundly influence retrieval success in schizophrenia (Sengel & Lovallo, 1983). 

Thus, it may be possible to equate memory performance in control and schizophrenia 

subjects using beneficial techniques at both of these crucial processing stages. 

In addition to numerous behavioral studies that have identified EM deficits in 

schizophrenia, functional neuroimaging studies of memory processing in schizophrenia 

have consistently identified abnormal activation patterns in a number of cortical and 
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subcortical regions (Barch et al., 2002; Heckers et al., 1998; Hofer et al., 2003a; Ragland 

et al., 2004), including prefrontal cortex (PFC), which is thought to govern the generation 

and application of memory strategies, and parts of medial temporal lobe (MTL), which is 

also crucial for EM function. The deficits observed in frontal cortex function may be 

related to the strategic impairments that have been found in participants with 

schizophrenia. Neuroimaging studies in participants with schizophrenia have consistently 

identified cortical activation impairments in PFC during verbal item encoding (Hofer et 

al., 2003b; Kubicki et al., 2003; Ragland et al., 2001; Rubin, 1998). Furthermore, even 

when beneficial strategies are provided at encoding, participants with schizophrenia show 

dysregulation of activity in PFC and hippocampal regions during verbal item retrieval, 

with greater than normal PFC activity combined with underactivation of hippocampus 

(Heckers et al., 1998; A. P. Weiss et al., 2003). Given that strategic deficits likely 

underlie some of the activation deficits observed in schizophrenia, it is possible that the 

provision of beneficial memory strategies during both the encoding and retrieval stages 

would promote brain activity in prefrontal and hippocampal structures closely resembling 

that of control participants. 

Although there have been numerous functional neuroimaging studies of item 

memory in schizophrenia, few imaging studies investigating associative memory in 

schizophrenia exist. However, results of certain behavioral studies may allow us to draw 

preliminary conclusions regarding brain function in individuals with schizophrenia 

during associative memory paradigms. For example, a key component of associative 

memory organization, called transitive inference, is impaired in individuals with 

schizophrenia (Titone et al., 2004) and is associated with activity in medial temporal lobe 



 

 

 
 

6 
 

(Heckers & Titone, 2005). Furthermore, individuals with schizophrenia are impaired on 

other tasks that strongly rely on the integrity of medial temporal lobe regions, including 

tests of binding and memory for context (Waters et al., 2004). Because successful 

associative encoding is hypothesized to require modulation of both hippocampal and 

prefrontal cortex structures, impaired item and associative memory task performance in 

schizophrenia may be related to dysfunction in these critical brain structures. 

While most neuroimaging research of memory in schizophrenia has found 

impaired memory function in combination with abnormal patterns of brain activation, 

experimental interventions at the encoding stage can improve task performance and 

normalize brain activity (Bonner-Jackson et al., 2005; Ragland et al., 2005). Furthermore, 

constraining encoding processes during associative memory tasks may have similar 

effects on behavior and brain activity. Although such interventions have been carried out 

in studies of item memory, to our knowledge there have been no such studies of brain 

activity during associative memory encoding in schizophrenia. The current study 

examined encoding of paired associates (words and scenes) using functional magnetic 

resonance imaging. The factors under study were the effects of orientation to semantic 

relatedness of word-scene pairs and the presence of retrieval cues on associative memory 

success and associative memory-related brain activity in schizophrenia. One goal of the 

proposed research was to test the hypothesis that associative memory function in 

individuals with schizophrenia can be improved both by the provision of effective 

encoding strategies and by the support of effective retrieval strategies. However, it was 

hypothesized that memory performance of schizophrenia participants would only be 

equivalent to that of controls when both types of support were provided. A second goal of 
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the proposed research was to test the hypothesis that individuals with schizophrenia 

would show brain activity equivalent to that of controls during associative encoding and 

retrieval of word-scene pairs when beneficial encoding strategies and retrieval cues were 

provided.  

Chapter 2: General Review of the Literature:  

Episodic Memory, Memory Strategy Use, and Functional Neuroimaging Studies 

 I will review the published literature in the areas relevant to this research: 

episodic memory, effect of memory strategies, and functional neuroimaging studies of 

episodic memory. This review will include empirical studies in these research domains 

related to participants with schizophrenia as well as healthy control populations. I will 

divide the review into research covering two domains – 1) episodic memory deficits in 

individuals with schizophrenia; and 2) findings from functional neuroimaging studies of 

individuals with schizophrenia. Within each section, I will examine findings related to 

episodic memory encoding, storage, and retrieval, including patterns of memory 

performance and brain activity impairment typically observed in schizophrenia, as well as 

factors that contribute to improvements in behavior or more “normalized” patterns of 

brain activity.   

Episodic Memory Deficits in Schizophrenia 

As described above, episodic memory (EM) is a past-oriented memory system, 

likely unique to humans, which allows for mental time travel and supports memory for 

unique events (Tulving, 2002). EM has typically been categorized as one element of the 

declarative memory system and is posited to represent a memory system distinct from 

that of semantic memory, which refers to knowledge of facts or concepts. Episodic 
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memory has typically been divided into three separable stages: encoding, storage, and 

retrieval. Encoding refers to the initial learning stage of memory, in which information or 

knowledge is acquired. Storage refers to the maintenance of information over time. 

Retrieval refers to the process of accessing stored information. Empirical research on EM 

has utilized a wide variety of memory measures (e.g., recognition, free recall, cued recall) 

and stimuli in a number of different domains (e.g., words, faces, sounds, complex 

scenes).  

 General evidence for the presence of EM deficits in schizophrenia. Individuals 

with schizophrenia perform poorly on tests of EM function (Aleman et al., 1999; 

Fioravanti et al., 2005; Heinrichs & Zakzanis, 1998). Although there is some degree of 

variability between studies, the majority of research suggests at least a moderate EM 

impairment in individuals with schizophrenia. For example, a meta-analysis of 70 

memory studies conducted by Aleman and colleagues detected a large effect size for 

verbal recall (d = 1.20) and a moderate effect size (d = 0.61) for verbal recognition 

performance in schizophrenia participants, as compared to healthy controls (Aleman et 

al., 1999). Another meta-analysis of 113 studies by Fioravanti and co-workers found a 

standard mean difference (SMD) of 1.18 between control and schizophrenia participants 

on measures of memory (Fioravanti et al., 2005). Finally, Heinrichs and Zakzanis (1998) 

reviewed 204 studies that compared individuals with schizophrenia to healthy control 

participants on a wide range of cognitive variables. The authors reported that global 

verbal memory performance represented the largest difference (as measured by effect 

size) between control and schizophrenia participants among all the variables studied 

(Heinrichs & Zakzanis, 1998). Large-scale meta-analyses and reviews such as these 
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suggest that memory deficits are a pervasive feature of the schizophrenia cognitive 

profile.  

In addition to meta-analyses suggesting that EM function is consistently impaired 

in individuals with schizophrenia, there is also evidence that such deficits (particularly 

for verbal material) exceed the impairments observed in other cognitive domains. For 

example, a review of 110 studies by Cirillo and Seidman (2003) cited “overwhelming 

evidence” of a verbal declarative memory deficit in schizophrenia, and they suggested 

that deficits in verbal memory represent one of the most impaired functions in this 

disease (Cirillo & Seidman, 2003). Saykin and colleagues also found evidence for a 

selective deficit in verbal learning and memory compared to other cognitive functions 

among a sample of schizophrenia participants (Saykin et al., 1991). Others have reported 

substantial memory deficits in individuals with schizophrenia that were determined to be 

disproportionate to intellectual functioning (Egeland et al., 2003; McKenna et al., 1990; 

Tamlyn et al., 1992).  

Research designs utilizing unaffected relatives of individuals with schizophrenia 

have also provided evidence of a specific verbal memory deficit in this disease 

(Sponheim et al., 2004; Toulopoulou et al., 2003a; Toulopoulou et al., 2003b). For 

example, Toulopoulou and colleagues compared schizophrenia participants with their 

healthy relatives and control participants on a battery of cognitive measures. They found 

that individuals with schizophrenia were most impaired on measures of immediate verbal 

recall and visual learning and memory. The authors also identified difficulties with verbal 

memory and strategy formation in the relatives of schizophrenia participants and 
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suggested that a selective deficit in verbal memory may represent a significant risk factor 

for the development of schizophrenia (Toulopoulou et al., 2003a).  

Despite strong evidence to support the notion of a selective deficit in verbal EM 

in schizophrenia (relative to deficits observed in other cognitive domains), the literature 

in this area is not entirely consistent. Specifically, in contrast to those studies outlined 

above that have identified selective deficits in verbal learning and memory in 

schizophrenia, others have reported more generalized memory impairments (Clare et al., 

1993; Rushe et al., 1999). For example, Clare and co-workers (1993) compared 

individuals with schizophrenia and healthy comparison subjects on a number of long-

term memory measures using a variety of paradigms. They reported that the 

schizophrenia group showed significant deficits on recall of prose material, as well as 

forced choice recognition of both words and faces (Clare et al., 1993). Rushe and 

colleagues (1999) also reported equivalent deficits on measures of verbal and non-verbal 

long term memory, as well as verbal and non-verbal paired associate learning, among a 

group of chronic schizophrenia participants (Rushe et al., 1999). Thus, there is not 

currently a consensus regarding the relative severity of verbal memory impairment and 

whether it is selectively impaired relative to other cognitive functions. 

Multiple theories exist as to why deficits in verbal EM processing exist in 

schizophrenia. Below, I present evidence to support three prominent hypotheses 

regarding the underlying causes of these deficits: impairments at the encoding stage, 

impairments at the retrieval stage, and impairments in binding and associative memory 

processes.  
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Evidence for encoding deficits in schizophrenia. One line of evidence regarding 

verbal EM deficits in schizophrenia has suggested that such deficits are due to 

impairments at the encoding, or initial learning, stage of episodic memory. Before 

reviewing empirical work in this area, it is important to note that behavioral studies of 

EM encoding cannot solely implicate faulty encoding operations in the EM deficits that 

are typically seen among individuals with schizophrenia. It is possible that deficits at 

other stages (e.g., EM retrieval) contribute to EM dysfunction, and these studies are 

unable to dissociate these factors. Therefore, this fact should be considered in reviewing 

the following research that is putatively focused on the encoding stage of EM.   

Some empirical studies have addressed verbal encoding processes in 

schizophrenia via word list learning paradigms, in which lists of words that vary in 

semantic relatedness are presented to participants. Encoding strategy is inferred based on 

the degree to which participants use this semantic relatedness to improve recall (Brebion 

et al., 1997; Brebion et al., 2004; Iddon et al., 1998; Kareken et al., 1996; Koh, 1978; 

Traupmann, 1980). For example, using word lists varying in semantic relatedness and 

typicality of exemplars, Brebion and colleagues (2004) found evidence for reduced 

semantic organization at recall in individuals with schizophrenia, which was 

hypothesized to reflect a decreased tendency to use inherent semantic relationship among 

to-be-learned items to improve encoding success. The authors also stated that such 

reduced organization makes a significant contribution to verbal memory deficits often 

observed in schizophrenia and may be linked to DLPFC pathology in this group (Brebion 

et al., 2004). Work by Iddon and co-workers (1998) found that individuals with 

schizophrenia were significantly impaired in their ability to spontaneously generate 
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memory strategies for both visuospatial and verbal memory tasks, with evidence for a 

disproportionate impairment on the verbal strategy task. As a result, verbal memory 

scores in the schizophrenia participants were significantly lower than in the control group 

(Iddon et al., 1998). A series of studies conducted by Koh (1978) determined that 

individuals with schizophrenia have difficulty in remembering various types of verbal 

material, including unrelated word lists and affective word lists, which could be partially 

attributed to the inefficiency of mnemonic organization on the part of individuals with 

schizophrenia (Koh, 1978). Russell and colleagues (1975) found that individuals with 

schizophrenia were unable to use inherent stimulus characteristics to increase 

performance. In their study, schizophrenia participants, unlike controls, did not show 

memory benefits for high-association word pairs, relative to low-association pairs. The 

authors concluded that a failure to effectively organize information at the encoding stage 

contributed to these findings (Russell et al., 1975). Taken together, this group of studies 

provides ample evidence to support the notion of semantic organization and encoding 

strategy deficits during verbal learning paradigms in schizophrenia.  

Other studies of encoding strategy and semantic organization in schizophrenia 

have relied on card sorting tasks, in which participants are given note cards with words 

printed on them and are asked to sort them into subjectively-defined categories (Larsen & 

Fromholt, 1976; Russell & Beekhuis, 1976). Russell and Beekhuis (1976) reported results 

of a study in which participants with schizophrenia and healthy controls were asked to 

sort cards into self-defined categories, followed by a free recall test. The authors found 

that the schizophrenia group showed significantly worse free recall performance than 

controls following the sorting task. Clustered recall, as measured by both objective 
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category group membership and subjective sorting, was also substantially impaired in 

schizophrenia participants (Russell & Beekhuis, 1976). Thus, deficits in semantic 

organization at the time of encoding are tied to recall deficits in schizophrenia.    

Encoding deficits among individuals with schizophrenia have also been linked to 

deficits in binding, or associative memory, which is thought to involve the integration of 

various components of an event into a cohesive whole. Many aspects of memory function 

rely on efficient binding of elements together during encoding and the ability to 

successfully retrieve those elements at a later time.  

Binding in schizophrenia has been assessed in a variety of ways. A common 

practice is to utilize tests that measure transitive inference (TI), which refers to the ability 

to learn and infer relationships among items. Individuals with schizophrenia typically 

demonstrate significant difficulties in correctly inferring relations between novel pairings 

of previously-seen items, often with normal or near normal memory for previously-

presented pairs (Hanlon et al., 2005; Heckers & Titone, 2005; Ongur et al., 2005; Titone 

et al., 2004), although others have found deficits in recognition of previously-seen paired 

associates as well (Ragland et al., 1998). In one study of TI in schizophrenia, Titone and 

colleagues (2004) trained control and schizophrenia participants on a series of 

hierarchically organized discriminations (A > B, B > C, etc.), using abstract shapes as 

stimuli, and then tested subjects on previously seen training pairs and novel inference 

pairs. While participants with schizophrenia correctly responded to the training pairs and 

the novel pairs not requiring inference, they were significantly poorer in responding to 

novel relational pairs requiring inferential reasoning, implicating relational memory 

organization processes (Titone et al., 2004).   
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Deficits in the use of contextual information to successfully bind information 

together have also been suggested to play a role in EM impairments in schizophrenia 

(Waters et al., 2004). In these studies, individuals with schizophrenia have shown 

impairments in identifying the source and temporal context in which events took place. 

Others have reported intact use of contextual information in schizophrenia participants, 

and have instead attributed associative memory deficits to faulty encoding and retrieval 

processes (Bazin & Perruchet, 1996). Previous work has also examined interference 

effects on associative memory in individuals with schizophrenia (Elvevag et al., 2000; 

Lepage et al., 2005; O'Carroll, 1995). Elvevag and co-workers, for example, found that 

schizophrenia participants were not significantly more susceptible to interference effects 

from previously-learned information than control participants, potentially because of 

poorer memory for previously-learned information (Elvevag et al., 2000). Lepage and 

colleagues (2005) reported similar findings, attributing non-significant interference 

effects among schizophrenia participants to impairments in associative memory 

functioning (Lepage et al., 2005). Further investigation has attributed associative memory 

difficulties in schizophrenia to patterns of “non-selective learning,” referring to the 

inability of individuals with schizophrenia in learning to utilize contextual cues and other 

variables effectively in order to improve memory (Kopp & Reischies, 2000).  

Finally, there are indications that impairments in associative memory exceed 

those observed on tests of item memory. For example, a meta-analysis of 23 studies of 

recognition memory conducted by Achim and Lepage concluded that associative 

recognition was significantly impaired in schizophrenia relative to item recognition. The 

authors hypothesized that, while item recognition can be performed on the basis of 
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familiarity, associative recognition requires conscious recollection, which is impaired in 

schizophrenia (Achim & Lepage, 2003). A study by the same group (Lepage et al., 2006) 

confirmed these results, reporting no difference in item recognition between controls and 

schizophrenia participants but significantly lower associative recognition performance in 

the schizophrenia group. One potential confound of such a contrast relates to the 

differences in task difficulty and discriminating power of each type of memory test. 

Certain psychological measures are thought to be more sensitive to cognitive impairment 

than other measures, making comparisons between the two types of measures risky 

(Chapman & Chapman, 1978). Thus, this set of findings must be interpreted with caution. 

Given the numerous reports of encoding strategy and semantic organization 

deficits and their effects on memory performance in schizophrenia, there has been some 

effort to explain why such impairments are present. Difficulties in applying mnemonic 

strategies are often hypothesized to underlie memory deficits in schizophrenia. Following 

an extensive battery of cognitive tests given to schizophrenia participants and controls, 

Hutton and co-workers (1998) found that the schizophrenia group consistently showed 

deficits in organization, planning, and strategy use (Hutton et al., 1998). Kay (1982) has 

hypothesized that individuals with schizophrenia may be more oriented to the salience of 

to-be-remembered words, rather than to their semantic properties, rendering them less 

likely to use the inherent relationships among words to boost recall performance (Kay, 

1982). Other work (Stone et al., 1998) has reported that decreased working memory 

capacity is related to deficits observed in long term strategic memory performance in 

individuals with schizophrenia, whereas Brebion et al. (2000) have suggested that deficits 

in deep encoding ability and semantic organization in schizophrenia are related to 
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processing speed impairments (Brebion et al., 2000). Thus, there are likely multiple 

mechanisms related to encoding strategy impairments and memory dysfunction in 

schizophrenia.  

Although there is evidence for verbal memory impairments in schizophrenia, such 

impairments may be somewhat alleviated through improved encoding conditions (Chan 

et al., 2000; J. M. Gold et al., 1992; McClain, 1983), further supporting the hypothesis of 

faulty encoding strategies in schizophrenia. For example, Gold and co-workers (1992) 

tested schizophrenia participants and healthy comparison subjects on recall and 

recognition memory following the presentation of word lists that varied in semantic 

relatedness and organization (i.e., blocked vs. non-blocked). They found that individuals 

with schizophrenia showed a lower probability of recall during a free recall test, although 

they did show significant memory benefits following the blocked presentation of words, 

suggesting the ability to benefit from supportive encoding conditions (J. M. Gold et al., 

1992). A similar finding was reported by McClain (1983), who found that under 

unsupported memory conditions (no encoding or retrieval cues), schizophrenia 

participants showed significantly worse word recall than controls. Following encoding 

cues (blocking), recall in the schizophrenia group showed improvement, suggesting that 

although individuals with schizophrenia typically do not spontaneously adopt encoding 

strategies, they can benefit from them when they are provided (McClain, 1983). Taken 

together, these results suggest that memory deficits in schizophrenia are not immutable 

and can be modified under advantageous encoding conditions.  

 As the above research suggests, helpful encoding manipulations (such as blocked 

stimulus presentation) have proven useful in boosting subsequent memory performance 
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among individuals with schizophrenia. More recent work has investigated the effects of 

other types of encoding manipulations on schizophrenia participants. One influential 

theory of episodic memory states that in general, information that is processed more 

“deeply” or meaningfully at the time of initial learning is more likely to be retrieved than 

information processed in a “shallow” or superficial manner (Craik & Lockhart, 1972). 

This phenomenon is known as the levels-of-processing (LOP) effect and posits that the 

operations carried out at the time of initial learning are the key factor that determines 

retention and subsequent retrieval, rather than simply the intention to learn (Craik & 

Tulving, 1975). This effect has been demonstrated in numerous studies of healthy 

subjects using a variety of orienting tasks (Eysenck, 1974; Hyde & Jenkins, 1969, 1973; 

Tulving & Madigan, 1970). For example, manipulations that promote semantic or “deep” 

processing of verbal stimuli include judgments of “living” (whether word represents a 

living or non-living thing), judgments of concreteness (whether word represents an 

abstract or concrete entity), and judgments of pleasantness (whether word is pleasant or 

unpleasant). In contrast, other orienting tasks emphasize “shallow” or superficial 

processing of words, including alphabetizing decisions (whether first or last letter of the 

word comes earlier in the alphabet), case decisions (whether word is written in uppercase 

or lowercase), and syllable decisions (how many syllables does the word have). It should 

be noted, however, that although semantic encoding tends to be associated with better 

subsequent memory than other types of encoding, studies of transfer appropriate 

processing have demonstrated that subsequent memory success is also dependent on the 

retrieval context and tasks utilized at retrieval (Morris et al., 1977). Therefore, one must 

interpret studies of encoding manipulations cautiously and with this caveat in mind. 
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A number of investigators have utilized the LOP paradigm in individuals with 

schizophrenia to address questions regarding encoding strategy use in this population 

(Bonner-Jackson et al., 2005; Heckers et al., 1998; Koh & Peterson, 1978; Kubicki et al., 

2003; Paul et al., 2005; Ragland et al., 2006; Ragland et al., 2003; A. P. Weiss et al., 

2003). Participants in a study by Koh & Peterson (1978) were constrained to encode 

words under four different orienting tasks (letter processing, rhyme processing, category 

processing, sentence processing), and subsequent free recall and recognition tests were 

administered, which were either expected or unexpected by the participants. Individuals 

with schizophrenia responded to the LOP manipulation in similar manner as controls and 

showed equivalent recognition rates for more deeply encoded words (category and 

sentence processing). However, free recall performance remained significantly lower in 

participants with schizophrenia, and being forewarned about a later memory test did not 

significantly increase recall performance (Koh & Peterson, 1978). Thus, these findings 

indicate that: 1) individuals with schizophrenia show behavioral benefits from 

advantageous memory strategies implemented at the encoding stage; 2) in the absence of 

retrieval cues free recall performance in schizophrenia participants will remain impaired, 

despite the presence of encoding support; and 3) knowledge of a later memory test does 

not improve subsequent memory performance in individuals with schizophrenia.  

Participants with schizophrenia also show significant recognition benefits from 

deep encoding, relative to shallow encoding. A study conducted by Heckers and 

colleagues (1998) investigated memory performance in individuals with schizophrenia 

and healthy comparison subjects following processing of words under “low recall” (count 

the number of T-junctions) and “high recall” (count the number of meanings) encoding 
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conditions. Results indicated that like controls, participants with schizophrenia showed 

substantially improved memory for words encoded under “high recall” conditions, as 

compared to “low recall,” although “high recall” performance in the schizophrenia group 

remained lower than “high recall” performance in the control group (Heckers et al., 

1998). It is important to note that, although schizophrenia participants respond positively 

to memory manipulations, their memory performance (even for deeply-encoded words) is 

generally not reported to be equivalent with that of controls. This may indicate that 

retrieval cues, in addition to encoding support, are necessary in order for memory 

performance in individuals with schizophrenia to equal that of their healthy control peers. 

Taken together, these studies demonstrate that individuals with schizophrenia can benefit 

to a similar degree as controls from advantageous encoding conditions, although such 

benefits may be limited to certain tests of memory function (i.e., recognition).   

Studies such as those described above raise the question as to whether the 

demonstration of intact LOP effects in individuals with schizophrenia represents a novel 

or unexpected finding. One could argue that deep encoding manipulations will result in 

better subsequent memory in any group of participants, regardless of psychiatric 

diagnosis or compromised memory capacity. In this sense, individuals with amnesia are 

the most logical group against which to compare individuals with schizophrenia, as both 

groups demonstrate significant deficits in the ability to learn and recall new information. 

However, in contrast to research on schizophrenia, studies examining LOP effects in 

amnestic patients have reported reduced benefits and poorer subsequent memory in this 

group (relative to controls) following encoding manipulations (Cermak et al., 1995; 

Hamann & Squire, 1996; Keane et al., 1997). For example, Keane and colleagues (1997) 
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reported impaired explicit memory performance in a group of amnestic patients (relative 

to control group) following a levels-of-processing manipulation despite normal priming 

in the amnestic group. Others have found that controls show larger LOP effects and 

benefit more from a LOP manipulation than amnestic patients (Hamann & Squire, 1996) 

Another group against which to compare individuals with schizophrenia in 

memory performance following encoding manipulations is patients with frontal lobe 

damage. In contrast to studies of amnestic patients, research on patients with frontal 

lesions has demonstrated significant memory benefits following orientation to beneficial 

encoding strategies (Gershberg & Shimamura, 1995; Hirst & Volpe, 1988; Incisa della 

Rocchetta & Milner, 1993). For example, Gershberg and Shimamura (1995) reported that 

patients with frontal lobe damage showed significant memory benefits from strategic 

instruction and category cues at both study (encoding) and test (retrieval) phases. Based 

on their findings, the authors suggested that the free recall deficits observed in individuals 

with frontal lesions are due at least in part to deficits in organizational strategies 

(Gershberg & Shimamura, 1995). Other researchers have shown that patients with frontal 

lobe damage perform normally on memory tests when encoding and retrieval strategies 

are provided (Incisa della Rocchetta & Milner, 1993). Unlike patients with amnesia, 

therefore, individuals with damage to the frontal lobes show a pattern of memory deficits 

that appear to be modifiable through strategic instruction at encoding and retrieval. This 

pattern appears to be more consistent with data from studies of individuals with 

schizophrenia, who are known to have memory impairments as well as deficits in frontal 

lobe function.    
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Thus, individuals with schizophrenia have impairments in initial learning and 

encoding of information. Furthermore, such deficits are attributable, at least partially, to 

difficulty in generating and applying mnemonic strategies. However, it appears that 

provision of such strategies under experimental conditions can alleviate memory deficits 

in schizophrenia to some degree, a finding which has been demonstrated in some clinical 

populations (e.g., patients with frontal lobe lesions) but not others (e.g., patients with 

amnesia).   

Evidence for storage deficits in schizophrenia. Based on the above review, 

individuals with schizophrenia demonstrate clear impairments in EM encoding, which is 

likely one source of EM dysfunction in this group. However, it is possible that deficits in 

EM function among individuals with schizophrenia may also be attributable to failures in 

memory storage or increased rates of forgetting. It is not possible to examine memory 

storage per se using only behavioral measures. Rather, storage can only be assessed 

indirectly, and it is impossible to disentangle deficits that may arise at the storage stage 

from those at either the encoding or retrieval stages. Thus, the majority of work focusing 

on this question in schizophrenia has examined rates of forgetting. Some researchers have 

assessed forgetting rates in individuals with schizophrenia by comparing the percentage 

of information recalled at immediate recall that can be successfully recalled after a delay. 

Nuyen et al (2005), for example, found evidence of verbal storage deficits among first-

episode schizophrenia patients (Nuyen et al., 2005), as did Tracy and colleagues (Tracy 

et al., 2001). Others (Cirillo & Seidman, 2003) have reported increased rates of forgetting 

among schizophrenia participants, although such deficits were mild relative to more 

pronounced difficulties in other EM domains (e.g., encoding or retrieval). Forgetting 
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rates among schizophrenia participants have also been classified as “mild” relative to 

other neuropsychiatric disorders with memory impairments (Seidman et al., 1998).  

Overall, however, individuals with schizophrenia do not demonstrate increased 

rates of forgetting (Lee et al., 2006; Lewis & Kopelman, 1998) or storage deficits 

(Brebion et al., 1997; Brebion et al., 2007; Landro et al., 2001) in EM tasks, despite 

showing marked deficits in encoding, retrieval, or memory strategy. Furthermore, it is 

conceivable that previous reports of storage deficits in schizophrenia are largely 

attributable to more pronounced deficits at the encoding stage. For example, a study by 

Gold et al. (2000) found that control and schizophrenia participants matched on initial 

recall performance had nearly identical delayed recall scores. This suggests that 

individuals with schizophrenia have deficits in initial learning and information 

acquisition, rather than storage deficits or abnormally accelerated forgetting rates (J.M. 

Gold et al., 2000).  

In summary, individuals with schizophrenia demonstrate impairments in EM 

storage and mildly increased rates of forgetting, relative to control samples. However, 

such findings are often in the context of more severe deficits observed in encoding or 

retrieval. On the whole, the EM deficits that are consistently found in individuals with 

schizophrenia cannot be attributed to impairments in the storage of information.  

Evidence for retrieval deficits in schizophrenia. In addition to encoding deficits in 

schizophrenia, deficits in EM retrieval also contribute to memory impairments in this 

group. As mentioned above, encoding and retrieval processes cannot be fully dissociated 

using behavioral paradigms, and one cannot assess EM retrieval independent of 

encoding. However, researchers have often examined retrieval processes in schizophrenia 
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by manipulating aspects of the retrieval environment, while holding the encoding context 

stable. In this way, the cognitive operations occurring at retrieval can be more effectively 

isolated.  

One approach to assessing retrieval deficits in schizophrenia has been to compare 

schizophrenia participants to controls on tests of free recall, in which previously-

presented information must be retrieved without any external support (Koh & Kayton, 

1974; Sattler & Nordmark, 1971). For example, Koh and Kayton observed significant 

free recall impairments in a group of schizophrenia participants, which were attributed to 

a number of factors, including vulnerability to intrusion and inefficient organization 

strategies (Koh & Kayton, 1974). Although these and other studies provide evidence of 

impairment in the ability to reliably retrieve information in schizophrenia, they are unable 

to conclusively implicate retrieval operations per se, as opposed to other cognitive 

operations involved in EM functioning. For example, encoding or storage deficits could 

potentially underlie the inability to remember information as well, rather than difficulties 

with memory retrieval, and such studies are unable to dissociate these factors.  

An additional method for assessing the integrity of retrieval operations in 

schizophrenia is to compare memory accuracy during free recall to accuracy during 

recognition, usually within the same group of participants. Although factors related to 

encoding are also involved, individuals who manifest a disproportionate memory benefit 

during recognition testing, relative to free recall, are typically characterized as having a 

retrieval deficit. The underlying assumption of this method is that the to-be-recalled 

information was available in memory, but was not able to be accessed during free recall 

due to faulty retrieval operations, whereas in the presence of a salient retrieval cue during 
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recognition testing (i.e., the original stimulus) the information can be retrieved. However, 

a potential confound arises in directly comparing recall and recognition, as recall is 

substantially more difficult and has more discriminating power than recognition. 

Additionally, comparisons between the two memory tasks are risky because the task 

demands are so dissimilar. While successful recall depends on conscious recollection of 

previously presented material, it has been suggested that recognition tasks can be 

completed based only on familiarity with the items. Thus, the two tasks are tapping two 

putatively distinct cognitive processes supported by potentially dissociable memory 

traces. Such comparisons must, therefore, be interpreted carefully.  

Although comparison of free recall to recognition accuracy has been used widely 

in studies of EM in schizophrenia, the literature is mixed concerning the nature of such 

deficits. Specifically, discrepancies exist regarding the relative benefit that is conferred to 

schizophrenia participants during recognition relative to free recall tasks. One line of 

research indicates that although recognition performance is less impaired than free recall 

performance in individuals with schizophrenia, it is nonetheless still significantly lower 

than recognition in controls (Aleman et al., 1999; Calev, 1984; Clare et al., 1993; 

Goldberg et al., 1989; Lee et al., 2006; Paulsen et al., 1995; Perry et al., 2000). For 

example, a meta-analysis by Aleman et al. (1999) reported recognition performance in 

schizophrenia that was less severely disturbed than performance in free recall, but was 

still substantially lower than in control subjects. Goldberg and colleagues (1989) detected 

a larger discrepancy between recall and recognition performance in schizophrenia 

participants than in control participants, suggesting disproportionate difficulties in EM 

retrieval. As in previous studies, recognition performance in the schizophrenia group 
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remained significantly impaired relative to controls (Goldberg et al., 1989). Thus, this 

collection of studies indicates that recognition performance in schizophrenia is superior 

to that of recall performance, but nevertheless remains inferior to that of controls. 

However, the role of task difficulty and differences in discriminability between the two 

task types (recall and recognition) must be considered. As mentioned above, recall and 

recognition tasks differ in discriminating power and may, therefore, differ in the 

reliability of their estimates of memory performance in schizophrenia.   

In contrast, another line of research has reported recognition rates in individuals 

with schizophrenia that do not differ significantly from those of control participants, even 

when free recall in the schizophrenia group is significantly impaired (Bauman, 1971; 

Bauman & Murray, 1968; Beatty et al., 1993; Koh et al., 1973; Nachmani & Cohen, 

1989). For example, Nachmani and Cohen (1989) reported significantly fewer words 

recalled and significantly more intrusion errors by participants with schizophrenia than 

by controls, but found no between-group differences in recognition ability (Nachmani & 

Cohen, 1989). Others have reported similar results within a sample of schizophrenia 

participants, although there was not a comparison group used (Tracy et al., 2001).  

Additional evidence to suggest the presence of retrieval impairments in 

schizophrenia comes from studies utilizing retrieval cues. As mentioned above, 

recognition paradigms provide participants with one type of retrieval cue (i.e., the 

original stimulus), which have been shown to foster varying degrees of improvement in 

memory performance. Other work has demonstrated the benefits of category cueing on 

recall in schizophrenia (Culver et al., 1986; McClain, 1983; Sengel & Lovallo, 1983; 

Tompkins et al., 1995). Sengel and Lovallo found that participants with schizophrenia 
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and control participants benefited equally from the provision of category cues at recall 

(Sengel & Lovallo, 1983). Individuals with schizophrenia also show equivalent recall 

performance to that of controls, but only when both encoding and retrieval cues are 

available (McClain, 1983). Culver and colleagues also found the same pattern of recall 

for control and schizophrenia participants when encoding and retrieval cues were present, 

although recall deficits in the schizophrenia group were not entirely eliminated (Culver et 

al., 1986). Taken together, this group of studies indicates that the use of recognition and 

category cues improves memory performance in schizophrenia, further suggesting that 

memory deficits are at least partially attributable to faulty retrieval operations. 

A final line of evidence posits that individuals with schizophrenia have difficulty 

in conscious recollection of information, while the sense of familiarity of information 

appears to remain intact. This theory has been advanced based on various pieces of 

evidence. One piece is related to the recall vs. recognition dissociation described above. 

Free recall, it is argued, can only be successfully completed via conscious recollection of 

to-be-remembered information, whereas recognition requires the participant only to be 

familiar with the particular item. Additional evidence for the recollection/familiarity 

dichotomy is found in studies utilizing the Remember/Know paradigm (Tulving, 1985): 

during a recognition task, participants are instructed to label previously-seen items as 

“Remember” if the item is accompanied by a conscious recollection of having previously 

seen the item, and “Know” if the item is accompanied only by a feeling of familiarity of 

the item without conscious recollection of having seen it before.  

Across a variety of studies, individuals with schizophrenia have demonstrated 

markedly lower rates of Remember judgments, with intact rates of Know judgments in 
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nearly all cases (Danion et al., 1999; Huron et al., 1995; Sonntag et al., 2003; Tendolkar 

et al., 2002; Thoma et al., 2006). This phenomenon has been attributed to a number of 

causes, including a failure to elaborately process information (Huron et al., 1995) and an 

inability to link separate aspects of events into cohesive memories (Danion et al., 1999). 

Electrophysiological research has also identified abnormal event-related potentials 

(ERPs) in various brain regions during both Remember and Know judgments in 

individuals with schizophrenia (Tendolkar et al., 2002). Thus, a recollection deficit in 

individuals with schizophrenia likely contributes to impairments in EM retrieval.  

Overall, reports of deficits in EM retrieval among individuals with schizophrenia 

are common. Among the most impaired functions is free recall, while mixed evidence 

exists regarding the degree of memory impairment seen for recognition. However, 

individuals with schizophrenia demonstrate memory benefits when given cues to aid 

retrieval, suggesting that impairments in retrieval strategy or semantic organization at 

retrieval may significantly contribute to these deficits.   

Summary of Episodic Memory Deficits in Schizophrenia. Episodic memory 

represents a significant cognitive deficit in the schizophrenia syndrome. Deficits in EM 

have been attributed to ineffective processing of information at encoding, as well as 

deficits in mnemonic processes at retrieval. Relatedly, individuals with schizophrenia are 

impaired in the ability to bind together information within a particular context, another 

factor that renders memory formation more difficult. Importantly, however, supportive 

conditions at the encoding and retrieval stages improve memory performance in 

schizophrenia, suggesting that the mechanisms underlying cognitive deficits in 

schizophrenia may be pliable and receptive to beneficial manipulations.  
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Functional Neuroimaging Studies of Episodic Memory in Schizophrenia 

 Supplementing the behavioral research on EM in schizophrenia, recent work has 

utilized functional neuroimaging techniques (such as fMRI, PET, and EEG) to investigate 

the neural substrates of memory processes in individuals with this disease. I will briefly 

review some of the major neuroimaging findings in healthy controls before discussing 

functional neuroimaging studies of EM in schizophrenia.  

Functional neuroimaging studies of EM encoding in healthy control participants 

have revealed distinctive patterns of cortical activity associated with performance of 

these tasks. Among the areas most crucial for successful EM encoding is left prefrontal 

cortex (PFC). Left PFC is activated during successful verbal encoding (Baker et al., 

2001; Buckner et al., 2001; Fletcher et al., 2003; L. J. Otten et al., 2001; A. D. Wagner et 

al., 1998) and is posited to be involved in semantic elaboration (Demb et al., 1995; Kapur 

et al., 1994). Additionally, left prefrontal cortex (and particularly left inferior frontal 

gyrus) responds robustly during supportive encoding conditions (Savage et al., 2001), 

under conditions in which one needs to impose organizational structure on to-be-learned 

material (Fletcher et al., 1998), and following implementation of organizational strategic 

training (Miotto et al., 2005). Medial temporal lobe regions (particularly hippocampus) 

have also been implicated in successful encoding of individual words (Fletcher et al., 

2003; L.J. Otten & Rugg, 2001; A. D. Wagner et al., 1998), as well as associative binding 

(Dolan & Fletcher, 1997; Jackson & Schacter, 2004). Thus, the neural substrates 

supporting item and associative memory are overlapping and rely on some of the same 

structures.    
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Just as successful EM encoding has been linked to activity in left prefrontal cortex 

and left medial temporal lobe structures, brain activity associated with successful EM 

retrieval has also been identified in these regions. Item retrieval engages bilateral PFC, 

with indications that right PFC is particularly crucial (Buckner et al., 1998; Henson et al., 

1999; Jernigan et al., 1998). ERP work has also demonstrated a role for bilateral PFC 

under elevated retrieval demands (Ranganath & Paller, 2000). Others have reported that 

areas of the bilateral medial temporal lobe (MTL) support retrieval processes (Cabeza et 

al., 1997; Lepage et al., 1998). Cabeza and colleagues (2003) found evidence for both 

bilateral MTL and right PFC involvement in EM retrieval, which they postulated to be 

linked to attentional processes (Cabeza et al., 2003). There is also empirical support for 

the role of the parietal lobes in EM retrieval (A.D. Wagner et al., 2005), which seem to 

be crucial in identifying old vs. new items, and are also more active during conscious 

recollection of old items (as compared to items that simply evoke a sense of familiarity).  

Similarly, retrieval of associative or relational information has been associated 

with activity in both left posterior hippocampus and left dorsolateral prefrontal cortex 

(Prince et al., 2005). Hippocampal structures have also been shown to be involved in the 

retrieval of associate pairs (M. W. Brown & Aggleton, 2001; Giovanello et al., 2004; 

Ongur et al., 2005), demonstrating a critical role for this structure in memory function. 

Left hippocampus, in particular, appears to be preferentially activated during context-

dependent verbal memory processing (Burgess et al., 2002). Regions of prefrontal cortex 

and medial temporal lobe, therefore, represent key components of the EM system in 

healthy individuals.  
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More recently, advances in functional neuroimaging techniques have allowed for 

more detailed study of the functional neuroanatomy of EM in schizophrenia. One of the 

most common findings among functional neuroimaging studies of EM in schizophrenia is 

abnormal brain activity patterns in combination with poorer memory task performance 

relative to healthy controls. Furthermore, many such studies have found these abnormal 

activation patterns in prefrontal cortex and medial temporal lobe, among other regions. 

For example, a 2005 meta-analysis by Achim and Lepage found that the left inferior 

prefrontal cortex was the primary region that distinguished between control and 

schizophrenia participants during both EM encoding and retrieval. They also found 

consistent evidence for reduction in right hippocampal activation during encoding among 

individuals with schizophrenia (Achim & Lepage, 2005b).  

Below, I will review functional neuroimaging evidence related to two cognitive 

domains hypothesized to underlie EM impairments in schizophrenia: encoding and 

retrieval. Unlike the review of the behavioral episodic memory literature, I will not 

include a section on storage, as there are no existing functional neuroimaging studies that 

have convincingly isolated episodic memory storage available at this time.  

Functional neuroimaging studies of encoding in schizophrenia. Empirical 

research examining EM in individuals with schizophrenia has repeatedly found evidence 

of abnormal encoding-related brain activation patterns in this group. Specifically, 

individuals with schizophrenia often show underactivation during encoding in a number 

of brain regions thought to be crucial for EM function, particularly areas of PFC (Barch 

et al., 2002; Hofer et al., 2003a; Kubicki et al., 2003; Ragland et al., 2001), which are 

hypothesized to be associated with the generation and application of memory strategies. 
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Reduced activity in PFC has also been linked to inefficient strategy use and poorer 

memory performance in schizophrenia (Hazlett et al., 2000; Nohara et al., 2000). 

Furthermore, individuals with schizophrenia demonstrate PFC dysfunction even when 

memory performance is equivalent to that of control subjects (Hofer et al., 2003a; Hofer 

et al., 2003b), suggesting a fundamental disruption of encoding processes in 

schizophrenia. Thus, deficits in frontal cortex function may be related to the strategic 

impairment often seen in schizophrenia and likely contribute in some manner to the 

faulty memory function that is often observed in this group.  

Another region commonly implicated in encoding deficits among individuals with 

schizophrenia is the medial temporal lobe, particularly the hippocampus. Deficits have 

been consistently identified in the recruitment of medial temporal lobe areas during both 

verbal (Barch et al., 2002; Jessen et al., 2003) and non-verbal encoding tasks (Leube et 

al., 2003). Such deficits are typically found in medial temporal lobe in combination with 

poorer subsequent memory performance, although even encoding of subsequently 

remembered items has also been associated with reduced hippocampal activity (Heinze et 

al., 2006). In addition, computational models have suggested that reduced connectivity 

between the parahippocampal gyrus, another medial temporal lobe region, and other 

areas (such as entorhinal cortex) contributes to encoding deficits in schizophrenia 

(Talamini et al., 2005).  

Despite the overwhelming evidence of brain activation deficits during encoding, 

however, individuals with schizophrenia can engage typical encoding-related brain 

regions when provided with beneficial encoding strategies. Similar to the findings of 

behavioral studies described above, functional neuroimaging studies in schizophrenia 
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have shown that experimental interventions at the encoding stage can improve task 

performance and “normalize” brain activity (Bonner-Jackson et al., 2005; Ragland et al., 

2005). For example, Ragland and colleagues (2005) found that individuals with 

schizophrenia showed normal levels-of-processing effects in left PFC when oriented to 

process words using deep encoding strategies, suggesting that individuals with 

schizophrenia can benefit from such interventions and activation deficits in PFC may be 

related to strategic impairments in this group (Ragland et al., 2005). However, areas of 

significant under- or over-activation often persist in these studies, even under beneficial 

encoding conditions. Schizophrenia participants in the Ragland study, for example, 

overactivated areas of the hippocampus, thalamus, and lingual gyrus relative to controls 

during deep (semantic) encoding. Therefore, encoding manipulations do not represent a 

sufficient mechanism in normalizing brain activity in schizophrenia.   

In addition to the functional neuroimaging studies of item encoding described 

above, other work has examined the neural underpinnings of associative memory 

function in schizophrenia. Although such studies are rarer than those examining encoding 

of individual items, existing studies may provide insights into the deficits seen in 

schizophrenia. As mentioned previously, transitive inference (a key component of 

relational memory organization) is impaired in individuals with schizophrenia (Titone et 

al., 2004), and this behavioral deficit is associated with reduced medial temporal lobe 

activity among schizophrenia participants, relative to healthy controls (Heckers & Titone, 

2005). These findings are consistent with those of Ongur and co-workers (2006), who 

reported deficits on a relational memory task among individuals with schizophrenia, 

which was associated with decreases in right parietal and left hippocampal activation 
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(Ongur et al 2006). Hanlon et al (2005), using magnetoencephalography (MEG), found 

evidence for abnormal lateralization of hippocampal activation in schizophrenia 

participants and reduced performance on a transverse patterning associative memory task 

(Hanlon et al 2005). Collectively, these studies link associative memory impairments and 

hippocampal activation deficits in individuals with schizophrenia.  

Although medial temporal lobe structures are frequently implicated in binding 

deficits in schizophrenia, functional neuroimaging studies have also found evidence of 

impairments in prefrontal cortex during completion of these tasks (Lepage et al 2006; 

Ragland et al 1998). For example, Lepage and colleagues (2006) found deficits in PFC 

activation among schizophrenia participants during both associative encoding and 

recognition, relative to encoding and recognition of individual items. These findings 

indicate that deficits in the recruitment of prefrontal areas partially underlie the impaired 

abilities in relational memory observed in schizophrenia.  

Functional neuroimaging studies of retrieval in schizophrenia. Similar to the 

findings from functional neuroimaging studies of encoding, research on retrieval-related 

brain activity in schizophrenia has consistently found evidence of dysfunction in key 

neural systems thought to underlie successful mnemonic function. Although such deficits 

have been found in a number of cortical and subcortical areas in schizophrenia 

participants, the regions hypothesized to be most crucial in EM retrieval include bilateral 

PFC and medial temporal lobe.  

Areas of the medial temporal lobe, and the hippocampus in particular, which are 

hypothesized to be engaged during conscious retrieval of information, show under-

activation among individuals with schizophrenia during EM retrieval tasks (Heckers et 
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al., 1999; Jessen et al., 2003; A. P. Weiss et al., 2004). A study by Jessen et al (2003), for 

example, found deficits in the recruitment of hippocampus bilaterally in schizophrenia 

participants, relative to controls, in combination with poorer performance on an EM 

recognition task. Weiss and co-workers (2004) reported that individuals with 

schizophrenia, unlike control subjects, failed to activate right hippocampus during the 

evaluation of novel items at retrieval, in addition to showing poorer subsequent memory 

performance.  

Paralleling the findings from the encoding literature, individuals with 

schizophrenia also demonstrate impairments in recruitment of prefrontal cortex regions 

during retrieval tasks. Ragland and colleagues (2004) reported impairments in left 

DLPFC activation among individuals with schizophrenia, and found that retrieval success 

was associated with increased right PFC activity only in controls, not in schizophrenia 

participants, suggesting an abnormal relationship between brain activity and task 

performance in schizophrenia (Ragland et al., 2004).  

Although PFC deficits are typically observed in the context of poorer memory 

performance by schizophrenia participants, prefrontal activation deficits during retrieval 

persist even when memory performance among schizophrenia participants is equivalent 

to that of comparison subjects (Andreasen et al., 1996; Crespo-Facorro et al., 1999; 

Hofer et al., 2003a; Hofer et al., 2003b). Weiss et al. (2006) also found equivalent 

performance between control and schizophrenia participants on a verbal memory task, 

but the groups recruited different networks to achieve the same level of performance 

(A.P. Weiss et al., 2006). Notably, the highest-performing comparison subjects in their 

study showed significant modulation of hippocampal activity, while the highest-
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performing schizophrenia participants did not. This study provides another instance in 

which individuals with schizophrenia do not show the same relationship between brain 

activation and memory performance as control participants.   

Furthermore, even when beneficial strategies are provided at encoding, 

participants with schizophrenia show dysregulation of activity in PFC and hippocampal 

regions during retrieval. The Heckers group conducted two studies (Heckers et al., 1998; 

A. P. Weiss et al., 2003) in which participants were oriented to encode words either 

deeply or shallowly. During retrieval, participants completed three-letter word stems of 

previously studied items. In both studies, participants with schizophrenia demonstrated 

greater than normal DLPFC activity combined with underactivation of hippocampus 

during EM retrieval. The authors suggested that individuals with schizophrenia must 

recruit prefrontal regions to compensate for impaired medial temporal regions during 

retrieval. Similarly, Ragland and co-workers found overactivation of left PFC, as well as 

under-recruitment of right PFC, among individuals with schizophrenia following a levels-

of-processing encoding manipulation (Ragland et al., 2005). These studies indicate that 

constraining individuals with schizophrenia to encode words deeply is not sufficient to 

induce normal retrieval processes. It is possible, however, that the provision of beneficial 

memory strategies at both encoding and retrieval would produce “normalized” activity in 

both prefrontal and hippocampal structures.  

Summary of Functional Neuroimaging Studies of Episodic Memory in 

Schizophrenia. Functional neuroimaging studies of EM in schizophrenia demonstrate 

impaired recruitment of brain regions that are crucial for memory function in healthy 

populations. Areas of prefrontal cortex and medial temporal lobe, among other regions, 
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show abnormal patterns of activation and dysregulation during EM encoding and 

retrieval, which has been linked in some instances to improper strategy use. Notably, 

however, experimental manipulations that promote beneficial memory strategy use can 

both improve episodic memory function and “normalize” brain activation in individuals 

with schizophrenia. 

Chapter 3:  Purpose, Research Design, and Hypotheses of Dissertation 
 

Purpose 

Deficits in memory function are a well-established feature of schizophrenia and 

represent real challenges to the autonomy and daily functioning of those who suffer from 

them. Remembering to take one’s medication, go to a doctor’s appointment, or attend a 

job interview all depend heavily on the integrity of memory. It is not surprising, 

therefore, that memory ability (particularly verbal memory) is highly associated with 

functional outcome among individuals with schizophrenia (Green, 1996). Thus, it is of 

great importance to address such issues, as they have a significant impact on the quality 

of life experienced by individuals with schizophrenia and can dramatically affect the 

likelihood of improvement and recovery.  

Although memory impairments and deficits in memory-related brain activity have 

long been considered a stable aspect of the schizophrenia cognitive profile, more recent 

empirical evidence from behavioral and neurobiological studies suggests that such 

deficits are not immutable. Rather, certain experimental manipulations at the initial 

learning stage have dramatic effects on subsequent memory success and are associated 

with increased activation in brain areas known to support memory function in healthy 

individuals. Despite these advances in our understanding, however, many of the 
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underlying mechanisms related to memory deficits in schizophrenia have yet to be 

characterized.  

Further investigation into the underlying behavioral causes of memory deficits 

(i.e., inefficient encoding, deficits in retrieval processes) may aid in cognitive 

rehabilitation and treatment interventions. Likewise, functional neuroimaging findings in 

this regard may provide information about the neural substrates of these impairments and 

can help guide future drug targets for alleviation of certain cognitive deficits. Taken 

together, the information provided by such a line of research could prove invaluable in 

impacting the lives of individuals with schizophrenia.  

Research Question 

 The current project was designed to examine the extent to which behavioral 

measures of episodic memory and brain activity among individuals with schizophrenia 

can be improved – potentially to the point where they are similar to  healthy controls –  

through the implementation of beneficial strategies provided during both encoding and 

retrieval. 

Research Design 

The current study was executed in two separate data collection sessions. The first 

session lasted approximately 1.5 to 2 hours and consisted of a structured clinical 

interview, collection of demographic information, a series of symptom rating scales, and 

brief neuropsychological testing. The neuropsychological measures assessed vocabulary, 

abstract reasoning, and semantic processing ability. The second data collection session 

took place on a separate day and lasted 2.5 to 3 hours. In this session, structural and 

functional neuroimaging data was collected from participants using a 3-Tesla magnetic 
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resonance imaging scanner at the Mallinckrodt Institute of Radiology (Washington 

University School of Medicine). While in the scanner, participants performed an episodic 

memory cognitive activation task consisting of separate encoding and retrieval phases. 

During half of the encoding runs, participants made semantic judgments about word-

scene pairs, while during the other half they made non-semantic (location) judgments 

about a different set of word-scene pairs. During the retrieval scans, participants were 

shown scenes, most of which had been previously presented and some of which were 

new (never presented). For each scene, participants were asked to recall the word that 

was originally paired with the scene. Half of the scenes were accompanied by one-letter 

cues and half were uncued. Thus, the current study is a 2 x 2 x 2 mixed factorial design 

with two within-subjects variables (Encoding Orientation, Cueing) and one between-

subjects variable (Group). Each of the within-subjects variables has two levels: Encoding 

Orientation – Semantic vs. Non-Semantic; Cueing – Cued vs. Uncued. The between-

subjects variable also has two levels: Group – Control vs. Schizophrenia. Behavioral data 

associated with performance of the episodic memory task was also collected and 

analyzed concurrently with the neuroimaging data.  

Hypotheses 

 The present study contained four sets of hypotheses, with each set related to a 

different area of focus. The four sets of hypotheses include predictions regarding the 

following aspects of this study: 1) Behavioral performance; 2) Encoding-related brain 

activity; 3) Retrieval-related brain activity; and 4) Individual difference measures. Below, 

I outline the hypotheses associated with each area of focus individually.  
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Behavioral Performance: Predictions 

 The first set of hypotheses outlined below concerns behavioral performance on 

the episodic memory tasks. Specifically, the focus of the following predictions relates to 

the effects of encoding task and cueing on subsequent memory performance in each 

group, as well as the interactive effects of these variables. The specific questions used to 

address this area of interest are as follows:   

 
1. Schizophrenia participants (as well as controls) would recall significantly more 

words seen during Semantic encoding than Non-Semantic encoding, and more 

words that were Cued than Uncued. I also predicted that the recall difference 

between groups would be smaller following Semantic encoding, relative to Non-

Semantic encoding (Group x Encoding Task interaction). 

2. The provision of retrieval cues would improve recall in schizophrenia participants 

(and controls), and this improvement would be significantly higher for the 

schizophrenia group (Group x Retrieval Cue interaction). Furthermore, the 

schizophrenia group would show a significantly greater recall benefit than control 

participants when oriented to the semantic encoding strategy and when provided 

with retrieval cues (Group x Encoding Task x Retrieval Cue interaction). 

3. Schizophrenia participants would perform more poorly on the Semantic encoding 

task than the Non-Semantic encoding task. Additionally, schizophrenia 

participants would perform more poorly than control participants on the Semantic 

encoding task, while the groups would perform equally well on the Non-Semantic 

encoding task. 
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Encoding-Related Brain Activation: Predictions 

The second set of hypotheses outlined below concerns brain activity during encoding. 

Specifically, the focus of the following predictions relates to the effect of Encoding 

Orientation (Semantic vs. Non-Semantic) on encoding-related brain activity in 

participants with schizophrenia and healthy controls, as well as interactions between 

Encoding Condition and Group. Additionally, the following set of hypotheses addresses 

questions regarding subsequent memory effects in brain activity. Specifically, I will 

present predictions regarding brain areas that are more active during encoding of 

subsequently-recalled items, as well as the effect of Encoding Orientation on these 

findings. The specific questions used to address this area of interest are as follows:  

 
1. Within group analyses among schizophrenia participants would reveal significant 

deficits in encoding-related brain activation during Non-Semantic (relative to 

Semantic) encoding, particularly in left inferior frontal gyrus (BA 45/47), left 

middle frontal gyrus (BA 6/44), and hippocampus, among other regions.  

2. Furthermore, I predicted significant between-group differences (control > 

schizophrenia) in encoding-related brain activity during non-semantic encoding in 

the areas described above (left inferior frontal gyrus, left middle frontal gyrus, 

hippocampus). 

3. In contrast, I predicted that during Semantic (relative to Non-Semantic) encoding, 

schizophrenia participants would show significant activation in typical semantic 

processing regions, such as left inferior frontal gyrus (BA 45/47), left middle 

frontal gyrus (BA 6/44), and hippocampus. 
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4. Furthermore, between-group differences (control > schizophrenia) in these 

regions (left inferior frontal gyrus, left middle frontal gyrus, hippocampus) would 

be dramatically reduced or absent during Semantic (relative to Non-Semantic) 

encoding. 

5. I predicted a significant overlap in subsequent memory activity between groups in 

posterior/parietal regions. In contrast, subsequent memory activity among 

schizophrenia participants would be associated with significant underactivation 

(relative to controls) in anterior/frontal brain regions.  

Retrieval-Related Brain Activation: Predictions 

The third set of hypotheses outlined below concerns brain activity during retrieval. 

Specifically, the focus of the following predictions relates to the effect of both Encoding 

Orientation (Semantic vs. Non-Semantic) and Cueing (Cued vs. Uncued) on retrieval-

related brain activity in participants with schizophrenia and healthy controls. 

Furthermore, this set of hypotheses examines the interactive effects of Encoding 

Orientation, Cueing, and Group on brain activity during retrieval. The specific questions 

used to address this area of interest are as follows:  

1. I predicted that during retrieval of Uncued words (compared to retrieval of Cued 

words), schizophrenia participants would show the typical pattern of fronto-

temporal dysregulation found in previous studies, including overactivation of 

frontal regions and underactivation of hippocampus.  

2. Furthermore, I predicted significant between-group differences (Control > 

Schizophrenia) in retrieval-related brain activity during retrieval of Uncued 

words. 
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3. In contrast, during retrieval of Cued words, schizophrenia participants would 

activate a more typical network of retrieval-related brain regions. 

4. I also predicted that Cued (relative to Uncued) retrieval would be associated with 

fewer between-group differences in retrieval-related brain activity. 

5. Consistent with previous work, schizophrenia participants would demonstrate 

significant deficits in retrieval-related brain activation during retrieval of words 

encoded Non-Semantically. 

6. Furthermore, retrieval of items encoded Non-Semantically would be associated 

with significant between-group differences (control > schizophrenia) in retrieval-

related brain activity. 

7. In contrast, schizophrenia participants would show more typical retrieval-related 

brain activity patterns during recall of items encoded Semantically. 

8. Furthermore, retrieval of items encoded Semantically would be associated with 

fewer between group differences (control > schizophrenia) in brain activity. 

       Individual Difference Measures: Predictions 

The fourth set of hypotheses outlined below concerns the effect of individual 

differences on behavior and brain activity. Specifically, the focus of the following 

predictions relates to the influence of inherent semantic processing ability on episodic 

memory and task-related brain activity in individuals with schizophrenia and healthy 

controls. The specific questions used to address this area of interest are as follows:  

 
1. I predicted that participants from both groups who scored higher on measures of 

semantic processing ability would show greater subsequent memory benefits for 
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semantically-encoded items (relative to items encoded non-semantically) than 

participants who scored lower on semantic processing measures. 

2. Participants from both groups who scored higher on measures of semantic 

processing ability would show greater activation enhancements (Semantic 

encoding > Non-Semantic encoding) in brain regions typically associated with 

semantic encoding, including left inferior frontal gyrus (BA 45/47). 

Chapter 4: Method 
 

Participants 

Human Subjects Involvement and Characteristics: Participants were 24 

individuals DSM-IV diagnosed with schizophrenia and 24 comparison participants. The 

comparison participants were members of the surrounding community and were matched 

with members of the schizophrenia group on age, gender, race, handedness, and parental 

education level. In order to be eligible, all participants were required to be without 

current or past DSM-IV diagnosis of substance abuse or dependence, any neurological 

disorder, and documented history of concussion or head injury. Additionally, all potential 

participants were required to be 18-50 years of age; able to give informed consent to 

participate in research; must not be pregnant, claustrophobic, or have any non-removable 

metallic objects in their body; and could not meet criteria for mental retardation. 

Participants with schizophrenia were required to meet DSM-IV criteria for schizophrenia 

or schizoaffective disorder and could not be in an acute or unstable phase of the illness. 

Comparison participants could not have any lifetime history or family history of 

psychotic disorders.  
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Recruitment and Informed Consent: Recruitment of individuals with 

schizophrenia occurred through four sources: 1) individuals who have participated in the 

Conte Center studies of Dr. Barch and Dr. Csernansky (a collaborator of Dr. Barch); 2) 

individuals who have completed studies as a part of the Treatment Units Research 

Network (TURNS), in which Drs. Barch and Csernansky are actively involved; 3) 

recruitment from local outpatient treatment facilities; and 4) advertisements placed in 

local community newspapers. Like participants with schizophrenia, control participants 

who completed studies as a part of the Conte Center or TURNS were invited to 

participate in the proposed research. Additional control participants were recruited 

through local advertisements and flyers. Control participants were recruited from the 

same areas and neighborhoods as the participants with schizophrenia. Informed consent 

was obtained by a member of the research personnel for every participant prior to their 

participation in the study. Consent forms were explained in detail and all aspects of the 

study, including both potential risks and benefits to the participant, were covered during 

the consenting process. A copy of each consent form, signed by both the participant and 

by the research staff member who has obtained consent, was retained.  

Diagnosis and Clinical Assessment: To determine each participant’s diagnosis, a 

structured clinical interview was administered by a trained interviewer, using the 

Structured Clinical Interview for DSM-IV (SCID-IV). The SCID-IV interviewer had 

access to all present and past data sources, including hospital records and charts and 

corroborative sources (family members) in order to make a decision. Both participants 

with schizophrenia and control participants underwent identical diagnostic processes. 

Additionally, participants with schizophrenia were administered the Scale for the 
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Assessment of Positive Symptoms (SAPS; (Andreasen, 1983b) and the Scale for the 

Assessment of Negative Symptoms (SANS; (Andreasen, 1983a). I took an active role in 

the clinical assessment and diagnosis process and was been trained by Dr. Barch and the 

Conte Center staff to conduct the interviews.  

Medications: In compliance with Missouri state law, all participants with 

schizophrenia were medicated at the time of study. Most recent research on cognition in 

schizophrenia has studied individuals with this illness while medicated. More 

specifically, studies of item and associative memory in schizophrenia have found that 

deficits in these areas persist even when participants are taking medication (Jessen et al., 

2003; Ragland et al., 2004; Waters et al., 2004). Detailed records of current medications 

and dosage levels were kept for each participant with schizophrenia in order to determine 

whether any of these factors significantly altered our results.  

Procedure 

In the present study, participants underwent testing in two separate sessions: a 

session consisting of a diagnostic clinical interview, clinical ratings, and brief 

neuropsychological testing; and a 1.5-hour functional neuroimaging session. During the 

neuroimaging session, participants underwent structural and functional neuroimaging and 

performed an associative memory task while in the scanner. I used the behavioral and 

functional neuroimaging data derived from these sessions in the current study.  

Measures 

Associative Memory Task: The associative memory task that participants 

performed while in the scanner was modeled after the paired associates paradigm 

described by Naveh-Benjamin and colleagues (Naveh-Benjamin et al., 2002). In this 
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paradigm, participants learn associations between complex visual scenes and words, and 

the effects of supportive techniques during encoding and retrieval are assessed. In the 

current study, participants underwent functional neuroimaging scans while encoding and 

subsequently retrieving information about word-scene pairs. The encoding phase was 

accomplished over 6 functional imaging runs (3 runs for the Semantic encoding task, 3 

runs for the Non-Semantic encoding task), while the retrieval phase took place over 3 

runs. During the encoding phase, participants were shown a visual scene and a word 

simultaneously on the screen and were asked to study each word-scene pair for a memory 

test to be administered later. During half of the encoding runs (“Semantic Orientation” 

condition), participants were instructed to indicate whether the current word-scene pair 

was strongly or weakly associated by pressing one of two buttons. During the other half 

of the encoding runs (“Location” condition), participants were asked to indicate whether 

the word in the current word-scene pair was above or below the scene by pressing one of 

two buttons. Additionally, half of the to-be-encoded words were “strongly” related to 

their associated scene and half were “weakly” related to the scene, as determined by 

normative data collected from pilot subjects (see below). All participants were instructed 

to try to learn the relationship between visual scenes and words for a later memory test. 

Thus, in both conditions participants knew that they must learn the word-scene 

relationships for a later memory test and must make a judgment and execute a motor 

response at the time of encoding. However, only during the “Semantic Orientation” 

condition were participants explicitly oriented to process the semantic relationship 

between the scene and the word. Task order was counterbalanced across participants 

within each group, such that half of the participants performed the Semantic encoding 
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task prior to the Non-Semantic encoding task, and half performed the Non-Semantic 

encoding task prior to the Semantic encoding task. Additionally, the order of each of the 

three Semantic encoding runs and the three Non-Semantic encoding runs was 

counterbalanced in a pseudo-random fashion, such that the encoding stimuli were always 

presented in a different order for each participant.  

Over the course of the encoding scans, each of the 120 word-scene pairs were 

shown 4 times (2 times with the word above the scene, 2 times with the word below the 

scene), in order to improve subsequent recall performance and avoid potential floor 

effects (particularly among the schizophrenia participants). Each stimulus was encoded in 

only one manner (i.e., Semantic or Non-Semantic) across all four presentations. Stimuli 

were presented every 2.5 seconds in a rapid event-related design, with fixation trials 

intermixed pseudo-randomly. During the retrieval phase, participants were presented 

with each of the 120 previously-viewed scenes once, as well as 30 new (not previously-

viewed) scenes in order to discourage guessing. Scenes were presented one at a time, and 

participants were instructed to recall and vocally produce the word that was originally 

paired with the scene, or to say “New” if they believe the scene was never previously 

presented. Additionally, in order to examine the effect of retrieval cues on recall 

performance, half of the to-be-retrieved words were cued with a first letter followed by a 

blank line below the scene, while the other half only had a blank line. One-letter retrieval 

cues were counterbalanced across participants within each group, such that half of the 

participants received cues for half of the pictures, while the other half of the participants 

were cued for the other half of the pictures. Although the use of vocal responses in the 

scanner introduces potential problems (e.g., increased head movement, decreased signal-
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to-noise ratios), previous work in our lab and in other research groups has utilized 

techniques that allow for vocal responses in the scanner (Palmer et al., 2001; Racine, 

2005). Furthermore, I calculated movement parameters and signal-to-noise (SNR) ratios 

for each BOLD run for each participant, in order to verify that all included data met 

minimum quality requirements before being included in analyses.  

I completed data collection from 30 participants for a pilot study to generate valid 

associate words to be paired with the scenes. Participants in the pilot study were shown 

complex scenes on a computer screen, one at a time, and were asked to generate a word 

or phrase that they believe is associated with, but not physically in, the current scene. The 

word that was most frequently generated for a scene was used for the “strongly” 

associated word-scene pairs. “Weakly” associated words consisted of exemplars that 

were produced by pilot subjects but were not the most commonly produced. Word-scene 

pairs were designated to the “strongly” or “weakly” associated group on a random basis. 

Neuropsychological Measures. All participants underwent a brief 

neuropsychological assessment battery, which included the Vocabulary, Similarities, and 

Matrix Reasoning subtests from the Wechsler Adult Intelligence Scale (WAIS-III; 

(Wechsler, 1997), as well as the Pyramids and Palm Trees Test (Howard & Patterson, 

1992), which measures semantic access and semantic processing ability. I created a 

composite semantic processing variable to use as a variable of interest in the analysis of 

the behavioral and neuroimaging data. To do this, I converted scores for each participant 

on the WAIS-Vocabulary, WAIS-Similarities, and the Pyramids and Palm Trees Test to 

standardized z-scores and summed them. 
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Symptom Measures. As mentioned above, participants were administered the 

Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment 

of Negative Symptoms (SANS) during the clinical interview. In order to assess the 

relationship between symptomotology and other factors of interest (i.e., task 

performance, semantic processing ability), I created symptom summary scores for three 

symptom clusters (positive, negative, and disorganized) by summing global rating scores 

for each domain from the SAPS and SANS. The positive cluster consisted of the sum of 

global hallucinations and global delusions ratings. The negative cluster consisted of the 

sum of global affective flattening, alogia, apathy, and anhedonia ratings. The 

disorganized cluster consisted of the sum of global bizarre behavior, positive formal 

thought disorder, and attention ratings. I then performed correlations between the 

symptoms summary measures and recall performance, as well as between the symptom 

summary measures and the semantic processing composite variable, given the established 

relationship between symptomotology and cognition in schizophrenia.  

fMRI Scanning Methods: All structural and functional neuroimaging data 

collection was performed on the 3 Tesla Siemens Trio system at the Research Imaging 

Center of the Mallinckrodt Institute of Radiology at the Washington University School of 

Medicine. The functional images were acquired in a series of 9 runs using an asymmetric 

spin-echo echo-planar sequence sensitive to blood oxygen level-dependent (BOLD) 

contrast (T2*; TR = 2500 msec, TE = 27 msec, FOV = 256 mm, slice thickness = 4mm). 

Encoding runs consisted of 168 frames (i.e., whole brain volume acquisitions). This 

included 80 task trials and 80 fixation trials intermixed pseudo-randomly, as well as 4 

frames of fixation at the beginning of each run to allow the scanner to reach steady state 
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and 4 frames at the end of each run in order for the hemodynamic response to return to 

baseline. Retrieval runs consisted of 163 frames, 50 task trials and 55 fixation trials, as 

well as 4 frames of fixation at the beginning and end of each run. During structural 

imaging, 176 4-mm thick slices were acquired using a coronal MPRAGE 3D T1-

weighted sequence (TR = 2400 msec, TE = 3.13 msec, FOV = 256 mm, voxel size = 1 x 

1 x 1.2mm) and were used for between subject registration and anatomic localization.  

Preprocessing of fMRI data included a number of steps, including the following: 

1) compensation for slice-dependent time shifts; 2) elimination of odd/even slice intensity 

differences due to interpolated acquisition; 3) realignment of all data acquired in each 

subject within and across runs to compensate for rigid body motion; 4) intensity 

normalization to a whole brain mode value of 1000; and 5) spatial smoothing with an 8-

mm FWHM Gaussian kernel. The functional neuroimaging data was transformed into the 

stereotaxic atlas space of Talairach and Tournoux (Talairach & Tournoux, 1988) by 

computing a sequence of affine transformations (first frame EPI to T2-weighted TSE to 

MPRAGE to atlas representative target) composed by matrix multiplication. The first 

four frames of each scanning run were fixation trials. These were discarded in the 

analysis of the functional neuroimaging data, in order to allow the MR signal to reach 

steady state. The last four frames of each functional neuroimaging run were also fixation 

trials. Following the standard pre-processing stream, all functional neuroimaging data 

was inspected for quality and integrity. Signal-to-noise ratios (SNR) were calculated for 

each scanning run for each participant, and participants with low average SNR values 

across all nine scanning runs (mean SNR < 150) were excluded from the neuroimaging 

analyses. Three participants were excluded from neuroimaging analyses for this reason. 
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Participants with head movement that exceeded 4 mm in any direction (X, Y, or Z) were 

also discarded and were not included in subsequent analyses. Based on mean head 

movement, the same three participants were identified for exclusion as had been 

identified based on mean SNR values. No additional participants were excluded from 

analyses based on these parameters.  

 To analyze the fMRI data from the encoding and retrieval conditions, I created 

estimates of encoding- and retrieval-related activity in each voxel for each participant 

separately, using a general linear model (GLM) convolved with a canonical Boynton 

hemodynamic response function, which was estimated over 7 scanning frames (17.5 

seconds) following each stimulus presentation. In this manner, I created separate 

estimates for each encoding and retrieval task type. For the encoding data, I created two 

sets of GLM contrasts for each participant. In the first set (used in analyses of encoding-

related activity), I coded 2 trial types: 1) Semantic encoding (semantic relatedness 

decisions); and 2) Non-Semantic encoding (word location decisions). In the second set 

(used in analyses of subsequent memory effects), I coded each stimulus event within each 

encoding run as one the following categories, based on encoding condition and 

subsequent memory performance: 1) correct-Semantic (correct recall for words seen 

during Semantic encoding); 2) correct-non-Semantic (correct recall for words seen during 

Non-Semantic encoding); 3) incorrect-Semantic (words seen during Semantic encoding 

that were not correctly recalled); and 4) incorrect-non-Semantic (words seen during non-

Semantic encoding that were not correctly recalled).  

For the retrieval data, I created 2 sets of GLM contrasts for each participant. In 

the first set, I coded 4 trial types: 1) Semantic-Cued (cued retrieval of words seen during 
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Semantic encoding); 2) Non-Semantic-Cued (cued retrieval of words seen during Non-

Semantic encoding); 3) Semantic-Uncued (uncued retrieval of words seen during 

Semantic encoding); and 4) Non-Semantic-Uncued (uncued retrieval of words seen 

during Non-Semantic encoding). In the second set, I coded 8 trial types: 1) Semantic-

Uncued-Correct (correct uncued retrieval of words seen during Semantic encoding); 2) 

Non-Semantic-Uncued-Correct (correct uncued retrieval of words seen during Non-

Semantic encoding); 3) Semantic-Cued-Correct (correct cued retrieval of words seen 

during Semantic encoding); 4) Non-Semantic-Cued-Correct (correct cued retrieval of 

words seen during Non-Semantic encoding); 5) Semantic-Uncued-Incorrect (words seen 

during Semantic encoding that were uncued and not correctly retrieved); 6) Non-

Semantic-Uncued-Incorrect (words seen during non-Semantic encoding that were uncued 

and not correctly retrieved); 7) Semantic-Cued-Incorrect (words seen during Semantic 

encoding that were cued and not correctly retrieved); and 8) Non-Semantic-Cued-

Incorrect (words seen during non-Semantic encoding that were cued and not correctly 

retrieved). These estimates were used in the ANOVAs and t-tests. All analyses were 

appropriately corrected for multiple comparisons using cluster size algorithms to ensure 

whole-brain false positive rates of p < .05.  

Chapter 5: Results 

 Of the 67 participants who consented to participate in the study, 20 were excluded 

(7 control participants, 13 participants with schizophrenia) due to a variety of factors 

related to the quality of the behavioral and/or neuroimaging data [very low memory 

performance (N = 4), poor signal-to-noise ratio or excessive movement while in scanner 

(N = 3), incomplete scanning sessions (N = 7), failure to attend scan session (N = 6)]. 
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The groups with usable neuroimaging and behavioral data consisted of 24 control 

participants and 23 participants with schizophrenia, and all analyses of neuroimaging data 

are based on these participants, unless otherwise specified. In order to maximize power, 

an additional 5 participants (1 control, 4 schizophrenia) with usable behavioral data (and 

unusable neuroimaging data) were included in analyses of behavioral data only, resulting 

in groups consisting of 25 control participants and 27 participants with schizophrenia for 

the behavioral analyses. Demographic and clinical data for included participants from 

both neuroimaging and behavioral analyses are presented in Table 1, and 

neuropsychological data are included in Table 2.  

With regard to demographic variables, the control and schizophrenia groups did 

not differ in terms of gender distribution, age, parental education, or handedness. As a 

group, controls had significantly more years of education than schizophrenia participants 

(p < .005). Regarding performance on neuropsychological measures (Table 2), control 

participants performed significantly better than schizophrenia participants on the WAIS 

Vocabulary (p < .005), WAIS Matrix Reasoning (p < .005), and Pyramids and Palm 

Trees (p < .005) measures. The groups did not differ in their performance on the WAIS 

Similarities subtest.  
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Table 1: Demographic and Clinical Data 
                                                                                   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Data are presented separately for participants with usable behavioral data and participants with both usable behavioral and 
neuroimaging data. 
 
**Data regarding participant education, parental education, handedness, symptom ratings, and medication information not 
available for 2 participants in behavioral group (1 control, 1 schizophrenia).

 
Mean Imaging*  

(Mean Behavioral)* 
SD Imaging* 

(SD Behavioral)* 

Characteristic 
Control 

Participants 
Participants 

with 
Schizophrenia 

Control 
Participants 

Participants 
with 

Schizophrenia 

p-value for 
statistical test 

Age (years) 37.4 (37.0) 36.3 (36.6) 7.9 (8.0) 8.1 (8.4) .64 (.87) 
Sex (% male) 75.0 (76.0) 82.6 (81.4)   .52 (.63) 
Participant Education (years) 15.6 (15.6) 13.4 (13.2) 2.8 (2.8) 2.1 (2.1) .001 (< .005) 
Parental education (years) 13.9 (13.9) 14.1 (13.9) 2.0 (2.0) 3.4 (3.2) .95 (.95) 
Handedness (1=left, 5=right) 4.6 (4.7) 4.3 (4.3) 0.75 (.75) 0.85 (.80) .11 (.11) 
Negative symptoms 1.6 (1.6) 6.4 (6.5) 1.9 (1.9) 3.4 (3.2) < .001 (< .001) 
Disorganization symptoms 1.2 (1.2) 1.8 (2.0) 1.5 (1.5) 1.7 (1.7) .17 (.08) 
Positive symptoms 0.1 (0.1) 3.0 (2.9) 0.3 (0.3) 2.1 (2.2) < .001 (< .001) 
Atypical medications only (%) - 82.6 (80.7)    
Typical medications only (%) - 17.3 (19.2)    
Anti-cholinergic medication (%) - 13.0 (15.4)    
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Table 2: Neuropsychological Data 
                                                                                   
 
 
 

 
 

 

 

 

 

*Neuropsychological data not available for 2 participants in behavioral group (1 control, 1 schizophrenia)

 
Mean Imaging Group 

(Mean Behavioral Group) 
SD Imaging Group 

(SD Behavioral Group) 

Measure 
Control 

Participants 
Participants 

with 
Schizophrenia 

Control 
Participants 

Participants 
with 

Schizophrenia 

p-value for 
statistical test 

WAIS Vocabulary (scaled) 11.3 (11.3) 8.6 (8.4) 2.7 (2.7) 3.3 (3.2) < .005 (< .005) 
WAIS Similarities (scaled) 10.1 (10.1) 9.2 (8.9) 2.9 (2.9) 3.8 (3.7) .38 (.21) 
WAIS Matrix Reasoning (scaled) 13.1 (13.1) 10.5 (10.2) 2.4 (2.4) 3.4 (3.4) < .005 (< .005) 
Pyramids and Palm Trees 49.6 (49.6) 47.3 (47.0) 2.0 (2.0) 2.5 (2.8) < .005 (< .001) 
Semantic Processing Composite 1.02 (1.14) -0.99 (-1.05) 2.1 (2.1) 2.9 (2.9) < .01 (< .005) 
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Below, I will address the findings for each of the specific hypotheses outlined above in 

each of the four domains: 1) Behavioral performance; 2) Encoding-related brain activity; 

3) Retrieval-related brain activity; and 4) Individual difference measures.  

Behavioral Performance: Results 

The first set of results outlined below concerns behavioral performance on the 

episodic memory tasks. Specifically, the focus of the following predictions relates to the 

effects of encoding task and cueing on subsequent memory performance in each group, as 

well as the interactive effects of these variables. The specific questions used to address 

this area of interest are as follows:  

1. Schizophrenia participants (as well as controls) would recall significantly more words 

seen during Semantic encoding than Non-Semantic encoding. I also predicted that the 

recall difference between groups would be smaller following Semantic encoding, relative 

to Non-Semantic encoding (Group x Encoding Task interaction). 

In order to address this hypothesis, I conducted within-group paired samples t-

tests for recall in each group following each encoding condition (Semantic vs. Non-

Semantic). Consistent with my stated hypothesis, participants with schizophrenia [t (26) 

= 13.89, p < .001], as well as controls [t (24) = 6.22, p < .001], demonstrated significant 

recall benefits for words encoded Semantically, relative to Non-Semantically (Table 3).  
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Table 3. Behavioral Data: Encoding & Recall Task Performance 

                                                                                   Mean (SD)                                                   
 

Task Measure Control 
Participants 

Participants with 
Schizophrenia 

Encoding: Non-Semantic  Accuracy 0.93 (0.15)2 0.93 (0.08)2 

Reaction Time (ms)1 943 (192) 968 (189) 
Encoding: Semantic Accuracy 0.60 (0.16) 0.57 (0.13) 

Reaction Time (ms)1 1218 (206)3 1226 (159)3 

Recall: Overall Accuracy 0.79 (0.15)4 0.70 (0.12) 

   
Recall: Old Items only Accuracy 0.75 (0.18) 0.67 (0.14) 

   
Recall: New Items only % Correct 

Rejections 
0.92 (0.11)5 0.84 (0.16) 

   

Recall: Non-Semantic Accuracy 0.63 (0.25) 0.50 (0.19) 
   

Recall: Semantic Accuracy 0.88 (0.12)6 0.84 (0.12)6 

   
Recall: Uncued Accuracy 0.72 (0.20) 0.64 (0.15) 

   
Recall: Cued Accuracy 0.80 (0.16)7 0.72 (0.14)7 

   

Recall: Non-Semantic 
Uncued 

Accuracy 0.57 (0.30) 0.43 (0.20) 
   

Recall: Non-Semantic 
Cued 

Accuracy 0.68 (0.25)8 0.56 (0.20)8 

   
Recall: Semantic Uncued Accuracy 0.86 (0.14) 0.82 (0.12) 

   
Recall: Semantic Cued Accuracy 0.91 (0.10) 0.87 (0.11) 

   
    *Encoding task performance data not available for six participants (3 control, 3 schizophrenia) 

 

1RT presented for correct encoding trials only 
2Main effect of Encoding Task (p < .001) 
3Main effect of Encoding Task (p < .001) 
4Control > Schizophrenia, % Overall Recall (p < .05) 
5Control > Schizophrenia, % Correct Rejections (p < .05) 
6Main effect of Encoding Task (p < .001) 
7Main effect of Cueing (p < .001) 
8Encoding Task x Cueing interaction (p < .005)



 

 

 
 

58 
 

Next, I conducted a repeated measures ANOVA, with Group (Control, 

Schizophrenia) as the between subjects variable, and Encoding Task (Semantic, Non-

Semantic) and Cueing (Cued or Uncued at retrieval) as the within subjects variables. 

Results of the analysis revealed main effects of Encoding Task [F (1, 50) = 148.70, p < 

.001] and Cueing [F (1, 50) = 87.56, p < .001]. Post-hoc comparisons showed that 

participants demonstrated better subsequent recall for words encoded Semantically 

relative to Non-Semantically, as well as better recall of words that were Cued relative to 

those that were Uncued. Furthermore, the analysis revealed a significant Encoding Task x 

Cueing interaction [F (1, 50) = 9.05, p < .005], such that the recall benefit conferred by 

Cueing was greater for words encoded Non-Semantically relative to words encoded 

Semantically (Table 3). Consistent with my prediction, the between-group effect size 

(Control > Schizophrenia) for Semantic recall (d = 0.34) was substantially smaller than 

that for Non-Semantic recall (d = 0.61), although the Encoding Task x Group interaction 

reached only trend-level significance (p = .08).  

2. The provision of retrieval cues would improve recall in schizophrenia participants 

(and controls), and this improvement would be significantly higher for the schizophrenia 

group than the control group (Group x Retrieval Cue interaction). Furthermore, the 

schizophrenia group would show a significantly greater recall benefit than control 

participants when oriented to the semantic encoding strategy and when provided with 

retrieval cues (Group x Encoding Task x Retrieval Cue interaction).  

In order to address this hypothesis, I conducted within-group paired samples t-

tests comparing Cued recall to Uncued recall within each group separately. Consistent 

with my predictions, both participants with schizophrenia [t (26) = 7.61, p < .001], as 
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well as control participants [t (24) = 5.47, p < .001], recalled more words that were Cued 

at recall than Uncued (Table 3).  

Next, I conducted the ANOVA described above, in order to address the potential 

interactive effects of Encoding Task, Cueing, and Group on subsequent recall. As 

described above, the analysis revealed a main effect of Cueing [F (1, 50) = 87.56, p < 

.001], such that Cued words were more successfully recalled than Uncued words. The 

analysis also revealed a significant Encoding Task x Cueing interaction [F (1, 50) = 9.05, 

p < .005], such that the recall benefit conferred by Cueing was greater for words encoded 

Non-Semantically relative to words encoded Semantically (Table 3). Contrary to my 

hypotheses, however, the Group x Cueing (p > .60) and Group x Encoding Task x Cueing 

(p > .66) interactions were non-significant, although calculation of between-group effect 

sizes suggest that the predictions were somewhat fulfilled. Effect sizes reflecting 

between-group differences in recall success suggest that the schizophrenia group 

demonstrated the greatest recall benefit for Semantic Uncued words (d = 0.29), whereas 

the largest difference between groups was observed for Non-Semantic Uncued words (d 

= 0.55).  

3. Schizophrenia participants would perform more poorly on the Semantic encoding task 

than the Non-Semantic encoding task. Additionally, schizophrenia participants would 

perform more poorly than control participants on the Semantic encoding task, while the 

groups would perform equally well on the Non-Semantic encoding task. 

Although this hypothesis was not of central interest to the present study, it was 

included to serve as a manipulation check to verify that participants were properly 

engaging in the encoding tasks. In order to address this hypothesis, I conducted a 
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repeated measures ANOVA on the accuracy data (see Table 3), with Group (Control, 

Schizophrenia) as the between subjects variable, and Encoding Task (Semantic, Non-

Semantic) as the within subjects variable. Results of the analysis revealed a main effect 

of Encoding Task [F (1, 48) = 420.37, p < .001], while the effect of Group (p > .67) and 

the Group x Encoding Task interaction (p > .49) were both non-significant. Post-hoc 

comparisons revealed that, consistent with my hypothesis, participants with 

schizophrenia (as well as control participants) performed significantly worse on the 

Semantic encoding task than the Non-Semantic encoding task. However, contrary to my 

predictions, the individuals with schizophrenia did not perform significantly worse than 

controls on the Semantic encoding task. Finally, consistent with my hypothesis, the 

groups performed equally well on the Non-Semantic encoding task.   

Additionally, reaction time (RT) data during encoding tasks was calculated (for 

correct encoding trials only), although no initial predictions were made regarding these 

data. RT data from 6 participants (3 control participants, 3 participants with 

schizophrenia) was unusable and excluded due to equipment failure. In order to assess 

potential RT differences between encoding tasks or groups, I conducted a repeated 

measures ANOVA, with Group (Control, Schizophrenia) as the between subjects 

variable, and Encoding Task (Semantic, Non-Semantic) as the within subjects variable. 

Results of the analysis revealed a main effect of Encoding Task [F (1, 44) = 118.72, p < 

.001], while the effect of Group (p > .73) and the Encoding Task x Group interaction (p > 

.72) were both non-significant. Post-hoc comparisons revealed significantly longer RTs 

for both groups during correct Semantic than correct Non-Semantic encoding trials 

(Table 3).  
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Behavioral Performance: Summary 

 Similar to the control group, individuals with schizophrenia recalled more words 

that were encoded Semantically than Non-Semantically and more words that were Cued 

than Uncued at recall. Both findings are consistent with the literature in this area and 

suggest that individuals with schizophrenia show memory benefits from encoding and 

retrieval support. Importantly, the magnitude of between-group differences across 

conditions was also supportive of my initial hypotheses. The smallest differences 

between groups were observed for items encoded Semanticaly and items that were Cued 

at retrieval, suggesting that such manipulations were effective in equating memory 

performance of schizophrenia participants with that of controls. Additionally, the 

analyses revealed that for both groups, Cueing during retrieval was significantly more 

beneficial for words encoded Non-Semantically than Semantically. Although unexpected, 

this finding reinforces the notion that cues are often most helpful for remembering 

poorly-encoded items, and that individuals with schizophrenia respond in a similar 

fashion as controls to beneficial memory cues. 
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Encoding-Related Brain Activation: Results 

The second set of results outlined below concerns brain activity during encoding. 

Specifically, the focus of the following predictions relates to the effect of Encoding 

Orientation (Semantic vs. Non-Semantic) on encoding-related brain activity in 

participants with schizophrenia and healthy controls, as well as interactions between 

Encoding Condition and Group. The specific questions used to address this area of 

interest are as follows:  

1. I predicted that during Semantic (relative to Non-Semantic) encoding, schizophrenia 

participants would show significant activation in typical semantic processing regions, 

such as left inferior frontal gyrus (BA 45/47), left middle frontal gyrus (BA 6/44), and 

hippocampus.  

 More specifically, regarding “typical semantic processing regions,” I am referring 

to significant areas of activity with a centroid in left inferior (BA 45/47) or left middle 

frontal gyrus (BA 6/44). In order to address this hypothesis, I conducted a within-group t-

test in schizophrenia participants comparing encoding-related brain activity in the 

Semantic and Non-Semantic encoding conditions. Consistent with my predictions, 

compared to Non-Semantic encoding, Semantic encoding among schizophrenia 

participants was associated with significant increases in brain activity in a number of 

brain regions typically recruited during episodic memory encoding and semantic 

processing (see Table 4), including left middle frontal gyrus (BA 6). I did not detect 

significant activation during Semantic > Non-Semantic encoding among schizophrenia 

participants in hippocampus proper, although the contrast did reveal significant activity in 

right parahippocampal gyrus (BA 36). The analysis also failed to reveal Semantic > Non- 
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Table 4. Regions of significant encoding-related activity: Schizophrenia participants 

Region of Interest Brodmann Area(s) X Y Z 
Semantic > Non-Semantic     

Left medial frontal gyrus 8 -3 18 44 
Left middle frontal gyrus 6 -34 6 56 
Left middle frontal gyrus 9 -47 24 35 
Left middle frontal gyrus 46 -50 34 15 

Left superior frontal gyrus 6 -8 8 61 
Left superior frontal gyrus 10 -36 50 17 
Left superior frontal gyrus 8 -22 33 52 

Left precentral gyrus 6 -41 0 29 
Left insula  -33 19 1 

Left thalamus  -7 -15 13 
Left cingulate gyrus 31 -3 -41 35 

Left posterior cingulate gyrus 30 -10 -53 8 
Left inferior parietal lobule 40 -41 -54 42 

Left precuneus 31 -9 -67 23 
Left precuneus 19 -26 -72 41 

Left fusiform gyrus 19 -32 -76 -11 
Left middle occipital gyrus 19 -32 -86 19 

Left lingual gyrus 18 -21 -96 -6 
Left cerebellum  -27 -39 -16 
Left cerebellum  -42 -59 -18 

Right medial frontal gyrus 9 11 31 30 
Right middle frontal gyrus 9 46 31 28 
Right middle frontal gyrus 8 30 9 45 

Right superior frontal gyrus 10 16 59 17 
Right insula 13 37 20 4 

Cingulate gyrus 24 1 -12 37 
Right parahippocampal gyrus 36 34 -24 -26 
Right middle temporal gyrus 19 37 -73 21 

Right fusiform gyrus 37 45 -41 -18 
Right fusiform gyrus 37 41 -63 -12 

Right cuneus 17 17 -95 -1 
Right precuneus 7 17 -75 37 
Right precuneus 7 19 -55 46 

Right inferior occipital gyrus 18 33 -83 -5 
Right cerebellum  19 -41 -10 
Right cerebellum  33 -64 -31 
Right cerebellum  7 -78 -31 

Non-Semantic > Semantic     
Left superior temporal gyrus 22 -52 -4 4 

Left insula  -56 -32 18 
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Semantic encoding activity in left (or right) inferior frontal gyrus (BA 45/47). Inspection 

of the separate maps for Semantic and Non-Semantic encoding suggested that activity in 

this region was quite similar across contrasts and any differences between conditions 

were likely not robust enough to reach significance. However, as described above a 

number of other regions in left and right frontal cortex were significantly more activated 

in semantic compared to non-semantic encoding.  

2. I also predicted significant between-group differences (Control > Schizophrenia) in 

encoding-related brain activity during Non-Semantic encoding, particularly in left 

inferior frontal gyrus (BA 45/47), left middle frontal gyrus (BA 6/44), and hippocampus, 

among other regions. 

In order to address this hypothesis, I conducted a between-group t-test comparing 

encoding-related brain activity during the Non-Semantic encoding condition in control 

and schizophrenia participants. In support of my hypotheses, I detected a significant 

between-group difference (Control > Schizophrenia) in left middle frontal gyrus (BA 6). 

However, contrary to my predictions none of the remaining between-group differences 

observed in this contrast were in the predicted frontal or hippocampal regions (see Table 

5, Figure 1). The opposite contrast (Schizophrenia > Control) revealed that schizophrenia 

participants activated certain areas to a significantly greater degree than controls, 

including bilateral superior temporal gyrus (BA 22), left inferior (BA 40) and superior 

(BA 7) parietal lobule, and left precentral gyrus (BA 4). Results are displayed in Table 5 

and Figure 1. 

3. In contrast, between-group differences (Control > Schizophrenia) in the regions 

described above (left inferior frontal gyrus, left middle frontal gyrus, hippocampus) 
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would be dramatically reduced or absent during Semantic (relative to Non-Semantic) 

encoding.  

 In order to address this hypothesis, I first conducted a between-group t-test 

comparing encoding-related brain activity during the Semantic encoding condition in 

control and schizophrenia participants. Consistent with my hypothesis, between-group 

differences in which controls showed greater activity than participants with schizophrenia 

were dramatically reduced during the Semantic encoding condition (see Table 6, Figure 

1). Only 2 regions of significant group differences in brain activity were detected, both in 

left cerebellum. In fact, nearly all regions of between-group differences during Semantic 

encoding were in the opposite direction (Schizophrenia > Control). Altogether, 

schizophrenia participants activated 19 regions in frontal, temporal, and parietal cortices 

to a significantly greater degree than control participants. These regions included left 

inferior frontal gyrus (BA 44), left superior frontal gyrus (BA 6), bilateral inferior 

parietal lobule (BA 40), bilateral superior parietal lobule (BA 7), and anterior cingulate 

gyrus (BA 24). All regions are displayed in Table 6 and Figure 1.  
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Table 5. Regions of significant between-group differences: Non-Semantic Encoding 

Region of Interest Brodmann 
Area(s) 

X Y Z Z-value for Region 
of Interest 

Control > Schizophrenia      
Left middle frontal gyrus 6 -33 21 54 2.68 

Left medial globus pallidus  -17 -5 0 3.10 
Left thalamus  -24 -26 6 2.22 

Left parahippocampal gyrus  35 -23 -23 -15 2.02 
Left middle temporal gyrus 19 -29 -62 20 2.59 

Left fusiform gyrus 36 -42 -31 -18 3.32 
Left cerebellum  -6 -42 -12 2.40 

      
Right putamen  20 2 11 2.73 
Right thalamus  12 -17 9 2.88 

Right pons  13 -28 -21 2.75 
Right posterior cingulate gyrus 30 6 -55 20 2.34 

Right fusiform gyrus 37 42 -29 -15 2.86 
      
Schizophrenia > Control      

Left precentral gyrus 4 -25 -14 65 3.58 
Left superior temporal gyrus 22 -59 -35 18 4.91 

Left inferior parietal lobule 40 -43 -36 46 3.97 
Left superior parietal lobule 7 -29 -55 56 4.84 

      
Right postcentral gyrus 2 48 -27 45 3.71 

Right superior temporal gyrus 22 66 -25 16 3.91 
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The enhanced pattern of activation observed in the participants with schizophrenia 

relative to the control group could be attributable to one of at least two possible 

mechanisms. First, if the additional activation served a compensatory role, one would 

expect that those schizophrenia participants who performed the best (i.e., recalled the 

most items) would show the most enhanced brain activity during encoding. Alternatively, 

the pattern of over-activation could also be interpreted as a sign of underlying pathology 

and inefficient cognitive processing. In this scenario, one would predict that pathology 

and cognitive inefficiency would be associated with worse subsequent recall 

performance. Thus, we would expect those schizophrenia participants with poorer 

memory performance to show the most enhanced encoding-related brain activity, relative 

to higher performing schizophrenia participants. To address this issue, I divided the 

schizophrenia participants into two groups based on subsequent recall of semantically-

encoded items: a high-performing group (N = 12, recall = 94%) and a low-performing 

group (N = 11, recall = 77%). When high- and low-performing schizophrenia participants 

were directly compared on brain activity during Semantic encoding, I found a pattern of 

more robust and enhanced activation in the low-performing group. Specifically, low-

performing schizophrenia participants activated a number of regions, including areas of 

bilateral prefrontal cortex, during Semantic encoding to a greater degree than high 

performers. In contrast, the high-performing group activated few regions more than the 

low-performing group. Furthermore, comparisons of high- and low-performing 

schizophrenia participants to the controls revealed many regions of significant differences 

between the low-performing group and the control group. In particular, differences were 

observed in regions of left prefrontal cortex and parietal lobe (low performing 
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schizophrenia > control). In contrast, direct comparison of the high-performing 

schizophrenia participants and controls revealed few areas of significant differences. 

Taken together, these results suggest that the pattern of over-activation observed in the 

participants with schizophrenia relative to controls was associated with poorer subsequent 

memory performance, whereas schizophrenia participants with better memory accuracy 

demonstrated encoding-related brain activity that was more like that of controls. 

Therefore, it is conceivable that activation enhancements, at least in this sample, were a 

marker of underlying pathology and cognitive inefficiency, rather than serving a 

compensatory role. This conclusion is based on post-hoc analyses, however, and must be 

interpreted cautiously.   
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Table 6. Regions of significant between-group differences: Semantic Encoding 

 
Region of Interest Brodmann 

Area(s) 
X Y Z Z-value for 

Region of Interest 
Control > Schizophrenia      

Left cerebellum  -21 -66 -38 2.41 
Left cerebellum  -38 -54 -37 2.31 
      

Schizophrenia > Control      
Left inferior frontal gyrus 44 -45 3 23 2.94 
Left middle frontal gyrus 9 -32 30 37 2.55 
Left medial frontal gyrus 8 -1 30 37 2.23 

Left superior frontal gyrus 6 -16 -1 65 3.65 
Left anterior cingulate gyrus 24 -1 5 36 3.30 

Left precentral gyrus 4 -47 -12 44 2.77 
Left precentral gyrus 4 -25 -25 60 3.19 

Left superior temporal gyrus 22 -62 -34 20 4.81 
Left inferior parietal lobule 40 -44 -37 48 3.61 

Left superior parietal lobule 7 -23 -65 54 3.54 
Left middle occipital gyrus 19 -46 -73 -6 2.37 

      
Right medial frontal gyrus 6 11 2 62 2.95 

Right precentral gyrus 6 43 -7 34 2.77 
Right precentral gyrus 4 31 -15 64 3.25 

Right paracentral lobule  4 -28 67 3.50 
Right paracentral lobule  1 -17 46 3.05 

Right insula  55 -30 19 3.23 
Right inferior parietal lobule 40 47 -31 41 3.36 
Right superior parietal lobe 7 18 -46 58 3.33 
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Figure 1. 

 

Upper panel: Task-related brain activation during Non-Semantic encoding. Regions 
representing control > schizophrenia are shown in red. Regions representing 
schizophrenia > control are shown in blue.  
Lower panel: Task-related brain activation during Semantic encoding. Regions 
representing control > schizophrenia are shown in red. Regions representing 
schizophrenia > control are shown in blue.  
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I then examined the effects of Group and Encoding Condition on encoding-related 

brain activity using a voxel-wise repeated measures ANOVA, with Group (Control, 

Schizophrenia) as the between subjects variable and Encoding Task (Semantic, Non-

Semantic) as the within subjects variable. Consistent with my hypothesis, I detected a 

significant main effect of Encoding Condition (Semantic > Non-Semantic) on task-

related brain activity in a canonical network of episodic memory encoding regions, 

including left inferior frontal gyrus (BA 44, 47), bilateral middle frontal gyrus (BA 6), 

and bilateral parahippocampal gyrus (BA 36), Results are displayed in Table 7 and Figure 

2.  

I also found significant Group x Encoding Condition interactions in bilateral 

prefrontal and parietal lobe regions, including left middle frontal gyrus (BA 8) and 

bilateral inferior parietal lobule (BA 40). Results are displayed in Table 8. Notably, and 

consistent with my predictions, post-hoc comparisons revealed that task-related activation 

differences between Semantic and Non-Semantic encoding were greater for 

schizophrenia participants than controls in a variety of regions, including left middle 

frontal gyrus (BA 8) and left inferior parietal lobule (BA 40). Furthermore, the nature of 

the interaction in nearly all regions was such that schizophrenia participants showed 

greater activity during Semantic (relative to Non-Semantic) encoding, whereas controls 

showed either no difference between Semantic and Non-Semantic encoding or greater 

activity during Non-Semantic encoding (relative to Semantic encoding; see Table 8). The 

groups were then directly compared in the regions showing Group x Encoding Condition 

interactions. The analyses for Semantic encoding revealed four regions in which 

schizophrenia participants activated more than controls (including left precentral gyrus 
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and left inferior parietal lobule), whereas the Non-Semantic encoding analyses revealed 

that controls activated three regions to a greater degree than schizophrenia participants. 

Brain activity in all other regions was equivalent across groups in each encoding 

condition.
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Table 7. Regions demonstrating a significant main effect of Encoding Task 

 
Region of Interest Brodmann 

Area(s) 
X Y Z Direction 

Left inferior frontal gyrus 46 -47 40 8 Sem > Non-Sem 
Left inferior frontal gyrus 47 -39 20 -5 Sem > Non-Sem 
Left inferior frontal gyrus 44 -41 3 29 Sem > Non-Sem 
Left middle frontal gyrus 6 -28 15 57 Sem > Non-Sem 
Left middle frontal gyrus  6 -45 2 49 Sem > Non-Sem 
Left middle frontal gyrus 9 -48 24 30 Sem > Non-Sem 
Left medial frontal gyrus 6 -1 19 46 Sem > Non-Sem 

Left parahippocampal gyrus  36 -36 -31 -18 Sem > Non-Sem 
Left posterior cingulate gyrus 31 -2 -38 35 Sem > Non-Sem 

Left precuneus 19 -28 -73 42 Sem > Non-Sem 
Left precuneus 31 -14 -65 18 Sem > Non-Sem 

Left cerebellum   -33 -60 -17 Sem > Non-Sem 
Left lingual gyrus 18 -21 -93 -4 Sem > Non-Sem 
Left orbital gyrus 19 -38 -84 25 Sem > Non-Sem 

Left cerebellum   -33 -81 -17 Sem > Non-Sem 
      

Left precentral gyrus  4 -35 -18 66 Non-Sem > Sem 
Left superior temporal gyrus  42 -56 -5 9 Non-Sem > Sem 
Left inferior parietal lobule  40 -54 -32 22 Non-Sem > Sem 
Left inferior parietal lobule  40 -45 -32 49 Non-Sem > Sem 

      
Right middle frontal gyrus 46 49 30 25 Sem > Non-Sem 
Right middle frontal gyrus 6 38 8 49 Sem > Non-Sem 
Right medial frontal gyrus 9 8 30 31 Sem > Non-Sem 

Right parahippocampal gyrus 36 26 -37 -12 Sem > Non-Sem 
Right posterior cingulate 31 12 -62 16 Sem > Non-Sem 

Right precuneus 19 20 -71 36 Sem > Non-Sem 
Right middle occipital gyrus 19 39 -68 -9 Sem > Non-Sem 
Right middle occipital gyrus 19 34 -82 18 Sem > Non-Sem 

Right lingual gyrus 18 18 -94 -3 Sem > Non-Sem 
Right cerebellum  33 -63 -31 Sem > Non-Sem 
Right cerebellum  13 -80 -32 Sem > Non-Sem 

      
Right inferior parietal lobule 40 43 -35 54 Non-Sem > Sem 

Right precentral gyrus 6 33 -15 65 Non-Sem > Sem 
-Sem = Semantic; Non-Sem = Non-Semantic 
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Figure 2.  
 
 
 
 

 
 
 
 
 
Brain regions showing a main effect of Encoding Condition. Regions representing 
Semantic > Non-Semantic encoding activity are displayed in Red. Regions representing 
Non-Semantic > Semantic encoding activity are displayed in Blue.



 

 

 
 

75 
 

      Table 8. Regions demonstrating a significant Group x Encoding Condition interaction 

 
Region of Interest Brodmann 

Area(s) 
X Y Z CON SCZ Z-value  

for ROI 
Left middle frontal gyrus 8 -30 29 43 S = N-S S > N-S** 2.93 

Left precentral gyrus 4 -20 -31 59 N-S > S* S = N-S 2.78 
Left posterior cingulate gyrus 23 -10 -58 16 S = N-S S > N-S**** 3.16 

Left inferior parietal lobule 40 -35 -49 39 S = N-S S > N-S* 3.23 
Left fusiform gyrus 19 -39 -66 -13 S = N-S S > N-S**** 3.27 

Left inferior occipital gyrus 18 -17 -97 -4 S = N-S S > N-S*** 3.12 
Left cerebellum  -19 -32 -17 S = N-S S > N-S*** 3.31 

        
Right cingulate gyrus 24 17 4 44 S = N-S S > N-S** 2.97 

Right anterior cingulate gyrus 24 1 -14 40 S = N-S S > N-S*** 3.29 
Right inferior parietal lobule 40 28 -46 41 N-S > S** S > N-S* 3.15 

Right fusiform gyrus 20 32 -25 -25 S = N-S S > N-S*** 3.33 
Right fusiform gyrus 18 40 -75 -13 S = N-S S > N-S**** 3.34 

Right precuneus 19 27 -68 37 S = N-S S > N-S**** 3.25 
Right lingual gyrus 17 13 -91 -4 S = N-S S > N-S**** 2.94 

 
     CON = Control; SCZ = Schizophrenia 
     S = Semantic encoding; N-S = Non-Semantic encoding 
     ROI = Region of interest 
     *p < .05 
     **p < .01 
     ***p < .005 
     ****p < .001
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5. I predicted a significant overlap in subsequent memory activity between groups in 

posterior/parietal regions. In contrast, subsequent memory activity among schizophrenia 

participants would be associated with significant underactivation (relative to controls) in 

anterior/frontal brain regions.  

Four participants (3 controls, 1 participants with schizophrenia) were excluded 

from the subsequent memory analyses for Semantically-encoded items because of 

missing trial types (i.e., no subsequently missed items that were seen during Semantic 

encoding).  

To address this hypothesis, I conducted a 2 x 2 repeated measures ANOVA, with 

Group (Control, Schizophrenia) as the between-subjects variable and Subsequent 

Memory (Remembered, Missed) as the within-subjects variable, separately for 

Semantically-encoded and Non-Semantically encoded items. For both encoding types, I 

predicted a main effect of Encoding Task, such that both groups would show significantly 

greater activity during encoding of subsequently recalled words than during encoding of 

subsequently missed words. I hypothesized that this effect would be observed in posterior 

brain regions, such as bilateral inferior parietal lobe (BA 40). In contrast, I predicted that 

neither group would show significantly greater activation during encoding of 

subsequently missed words, relative to encoding of subsequently remembered words.  

The ANOVA for Non-Semantically encoded items demonstrated that, contrary to 

my hypothesis, control and schizophrenia participants showed significant overlap in 

subsequent memory activity (Remember > Miss) in a number of areas of frontal cortex, 

including left and right inferior frontal gyrus (BA 44), left precentral gyrus (BA 6), and 

right middle frontal gyrus (BA 46). Consistent with my hypothesis, however, the groups 
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also demonstrated considerable overlap in subsequent memory activity (Remember > 

Miss) in posterior brain regions, including right superior parietal lobule (BA 7) and 

bilateral fusiform gyrus (BA 37; see Table 9, Figure 3). One region was identified which 

showed greater activity during Non-Semantic encoding for Missed than Remembered 

items (left superior temporal gyrus, BA 39). Finally, contrary to my hypothesis the 

analysis for Semantic encoding did not reveal any regions showing a significant main 

effect of Subsequent Memory (Table 9, Figure 3). 
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Table 9. Regions demonstrating a significant main effect of Subsequent Memory 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Direction 

Non-Semantic encoding      
Left inferior frontal gyrus 44 -50 22 26 Remember > Miss 

Left precentral gyrus 6 -44 2 35 Remember > Miss 
Left postcentral gyrus 3 -57 -11 43 Remember > Miss 

Left fusiform gyrus 37 -40 -48 -13 Remember > Miss 
Left inferior occipital gyrus 18 -40 -80 -2 Remember > Miss 
Left middle occipital gyrus 18 -34 -90 12 Remember > Miss 
Left middle occipital gyrus 19 -40 -64 -10 Remember > Miss 

Left precuneus 19 -25 -79 36 Remember > Miss 
Left cerebellum  -31 -40 -23 Remember > Miss 
Left cerebellum  -1 -45 -17 Remember > Miss 
Left cerebellum  -48 -51 -28 Remember > Miss 
Left cerebellum  -16 -39 -15 Remember > Miss 

      
Right inferior frontal gyrus 44 43 9 31 Remember > Miss 
Right inferior frontal gyrus 46 53 38 11 Remember > Miss 
Right middle frontal gyrus 46 47 30 23 Remember > Miss 

Right inferior temporal gyrus 37 52 -55 -6 Remember > Miss 
Right fusiform gyrus 20 29 -35 -16 Remember > Miss 
Right fusiform gyrus 37 39 -50 -16 Remember > Miss 

Right superior parietal lobule 7 28 -64 47 Remember > Miss 
Right middle occipital gyrus 19 37 -68 -10 Remember > Miss 
Right middle occipital gyrus 19 41 -83 10 Remember > Miss 

Right orbital gyrus 19 34 -74 27 Remember > Miss 
Right cerebellum  17 -48 -8 Remember > Miss 

      
Left superior temporal gyrus 39 -59 -61 29 Miss > Remember 

Semantic encoding      
no regions of significant activity      
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Figure 3.  
 
 

 
 

Brain regions showing a main effect of Subsequent Memory. Regions representing 
encoding activity for Remembered > Missed items are displayed in Red. Regions 
representing encoding activity for Missed > Remembered items are displayed in Blue. 
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I also predicted a significant Group x Subsequent Memory interaction, such that 

controls would show greater subsequent memory activity than schizophrenia participants 

for Non-Semantically-encoded items. Specifically, I hypothesized that for Non-

Semantically encoded items, controls would show greater subsequent memory-related 

activity (remember > miss) than schizophrenia participants in left inferior frontal gyrus 

(BA 45/47), inferior parietal lobe (BA 40), and hippocampus. However, I predicted that 

between-group differences in subsequent memory activity would be reduced or 

eliminated for Semantically encoded items.  

The ANOVAs revealed 3 regions that demonstrated a significant Group x Subsequent 

Memory interaction for Semantic encoding, as well as 17 regions demonstrating a 

significant Group x Subsequent Memory interaction for Non-Semantic encoding (Table 

10, Figure 4).  

Contrary to my predictions, post-hoc comparisons for the Semantic encoding 

regions revealed that controls showed significantly greater activity for Missed items than 

Remembered items in two of the three areas, while schizophrenia participants showed 

greater activity for Remembered than Missed items in one area (right inferior parietal 

lobule, BA 40). Contrary to my predictions, post-hoc comparisons for the Non-Semantic 

encoding regions revealed that in 14 of the 17 regions, schizophrenia participants 

demonstrated significantly greater encoding-related activity during items that were 

subsequently remembered (relative to subsequently missed). Notably, some of these 

regions have been previously identified in studies of subsequent memory in healthy 

controls (e.g., left superior frontal gyrus, left fusiform gyrus, left superior parietal lobule, 

left cerebellum), although others have not. In contrast, controls showed greater encoding 
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activity during items that were subsequently missed (relative to subsequently 

remembered) in 8 of the 17 regions (see Table 10, Figure 4). Surprisingly, a subset of the 

regions showing Miss > Remember activity among controls have also been identified as 

subsequent memory regions in previous studies (e.g., left medial frontal gyrus, left 

middle frontal gyrus, left cerebellum). 
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Table 10. Regions demonstrating significant Group x Subsequent Memory interactions 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Control Schizophrenia 
 

Z-value  
for ROI 

Semantic encoding        
Left middle frontal gyrus 46 -46 30 24 M > R** R = M 2.95 

Right superior temporal gyrus 22 49 -29 0 M > R* R = M 2.76 
Right inferior parietal lobule 40 42 -50 39 R = M R > M** 3.13 

Non-Semantic encoding        
Left medial frontal gyrus 9 -3 38 29 M > R** R = M 2.89 

Left superior frontal gyrus 10 -17 53 -5 M > R*** R = M 3.22 
Left superior frontal gyrus 8 -22 49 39 R = M R > M** 3.11 

Left superior parietal lobule 7 -29 -70 44 R = M R > M*** 2.72 
Left fusiform gyrus 19 -29 -47 -12 R = M R > M**** 2.87 

Left cuneus 19 -26 -86 22 R = M R > M**** 3.13 
Left cuneus 18 -21 -99 -1 M > R* R > M** 3.50 

Left cerebellum  -11 -45 -2 R = M R > M*** 2.94 
Left cerebellum  -23 -82 -24 M > R*** R > M** 3.87 
Left cerebellum  -46 -60 -35 M > R*** R > M** 4.08 

        
Right inferior frontal gyrus 47 47 23 -8 M > R* R > M*** 3.66 

Right superior frontal gyrus 6 9 10 66 M > R** R = M 3.07 
Right cuneus 17 13 -95 2 M > R* R > M* 2.96 

Right cerebellum  26 -55 -13 R = M R > M**** 2.89 
Right cerebellum  36 -71 -26 R = M R > M**** 3.03 
Right cerebellum  9 -80 -33 R = M R > M** 3.07 
Right cerebellum  20 -79 -15 R = M R > M** 2.96 

R = Remember; M = Miss; ROI = Region of interest 
*p < .05 
**p < .01 
***p < .005 
****p < .001 
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Figure 4. 

 

 

Brain regions demonstrating significant Group (control, schizophrenia) x Subsequent 
Memory (Remember, Miss) interactions. Areas demonstrating interactions for 
Semantically encoded items are displayed in red. Areas demonstrating interactions for 
Non-Semantically-encoded items are displayed in blue. 
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Encoding-Related Brain Activity: Summary  

The analyses in this section examined encoding-related and subsequent memory-

related brain activity in both groups. Regarding encoding-related brain activity, a number 

of predictions were upheld. Most notably, individuals with schizophrenia demonstrated 

robust brain activity differences between encoding conditions (Semantic > Non-

Semantic), whereas controls largely showed no differences or differences in the opposite 

direction. There was also evidence that Semantic encoding was associated with 

significant increases in task-related activation among schizophrenia participants relative 

to controls, in regions that included left inferior frontal (BA 44) and middle frontal gyrus 

(BA 9) and bilateral inferior parietal lobule (BA 40). Both findings further support the 

notion that individuals with schizophrenia show enhanced brain activity during 

supportive encoding conditions in episodic memory paradigms, although post-hoc 

analyses suggested that the additional activity in the schizophrenia group was 

pathological rather than compensatory in nature. In contrast to my hypotheses, I did not 

find the predicted significant activity in left inferior frontal gyrus during Semantic > Non-

Semantic encoding among schizophrenia participants. Furthermore, I did not find any 

significant between-group differences (control > schizophrenia) in the predicted frontal or 

hippocampal regions. 

 Regarding the subsequent memory data, I identified a number of brain regions in 

which subsequent memory effects were found in both controls and individuals with 

schizophrenia, as well as additional regions in which subsequent memory effects were 

found exclusively in schizophrenia participants. As predicted, the analyses revealed a 

significant degree of overlap in subsequent memory activity between the control and 
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schizophrenia participants in posterior brain areas (e.g., right superior parietal lobule, left 

precuneus). This finding contributes to a small but growing literature suggesting that 

subsequent memory activity in schizophrenia is similar to that of controls in areas of 

parietal cortex. Contrary to my predictions, however, controls and schizophrenia 

participants also showed overlapping patterns of subsequent memory activation in 

regions of bilateral frontal cortex (among other areas). Furthermore, schizophrenia 

participants showed significant activation differences between remembered and missed 

items (Remember > Miss) in additional regions of frontal cortex, whereas controls largely 

showed either no differences between remembered and missed items or greater activity 

for missed than remembered items in those areas. To my knowledge, this is a novel 

finding and suggests that subsequent memory effects in schizophrenia participants can 

also be identified in frontal regions and overlap to some degree with subsequent memory 

activity found in healthy controls.  

Retrieval-Related Brain Activity: Results 

The third set of results outlined below concerns brain activity during retrieval. 

Specifically, the focus of the following predictions relates to the effect of both Encoding 

Orientation (Semantic vs. Non-Semantic) and Cueing (Cued vs. Uncued) on retrieval-

related brain activity in participants with schizophrenia and healthy controls. 

Furthermore, this set of hypotheses examines the interactive effects of Encoding 

Orientation, Cueing, and Group on brain activity during retrieval. The specific questions 

used to address this area of interest are as follows:  
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Effects of Cueing on Retrieval-Related Brain Activity 

1. I predicted that during retrieval of Uncued words (relative to Cued retrieval), 

schizophrenia participants would show the typical pattern of fronto-temporal 

dysregulation found in previous studies, including overactivation of frontal regions and 

underactivation of hippocampus.  

In order to address this hypothesis, I directly compared the control and 

schizophrenia groups on Uncued retrieval-related activity, using a between groups t-test. 

I predicted significant between-group differences (control > schizophrenia) in retrieval-

related brain activity during retrieval of Uncued words. Specifically, schizophrenia 

participants will show significant reductions in hippocampal activity, in combination with 

significantly greater activity in frontal cortex regions, such as inferior frontal gyrus (BA 

45/47), bilateral middle frontal gyrus (BA 6/44) and anterior prefrontal cortex (BA 

10/46).  

 Contrary to my predictions, results of the analysis revealed that controls activated 

frontal regions (among others) to a significantly greater extent than schizophrenia 

participants. Regions of significant between group differences included left (BA 47) and 

right (BA 45) inferior frontal gyrus, bilateral middle frontal gyrus (BA 10), and left 

superior frontal gyrus (BA 8). However, also contrary to my predictions, I did not detect 

any significant between-group differences in hippocampus. All regions are displayed in 

Table 11.  
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Table 11. Regions of significant between-group differences: Uncued retrieval 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Z-value  
for ROI 

Control > Schizophrenia      
Left inferior frontal gyrus* 47 -43 21 -5 3.64 
Left middle frontal gyrus* 10 -37 42 12 3.07 
Left middle frontal gyrus* 9 -37 15 33 3.52 
Left middle frontal gyrus 9 -27 38 36 3.02 

Left superior frontal gyrus 8 -27 14 52 2.66 
Left caudate*  -13 5 11 3.75 
Left putamen  -26 -11 7 2.69 

Left middle temporal gyrus* 39 -51 -75 25 3.66 
Left superior temporal gyrus 22 -60 -1 9 3.17 
Left inferior parietal lobule* 40 -42 -68 45 3.96 
Left inferior parietal lobule* 40 -54 -49 45 3.42 

Posterior cingulate gyrus 23 -1 -28 33 3.08 
Posterior cingulate gyrus* 31 -1 -61 28 3.37 

Left middle occipital gyrus 19 -31 -78 20 3.09 
Left lingual gyrus* 18 -6 -89 -1 3.14 

      
Right inferior frontal gyrus* 44 39 36 2 3.31 
Right inferior frontal gyrus* 45 55 21 5 3.43 

Right middle frontal gyrus 10 32 43 21 3.01 
Right middle frontal gyrus 9 44 32 34 2.95 

Right superior frontal gyrus* 8 9 30 48 3.42 
Right precentral gyrus 6 51 2 17 3.13 

Right anterior cingulate gyrus 32 6 31 22 2.98 
Right insula  37 -16 10 2.81 

Right thalamus  1 -23 10 3.09 
 Right middle temporal gyrus* 21 55 -39 -3 3.04 

Right middle temporal gyrus 39 48 -62 11 3.20 
Right middle temporal gyrus 21 49 -12 -12 2.82 

Right posterior cingulate* 30 20 -57 12 3.22 
Right inferior parietal lobule* 40 34 -52 45 3.69 

Right angular gyrus* 39 50 -66 33 3.21 
Right orbital gyrus* 19 33 -82 27 3.13 

Right inferior occipital gyrus* 18 27 -85 -5 3.60 
Right cerebellum*  55 -48 -26 3.38 

      
Schizophrenia > Control      
no regions of significant activity      

*Denotes regions that continued to show significant between-group differences when 
signal-to-noise ratio was equated between groups.
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2. I also predicted that Cued (relative to Uncued) retrieval would be associated with 

fewer between-group differences in retrieval-related brain activity.  

 In order to address this hypothesis, I compared control and schizophrenia 

participants on retrieval-related brain activity during Cued retrieval using a between 

groups t-test. I predicted that schizophrenia participants would show markedly reduced 

activation differences in hippocampus (control > schizophrenia), as well as inferior 

frontal (BA 45/47), middle frontal (BA 6/44), and anterior prefrontal (BA 10/46) cortices 

(schizophrenia > control), although such differences would persist despite the presence of 

retrieval cues. 

 Contrary to my hypothesis, Cued retrieval was not associated with noticeably 

fewer between-group differences in retrieval-related brain activity. Similar to the Uncued 

retrieval condition, control participants continued to show greater retrieval-related 

activity than schizophrenia participants in a wide variety of fronto-temporal regions, as 

well as posterior areas (see Table 12). Unlike Uncued retrieval, however, schizophrenia 

participants showed greater activity than controls in one brain region (left cerebellum). 

 Next, in order to assess the effects of Cueing and Group on retrieval-related brain 

activity, I conducted a voxel-wise repeated measures ANOVA, with Group (control, 

schizophrenia) as the between-subjects variable and Cueing (Cued, Uncued) as the 

within-subjects variable. I predicted a significant main effect of Cueing, such that both 

groups would show significantly greater hippocampal activity (particularly in left 

hemisphere) for Cued (relative to Uncued) recall.  
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Table 12. Regions of significant between-group differences: Cued retrieval 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Z-value  
for ROI 

Control > Schizophrenia      
 Left inferior frontal gyrus* 47 -42 24 -8 3.71 

Left middle frontal gyrus* 10 -43 46 11 3.17 
Left middle frontal gyrus* 9 -41 13 39 3.43 
Left superior frontal gyrus 9 -22 42 33 3.06 

Left superior frontal gyrus* 8 -4 32 53 3.00 
Left putamen  -19 9 9 3.20 

Left middle temporal gyrus* 21 -57 -50 2 3.54 
Left superior temporal gyrus 22 -57 8 0 3.40 

Left posterior cingulate gyrus 31 -1 -28 35 2.94 
Left inferior parietal lobule* 40 -51 -42 43 3.25 

Left precuneus* 18 -3 -67 27 3.26 
Left middle occipital gyrus 19 -31 -79 19 3.49 

      
Right inferior frontal gyrus 44 41 18 12 3.30 
Right inferior frontal gyrus 44 56 3 19 3.38 
Right middle frontal gyrus 10 35 37 -3 3.35 
Right medial frontal gyrus 8 7 46 37 3.33 

Right superior frontal gyrus* 8 16 33 50 3.59 
Right superior frontal gyrus* 8 33 11 48 3.58 
Right superior frontal gyrus 9 31 43 26 3.42 

Right middle temporal gyrus* 39 51 -64 24 3.33 
Right middle temporal gyrus* 21 59 -49 -6 3.54 
Right middle temporal gyrus 21 50 -13 -11 2.91 

Right insula  46 -24 17 2.84 
Right caudate  22 -32 15 2.56 

Right caudate*  9 2 10 3.35 
Right anterior cingulate gyrus 24 15 8 35 2.81 

Right superior parietal lobule* 7 39 -55 49 3.87 
Right fusiform gyrus* 18 29 -84 -14 3.22 

Right superior occipital gyrus* 19 33 -82 28 2.89 
      

Schizophrenia > Control      
Left cerebellum*  -13 -40 -40 2.88 

*Denotes regions that continued to show significant between-group differences when 
signal-to-noise ratio was equated between groups.
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My hypothesis regarding the main effect of Cueing was largely unsupported. The 

analysis revealed only one region demonstrating a significant main effect of Cueing (left 

lingual gyrus, BA 18). Post-hoc comparisons revealed that both groups activated this 

region more during Cued than Uncued retrieval. However, I did not detect any main 

effects in the predicted regions (i.e., hippocampus).  

Furthermore, I predicted a significant Cueing x Group interaction, such that 

participants with schizophrenia would show more enhanced hippocampal activity 

(relative to controls) during Cued than Uncued recall. Specifically, I predicted that the 

provision of recall cues will be associated with a robust pattern of brain activity in 

hippocampus, in combination with reduced activity in bilateral prefrontal cortex (BA 

45/47, 10/46), in the schizophrenia group.  

 Contrary to my hypothesis, schizophrenia participants did not show significant 

activation enhancements in hippocampus relative to controls during Cued recall (as 

compared to Uncued recall). In fact, a Group by Cueing interaction was detected in only 

one region, an area in left frontal cortex closest to BA 6 (-26, 1, 32). Post-hoc 

comparisons revealed that the between-group difference (control > schizophrenia) during 

Cued retrieval was smaller than during Uncued retrieval. 

Effects of Cueing: Summary 

 My predictions with regard to the effects of Cueing on retrieval-related brain 

activity were unsupported. During both Cued and Uncued retrieval, controls activated a 

network of frontal, temporal, and posterior regions to a significantly greater degree than 

schizophrenia participants. Thus, despite the behavioral benefits conferred by the 
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retrieval cues, schizophrenia participants did not demonstrate the expected modulations 

in brain activity when these cues were present. 

 

Effects of Encoding Orientation on Retrieval-Related Brain Activity 

3. Consistent with previous work, schizophrenia participants would demonstrate 

significant deficits in retrieval-related brain activation during retrieval of words encoded 

Non-Semantically. 

To address this hypothesis, I conducted a between-groups t-test directly 

comparing retrieval-related activity between groups for retrieval of words encoded in the 

Non-Semantic encoding condition. I predicted that retrieval of items encoded Non-

Semantically would be associated with significant between-group differences (control > 

schizophrenia) in retrieval-related brain activity. More specifically, controls would show 

significantly greater retrieval-related activity than schizophrenia participants in 

hippocampus, while schizophrenia participants would show significantly greater 

activation than controls in bilateral frontal regions (BA 45/47, BA 10/46). 

My predictions regarding this hypothesis were somewhat supported. The analysis 

revealed significant between-group differences (control > schizophrenia) in retrieval-

related brain activity in variety of regions, including those that are typically associated 

with episodic memory retrieval (e.g., left middle frontal gyrus, left inferior parietal 

lobule). However, between-group differences were not detected in hippocampus (see 

Table 13 for all regions). 
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Table 13. Regions of significant between-group differences: Non-Semantic retrieval 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Z-value  
for ROI 

Control > Schizophrenia      
Left inferior frontal gyrus*  47 -39 20 -8 3.90 

Left middle frontal gyrus 6 -21 19 52 2.78 
Left middle frontal gyrus* 10 -39 44 14 3.21 
Left middle frontal gyrus 9 -25 42 34 2.98 

Left middle frontal gyrus* 9 -42 14 38 3.43 
Left superior frontal gyrus  8 -3 42 44 3.43 

Left middle temporal gyrus 21 -55 -29 -6 2.89 
Left middle temporal gyrus* 37 -56 -53 -2 3.16 

Left superior temporal gyrus* 22 -57 5 1 3.62 
Left putamen*  -22 5 9 3.56 

Left inferior parietal lobule* 40 -54 -44 44 3.51 
Left precuneus* 31 -6 -61 26 3.59 

Left middle occipital gyrus*  19 -31 -79 19 3.54 
      

Right inferior frontal gyrus* 45 54 22 2 3.72 
Right inferior frontal gyrus 44 36 39 1 3.22 
Right middle frontal gyrus 9 35 42 27 3.41 

Right superior frontal gyrus* 8 14 32 48 3.50 
Right superior frontal gyrus* 8 33 13 49 3.49 

Right precentral gyrus 6 57 3 14 3.42 
Right insula 13 39 10 -4 3.06 
Right insula 13 37 4 17 2.97 
Right insula 13 46 -19 14 2.80 

Right anterior cingulate gyrus 24 8 30 16 3.01 
Right anterior cingulate gyrus 24 14 8 37 2.76 

Right thalamus  22 -27 6 2.79 
Right middle temporal gyrus 21 56 -38 -3 3.20 
Right middle temporal gyrus 21 55 -17 -18 3.01 

Right middle temporal gyrus* 39 51 -64 28 3.08 
Right superior parietal lobule* 7 39 -58 52 3.64 
Right inferior occipital gyrus* 18 27 -87 -14 3.26 

Right lingual gyrus* 17 3 -91 -4 3.29 
      

Schizophrenia > Control      
no regions of significant activity      

*Denotes regions that continued to show significant between-group differences when 
signal-to-noise ratio was equated between groups.
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4. In contrast, schizophrenia participants would show more typical retrieval-related 

brain activity patterns during recall of items encoded Semantically.  

In order to address this hypothesis, I conducted a within-group t-test comparing 

retrieval-related brain activity for items encoded Semantically vs. Non-Semantically 

among schizophrenia participants. I predicted that during retrieval of items that were 

encoded Semantically (as compared to Non-Semantically), schizophrenia participants 

would show enhanced activity in left inferior frontal gyrus (BA 45/47), anterior 

prefrontal cortex (BA 10/46), inferior parietal lobe (BA 40), and hippocampus (among 

other regions).  

Contrary to my hypothesis, retrieval of items encoded Semantically (relative to 

Non-Semantically) among schizophrenia participants was associated with significant 

activity in only one region (left subcallosal gyrus, BA 25). The opposite contrast (Non-

Semantic retrieval > Semantic retrieval), however, revealed significant activity in 12 

regions, with some indication of more right-lateralized than left-lateralized activity. Full 

results are displayed in Table 14 and Figure 5.  
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Table 14. Regions of significant retrieval-related activity for items encoded 
Semantically vs. Non-Semantically: Schizophrenia participants 
 

Region of Interest Brodmann 
Area(s) 

X Y Z 

Semantic > Non-Semantic     
Left subcallosal gyrus 25 -10 21 -13 

     
Non-Semantic > Semantic     

Left inferior frontal gyrus 44 -42 7 26 
Left fusiform gyrus 18 -33 -78 -13 

Left middle occipital gyrus 18 -23 -98 11 
     

Right inferior frontal gyrus 45 31 26 6 
Right middle frontal gyrus 9 41 11 32 

Right anterior cingulate gyrus 32 1 21 40 
Right parahippocampal gyrus 37 23 -45 -8 

Right fusiform gyrus 37 44 -62 -9 
Right fusiform gyrus 19 27 -80 -11 

Right cuneus 17 18 -95 -2 
Right middle occipital gyrus 19 29 -83 21 

Right cerebellum  4 -74 -31 
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Figure 5.  

  

 

 

Brain regions in participants with schizophrenia demonstrating significant differences in 
brain activity for retrieval of Semantically-encoded vs. Non-Semantically-encoded items. 
The Semantic > Non-Semantic retrieval contrast is displayed in red. The Non-Semantic > 
Semantic retrieval contrast is displayed in blue. 
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5. Furthermore, retrieval of items encoded Semantically would be associated with fewer 

between-group differences (control > schizophrenia) in brain activity.  

In order to address this hypothesis, I conducted a between groups t-test, in order 

to directly compare retrieval-related activity between groups for retrieval of words 

encoded Semantically. Based on previous findings in this area, I predicted that during 

retrieval of Semantically encoded items, controls would again show more activity than 

schizophrenia participants in hippocampus, while schizophrenia participants would show 

greater activity in bilateral inferior frontal gyrus (BA 45/47) and middle frontal gyrus 

(BA 6/44). 

Contrary to my predictions, controls did not show significant enhancements in 

hippocampal activity relative to schizophrenia participants during retrieval of 

Semantically encoded items, although they demonstrated greater activity than 

schizophrenia participants in numerous other regions (see Table 15). These included 

bilateral inferior frontal (BA 44, 47) and middle frontal gyrus (BA 6, 9), anterior 

cingulate (BA 24), and right superior parietal lobule (BA 7). Also contrary to my 

hypothesis, schizophrenia participants failed to activate any brain regions to a greater 

degree than controls during retrieval of Semantically encoded items.  
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Table 15. Regions of significant between-group differences: Semantic retrieval 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Z-value  
for ROI 

Control > Schizophrenia      
Left inferior frontal gyrus* 47 -41 23 -8 3.34 
Left middle frontal gyrus* 10 -47 48 -5 2.72 
Left middle frontal gyrus 9 -21 38 36 2.97 
Left middle frontal gyrus 46 -35 41 15 3.08 

Left middle frontal gyrus* 9 -44 24 31 3.19 
Left middle frontal gyrus* 9 -30 11 38 3.14 

Left cingulate gyrus 23 -1 -28 33 3.15 
Left angular gyrus* 39 -53 -61 36 3.95 

Left precuneus* 31 0 -62 26 3.22 
Left middle occipital gyrus 19 -31 -79 19 3.32 

Left lingual gyrus  18 -13 -84 4 2.82 
      

Right inferior frontal gyrus* 44 55 16 15 3.14 
Right middle frontal gyrus 46 37 35 26 3.13 

Right middle frontal gyrus* 6 34 9 44 3.17 
Right medial frontal gyrus 8 3 46 38 3.08 

Right superior frontal gyrus* 8 11 26 50 3.39 
Right anterior cingulate gyrus 24 10 30 17 2.89 
Right anterior cingulate gyrus 24 13 5 34 2.84 

Right caudate*  9 2 12 3.35 
Right caudate  20 -32 14 2.72 

Right middle temporal gyrus* 37 53 -66 9 3.34 
Right middle temporal gyrus* 37 59 -50 -7 3.53 

Right transverse temporal gyrus 41 47 -20 13 2.91 
Right superior parietal lobule* 7 38 -56 50 4.00 
Right posterior cingulate gyrus 30 25 -68 7 3.09 

Right angular gyrus* 39 54 -68 30 3.41 
Right orbital gyrus* 19 32 -82 25 3.12 

Right fusiform gyrus* 19 30 -83 -14 3.40 
Right precuneus 19 9 -80 40 2.84 

Right lingual gyrus 18 6 -91 -1 3.00 
      

Schizophrenia > Control      
no regions of significant activity      

*Denotes regions that continued to show significant between-group differences when 
signal-to-noise ratio was equated between groups.
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Next, in order to further examine the effects of Group and Encoding Orientation 

on retrieval-related brain activity, I conducted a voxel-wise repeated measures ANOVA 

with Group (Control, Schizophrenia) as the between subjects variable and Encoding 

Orientation (Semantic, Non-Semantic) as the within-subjects variable. I first predicted a 

significant main effect of Orientation, such that both groups would show more left 

inferior frontal cortex (BA 45/47), anterior prefrontal cortex (BA 10/46), and 

hippocampal activity during retrieval of Semantically encoded words.  

The ANOVA identified 16 regions that showed significant main effects of 

Encoding Orientation. Contrary to my predictions, however, the differences in all regions 

were in the direction of greater brain activity during retrieval of Non-Semantically 

encoded items (relative to Semantically-encoded items). The analysis revealed that both 

groups activated bilateral inferior frontal gyrus (BA 47), right middle frontal gyrus (BA 

9), and right fusiform gyrus (BA 37) to a greater degree during retrieval of Non-

Semantically encoded items. All regions are displayed in Table 16 and Figure 6. 
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Table 16. Regions demonstrating a significant main effect of Encoding Condition for 
Retrieval-related brain activity 
 

Region of Interest Brodmann 
Area(s) 

X Y Z Direction 

Left inferior frontal gyrus 47 -37 23 1 Non-Sem > Sem 
Left inferior frontal gyrus 44 -41 8 27 Non-Sem > Sem 
Left medial frontal gyrus 8 -1 19 45 Non-Sem > Sem 

Left middle occipital gyrus 18 -29 -79 -10 Non-Sem > Sem 
Left middle occipital gyrus 18 -25 -91 7 Non-Sem > Sem 

Left cerebellum  -5 -76 -30 Non-Sem > Sem 
      

Right inferior frontal gyrus 47 36 24 -1 Non-Sem > Sem 
Right inferior frontal gyrus 47 50 39 -11 Non-Sem > Sem 
Right middle frontal gyrus 9 46 8 38 Non-Sem > Sem 
Right middle frontal gyrus 46 52 24 24 Non-Sem > Sem 

Right fusiform gyrus 37 42 -60 -17 Non-Sem > Sem 
Right inferior occipital gyrus  18 32 -79 -6 Non-Sem > Sem 
Right middle occipital gyrus 19 31 -85 15 Non-Sem > Sem 

Right cuneus 18 17 -99 3 Non-Sem > Sem 
Right cerebellum  28 -41 -16 Non-Sem > Sem 
Right cerebellum  3 -57 0 Non-Sem > Sem 

 
*all p’s < .001 
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Figure 6.  
 

 
 
Brain regions demonstrating a significant main effect of Encoding Condition for 
retrieval-related brain activity. In all regions (shown in red), retrieval of Non-
Semantically-encoded items was associated with significantly greater brain activity than 
retrieval of Semantically encoded items
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I also predicted a Group x Encoding Orientation interaction, such that participants with 

schizophrenia would show significantly greater retrieval-related brain activity differences 

in left inferior frontal gyrus (BA 45/47), anterior prefrontal cortex (BA 10/46), and 

hippocampus for retrieval of Semantically-encoded items (relative to Non-Semantically 

encoded items), compared to controls. 

Contrary to my hypothesis, the analysis revealed only two regions that 

demonstrated a significant Group by Encoding Orientation interaction: right inferior 

temporal gyrus (BA 20; 58, -21, -17) and left caudate (-18, -24, 28). Post-hoc 

comparisons revealed that in both regions, between-group differences (control > 

schizophrenia) were greater during retrieval of Non-Semantically encoded items, 

compared to retrieval of Semantically encoded items. 

Effects of Encoding Orientation on Retrieval-Related Activity: Summary 

Nearly all of my hypotheses regarding encoding orientation effects on retrieval-

related brain activity were unsupported. Between-group differences in retrieval activity 

(control > schizophrenia) following Non-Semantic encoding were not reduced or 

eliminated for retrieval of Semantically encoded items as I had predicted. Furthermore, 

schizophrenia participants activated numerous regions to a greater degree when retrieving 

Non-Semantically encoded items (relative to Semantically-encoded items). Although not 

predicted, this finding is notable and may suggest that more cognitive effort was exerted 

by schizophrenia participants in order to retrieve poorly encoded items. 
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Interaction between Cueing and Encoding Orientation 

6. Finally, I predicted that schizophrenia participants would show retrieval-related 

activity that was most similar to that of controls during Cued retrieval of Semantically 

encoded words. 

In order to address this hypothesis, I conducted a voxel-wise repeated measures 

ANOVA with Group (Control, Schizophrenia) as the between subjects variable, and 

Encoding Orientation (Semantic, Non-Semantic) and Cueing (Cued, Uncued) as the 

within-subjects variables. I predicted a significant Group x Encoding Condition x Cueing 

interaction, such that retrieval-related brain activity among schizophrenia participants 

would be most similar to that of control participants in left inferior frontal gyrus (BA 

45/47), middle frontal gyrus (BA 6/44), anterior prefrontal cortex (BA 10/46), and 

hippocampus during Cued (relative to Uncued) retrieval of words encoded Semantically 

(relative to Non-Semantically). Under this hypothesis, participants with schizophrenia 

would show significantly more retrieval-related activity in these regions when oriented to 

the semantic relationship between words and scenes (as compared to not) and when 

provided with retrieval cues (as compared to not provided with cues). Furthermore, I 

predicted that these brain activity differences would be significantly greater than those 

found in the control group.  

 Contrary to my hypotheses, there were no regions that showed significant Group 

by Cueing by Encoding Orientation interactions and survived the threshold and clustering 

analysis, although subthreshold activity was detected in bilateral inferior frontal regions 

and a left inferior temporal lobe region, among others.  
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Retrieval-Related Brain Activity: Summary  

 Overall, the majority of my hypotheses regarding retrieval-related brain activity 

were unsupported. Cueing had virtually no impact on between-group differences in brain 

activity at retrieval. Controls demonstrated significantly greater activity than 

schizophrenia participants in a number of brain regions during both Cued and Uncued 

retrieval. Finally, both groups showed greater brain activity during retrieval of Non-

Semantically encoded items, whereas the opposite contrast (Semantic > Non-Semantic) 

revealed few significant regions, suggesting that the increased activity seen for retrieval 

of Non-Semantically encoded items reflected increased retrieval effort by both groups.  

Effect of Signal-to-Noise Ratio on Task-Related Brain Activity 
 
 One potential confounding factor related to neuroimaging analyses (particularly 

involving psychiatric populations, such as individuals with schizophrenia) is poor signal-

to-noise ratio (SNR). Specifically, the fMRI signal that is derived from brain tissue in 

individuals with schizophrenia is often less strong than the signal from control 

participants. This may be due, at least in part, to inherent properties of the brain tissue 

itself, as well as factors related to participant behavior during the data acquisition process 

(e.g., excessive head movement in scanner). Between-group discrepancies in brain signal, 

therefore, make it difficult to interpret differences in brain activity, as such differences 

could reflect genuine variation in brain activity between groups or simply an artifact.  

 In order to address this issue, I first compared the peak SNR values for control 

and schizophrenia participants in each of the 9 scanning runs. In 7 of the 9 runs, control 

participants had significantly higher peak SNR values than schizophrenia participants (all 

p’s < .04), with trend-level effects for the remaining 2 runs (p-values of .06 and .11, 
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respectively). Therefore, I created 2 groups (n = 15 for each) that were matched on peak 

SNR (control = 503.3; schizophrenia = 514.9). Using these groups, I compared control 

and schizophrenia participants on brain activity within each of the regions that showed 

significant between-group differences in the analyses described above.  

Effect of Signal-to-Noise Ratio on Encoding & Subsequent Memory Analyses 

 With regard to between-group differences observed during Semantic encoding, all 

regions that previously demonstrated significant group differences (control > 

schizophrenia or schizophrenia > control) remained significant with the matched groups. 

The analysis for Non-Semantic encoding revealed that all regions in the schizophrenia > 

control contrast remained significant, while 9 out of 12 regions in the control > 

schizophrenia contrast remained significant. Left parahippocampal gyrus, right fusiform 

gyrus, and left cerebellum were no longer significant when SNR was matched across 

groups.  

 The Group x Encoding Condition analysis revealed that 10 out of 14 regions 

remained significant, including anterior and posterior cingulate gyrus, right inferior 

parietal lobule, and right fusiform gyrus, while left middle frontal (BA 8) and precentral 

gyrus (BA 4) activity was no longer significant. Lastly, 18 of 20 regions demonstrating a 

Group x Subsequent Memory interaction remained significant when SNR-matched 

groups were used. Only regions in left and right cerebellum were non-significant, while 

areas including left middle frontal gyrus (BA 46), right inferior parietal lobule (BA 40), 

and left medial frontal gyrus (BA 9) continued to show a significant interaction.  

Effect of Signal-to-Noise Ratio on Retrieval Analyses 
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 Comparison of the matched groups in the previously defined regions for Uncued 

retrieval revealed that 19 of the 33 regions remained significant (control > 

schizophrenia). These included left middle frontal gyrus (BA 9), right inferior frontal 

gyrus (BA 45), and bilateral inferior parietal lobule (BA 40), all of which are known to 

contribute to successful retrieval. Similarly, 15 of the original 29 regions identified for 

between-group differences in Cued retrieval (control > schizophrenia) remained 

significant. Among these were left middle frontal gyrus (BA 9), right superior frontal 

gyrus (BA 8), left inferior parietal lobule (BA 40), and right fusiform gyrus (BA 18). 

 Analysis of the between-group differences (control > schizophrenia) in retrieval 

for items encoded Non-Semantically revealed that 16 out of 31 regions remained 

significant, while 16 of 30 regions remained significant for the Semantic retrieval 

analysis (control > schizophrenia). For items encoded both Non-Semantically and 

Semantically, controls continued to demonstrate significantly greater retrieval-related 

brain activity in bilateral inferior frontal gyrus (BA 44, 45/47), left middle frontal gyrus 

(BA 9), and right superior parietal lobule (BA 7), among a number of other regions.  

SNR-Matched Analyses: Summary 

 The Encoding and Subsequent Memory brain activity analyses using groups of 

control and schizophrenia participants matched on signal-to-noise ratio revealed few 

discrepancies compared to the original findings. Most (or all) regions of between-group 

differences that were originally identified remained significant. This is likely related, at 

least in part, to the fact that many of the differences were in the direction of 

schizophrenia participants > controls. Thus, it is logical that when using only 

schizophrenia participants with higher SNR, the differences would remain significant.  
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 The analyses of Retrieval-related brain activity revealed somewhat different 

results. In the four contrasts described, roughly half of the regions that were originally 

found to be more active in controls than schizophrenia participants were no longer 

significant when SNR was matched between groups. This suggests that some of the 

between-group differences observed at retrieval may be artifactual in nature, possibly due 

to head movement, speaking in the scanner, or other factors. However, as approximately 

half of the regions remained significant, it is logical to conclude that there are likely true 

differences between groups during episodic memory retrieval, particularly in frontal and 

parietal regions. 

Individual Difference Measures: Results 

The fourth set of results outlined below concerns the effect of individual 

differences on behavior and brain activity. Specifically, the focus of the following 

predictions relates to the influence of inherent semantic processing ability on episodic 

memory and task-related brain activity in individuals with schizophrenia and healthy 

controls. The specific questions used to address this area of interest are as follows:  

1. I predicted that participants from both groups who scored higher on measures of 

semantic processing ability would show greater subsequent memory benefits for 

semantically-encoded items (relative to items encoded non-semantically) than 

participants who scored lower on semantic processing measures. 

 In order to address this hypothesis, I first created a verbal semantic processing 

composite variable by summing z-scores from performance on the WAIS Vocabulary, 

WAIS Similarities, and Pyramids and Palm Trees tests for each participant (alpha = 

0.92). I then conducted Pearson’s r correlations between recall measures and the semantic 
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processing composite variable. Results are displayed in Table 17. Control participants 

demonstrated significant correlations between semantic processing ability and nearly all 

recall measures: percent correct for Non-Semantically-encoded words, Uncued words, 

Cued words, total percent correct, and total percent correct of previously-seen items. 

Consistent with predictions, schizophrenia participants also demonstrated significant 

correlations between semantic processing ability and Semantically-encoded percent 

correct, as well as semantic processing ability and Non-Semantically-encoded percent 

correct, total percent correct, total percent correct of previously-seen items, and Uncued 

percent correct. None of the correlations differed significantly between groups.  

Inspection of the scatterplot showing the relationship between semantic 

processing ability and recall of semantically-encoded items (Figure 7) suggested more 

variance in recall performance and semantic processing ability among schizophrenia 

participants. However, it is also clear that individuals with schizophrenia who are higher 

on semantic processing ability perform more similarly to controls on recall of 

semantically-encoded items than schizophrenia participants who are lower on semantic 

processing ability.
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Table 17. Correlations between symptoms & semantic processing and recall performance 

 
 
 Total % 

Correct 
Total % 
Correct 
(of old) 

% Correct 
Rejections 

Non-
Semantic 
% Correct 

Semantic 
% Correct 

Uncued 
% Correct 

Cued 
% Correct 

Control        
Semantic Processing .48* .46* .29 .49* .35 .48* .43* 
Positive Symptoms .02 .05 -.20 .06 .00 .04 .05 

Negative Symptoms -.15 -.09 -.47* -.10 -.09 -.14 -.04 
Disorganized Symptoms -.19 -.21 .08 -.31 .09 -.21 -.19 

Schizophrenia        
Semantic Processing .52** .50* .24 .41* .55*** .41* .39 
Positive Symptoms .00 .03 -.11 .01 .06 .22 .17 

Negative Symptoms -.06 -.11 .15 -.10 -.09 -.18 -.13 
Disorganized Symptoms -.32 -.32 -.10 -.21 -.42* -.16 -.16 

 
-Neuropsychological and symptom data unavailable for 2 participants (1 control, 1 schizophrenia) 
 
*p < .05 
**p < .01 
***p < .005 
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Figure 7. Scatterplot demonstrating association between Semantic Processing 
Composite measure and recall of Semantically-encoded items in both groups 
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Next, I created symptom summary scores for three symptom clusters (positive, 

negative, and disorganized) by summing global rating scores for each domain from the 

SAPS and SANS. I then performed correlations between the symptoms summary 

measures and recall performance, given the established relationship between 

symptomotology and cognition in schizophrenia. Results are displayed in Table 17. The 

control group showed a significant positive correlation between the negative symptom 

cluster and the number of correct rejections at recall. Among schizophrenia participants, 

there was a significant correlation between disorganization symptoms and number of 

Semantically-encoded words that were recalled. Further correlations were conducted 

between each of the disorganization symptoms (global bizarre behavior, global formal 

thought disorder, global attention) and correct Semantic recall, in order to more fully 

characterize the nature of this relationship among schizophrenia participants. These 

analyses revealed trend-level correlations between Semantic recall and global attention 

ratings (r = -0.39, p = .052), as well as Semantic recall and global bizarre behavior (r = -

0.35, p = .07), while the correlation between Semantic recall and global formal thought 

disorder was significantly lower (p > .96).  

 I also performed correlations between the symptom summary measures and the 

semantic processing composite variable, in order to evaluate the relationship between 

symptomotology and semantic processing ability. Among controls, semantic processing 

ability correlated significantly with disorganized symptoms (r = -0.59, p < .005), while 

the correlations with positive and negative symptoms were non-significant (p’s > .37). In 

the schizophrenia group, semantic processing ability also correlated significantly with 
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disorganized symptoms (r = -0.67, p < .001), while the other correlations were non-

significant (p’s > .68).  

 Lastly, I performed correlations between a measure of abstract reasoning ability 

(Matrix Reasoning) and memory performance in each group separately, in order to 

evaluate the specificity of the relationship between semantic processing ability and 

memory in this sample. Neither the participants with schizophrenia (all p’s > .22) nor the 

control participants (all p’s > .19) showed significant associations between performance 

on the Matrix Reasoning subtest and any of the recall measures.   

2. Participants from both groups who scored higher on measures of semantic processing 

ability would show greater activation enhancements (Semantic encoding > Non-Semantic 

encoding) in brain regions typically associated with semantic encoding, including left 

inferior frontal gyrus (BA 45/47).  

To address this hypothesis, I conducted a regions-of-interest (ROI) analysis. To 

do this, I correlated semantic processing ability with average brain activity in each of the 

ROIs that previously showed main effects of Encoding Orientation (Semantic > Non-

Semantic). Results are displayed in Table 18. Contrary to my predictions, only 

schizophrenia participants demonstrated significant correlations between Semantic 

encoding-related brain activity and the semantic processing composite measure, whereas 

controls did not demonstrate such relationships. The schizophrenia participants showed 

significant negative correlations in three regions: two areas of left middle frontal gyrus 

(BA 6) and left inferior frontal gyrus (BA 9). Thus, better semantic processing abilities 

were associated with less activation in these regions. Inspection of the scatterplots 

showing the relationship between semantic processing ability and brain activity during 
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Semantic encoding (Figures 8, 9, and 10) suggested a similar relationship between these 

two variables for participants with schizophrenia and controls alike. Although the 

significant correlation observed in the schizophrenia group in one region (-41, 3, 29) may 

have been driven by outlying data points, results of the correlational analyses suggest that 

schizophrenia participants who are higher on semantic processing ability show brain 

activity during encoding that is similar to that of controls who are high on semantic 

processing ability. Furthermore, semantic processing ability reliably differentiates the 

magnitude of encoding-related brain activity in schizophrenia participants with high 

versus low semantic processing ability.  
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Table 18. Regions demonstrating significant correlations between semantic encoding-
related brain activity and the semantic processing composite variable  
 

Region of Interest Brodmann 
Area(s) 

X Y Z r p-value 

Control participants       
no significant correlations       

Participants with schizophrenia       
Left inferior frontal gyrus 9 -41 3 29 -.45 .033 
Left middle frontal gyrus 6 -45 2 49 -.48 .019 
Left middle frontal gyrus 6 -28 15 57 -.55 .007 
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Figure 8. Scatterplot demonstrating association between Semantic Processing 

Composite measure and average brain activity in left middle frontal gyrus (BA 6) 
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Figure 9. Scatterplot demonstrating association between Semantic Processing 

Composite measure and average brain activity in left inferior frontal gyrus (BA 9)  
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Figure 10. Scatterplot demonstrating association between Semantic Processing 
Composite measure and average brain activity in left inferior frontal gyrus (BA 6)  
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To verify the specificity of the relationship between semantic processing ability and task-

related brain activity, I conducted similar correlational analyses between performance on 

the Matrix Reasoning subtest and brain activity in regions showing a main effect of 

Encoding Orientation in each group separately. Results of these analyses indicated that 

participants with schizophrenia demonstrated a significant relationship between Matrix 

Reasoning performance and brain activity (r = -0.44, p = .037) in one region [left middle 

frontal gyrus (-45, 2, 49)], while control participants did not demonstrate significant 

correlations in any areas.  

In order to assess potential effects throughout the brain, rather than constraining 

effects to certain regions of interest, I conducted whole-brain correlations between task-

related brain activity during Semantic encoding and the semantic processing composite 

variable. In order to reduce the false-positive rate associated with conducting whole-brain 

correlations, I increased the cluster size (n = 29) and activation threshold (z = 3.25) from 

the previous correlations, thus maintaining an overall false-positive rate of .05. The 

analysis revealed that participants with schizophrenia demonstrated a significant negative 

correlation in left middle frontal gyrus (BA 6), whereas controls did not demonstrate 

significant correlations in any brain regions. 

Lastly, I examined the role of semantic processing ability on encoding-related 

brain activity in both participants with schizophrenia and control participants. Of 

particular interest was whether diagnostic group (control vs. schizophrenia) continued to 

predict encoding-related brain activity when semantic processing ability was taken into 

account, and whether group interacted significantly with semantic processing ability in 

predicting brain activity. To address these questions, I conducted hierarchical regressions 
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in each of the regions showing significant between-group differences in encoding activity 

with the average magnitudes of brain activity in each group in each region as dependent 

variables. For each regression, the semantic processing composite variable and group 

were entered in step 1, followed by the interaction between semantic processing in group 

in step 2. Regressions were conducted for all brain regions showing significant between-

group brain activity differences during either Semantic or Non-Semantic encoding.  

Results of the analyses for Semantic encoding are summarized in Table 19 and 

results of the Non-Semantic encoding analyses are summarized in Table 20. As 

evidenced by the significant beta values at each region of interest, diagnostic group 

remained significantly predictive of brain activity during both Semantic and Non-

Semantic encoding even when semantic processing ability was included in the regression. 

In contrast, semantic processing ability was only predictive of encoding-related brain 

activity during Semantic encoding in four regions and was not predictive of brain activity 

during Non-Semantic encoding. Additionally, there were significant Group x Semantic 

Processing interactions in a 7 regions in both hemispheres (2 left, 5 right), suggesting that 

the relationship between intrinsic semantic processing ability and encoding-related brain 

activity differed to some degree between groups.  

Individual Difference Measures: Summary 

Both groups demonstrated significant positive associations between semantic 

processing ability and episodic memory performance, and inspection of the scatterplots 

confirmed a similar relationship between semantic processing ability and memory 

performance in both controls and schizophrenia participants. Furthermore, among 

schizophrenia participants semantic processing ability was negatively correlated with 
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Table 19. Results of hierarchical regression: Regions showing significant between-group differences in Semantic Encoding 
 

Region of Interest R2  
Model 1 

R2 

Model 2 
R2 

change 
p-value of  
R2 change 

Beta: Group Beta: Semantic 
Processing 

Control > Schizophrenia       
Left cerebellum .219*** .221 .002 ns -0.50*** -0.12 
Left cerebellum .166* .185 .019 ns -0.38* .07 

Schizophrenia > Control       
Left inferior frontal gyrus .218** .272 .054 ns  .35* -0.20 
Left middle frontal gyrus .219*** .242 .023 ns  .37* -0.18 
Left medial frontal gyrus .200** .242 .042 ns  .39* -0.13 

Left superior frontal gyrus .401**** .484* .083 .012 .45*** -0.31* 
Left anterior cingulate gyrus .246*** .255 .009 ns .51*** .05 

Left precentral gyrus .323**** .353 .030 ns .41*** -0.27* 
Left precentral gyrus .269*** .303 .035 ns  .47*** -0.11 

Left superior temporal gyrus .404**** .413 .009 ns .61**** -0.06 
Left inferior parietal lobule .315**** .353 .037 ns .57**** .02 

Left superior parietal lobule .367**** .402 .035 ns .56**** -0.10 
Left middle occipital gyrus .300**** .444*** .144 .002 .31* -0.36* 

       
Right medial frontal gyrus .265*** .341* .077 .031 .45*** -0.13 

Right precentral gyrus .375**** .499*** .124 .002 .32* -0.41*** 
Right precentral gyrus .239*** .266 .028 ns .44*** -0.11 

Right paracentral lobule .302**** .369* .067 .039 .52**** -0.08 
Right paracentral lobule .290*** .406** .116 .006 .50*** -0.09 

Right insula .254*** .257 .003 ns  .51*** .01 
Right inferior parietal lobule .251*** .297 .045 ns .50*** .01 
Right superior parietal lobe .306**** .379* .073 .029 .52**** -0.08 

-Model 1: Semantic processing composite, Group; Model 2: Semantic processing composite, Group, Semantic x Group 

*p < .05; **p < .01; ***p < .005; ****p < .001; ns = non-significant 
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Table 20. Results of hierarchical regression: Regions showing significant between-group differences in Non-Semantic 
Encoding 
 

Region of Interest R2  
Model 1 

R2 

Model 2 
R2 

change 
p-value of  
R2 change 

Beta: Group Beta: Semantic 
Processing 

Control > Schizophrenia       
Left middle frontal gyrus .191** .202 .010 ns -0.41** .06 

Left medial globus pallidus .221*** .233 .012 ns -0.39** .15 
Left thalamus .163* .168 .005 ns -0.37* .07 

Left parahippocampal gyrus  .223*** .223 .000 ns -0.36** .20 
Left middle temporal gyrus .199** .203 .004 ns -0.43** .04 

Left fusiform gyrus .316**** .319 .003 ns  -0.59**** -0.09 
Left cerebellum .147* .150 .003 ns -0.40* -0.06 

       
Right putamen .177* .179 .002 ns  -0.41** .03 
Right thalamus .215** .216 .001 ns -0.47** -0.02 

Right pons .192** .214 .022 ns -0.42** .04 
Right posterior cingulate gyrus .203** .207 .004 ns -0.40** .11 

Right fusiform gyrus .216** .220 .004 ns -0.50*** -0.13 
       
Schizophrenia > Control       

Left precentral gyrus .234*** .236 .002 ns  .37* -0.21 
Left superior temporal gyrus .341**** .351 .010 ns  .56**** -0.05 

Left inferior parietal lobule .208** .208 .000 ns  .44*** -0.04 
Left superior parietal lobule .286** .286 .000 ns  .44*** -0.18 

       
Right postcentral gyrus .211** .212 .001 ns  .46*** .00 

Right superior temporal gyrus .254*** .283 .029 ns  .54**** .14 
-Model 1: Semantic processing composite, Group; Model 2: Semantic processing composite, Group, Semantic x Group 

*p < .05; **p < .01; ***p < .005; ****p < .001; ns = non-significant
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Semantic encoding-related brain activity in a number of left prefrontal cortex areas, such 

that greater semantic processing ability was associated with decreased left frontal cortex 

activity. Notably, correlational analyses with a putative measure of abstract reasoning 

(Matrix Reasoning) suggested that the effect of semantic processing ability on memory 

performance and brain activity demonstrated here is relatively specific and does not 

simply reflect a more global effect of intelligence on cognitive performance or task-

related brain activity. Furthermore, controls did not show any such relationships between 

encoding activity and the semantic processing measure. To my knowledge, this is the first 

study to show that individuals with schizophrenia who possess greater semantic 

processing abilities show better performance in semantic encoding conditions and 

alterations in brain activity during supportive encoding conditions. Such results point to 

the importance of examining and understanding individual differences in cognitive ability 

among individuals with schizophrenia, as these may strongly influence the results of both 

behavioral and imaging studies. 

 Chapter 6: Discussion 

 In the present study, I investigated the effects of strategies provided during 

encoding and retrieval on episodic memory performance and task-related brain activity in 

individuals with schizophrenia and healthy controls. This investigation revealed a number 

of notable findings. Like controls, schizophrenia participants recalled more words that 

were encoded Semantically than Non-Semantically, as well as more words that were 

Cued than Uncued at recall. Analyses of the functional neuroimaging data revealed that 

during Semantic encoding schizophrenia participants activated many brain regions that 

have frequently been associated with semantic processing and successful encoding. 
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Furthermore, schizophrenia participants activated many of these regions to a significantly 

greater degree than control participants. The subsequent memory analyses revealed 

significant overlap in activity between the control and schizophrenia participants in 

posterior regions. Furthermore, individuals with schizophrenia showed significantly 

greater activation for remembered than missed items in a number of frontal cortex 

regions, whereas controls largely showed either no differences between remembered and 

missed items or greater activity for missed than remembered items in those areas. In 

contrast to the encoding analyses, analyses of the retrieval neuroimaging data revealed 

that controls demonstrated significantly greater activity than schizophrenia participants 

across many brain regions during both Cued and Uncued retrieval. Both groups also 

showed more robust brain activity during retrieval of Non-Semantically encoded items 

(relative to Semantically-encoded items). Lastly, the individual difference analyses 

revealed that both groups showed significant associations between inherent semantic 

processing ability and episodic memory performance. Furthermore, schizophrenia 

participants demonstrated significant associations between semantic processing ability 

and Semantic encoding-related brain activity in left prefrontal cortex, whereas controls 

did not show any such relationships.  

Below, I will review the findings from the present study and interpret them in the 

context of the literature in this research area. I will first discuss the specific findings from 

the behavioral data, followed by a discussion of the functional neuroimaging findings and 

the individual difference measures. Finally, I will provide a global overview of the results 

of the present study and attempt to reconcile them with the relevant empirical literature.  
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Behavioral Findings 

Encoding Orientation Effects 

The results of the current study provide additional strong evidence for the 

hypothesis that the memory performance of individuals with schizophrenia can be 

significantly improved by providing support for effective encoding strategies.  

Similar to controls, participants with schizophrenia demonstrated significantly 

better recall for items that were encoded Semantically (relative to items encoded Non-

Semantically). Thus, orientation to the semantic relatedness of the word-scene pairs 

significantly improved subsequent recall of the words in both groups. This finding is in 

line with previous studies of EM in schizophrenia that have reported memory 

improvement following orientation to beneficial encoding conditions (Bonner-Jackson et 

al., 2005; Chan et al., 2000; J. M. Gold et al., 1992; Koh & Peterson, 1978; McClain, 

1983; Paul et al., 2005; Ragland et al., 2006; Ragland et al., 2003). Such findings have 

been attributed to an enhancement of strategic memory processes through the 

manipulation of encoding conditions, as individuals with schizophrenia typically show 

deficits in generating and applying effective encoding and organizational strategies 

(Brebion et al., 1997; Brebion et al., 2004; Hutton et al., 1998; Iddon et al., 1998; Koh, 

1978; Russell et al., 1975; Russell & Beekhuis, 1976; Traupmann, 1980). For example, 

Russell and colleagues (1976) reported that even for word lists with highly related items, 

participants with schizophrenia demonstrated significant deficits in using the inherent 

semantic relatedness of the items to enhance recall. Thus, it is likely that individuals with 

schizophrenia can only benefit from semantic relationships between to-be-learned items 
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when they are oriented to such relationships. The results of the present study support this 

claim.  

Most of the previous studies in this area have reported improvements in 

recognition memory following orientation to beneficial encoding conditions, often 

utilizing yes/no recognition paradigms. Although such findings are promising, it has been 

argued that recognition memory tasks are less rigorous than recall and can be completed 

on the basis of familiarity, rather than recollection (Yonelinas & Jacoby, 1994). 

Furthermore, some authors have stated that conscious recollection is impaired and 

underlies memory deficits in schizophrenia, whereas familiarity processes are relatively 

intact (Danion et al., 1999; Huron et al., 1995). Thus, the memory benefits described by 

previous studies following encoding manipulations could be attributable, at least in part, 

to enhancements in familiarity, without increased rates of recollection on the part of the 

schizophrenia participants. The results of this study extend previous findings in this 

domain by demonstrating significant enhancements in subsequent recall memory among 

individuals with schizophrenia following orientation to a Semantic encoding task, 

suggesting that conscious recollection (as opposed to only familiarity) was improved.  

In addition to the main effect of Encoding Condition, I found a significant Group 

x Encoding Condition interaction for subsequent recall accuracy, such that between-

group differences in recall were dramatically reduced following Semantic Encoding, 

relative to Non-Semantic encoding. Thus, individuals with schizophrenia benefited from 

the Semantic Encoding condition to a greater degree than control participants. 

Importantly, this finding also suggests that the semantic processing system in 

schizophrenia is relatively intact, as schizophrenia participants were able to profit from 
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encoding strategies when they were provided. Moreover, these findings further implicate 

strategic and executive processes in the EM deficits observed in schizophrenia, rather 

than memory capacity itself, since the provision of memory strategies was effective in 

eliminating between-group differences in recall. Thus, the shortcomings on the part of 

individuals with schizophrenia appear to lie in the ability to spontaneously generate and 

apply beneficial memory strategies, as they demonstrated significant gains when such 

strategies were externally provided.  

 The results of the present study also extend previous findings by demonstrating 

that orientation to beneficial encoding strategies improves associative (or relational) 

memory, as well as item memory, which have been reported by prior studies. Researchers 

have previously demonstrated associative memory deficits in individuals with 

schizophrenia (Kopp & Reischies, 2000; Titone et al., 2004; Waters et al., 2004), and 

some have suggested that such deficits outstrip impairments observed in memory for 

individual items (Achim & Lepage, 2003; Lepage et al., 2006). However, memory 

performance also increases among individuals with schizophrenia for semantically-

related (relative to arbitrary) stimulus pairs (Achim et al., 2007). Thus, results of the 

current study add to this literature and suggest that the benefits of advantageous encoding 

conditions can improve memory for associations between items, in addition to memory 

for individual items. One could argue that the memory paradigm used in the present 

experiment assessed item memory, rather than associative memory, as only individual 

items (words) were recalled during retrieval. Still, successful recall of the individual 

items was dependent on processing the relationship between the scene and the to-be-

recalled word. I propose that this type of memory retrieval requires associative 
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processing and evaluation of semantic relationships, making it qualitatively distinct from 

classic tests of item memory (e.g., word list learning paradigms).  

 In contrast to the effects of the Encoding Orientation described above, the groups 

did not perform equivalently on all memory measures. Controls were significantly more 

accurate than schizophrenia participants in correct identification of new items. In light of 

the results described previously, I interpret these findings to suggest that although the 

encoding manipulation was successful, certain memory deficits continue to persist in the 

schizophrenia group. This finding raises the question of whether identification of new 

items poses a greater challenge to individuals with schizophrenia than recall of previously 

seen items. Initially, identifying new items appears to be easier and require less effort 

than recalling old items, as new items can be identified on the basis of familiarity alone. 

In support of this notion, EM studies in schizophrenia have found no differences between 

controls and individuals with schizophrenia for correct rejection of new items (Bonner-

Jackson et al., 2005; Ragland et al., 2004).  

However, identification of new versus old items places significant emphasis on 

retrieval processes, which are impaired in schizophrenia. Given such retrieval deficits, it 

may be difficult for individuals with schizophrenia to draw clear distinctions between 

different classes of items, such as differentiating between poorly encoded items and new 

items. It is possible that these two types of items seem very similar to individuals with 

schizophrenia, making it more difficult to identify those items that are actually new. The 

present study provides evidence in support of this notion. Specifically, calculation of 

effect sizes for between-group differences in hits (old items) and correct rejections (new 

items) revealed a larger between-group difference in correct rejection rates (effect size = 
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.65) than hit rates (effect size = .52). Relatedly, d-prime (measuring discriminability of 

old vs. new items) was calculated for each group separately, and the groups were then 

compared. Results revealed a significantly larger d-prime value for controls than 

schizophrenia participants. Both of these findings suggest that schizophrenia participants 

had more difficulty than controls in discriminating old from new items at recall, which 

may underlie the observed deficits in correct identification of new items by the 

schizophrenia group.  

The present findings are also in line with previous research demonstrating a 

disproportionate deficit in correct identification of new items by individuals with 

schizophrenia (A. P. Weiss et al., 2008; A. P. Weiss et al., 2004). For example, using a 

source memory paradigm, Weiss and colleagues (2008) found that individuals with 

schizophrenia had more difficulty than controls in distinguishing old from new items. 

Another study from the same group (A. P. Weiss et al., 2004) reported significantly 

higher false alarm rates for novel items among schizophrenia participants compared to 

controls, despite equivalent hit rates for previously-seen items. Thus, the memory trace 

that is available for individuals with schizophrenia may be weaker for certain items, 

making it more difficult to discriminate them from items that were never seen.  

Retrieval Cue Effects 

The present findings demonstrate that the provision of retrieval cues is effective in 

improving EM performance in individuals with schizophrenia. Furthermore, the 

beneficial effects provided by retrieval cues were comparable for control and 

schizophrenia participants alike. 
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The analysis of the behavioral data for the effect of Retrieval Cues demonstrated a 

significant main effect of Cueing. Schizophrenia participants, like controls, recalled 

significantly more items that were Cued at recall, relative to those that were Uncued. 

Similar to the Encoding Orientation results, this finding supports previous literature in 

this area that has demonstrated significant memory benefits conferred by retrieval cues to 

individuals with schizophrenia (Culver et al., 1986; McClain, 1983; Sengel & Lovallo, 

1983; Tompkins et al., 1995). Tompkins and colleagues (1995) found that cueing aided 

schizophrenia participants in various tests of memory. Using categorized word lists that 

were either cued or uncued at recall, Sengel and Lovallo (1983) also found that retrieval 

cues substantially enhanced memory performance in individuals with schizophrenia. 

Thus, this finding adds to the empirical evidence supporting the crucial role of retrieval 

cues for memory function in schizophrenia.  

In addition, the results of the Retrieval Cue analysis suggest that the memory 

system underlying EM retrieval in individuals with schizophrenia can function in a 

similar manner as that of healthy controls under supportive conditions. More specifically, 

the presence of retrieval cues conferred approximately the same memory benefits to both 

controls and participants with schizophrenia. This finding suggests that when strategic 

mnemonic processes are controlled, the underlying cognitive architecture of memory 

retrieval in controls and individuals with schizophrenia is relatively similar. Taken 

together with the results from the Encoding Orientation analysis, my findings 

demonstrate that individuals with schizophrenia are receptive to strategic memory 

manipulations during both the encoding and retrieval stages, and they may help to 

elucidate some of the memory deficits that are often associated with schizophrenia.  
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The suggestion that individuals with schizophrenia show the same benefits of 

cueing as controls is further supported by the non-significant Group x Cueing interaction 

for recall. Although schizophrenia participants showed significant memory benefits from 

the retrieval cues, these benefits were comparable to those seen in the control group. 

Interestingly, others have reported significant interactions between Group and Cueing in 

studies of recall. For example, McClain (1983) reported that retrieval cues (relative to no 

cues) benefited schizophrenia participants to a greater degree than controls. Although few 

studies have found such an effect, it is worthwhile to explore why such an effect was not 

found in the present study. It is possible that the discrepancy between my findings and 

those of McClain (1983) lies in the type of retrieval cues used. While my experiment 

used the first letters of words as cues, the McClain (1983) study used semantic categories 

as cues. In fact, many other studies of retrieval cues in schizophrenia have used category 

cues at recall (Culver et al., 1986; Sengel & Lovallo, 1983). Arguably, the difference 

between the presence and absence of category cues represents a greater difference than 

present versus absent one-letter cues, and the magnitude of this difference may depend on 

group membership (control vs. schizophrenia). Thus, different cue types may 

differentially affect the likelihood of recall in control and schizophrenia participants.   

A second explanation regarding the failure to find the predicted Group x Cueing 

interaction may be related to the number of stimulus presentations at encoding. In the 

present study, participants viewed each word-scene pair a total of four times, whereas 

most EM studies of this type presented each word only once prior to recall (Culver et al., 

1986; McClain, 1983; Sengel & Lovallo, 1983). Multiple presentations of each item in 

the present study might have increased the likelihood of recall independent of the 
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retrieval cues, potentially dampening the effect that the cues had on recall success. In 

contrast, retrieval cues following a single presentation of a word might have been 

disproportionately more helpful, particularly for schizophrenia participants. Taken 

together, a significant Group x Cueing interaction may have been found using category 

cues and fewer presentations of each word-scene pair. 

Encoding Condition & Retrieval Cue: Combined Effects  

 These results suggest that the highest rate of recall is found in both diagnostic 

groups when both advantageous encoding and retrieval strategies are utilized 

simultaneously. The data also indicate that for both groups, cueing at retrieval is most 

effective for items that were initially encoded poorly. 

In examining the collective effects of Encoding Condition and Retrieval Cue 

presence on subsequent recall, individuals with schizophrenia (like controls) 

demonstrated the highest rate of recall for Semantically encoded items that were Cued at 

retrieval. Thus, my prediction with regard to the presence of both encoding and retrieval 

cues was upheld. Both groups showed a positive linear increase in recall performance 

across the four conditions, with the lowest recall for Non-Semantic Uncued items and the 

highest recall for Semantic Cued items. Notably, the effect of Encoding Condition 

appears to be stronger than the effect of Cueing, as there was a substantial increase in 

recall from the two Non-Semantic recall conditions (Uncued and Cued) to the two 

Semantic recall conditions (Uncued and Cued). This notion is supported by a comparison 

of effect sizes: for the effect of Encoding Orientation, the effect size was 1.65, whereas 

the effect size for the effect of Cueing was .50. As discussed above, it is possible that the 

presence or absence of one-letter cues represented a less dramatic manipulation than 
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semantic versus non-semantic processing of the word-scene pairs. Regardless of this 

possibility, however, both groups demonstrated greater recall success as the conditions 

became progressively more supportive.   

The combined effect of supportive encoding and retrieval conditions in 

schizophrenia in is line with similar studies that have examined this question. Other 

researchers (Culver et al., 1986; McClain, 1983) have found that although encoding 

manipulations alone are beneficial for memory performance, free recall in schizophrenia 

participants is equivalent to that of controls only when retrieval cues are provided as well. 

The exception to this line of research is one study (Larsen & Fromholt, 1976) which 

reported equivalent free recall performance for control and schizophrenia participants 

following only an encoding manipulation. However, this result is somewhat unusual and 

relatively rare in this literature.  

Such findings in individuals with schizophrenia also parallel memory research in 

the healthy aging literature. The memory impairments observed in older adults, like those 

in individuals with schizophrenia, have been attributed in part to strategic memory 

deficits (Sanders et al., 1980). Furthermore, the experimental manipulations that have 

been shown to improve memory in schizophrenia are also known to enhance memory in 

older adults (Grady et al., 1999; Logan et al., 2002). Importantly, research with older 

adult populations indicates that advantageous retrieval conditions must be present to 

reveal the benefits of strategic encoding conditions (Naveh-Benjamin et al., 2007; 

Naveh-Benjamin et al., 2002), and the results of the present study suggest a similar 

notion regarding individuals with schizophrenia. Although the neural systems underlying 

memory impairment in schizophrenia and older adulthood likely differ to some degree, 
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experimental behavioral paradigms have tapped into a common mechanism to improve 

memory and cognition in both groups. This functional overlap may indicate future targets 

for psychopharmacological interventions or cognitive remediation.      

 Notably, I also found a significant Encoding Task x Cueing interaction, such that 

there were greater differences between Uncued and Cued recall for items encoded Non-

Semantically (relative to those encoded Semantically). Put a different way, the retrieval 

cues conferred a greater benefit to participants from both groups following Non-Semantic 

encoding, whereas retrieval cues following Semantic encoding did not improve recall to 

such a significant degree. Such results are uncommon, as most studies of this type do not 

manipulate retrieval conditions. One study (McClain, 1983) reported an Encoding Task x 

Cueing interaction, although it was in the opposite direction of the results presented here: 

they reported greater benefit from retrieval cues for blocked relative to unblocked 

stimulus presentation. Another study (Culver et al., 1986) found a similar pattern of 

results, such that strong retrieval cues improved recall for deeply-encoded material, but 

not for material encoded more poorly. Thus, the findings of the present study diverge 

from previous findings on this point. It is currently unclear why this is the case. One 

possibility is that in the McClain (1983) and Culver et al (1986) studies, the shallow 

encoding condition made recall disproportionately more difficult than in the deep 

encoding condition. Thus, very few words from the shallow encoding condition were 

recalled, regardless of whether they were cued or not, whereas the deep encoding 

condition was substantially easier and the presence of retrieval cues served to further 

boost recall.   
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 Lastly, I did not detect the predicted three-way interaction between Group, 

Encoding Condition, and Cueing. Although schizophrenia participants did show a 

significantly greater recall benefit than controls following Semantic encoding, they did 

not show a differentially greater benefit when provided with Retrieval Cues. In contrast 

to my predictions, both groups showed a linear improvement in recall over the four 

conditions, rather than the schizophrenia group showing a greater recall benefit 

(compared to controls) for Semantically-encoded Cued words. This negative finding 

might be partially attributable to a lack of power, as the number of participants may have 

been too small to detect a significant three-way interaction. A more likely explanation, 

however, is that individuals with schizophrenia often demonstrate encoding or retrieval 

manipulation effects that are comparable to, not greater than, those of control 

participants. Therefore, detecting interactions of the nature predicted is very difficult and 

rare.  

Functional Neuroimaging Findings 

Encoding Orientation Effects 

The present results provide further support for the hypothesis that use of 

beneficial encoding strategies is effective in enhancing encoding-related brain activity in 

individuals with schizophrenia.  

Schizophrenia participants activated a network of typical semantic processing 

regions during Semantic (relative to Non-Semantic) encoding, including a number of 

areas in left prefrontal cortex (BA 6, BA 9/46). The opposite contrast (Non-Semantic > 

Semantic) revealed only two regions of significant activity (left superior temporal gyrus, 

left insula). This pattern of results mirrors those found in healthy control participants, in 
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which robust prefrontal cortex activation has been reported in response to supportive 

encoding paradigms (Baker et al., 2001; Fletcher et al., 1998; Kapur et al., 1994; Savage 

et al., 2001), supporting the notion that individuals with schizophrenia recruit similar 

brain regions as controls when provided with beneficial encoding strategies. The fMRI 

findings are also compatible with the Encoding Orientation behavioral findings in the 

schizophrenia group, which demonstrated robust effects of encoding condition on 

subsequent recall among schizophrenia participants. Behaviorally and neurobiologically, 

therefore, individuals with schizophrenia show the capacity to modulate memory function 

in response to encoding manipulations to a similar degree as healthy individuals.  

 Notably, however, the Semantic > Non-Semantic encoding contrast in 

schizophrenia participants did not reveal significant task-related activity in left inferior 

frontal gyrus (BA 45/47), a region that supports verbal semantic processing functions 

(Demb et al., 1995; Fletcher et al., 1998; Kapur et al., 1994). This finding was somewhat 

surprising, given the crucial role of this region in semantic tasks. In order to more 

strongly verify the lack of between-task activation differences in the schizophrenia 

participants, I conducted an ROI-based contrast of Semantic versus Non-Semantic 

encoding activity, using the coordinates from two regions of interest in left inferior 

frontal gyrus (-40, 39, 0; -52, 27, -3) identified in a previous manuscript (Bonner-Jackson 

et al., 2007). This analysis revealed a trend-level difference (Semantic > Non-Semantic, p 

= .07) in one region and a non-significant difference between conditions in the other. 

Furthermore, visual inspection of the separate Semantic and Non-Semantic encoding 

activation maps revealed similar patterns of activity in the vicinity of left inferior frontal 

gyrus. Thus, it appears that schizophrenia participants did not activate left inferior frontal 
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gyrus to a significantly greater degree during Semantic than Non-Semantic encoding. In 

contrast, within-group analyses revealed that controls did activate areas of bilateral 

inferior frontal gyrus significantly more during Semantic than Non-Semantic encoding. 

Although unlikely, it is possible that left inferior frontal gyrus was being recruited by 

schizophrenia participants during the Non-Semantic task, as well as during the Semantic 

task, despite the fact that it did not explicitly require semantic processing. Controls, on 

the other hand, showed more typical Encoding Orientation effects, activating inferior 

frontal gyrus preferentially during Semantic processing. This discrepancy between groups 

was not predicted and may suggest that the groups were engaged in somewhat different 

cognitive activities during encoding. Importantly, however, these observations only 

represent differences in within-group, rather than between-group, brain activation 

patterns. Thus, these data should be interpreted with caution.  

 With regard to between-group contrasts, I detected a number of predicted 

activation differences during Non-Semantic encoding, the majority of which were in the 

direction of controls > schizophrenia participants. My findings partially replicate 

previous reports of underactivation among individuals with schizophrenia during 

standard EM paradigms (Barch et al., 2002; Hofer et al., 2003b; Ragland et al., 2001). 

Notably, controls activated regions that are supportive of EM function, including 

parahippocampal gyrus, to a greater degree than schizophrenia participants. Interestingly, 

however, there were few between-group differences found in frontal cortex during Non-

Semantic encoding, despite the wealth of research reporting hypofrontality in individuals 

with schizophrenia. One explanation for this finding could be related to the nature of the 

orienting task itself, which was a comparatively “shallow” encoding task that emphasized 
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spatial relationships between words and scenes. In line with this fact, between-group 

differences (control > schizophrenia) were detected in more posterior brain regions that 

support such functions. For example, greater Non-Semantic encoding activity was found 

in controls relative to schizophrenia participants in bilateral fusiform gyrus, an area that 

has been implicated in processing of scenes (Johnson & Rugg, 2007), as well as in 

“shallow” encoding that resulted in successful subsequent memory (L.J. Otten & Rugg, 

2001). Thus, controls recruited a set of posterior brain regions to complete the more 

visually guided encoding task, in addition to subcortical regions that typically subserve 

memory function (i.e., medial temporal lobe).  

In contrast to the Non-Semantic encoding findings, the between-group analysis 

for brain activity associated with Semantic encoding revealed that schizophrenia 

participants activated a large network of frontal, temporal, and parietal cortex regions to a 

significantly greater degree than control participants. As stated in the Results, 19 of the 

21 regions showing between group differences in Semantic encoding were activated more 

by schizophrenia participants than by controls. This finding is in line with previous work 

demonstrating enhancements in brain activity in individuals with schizophrenia relative 

to controls under supportive encoding conditions (Bonner-Jackson et al., 2005; Ragland 

et al., 2005), as well as reports of normal modulation of brain activity during encoding of 

related associate pairs (Achim et al., 2007).  

The precise mechanisms that lead patients with schizophrenia to show greater 

activity than controls under supportive encoding conditions are not clear. As described 

above, the results of the regression analyses suggested that the between-group differences 

in encoding-related brain activity did not simply reflect differences in semantic 
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processing ability. One possibility for these differences is that under beneficial encoding 

conditions, schizophrenia participants are able to engage regions of frontal cortex (as well 

as other brain regions) not utilized by controls, which act in a compensatory manner and 

aid in successfully completing the orienting task. In addition to frontal cortex regions, 

schizophrenia participants also showed greater activity than controls in bilateral parietal 

cortex, an area postulated to act in a compensatory manner during EM encoding in 

schizophrenia (Heinze et al., 2006). In contrast to this hypothesis, however, post-hoc 

analyses from the current study indicated that low-performing participants with 

schizophrenia showed the most enhanced brain activity during Semantic encoding, 

relative to higher-performing schizophrenia participants or controls. This finding may 

suggest that the pattern of over-activation is a function of an underlying pathological 

process, rather than a compensatory mechanism. Further study of this question is clearly 

required to more fully understand the nature of activation enhancements seen in 

schizophrenia under supportive memory conditions. 

However, controls and schizophrenia participants did not rely on entirely different 

brain systems during supportive encoding. The main effect of Encoding Condition 

demonstrated that the groups activated a number of regions to similar degrees during 

Semantic encoding, in addition to a few similar regions during Non-Semantic encoding. 

Among the regions recruited by both groups during Semantic encoding were multiple 

areas of prefrontal cortex (left inferior frontal gyrus, bilateral middle frontal gyrus) and 

medial temporal lobe (bilateral parahippocampal gyrus). This result further suggests that 

individuals with schizophrenia and healthy controls engage similar and overlapping 

neural systems when oriented to process semantic relationships between items.  
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Subsequent Memory Effects 

 Data from the subsequent memory neuroimaging analyses represent a relatively 

novel indication that the neural systems underlying successful subsequent memory in 

individuals with schizophrenia partially overlap those in controls. Additionally, results of 

the present study demonstrate that subsequent memory activity varies depending on the 

nature of the encoding task used. 

Both groups demonstrated robust subsequent memory effects (remembered items 

> missed items) in regions of frontal cortex, including bilateral inferior frontal gyrus (BA 

44) and left precentral gyrus (BA 6), which support subsequent memory in healthy 

controls (Brewer et al., 1998; Buckner et al., 2001; Fletcher et al., 2003; Kirchhoff et al., 

2000). Although this pattern of results was predicted for the control group, it was 

unexpected in the schizophrenia group. The few functional neuroimaging studies that 

have examined subsequent memory effects in schizophrenia have identified posterior 

regions, rather than frontal regions, as likely candidates to support successful memory 

encoding in individuals with schizophrenia (Bonner-Jackson et al., 2008; Heinze et al., 

2006). Consistent with these previous findings, subsequent memory effects in the present 

study were identified in posterior brain regions as well as frontal regions (e.g., right 

superior parietal lobule, left fusiform gyrus, left precuneus). However, the presence of 

such effects among individuals with schizophrenia in frontal cortex was surprising given 

past research. My findings, therefore, represent the first demonstration (to my 

knowledge) of subsequent memory effects among schizophrenia participants localized in 

areas of frontal cortex. Although these data should be interpreted with caution, the results 

described here may serve as an additional indication that the neural systems underlying 
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successful memory in individuals with schizophrenia overlap with those of healthy 

controls. Further examination of this notion is needed in future research.  

In contrast to the effects in frontal cortex, however, I did not find the predicted 

main effects of subsequent memory in hippocampus, despite previous indications that this 

region is crucial for EM formation and subsequent memory (Bernard et al., 2001; Brewer 

et al., 1998; Fernandez et al., 1998; Reber et al., 2002; Stark & Okado, 2003), although 

schizophrenia participants did show subsequent memory effects following Non-Semantic 

encoding in right parahippocampal gyrus. One possible explanation for this negative 

result could be that hippocampus was equally active during encoding of both remembered 

and non-remembered items, as participants were explicitly instructed to memorize items 

for a later memory test. A second factor may stem from the fact that the medial temporal 

lobes are often difficult to image and typically produce poorer quality functional images. 

The anatomical location of medial temporal lobe structures also renders successful 

functional imaging of this region more difficult, as it is more susceptible to movement 

and other artifact (Ojemann et al., 1997). Significant task-related activation in this area 

could have been attenuated by the presence of adjacent sinus cavities or other brain 

structures. However, this scenario is less likely, given the significant medial temporal 

lobe activity identified in other analyses.  

With regard to the effects of orienting task on subsequent memory-related 

activity, it was somewhat surprising that nearly all the regions that showed a main effect 

of subsequent memory were for items encoded Non-Semantically, as opposed to 

Semantically. This finding represents a departure from previous work examining 

subsequent memory effects as a function of encoding condition, which have largely 
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reported greater subsequent memory effects following “deeper” encoding tasks (Baker et 

al., 2001; Fletcher et al., 2003; L. J. Otten et al., 2001). Fletcher and colleagues (2003) 

found subsequent memory effects in left and medial prefrontal cortex that were larger in 

magnitude following semantic (deep) than alphabetical (shallow) encoding tasks 

(Fletcher et al., 2003). Similarly, two other studies (Baker et al., 2001; L. J. Otten et al., 

2001) reported overlap between regions showing subsequent memory effects for deep 

and shallow encoding, with a suggestion that deep encoding was associated with more 

subsequent memory regions than shallow encoding. In contrast, one study showed that 

rote rehearsal produced stronger subsequent memory effects than semantic processing at 

encoding (Davachi et al., 2001). However, this finding does not appear to be widely 

replicated in this literature. Overall, therefore, the results of the present study regarding 

encoding orientation effects on subsequent memory activity are, for the most part, 

unsupported by previous research.  

One must, therefore, pose the question of why subsequent memory effects were 

detected more often following Non-Semantic than Semantic encoding in this study. Some 

insights into the current results may be provided by the study described above (Davachi 

et al., 2001), which reported greater subsequent memory effects for items encoded using 

rote rehearsal, as compared to semantic encoding. Of the five regions that showed greater 

subsequent memory effects following rote rehearsal in the Davachi et al. (2001) paper, 

three were identified in the current study (left inferior prefrontal cortex, right superior 

parietal lobe, left cerebellum). This raises the intriguing possibility that, in the absence of 

external encoding support, participants utilized a rote memorization strategy in order to 

commit the word-scene pairs to memory. A second consideration is related to the number 
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of regions identified in this analysis that are thought to support vision and visual imagery. 

Areas of left inferior and bilateral middle occipital gyrus showed subsequent memory 

effects, as did left precuneus and fusiform gyrus bilaterally. Precuneus has been 

implicated in visuo-spatial imagery, among other functions (Cavanna & Trimble, 2006), 

while Otten and Rugg (2001) reported subsequent memory effects in bilateral fusiform 

gyrus following a syllable-counting task. These data support the notion that participants 

in this study relied heavily on visual processing areas to support subsequent memory for 

Non-Semantically encoded items and likely adopted a visually based memory strategy to 

learn the associations between the words and pictures. Lastly, it should be noted that 

Semantic encoding was associated with better subsequent recall, and therefore fewer 

missed items, than Non-Semantic encoding. With fewer trials from which to calculate 

miss-related activity (relative to recall-related activity), it is possible that the subsequent 

memory effects identified for Semantically encoded items in this study underestimated 

the actual subsequent memory response. In contrast, Non-Semantic encoding was 

associated with a larger number of missed items, thereby allowing for a more accurate 

estimate of subsequent memory activity across groups.  

 Consideration of the Group x Subsequent Memory brain activation interactions 

also revealed an unexpected pattern of results. Specifically, in nearly all of the regions 

identified in the analysis, schizophrenia participants demonstrated greater encoding 

activity for subsequently remembered items than missed items, with the majority of these 

regions found for Non-Semantic encoding. In contrast, controls showed either no 

difference between remembered and missed items, or greater encoding activity for missed 

items than remembered items, in the regions showing Group x Subsequent Memory 
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effects. Notably, controls did show subsequent memory activity in other brain regions, 

but not in regions showing the interaction. Surprisingly, controls did not demonstrate any 

of the predicted subsequent memory effects (remember > miss) in the interaction regions, 

and even showed the opposite pattern (miss > remember) in certain brain areas.  

Interestingly, a number of the areas showing significant miss > remember activity 

in controls were in frontal cortex (e.g., left middle frontal gyrus, right inferior frontal 

gyrus). Although this result was not predicted, one possible explanation for this finding is 

the fact that each word-scene pair was presented to participants at four separate times 

over the course of the scanning runs. Therefore, the brain signal that was used in these 

analyses was averaged across the four presentations of the stimuli. This analysis strategy 

could have inadvertently attenuated the signal associated with successful subsequent 

memory, as task-related brain responses in healthy controls decrease over repeated 

presentations of a stimulus (Demb et al., 1995). Such findings have been interpreted to 

suggest that repeated processing of identical stimuli requires less neuronal activity 

following the initial presentation. In support of this notion, analyses comparing first 

presentation of stimuli to subsequent presentations in the control group revealed that the 

first presentation was associated with significantly more widespread and robust activity 

than subsequent presentations combined.    

Individuals with schizophrenia, however, do not show the same relationship 

between repeated stimulus presentations and attenuated brain response. Both fMRI 

(Kubicki et al., 2003) and ERP studies (Patterson et al., 2008) have shown that 

individuals with schizophrenia fail to show typical priming or habituation effects. Data 

from the current study corroborate these findings. Brain activation during first and 
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subsequent presentations of stimuli were quite similar in schizophrenia participants, 

suggesting that they did not habituate as easily as controls and continued to require 

additional neuronal activity to complete the encoding tasks. Such a pattern of data would 

make it more likely to find subsequent memory effects in the schizophrenia group, which 

is what was reported above. 

Retrieval: Cueing Effects 

Results from the present study indicate that retrieval cues were ineffective in 

enhancing retrieval-related brain activity among individuals with schizophrenia. Rather, 

schizophrenia participants demonstrated underactivation across all recall conditions. 

Between-group contrasts of the brain imaging data during Uncued retrieval 

revealed that individuals with schizophrenia demonstrated a widespread pattern of 

underactivation (relative to controls) during Uncued recall. My findings in this regard 

support previous research indicating activation deficits in various brain regions among 

individuals with schizophrenia during EM retrieval, including tests of item recognition 

(Barch et al., 2002; Hofer et al., 2003a; Hofer et al., 2003b; Jessen et al., 2003; Ragland 

et al., 2001; Ragland et al., 2004), associative recognition (Lepage et al., 2006), and word 

list recall (Crespo-Facorro et al., 1999). Notably, however, the majority of studies in this 

area have also reported impaired memory performance, in combination with deficits in 

retrieval-related brain activity, in individuals with schizophrenia. In the present study, the 

brain activation deficits observed among the schizophrenia participants were 

accompanied by recall performance that did not differ significantly from that of controls. 

This result raises the intriguing question of how the schizophrenia participants were able 
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to perform equivalently to controls during subsequent recall, in spite of massive 

underactivation.  

Although the literature provides little guidance in this regard, one potential 

explanation for this phenomenon is that the neural systems underlying EM retrieval in 

schizophrenia are fundamentally different from those in healthy individuals. Therefore, 

the lawful relationship between behavior and brain activity that is observed in controls 

during memory retrieval may not exist in individuals with schizophrenia. It is possible 

that the increases in brain activity that accompany increases in recall success in controls 

are not present in schizophrenia. In support of this notion, analyses of brain activation in 

the schizophrenia group during correct retrieval (correct recall of Old > correct rejection 

of New) revealed a failure to activate typical “correct retrieval” regions, such as right 

anterior (BA 9/10) or right dorsal (BA 9/46) prefrontal cortex (McDermott et al., 2000). 

These data contrast with findings from Ragland et al. (2004), however, who reported that 

retrieval success in schizophrenia participants was associated with activity in a variety of 

frontal, temporal, and parietal cortex regions (Ragland et al., 2004). Thus, there are 

currently mixed findings regarding this question. Future research should address the issue 

of how individuals with schizophrenia can achieve behavioral performance equivalent to 

that of controls, despite differential brain activity patterns.  

 In contrast to the predicted brain activation deficits during Uncued retrieval, it 

was hypothesized that Cueing would serve to “normalize” brain activity between groups 

and minimize between-group differences. Despite the provision of retrieval cues, 

however, brain activity patterns among individuals with schizophrenia did not change 

noticeably, relative to brain activation in the control participants. Contrary to my 
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hypotheses, widespread underactivation persisted in schizophrenia participants during 

Cued retrieval, even though recall performance was improved. As discussed in the 

Behavioral Results section, it is possible that the retrieval cues were helpful in modestly 

improving recall but did not provide sufficient support to enhance brain activity in the 

schizophrenia participants, whereas category cues or word stems might have been more 

effective in promoting increased brain activity in the schizophrenia group. However, little 

empirical work has focused on the effects of retrieval cues on brain activity in 

schizophrenia, making interpretation of these findings somewhat more challenging. A 

discussion of potential factors that may have influenced the retrieval brain imaging 

findings is below (see Retrieval: Other Issues).   

Retrieval: Encoding Condition Effects  

Data from the present study suggest that orientation to an advantageous encoding 

strategy was ineffective in enhancing retrieval-related brain activity in schizophrenia or 

equating retrieval-related brain activity across groups.  

An additional way to examine the retrieval-related brain activity data is to 

compare the groups on brain activity during retrieval of Semantically- versus Non-

Semantically-encoded items. Similar to the findings from the Uncued and Cued retrieval 

data, recall of items seen during both Non-Semantic and Semantic encoding was 

associated with hypoactivation in multiple frontal and temporal brain regions in 

schizophrenia participants, as well as more posterior areas. Once again, this pattern of 

underactivation in individuals with schizophrenia during EM retrieval represents a partial 

replication of previous findings in this domain. For example, work from the Heckers 

group (Heckers et al., 1998; A. P. Weiss et al., 2003) has consistently reported impaired 
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hippocampal recruitment in schizophrenia participants during retrieval following deep 

encoding, although they also found overactivation of prefrontal regions following 

shallow encoding, despite equivalent memory performance. Similarly, Ragland and 

colleagues (2005) described overactivation in the left frontal pole during recognition 

among individuals with schizophrenia following a levels-of-processing manipulation. 

Studies examining the effect of encoding condition on retrieval-related brain activity in 

healthy populations have made similar conclusions (Rugg et al., 1997; Schacter et al., 

1996; Tsukiura et al., 2005). For example, a study by Schacter and colleagues (1996) 

found that hippocampal activity at retrieval was associated with recollection of studied 

words, whereas activity in frontal regions was associated with elevated retrieval effort. 

Thus, in this context the empirical data would predict a pattern of dysregulation among 

schizophrenia participants, with greater than normal activity in frontal cortex during 

retrieval of poorly encoded items and hypoactivation in medial temporal lobe regions 

during retrieval of deeply-encoded items.  

 As stated above, this hypothesis was not fully supported. Although schizophrenia 

participants did not activate frontal regions to a greater degree than controls, the present 

study did provide some evidence of hyperactivation during retrieval of poorly encoded 

items. Within-group contrasts revealed that individuals with schizophrenia showed 

substantially more retrieval activity for items encoded Non-Semantically (relative to 

those encoded Semantically), suggesting more effort was being exerted while attempting 

to recall poorly-encoded items. Regions showing this pattern included left (BA 44) and 

right (BA 45) inferior frontal gyrus, as well as right middle frontal gyrus (BA 9). 

Similarly, the main effect of Encoding Condition demonstrated that both schizophrenia 
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participants and controls activated a number of regions to a greater degree during 

retrieval of Non-Semantically encoded items, including bilateral prefrontal cortex (BA 

44, 47, 9/46). In contrast, there were no regions demonstrating greater retrieval-related 

activity for Semantically encoded items than Non-Semantically encoded items. Thus, the 

data indicates that the differences in retrieval-related activity were in the expected 

direction (Non-Semantic > Semantic), although they did not reach significance at the 

between-group level.  

Retrieval: Other Issues 

With regard to the retrieval brain imaging findings, the pattern of underactivation 

observed during recall in participants with schizophrenia could be more generally related 

to impairments in post-retrieval monitoring, which refers to a cognitive process that is 

posited to evaluate the accuracy of potential memory responses (Koriat & Goldsmith, 

1996). Most functional neuroimaging studies of post-retrieval monitoring in healthy 

populations have shown that this process is supported largely by frontal brain regions 

(e.g., (Achim & Lepage, 2005a). To my knowledge, no functional neuroimaging studies 

of post-retrieval monitoring in individuals with schizophrenia exist. However, it seems 

likely that individuals with schizophrenia would show impairments in monitoring the 

contents of memory or making judgments about the likelihood of having previously seen 

an item, as meta-cognitive processes in this group are faulty (Moritz et al., 2006). 

Furthermore, the dysfunction in this cognitive process could potentially reveal itself in 

reduced brain activity during EM retrieval. If control participants were actively 

monitoring their recall responses during retrieval, while schizophrenia participants were 

engaged in this activity to a lesser degree, brain activation differences in frontal cortex 
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could differ between groups, regardless of actual recall accuracy. Although this 

hypothesis does not account for the between-group differences in other brain regions, it 

could represent one factor underlying the failure to find overactivation in prefrontal 

regions that is common in schizophrenia during retrieval tasks.  

A second issue that merits discussion is the between-group difference in task-

related brain activity during viewing of New (not previously-seen) word-scene pairs. 

Control participants activated bilateral medial temporal lobe regions (centered in left and 

right parahippocampal gyrus) during correct identification of New items (relative to 

correct identification of previously-seen items). Structures in the medial temporal lobes 

are known to respond to novelty (among other features). In particular, parahippocampal 

gyrus appears to be involved in detection of novel stimuli (M. W. Brown & Aggleton, 

2001; Gabrieli et al., 1997; Kohler et al., 2005). For example, Kohler et al. (2005) 

reported increased right parahippocampal gyrus activity in response to novel stimuli. 

Similarly, Gabrieli and colleagues (1997) found that activity in parahippocampal gyrus 

decreased for more familiar scenes (relative to unfamiliar scenes). Thus, the activity in 

bilateral parahippocampal gyrus observed in controls during viewing of New items may 

represent a neural response that signals novelty and helps them to correctly classify items 

as New. In contrast, schizophrenia participants did not show any activity in medial 

temporal lobe regions during correct identification of New items, which is likely related 

to their lower accuracy rates in identifying items that were not seen before. This 

hypothesis is supported by data from Weiss and colleagues (2004), who reported 

increased false alarm rates during a test of EM recognition, in conjunction with impaired 

hippocampal function, among individuals with schizophrenia (A. P. Weiss et al., 2004). 
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Taken together, it appears that the neural systems underlying identification of new 

materials in individuals with schizophrenia may continue to show deficits, despite 

supportive encoding and retrieval environments.   

 Lastly, it is important to address the issue of signal-to-noise ratio (SNR) as it 

relates to observed differences in task-related activity between groups. Losses of SNR in 

psychiatric populations can be attributed to a variety of causes, many of which are 

unrelated to cognitive task performance per se. These include brain structure 

abnormalities, increased signal artifact related to subject movement, and effects of 

psychotropic medications (G. G. Brown & Eyler, 2006). Therefore, one must attend to 

this potential confound in order to properly interpret patterns of functional brain 

activation. As reported above, the subgroups of control and schizophrenia participants 

continued to demonstrate significant between-group differences in retrieval-related brain 

activity, despite being matched on mean SNR. Across retrieval tasks, areas of bilateral 

frontal cortex, inferior parietal lobe (particularly left), and bilateral middle temporal 

gyrus (among others) remained significantly more active in controls than schizophrenia 

participants, even after controlling for differences in SNR. Altogether, approximately half 

of the regions of between-group differences identified in the retrieval analyses remained 

significantly different. This finding suggests two ideas, both of which are likely accurate: 

1) some of the observed between-group differences in retrieval-related brain activity were 

due to artifactual causes, such as increased head movement on the part of schizophrenia 

participants; 2) some of the observed between-group differences in retrieval-related brain 

activity reflected genuine discrepancies in task-related activation and represent true 

underlying neurobiological differences between control and schizophrenia participants 
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during EM retrieval. Above, I have outlined potential mechanisms that may cause such 

differences, although a number of factors remain unclear in this regard (e.g., how 

equivalent recall performance was found between groups, despite substantial retrieval-

related brain activation differences). Future research may profit by examining this issue 

in more detail.  

Individual Difference Measures 

The analyses examining the effects of individual differences highlighted the 

importance of understanding the influence of individual differences in semantic 

processing ability on individual differences in episodic memory performance and brain 

activation in schizophrenia. Of central interest were the correlations between recall 

accuracy and the semantic processing composite variable. Both groups demonstrated 

significant positive correlations between semantic processing ability and a number of the 

recall measures, including total items correct. Notably, I also detected a significant 

correlation between semantic processing ability and recall of Semantically encoded 

words in the schizophrenia group (r = .55, p < .005), whereas no such correlation was 

found in the control group. These findings provide strong evidence that premorbid 

cognitive functioning and inherent cognitive abilities in individuals with schizophrenia 

play a significant role in how they respond to cognitive interventions. Like controls, 

individuals with schizophrenia show a lawful relationship between intrinsic semantic 

processing ability and memory benefits from a semantic orienting task. Additionally, the 

relationship between semantic processing ability and memory performance was 

somewhat specific, as I found no evidence of a significant association between abstract 

reasoning ability and memory performance.  
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Previous work has examined the relationship between memory function and 

various cognitive abilities in schizophrenia. For example, Ragland and colleagues (2003) 

found that group differences in premorbid verbal intellectual ability contributed to less 

accurate word classification during the encoding phase, but did not appear to influence 

recognition accuracy. Kareken and co-workers (1996) found that poor semantic 

organization was related to EM deficits in schizophrenia, while Goldberg et al (1998) 

suggested that thought disorder in schizophrenia might be related to the severity of 

semantic processing deficits (Goldberg et al., 1998). To my knowledge, however, the 

current study is the first to demonstrate a significant relationship between individual 

differences in semantic processing ability and episodic memory function following an 

encoding orientation manipulation in individuals with schizophrenia.  

Few (if any) studies have examined individual differences in semantic processing 

ability in schizophrenia and have related them to behavioral measures. The work 

referenced above suggests that semantic processing ability represents a cognitive domain 

of great importance for individuals with schizophrenia, as well as a topic of great interest 

for those studying this disease. Based on my results and the findings of others, it appears 

that the intrinsic semantic processing ability possessed by individuals with schizophrenia 

impacts many aspects of their lives and can have wide-reaching implications in terms of 

functional outcome and quality of life.  

Regarding other notable correlations, schizophrenia participants showed a 

significant negative correlation between disorganized symptoms and recall of 

Semantically encoded items. Disorganized symptoms are associated with executive 

function (Daban et al., 2002; Moritz et al., 2001), lower verbal IQ and poor concept 
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attainment (O'Leary et al., 2000), and working memory (Daban et al., 2002) in 

schizophrenia. It is likely that some (or all) of these factors are involved in successful 

semantic processing and subsequent memory function, further supporting the notion that 

individuals with schizophrenia possess inherent traits and cognitive abilities that can 

determine the outcome of cognitive interventions.  

Finally, negative symptoms were not significantly correlated with any of the 

recall measures. Traditionally, negative symptoms have been associated with poor EM 

function in schizophrenia (Aleman et al., 1999; Brazo et al., 2002; Cirillo & Seidman, 

2003; S. Gold et al., 1999; Pelletier et al., 2005; Thoma et al., 2006), so it was somewhat 

surprising that a significant correlation between negative symptoms and recall was not 

detected. This may have been a consequence of the individuals with schizophrenia who 

participated in the study, as many of them were high functioning and relatively free of 

symptoms. It is conceivable that studying participants with a wider range of 

symptomotology would have produced a different pattern of correlational results.    

In addition to its effect on episodic memory performance, a further topic of 

interest was the relationship between semantic processing ability and task-related brain 

activity during Semantic encoding. This relationship was assessed in two ways for each 

group separately. An ROI-based approach, using brain regions that showed significant 

task-related activity during Semantic encoding, identified significant negative 

correlations for schizophrenia participants in three brain areas – two areas in left BA 6 (-

45,2, 49 & -28, 15, 57) and one area in left BA 9 (-41, 3, 29). A second approach, in 

which semantic processing ability was correlated with brain activity throughout the entire 

brain, identified one significant negative correlation among individuals with 
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schizophrenia in left BA 6 (-27, 5, 55). This region was somewhat close to one of the left 

BA 6 regions identified in the previous analysis. 

As stated in the Results, there has (to my knowledge) been relatively little work 

done in this domain (i.e., examining individual differences in semantic processing ability 

as they relate to brain activity), either in individuals with schizophrenia or healthy 

populations. Thus, the precise localization of such correlations was difficult to predict. In 

light of my findings, however, there is evidence that this area of prefrontal cortex (BA 6) 

plays a role in various processes that may contribute to semantic processing in healthy 

individuals. For example, it has been suggested that left BA 6 is involved in word 

retrieval and phonological processing (Kubicki et al., 2003; Thompson-Schill et al., 

1997), functions that would likely be tapped in making decisions about relationships 

between words and scenes. Left PFC has also been implicated in working memory 

function in healthy controls (Smith & Jonides, 1999), as well as effortful memory 

retrieval (Naghavi & Nyberg, 2005). Given the fact that all of the correlations were 

negative, it appears that schizophrenia participants with less intrinsic semantic processing 

ability may require and recruit regions of left prefrontal cortex in order to successfully 

complete the Semantic encoding task, whereas those with more semantic processing 

capacity did not need to bring these regions online. Furthermore, it is noteworthy that a 

degree of overlap was found across correlational analyses, which may suggest converging 

evidence for a specific role of left PFC (particularly left BA 6) in semantic processing in 

schizophrenia. As with the analysis of the behavioral data, I also found that the 

relationship between semantic processing ability and encoding-related brain activity 
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among schizophrenia participants was relatively specific, such that I detected a much 

weaker relationship between abstract reasoning ability and brain activity. 

It was somewhat unexpected, however, that control participants did not 

demonstrate a significant relationship between semantic processing ability and brain 

activity during Semantic encoding. It is the case that the range (-3.47 – 5.21) and standard 

deviation (2.07) of semantic processing scores for control participants was more 

restricted than those of schizophrenia participants (range: -5.79 – 4.83, SD = 2.86), 

potentially reducing the likelihood of finding significant correlations. Brain activity 

among individuals with schizophrenia also tends to be more variable relative to patterns 

of brain activity in control participants (Barch et al., 2003), which may have also 

contributed to the detection of stronger relationships between semantic processing and 

brain activity in schizophrenia participants.  

Importantly, these findings suggest that individuals with schizophrenia respond 

differently at a neurobiological level to memory interventions depending on their inherent 

ability to take advantage of those interventions. Specifically, schizophrenia participants 

who had higher levels of semantic processing ability (as measured in this study) activated 

regions in left frontal cortex to a lesser degree during Semantic encoding, in a sense 

making them more like control participants. In contrast, schizophrenia participants who 

were low on semantic processing ability recruited the left frontal regions significantly 

more, possibly representing either a compensatory or pathological process. This 

heterogeneity in the intrinsic skills of individuals with schizophrenia, and the underlying 

brain systems that they affect, represents a rich source of knowledge and potential future 

research area, as well as a potential approach to parsing the heterogeneity in behavior and 
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brain function shown by individuals with schizophrenia. More research is needed to 

clarify the differential relationship between semantic processing ability and task-related 

brain activity in healthy controls and individuals with schizophrenia.  

Limitations 

 The present study had a number of limitations that merit discussion and should be 

addressed in future research. First, the participants with schizophrenia in this study 

demonstrated a somewhat limited range of psychopathology. The schizophrenia 

participants who volunteered to be involved in this research were high functioning, 

relative to a typical schizophrenia sample. Furthermore, I was only able to include 

participants with schizophrenia (as well as control participants) who were able to tolerate 

a 2-hour cognitive battery and 2-hour MRI scanning session while adhering to the 

instructions the entire time. Thus, it is possible that the participants with schizophrenia 

who successfully completed this study were not necessarily representative of the general 

schizophrenia population. Therefore, conclusions that are drawn from this work must be 

made cautiously.  

 Secondly, although sample sizes of the control and schizophrenia groups used in 

the neuroimaging analyses (24 and 23 participants, respectively) were relatively large 

compared to many studies in the functional neuroimaging literature, they did not provide 

high power to detect more subtle group differences, such as those that might be apparent 

in behavior. For example, it is possible that more of the correlational analyses (relating 

semantic processing ability and memory performance) would have been significant if 

larger groups were used. A similar case can be made for the two- and three-way 
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interactions in the behavioral data. Although many of the findings were in the predicted 

direction, a larger N might have helped to further clarify some of the results.  

 A third limitation posed by the present study was the nature of the retrieval task 

used in the scanner. Specifically, participants were required to recall words and say them 

aloud while being scanned. Although recall tasks have been used successfully in fMRI 

studies, they can introduce potential problems. For example, speaking in the scanner 

resulted in additional head movement in both groups, particularly the schizophrenia 

participants, which degraded the quality of the functional images and even rendered 

certain scanning runs unusable. Furthermore, repeated opening and closing of the mouth 

can alter the properties of the cavities surrounding the brain, making it more difficult to 

obtain quality images. Therefore, the valuable information that was obtained by using a 

cued recall paradigm also led to certain difficulties in data collection and analysis.  

 Finally, and related to the previous point, it is worth reiterating that the 

schizophrenia group had lower signal-to-noise ratios (SNR) on most of the scanning runs, 

somewhat limiting the conclusions that can be drawn from these data. Above, I have 

described a number of steps that were taken to address this issue on a post-hoc basis, 

including matching subgroups of control and schizophrenia participants on SNR and re-

analyzing the neuroimaging data. However, such fundamental differences in the signal 

derived from the brains of the control and schizophrenia participants are problematic, 

especially when attempting to interpret the relationship between brain activation and 

behavior. Given the results of the contrasts using matched groups, it seems somewhat 

safe to conclude that some of the initial findings were spuriously influenced by SNR 
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artifacts, whereas others represented real between-group differences in brain activation. 

This issue is of key importance and should be monitored in all studies of this type.  

Future Directions 

 The results from the present study suggest a number of avenues and directions for 

future research in the domain of memory-related brain function in individuals with 

schizophrenia. One topic which was unexplored in this study, but which is of great 

interest and importance in this field, is the relationship between brain structure and 

cognition in individuals with schizophrenia. For my purposes, I would be interested to 

investigate the relationship between brain structure, brain function, and strategic memory 

processing. Specifically, a question that arises from this line of research is whether the 

size or integrity of brain structures in schizophrenia constrains the ability to benefit from 

memory strategies, and whether these factors are related to inherent cognitive abilities, 

such as verbal processing. One could postulate that individual differences in gray matter 

integrity in prefrontal cortex, for example, may differentiate those individuals with 

schizophrenia who are able to benefit from strategic instruction from those who are not. 

Hippocampal size and its relation to memory function have also been investigated in this 

population. Future research could examine the relationship between the size of structures 

in the medial temporal lobe and relational memory performance, among other topics.  

 A second issue to be further explored in future work is the effect of different 

retrieval cue types on recall success and retrieval-related brain activity, in both 

schizophrenia participants and healthy controls. As discussed previously, it is possible 

that the use of different retrieval cues (e.g., category cues, word stems, etc.) has an 

impact on the likelihood of retrieval success. Furthermore, the pattern of differences may 
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vary across groups depending on which retrieval cues are being used. Thus, future 

research endeavors should assess whether the use of different retrieval cues significantly 

alters patterns of brain activity or memory performance, and whether such differences 

show interactions with group (i.e., control vs. schizophrenia).  

 Furthermore, the findings from the present study regarding the effects of 

individual differences on behavioral performance and brain activity warrant further 

exploration. Specifically, follow-up work should be conducted to examine how 

differences in cognitive abilities and demographic variables (among other factors) 

influence memory performance and memory-related brain function, as well as how these 

relationships differ between individuals with schizophrenia and healthy individuals. For 

example, in a noteworthy finding not discussed above, the parental education of 

schizophrenia participants was predictive of a number of recall measures, while such a 

relationship was not detected in controls. Findings such as these may help to uncover 

some of the factors that are involved in the development of schizophrenia.   

 Finally, future work in this area would profit from the use of a psychiatric control 

group, such as individuals with major depressive disorder (MDD). Individuals with 

MDD, like individuals with schizophrenia, are known to have memory deficits, although 

the precise mechanism underlying such deficits has not been fully uncovered. The 

proposed design can be used to explore the question of whether the effects of strategy 

manipulation on brain activity apply to individuals with schizophrenia alone or to 

individuals with severe mental illness more generally. Furthermore, it would be possible 

to compare the groups on other measures as well, such as brain structure and inherent 

cognitive abilities. Investigations of this type would provide further insight into the 
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neural mechanisms underlying cognitive deficits in schizophrenia, and they may help to 

shed light on neurobiological factors that trigger impairments in severe mental illness 

more generally.  

Summary 

 Overall, results of the behavioral and neuroimaging data analyses suggested that 

the schizophrenia participants benefited from the encoding condition manipulation. 

Behaviorally, they recalled more words following Semantic (relative to Non-Semantic) 

encoding, and the interaction with Group indicated that this recall benefit was greater 

among schizophrenia participants than controls. These behavioral benefits were 

accompanied by increases in task-related brain activation among schizophrenia 

participants. Whereas between-group differences were detected in both directions 

(control > schizophrenia and schizophrenia > control) for Non-Semantic encoding, nearly 

all of the between-group differences during Semantic encoding were in the direction of 

schizophrenia > control. The behavioral and neuroimaging findings in this regard 

replicate previous research showing significant enhancement of memory performance 

and brain activity in schizophrenia participants following deep encoding tasks. 

Additionally, the current data extend previous work by demonstrating these effects using 

a recall (rather than recognition) test and an associative (rather than item) memory 

paradigm.  

The current study also showed that the retrieval cue manipulation was equally 

beneficial for the memory performance of controls and individuals with schizophrenia. 

Furthermore, retrieval cues conferred greater memory benefits for both groups following 

Non-Semantic encoding, suggesting that cueing is more beneficial for poorly encoded 
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information. Regarding the neuroimaging data, however, all retrieval conditions were 

associated with widespread hypoactivation in the schizophrenia group. There were 

indications that reduced signal-to-noise ratios in the schizophrenia group influenced the 

retrieval neuroimaging results, although post-hoc analyses suggested that some of the 

results reflect true between-group differences in retrieval-related brain activity.  

Novel findings from this study included the detection of subsequent memory 

effects in frontal cortex in schizophrenia participants, in addition to effects detected in 

posterior areas that have been reported in previous studies. Furthermore, a number of 

interesting relationships were detected between behavioral performance and individual 

differences in semantic processing ability, including a significant positive correlation 

between the semantic processing composite measure and recall of Semantically encoded 

items. This correlation was significant only in the schizophrenia group, not the control 

group. In addition, significant negative correlations were detected between Semantic 

encoding activity and the semantic processing composite measure, once again only in the 

schizophrenia group. Taken together, these data provide evidence that individual 

differences in cognitive abilities among individuals with schizophrenia can significantly 

affect behavioral and neurobiological responses to strategic memory interventions.  

Despite the presence of encoding and retrieval cues, however, schizophrenia 

participants did not show enhancements in memory and brain activity under all 

conditions. This was most obvious during the retrieval tasks, in which the schizophrenia 

group showed patterns of underactivation across all retrieval conditions. In addition, 

correct identification of New items was poorer in schizophrenia participants and 

associated with brain activation deficits, most notably in medial temporal lobe. 
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Individuals with schizophrenia appear to have difficulty in discriminating old from new 

items, and this conclusion is supported by the effect size and d-prime analyses. 

Furthermore, it is conceivable that activity in medial temporal lobe regions in controls 

signals novelty and aids in detection of new items, whereas the absence of such activity 

in individuals with schizophrenia may be associated with deficits in identifying new 

items.  

 Finally, the current findings suggest that, despite the differences in brain activity 

described above, individuals with schizophrenia and healthy individuals rely on partially 

overlapping networks of brain regions to support EM processes. In analyses of brain 

activity associated with EM encoding, subsequent memory, and retrieval, controls and 

schizophrenia participants consistently demonstrated commonalities in the neural systems 

that were recruited to subserve memory functions. I interpret these findings to further 

support the notion that constraining memory strategy use in individuals with 

schizophrenia is effective in enhancing and “normalizing” memory-related brain activity 

patterns. Although certain deficits in memory performance and brain activation persist, it 

is clear that orientation to advantageous memory strategies can partially ameliorate EM 

function among individuals with schizophrenia. 
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