
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Mechanical Engineering and Materials Science 
Independent Study Mechanical Engineering & Materials Science 

2-20-2017 

Matrix stiffness and confinement influence YAP localization in Matrix stiffness and confinement influence YAP localization in 

clustered epithelial cells clustered epithelial cells 

Samila Nasrollahi 
Washington University in St. Louis 

Amit Pathak 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/mems500 

Recommended Citation Recommended Citation 
Nasrollahi, Samila and Pathak, Amit, "Matrix stiffness and confinement influence YAP localization in 
clustered epithelial cells" (2017). Mechanical Engineering and Materials Science Independent Study. 33. 
https://openscholarship.wustl.edu/mems500/33 

This Final Report is brought to you for free and open access by the Mechanical Engineering & Materials Science at 
Washington University Open Scholarship. It has been accepted for inclusion in Mechanical Engineering and 
Materials Science Independent Study by an authorized administrator of Washington University Open Scholarship. 
For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems500
https://openscholarship.wustl.edu/mems
https://openscholarship.wustl.edu/mems500?utm_source=openscholarship.wustl.edu%2Fmems500%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/mems500/33?utm_source=openscholarship.wustl.edu%2Fmems500%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


1 
 

Matrix stiffness and confinement influence YAP 

localization in clustered epithelial cells 

Samila Nasrollahi, 

 

Abstract 

Epithelial cell clusters reside in complex extracellular matrices (ECMs) of varying mechanical 

properties including stiffness, topography, dimensionality, and confinement. Through 

mechanotransduction, cells sense and translate the mechanical cues presented by the surrounding 

ECM into biochemical signals, which control fundamental aspects of cell behavior including 

differentiation, proliferation, and motility. While it is well established that nuclear translocation 

of Yes-associated-protein (YAP) in single cells serves as a key sensor of ECM stiffness, it 

remains unknown whether grouped epithelial cells exhibit a similar nuclear YAP localization 

response on stiff substrates. Moreover, the regulation of YAP activity in clustered cells in 

confined microenvironments has remained unexplored. In this study, we cultured epithelial cell 

monolayers on flat polyacrylamide (PA) gels of varying stiffness and measured nuclear and 

cytoplasmic localization of YAP. We found that nuclear YAP localization in grouped cells 

increased on stiffer gels. However, this stiffness-dependent nuclear localization of YAP was not 

as effective in densely packed monolayers. To understand how ECM stiffness and confinement 

independently influence YAP activity, we fabricated a PA-microchannels platform and cultured 

epithelial cell clusters in channels of tunable width and stiffness. Our measurements demonstrate 

that the likelihood of nuclear YAP localization increases in cell clusters confined within narrower 

channels. In wide channels, cells neighboring the channel walls exhibit less roundedness and 

more nuclear YAP compared to those in the interior of the channels. Taken together, these 

findings reveal that the mechanosensitive nuclear localization of YAP in clustered cells depends 

not only on ECM stiffness, but also on the cell density and the degree of matrix confinement.  
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Introduction 

Cells sense their microenvironment not only through biochemical signals, but also through 

physical and mechanical cues present in the extracellular matrix (ECM). These mechanical cues 

are mainly attributed to ECM stiffness, topography, dimensionality, and porosity [1, 2], all of 

which are known to regulate fundamental cellular functions such as proliferation, migration, and 

differentiation [3-8]. In the recent years, growing evidence suggests that there is a direct link 

between various nuclear transcription factors and mechano-regulated cell activities [9, 10]. In 

particular, Yes-associated-protein (YAP) is recognized as the classical sensor that transduces 

mechanical signals, including ECM stiffness and cell shape, into biological outcomes [11]. These 

mechanosensitive functions of subcellular YAP localization are processed through the Hippo 

signaling pathway, which acts upstream of YAP. Upon activation of the Hippo pathway, large 

tumor suppressor homologue (LATS) gets phosphorylated, resulting into YAP phosphorylation 

[12]. Subsequently, the inactivated (phosphorylated) YAP is excluded from the nucleus and 

aggregated within the cytoplasm [13]. However, the inactivated form of Hippo pathway leads to 

de-phosphorylation of YAP and re-localization to nucleus to induce gene expression [14, 15]. 

Therefore, the shuttling of YAP between the nucleus and cytoplasm serves as a key mechanism 

through which mechanical cues are transduced to gene expression [16].   

Several recent studies have demonstrated a direct relationship between ECM stiffness and 

the nuclear YAP activation in various cells types when cultured singly on substrates of variable 

stiffness [17-20]. On stiff fibronectin-coated polyacrylamide (PA) gels, mammary epithelial cells 

(MECs) and human mesenchymal stem cells (hMSCs) showed predominantly nuclear YAP 

localization. However, on soft substrates, the cytoplasmic localization was the dominant 

phenotype [11]. The YAP activation is also associated with osteogenic differentiation of hMSCs 

on stiff substrates [11, 20]. In fibrosis, higher matrix stiffness activates fibroblasts to enhance the 

rate of matrix synthesis, where YAP is known to be the key mediator of stiffness-dependent 

fibroblast activation in pulmonary fibrosis [21, 22]. Moreover, the enhanced YAP localization on 

stiff substrates is correlated with the higher cell spreading area [11]. Strikingly, the restriction of 

cell spreading led to more cytoplasmic YAP localization [23]. Although a direct correlation 

between substrate stiffness and cell shape with YAP activation has been identified for single 

cells, there is not enough evidence regarding the mechano-regulated YAP localization in 

epithelial clusters. Furthermore, it remains unknown how the mechanosensitive YAP activation in 

cell clusters depends on ECM confinement. Given that epithelial cell clusters often reside in 

ECMs that vary in both stiffness and topography, it is crucial to understand how 
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mechanosensitive YAP activity varies with the degree of confinement surrounding the clustered 

cells. 

To understand how matrix stiffness regulates YAP localization in clustered epithelial 

cells, we cultured MCF-10A human mammary epithelial cells on collagen-coated flat PA gels of 

variable stiffness. Our results demonstrate for the first time that stiffness-dependent YAP 

activation holds true for epithelial cell clusters, similar to the effects previously observed for 

single cells [11]. While cell density is known to influence YAP activation, it is not clear how cell 

density affects the stiffness-dependent YAP localization in epithelial clusters. Our results indicate 

that the density of epithelial cells minimally affects YAP localization on soft ECMs. However, on 

stiff ECMs, the nuclear YAP localization is expected to be higher for lower cell density. Next, to 

investigate the role of ECM confinement in regulating YAP activation in epithelial clusters, we 

need a device that permits independent control over matrix stiffness and topography. Here, we 

employed a microchannels-based matrix scaffold with tunable stiffness and confinement. We 

examined subcellular YAP localization for epithelial clusters trapped inside the channels of 

varying width and stiffness. We found that the nuclear YAP localization increased in narrower 

channels. Our results indicate that reduced cell roundness, due to increased confinement, 

accompanies YAP activation in narrower channels. Surprisingly, the enhanced nuclear YAP in 

more confined environments persisted even in soft ECMs, which were previously shown to have 

inhibitory effect on YAP activation. Taken together, our findings expand the established 

paradigm of ECM stiffness-dependent and cell-shape dependent YAP activation in the context of 

clustered epithelial cells. 

 

Materials & Methods 

Polyacrylamide gels – flat and microchannels 

To prepare flat hydrogels, 18mm glass coverslips were plasma cleaned, treated with Bind-Silane 

(GE Healthcare), rinsed with ethanol, and air-dried. The PA precursor solutions were mixed by 

choosing monomer:crosslinker ratios based on previous  stiffness characterizations of PA gels – 

acrylamide:bisacrylamide (A:B) percentages of 5%A:0.2%B and 15%A:1.2%B, corresponding to 

PA elastic moduli of 1 and 120 kPa [5]. To make flat PA gels, the precursor solution was 

sandwiched between a reactive coverslip and a glass slide coated with Sigmacote (Sigma-

Aldrich), and let to polymerize for 30 min. To fabricate hydrogel-microchannel PA gels, a mixed 

solution was polymerized against the silicon wafers, made using a photolithography technique 
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described previously [24]. Polymerized gels and microchannels were soaked in PBS and stored at 

4°C until use. Gels surfaces were functionalized with 0.5mgml
-1

 Sulfo-SANPAH (Thermo 

Scientific Pierce) in HEPES buffer under 365 nm ultraviolet light for 10 min, and incubated at 

4°C overnight with 0.05mg/ml of rat tail collagen I (Santa Cruz Biotechnologies).  

 

Cell culture  

Human mammary gland epithelial (MCF-10A) cells were cultured, in DMEM/F12 (Invitrogen), 

with 5% (v/v) horse serum (Invitrogen), 20 ng/mL epidermal growth factor (EGF, Miltenyi 

Biotec Inc), 0.5 mg/mL hydrocortisone (Sigma-Aldrich), 100 ng/mL cholera toxin (Sigma-

Aldrich), 10 ug/mL insulin (Sigma-Aldrich), and 1% (v/v) penicillin-streptomycin (Sigma-

Aldrich). A colony of MCF10A cells was seeded inside the central chamber of a PA hydrogel -

microchannel device, as described previously [24], and allowed to grow out of the chamber and 

enter into the channels. To culture cells on flat gels, media containing enough MCF-10A cells to 

generate low and high density of epithelial cells was added to each well and incubated for 3 days 

at 37 °C and 5% CO2. Samples were fixed with 4% paraformaldehyde (Santa Cruz Technologies) 

in PBS, followed by permeabilization of cell membrane with 0.5% Triton-X 100 (Sigma-Aldrich) 

and blocking with 1% bovine albumin serum (BSA) (EMD milipore). Samples were incubated 

with mouse monoclonal YAP antibody (Santa Cruz Biotechnology; diluted 1:100) overnight 

followed by incubation with Alexa Fluor 488-labeled goat anti-mouse antibody (Invitrogen; 

diluted 1:500) for 1 hour. After thoroughly rinsing the substrates with PBS, 1:250 10mg/mL 

DAPI (Santa Cruz) was added for 30 min at RT. Finally, samples were rinsed again with PBS and 

stored at 4ºC before imaging. 

 

Confocal microscopy and quantification of YAP localization 

Images were taken using a laser-scanning confocal microscope (Zeiss LSM 730; Carl Zeiss 

MicroImaging, Germany) at 20X objective, and confocal stacks were obtained. Captured z-stacks 

were imported to ImageJ (NIH), and the stacks were projected with the maximum intensity. To 

quantify the subcellular YAP activity, the average fluorescence intensity was measured in the 

nucleus and the cytoplasm. Next, the nuclear/cytoplasmic ratio of YAP expression was plotted. 

As an alternative method, cells were examined for the nuclear inclusion/exclusion and the 

percentage of each type of YAP localization calculated by finding the number of cells 

representing the corresponding YAP localization category (nuclear or cytoplasmic) [25]. 
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Statistical analysis 

Images used for analysis were selected randomly from at least three different experiments for 

each condition. Results are reported as the mean + standard error (SE), unless stated otherwise. 

To identify the significant differences between experimental conditions, we used two-way 

ANOVA followed by Tukey-Kramer HSD (honestly significant difference) for pairwise 

comparisons in MATLAB (Mathworks). Differences were considered to be significant for 

P<0.05. 

 

 

Results 

 

 

 

ECM stiffness regulates nuclear YAP localization in epithelial cell clusters 

To test if YAP activity in clustered epithelial cells is regulated by ECM stiffness, we measured 

nuclear localization of YAP in MCF-10A cells grown on collagen-coated PA gels of either 1kPa 

or 120kPa elastic modulus. Following 3 days of culture in these substrates, substrates were 

stained for the YAP antibody. Through the analysis of immunofluorescence images, we measured 

 

 

Figure 1: YAP activity in clustered cells on flat gels of varying stiffness. (A) Quantification 

of nuclear YAP localization in terms of nuclear/cytoplasmic ratio of YAP expression on soft 

and stiff flat PA gels. 
*
p<0.05 with respect to stiff ECM. N>30 cells per condition, from at 

least three separate experiments. (B) Representative immunofluorescence images of YAP 

(green) and DAPI (blue) in MCF-10A epithelial sheet cultured on soft (top) and stiff (bottom) 

ECMs. Scale bar = 50 µm. 
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nuclear/cytoplasmic ratio of YAP expression for individual cells within epithelial cell sheets 

grown on soft or stiff substrates (Fig. 1B). We found that the average nuclear localization of 

YAP, calculated as mentioned above, in the case of soft ECM was less than 1/5
th
 of the value 

calculated for stiff ECM. These results indicate that ECM stiffness-dependent nuclear 

translocation of YAP that has been observed for single cells also holds true for multi-cellular 

epithelial sheets.  

 

 

 

Stiffness-dependent YAP activity depends on the cell density of epithelial clusters 

It is already known that cell density regulates Hippo signaling and nuclear YAP accumulation 

[23]. At low cell densities, weak Hippo signaling allows nuclear YAP accumulation, whereas 

culturing cells at high density induces strong Hippo signaling and the inhibition of nuclear YAP 

accumulation [23]. However, it remains unknown whether the density of cells in an epithelial 

 

 

Figure 2: Regulation of YAP activity by cell density. (A) Nuclear/cytoplasmic ratio of YAP 

expression in cells within the low- or high-density epithelial clusters, cultured on soft and stiff 

ECMs. On soft ECM, the average low and high cell densities are 2.5 ´105  and 8.5 ´105  

cells/cm
2
, respectively. On stiff ECM, the average low and high cell densities are 1.5 ´105  

and 5.5 ´105  cells/cm
2
, respectively.  

+
p<0.05 with respect to stiff ECM. 

*
p<0.05 with respect 

to the low cell density case in either stiffness. N>30 cells per condition, from at least three 

separate experiments. (B) Confocal immunofluorescence images of YAP expression (green) 

and nuclei (blue) for MCF-10A cell clusters of varying cell densities, cultured on soft (left 

column) and stiff (right column) substrates. Scale bar = 50 µm.  
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sheet could regulate YAP activation in an ECM stiffness dependent manner. To answer this 

question, we imaged YAP expression in epithelial clusters of different densities on both soft and 

stiff PA gels (Fig. 2B). Subsequently, we measured nuclear YAP localization in terms of the 

nuclear/cytoplasmic ratio of YAP expression, as described earlier. On soft substrates (Fig. 2A), 

the difference in nuclear YAP localization between low ( 2.5 ´105 cells/cm
2
) and high ( 8.5 ´105

cells/cm
2
) cell density conditions was small and statistically insignificant. However, on stiff 

ECMs (Fig. 2A), we observed an approximately 80% reduction in nuclear YAP localization in 

densely packed cells ( 5.5 ´105 cells/cm
2
) compared to the cell clusters with lower density (

1.5 ´105 cells/cm
2
). Here, the numbers corresponding to cell densities are average densities 

evaluated by counting the number of cells from the DAPI images for each condition. Note that 

the definition of ‘low’ and ‘high’ density for soft and stiff ECMs is different because we found a 

sparser distribution of cells on the stiffer ECM, which could be due to increased spreading and 

EMT [24, 26, 27]. These results indicate that the density of cells in an epithelial cluster 

significantly influenced the mechanosensitive YAP localization when epithelial cells were grown 

on stiff substrates.  

 

Matrix confinement regulates YAP localization through changes in cell morphology 

To study the independent roles of stiffness and confinement on YAP activation in epithelial 

clusters, we fabricated a polyacrylamide microchannel-based matrix platform for cell culture 

(Fig. 3A), as we have done previously [24]. Briefly, we combined photolithography techniques 

and PA hydrogel synthesis to construct microchannels of varying width, embedded in PA gels of 

specified stiffness. In this system, an epithelial colony is seeded in the central chamber and 

allowed to grow beyond the central chamber to facilitate the entry of cell clusters into channels of 

widths ranging between 20-200 µm. Thus, our platform allows independent control over 

confinement and stiffness around epithelial clusters.  

Cells with flat and spread morphology have been shown to exhibit nuclear YAP 

localization, while rounded cell morphology favors YAP cytoplasmic localization [23]. Given 

that cell morphology is associated with the subcellular YAP localization, we hypothesized that 

morphological adaptation of epithelial cells to confinement might also influence YAP 

distribution. First, to measure the effect of confinement on cell morphology, we quantified 

roundness of individual cells in epithelial clusters in channels of varying confinement and 

stiffness. As Fig. 3B shows, the roundness parameter is decreased with increasing confinement 

(decreasing channel width). We also found that the cells on soft substrate were rounder compared 

to the ones on stiff substrate regardless of the channel width. These results demonstrate that 
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confining of epithelial clusters within narrow channels reduces the roundedness of individual cell 

that make up the epithelial cluster (Fig. 3B).  

 

 

Figure 3: Cell morphology and YAP activity in microchannels. (A) Schematic describing 

epithelial cell clusters grown inside the polyacrylamide (PA)-microchannels based platform. 

(B) Cell roundness for single cells in epithelial clusters inside channels of varying widths 

made of soft and stiff substrates. *p < 0.05 with respect to stiff ECM. +p < 0.05 with respect to 

narrow (20 µm) channels. N>20 cells per condition, from at least three separate experiments. 

(C) Percentage of cells with nuclear YAP localization in wide channels (80 or 200m channel 

width), in regions close or away from the channel walls. +p < 0.05 with respect to stiff ECM. 

#p < 0.05 with respect to ‘near walls’ condition. N>20 cells per condition, from at least three 

separate experiments. 
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Next, we asked whether this change in the cell morphology accompanies a confinement-

regulated YAP distribution in epithelial clusters. We examined YAP activation in epithelial 

clusters confined inside channels of defined properties by performing confocal microscopy and 

quantifying the percentage of cells with nuclear YAP localization after 5 days of cell seeding. In 

the widest channels (channel width of 200 m), which are essentially the same as flat gels except 

with the side walls that restrict the cluster size (Fig. 3C), we compared nuclear YAP localization 

for clusters located in the proximity of the channel walls with those located inside the channels 

(Fig. 3C). We saw more nuclear YAP localization close to the channel walls in both soft and stiff 

substrates. Therefore, presence of confinement changes YAP distribution even in the wide 

channels compared to flat substrates. In both 80 and 200 m soft channels, cell clusters showed 

~25% increase in nuclear YAP along the channel wall compared to the clusters farther away from 

the walls (Fig. 3C).  In the channels made of soft ECM, the difference in YAP activation between 

near and away from channel walls was even higher as compared to the difference measured in 

stiff channels.  

 

 

 

 

Figure 4: YAP activity in cell clusters cultured in channels of varying width and stiffness. 

Nuclear/cytoplasmic ratio of YAP expression in cells within the low- or high-density epithelial 

clusters cultured in channels of varying width made of soft (left) or stiff (right) PA gels. In soft 

channels, the average low and high cell densities are 5 ´105  and 15 ´105  cells/cm
2
, 

respectively. In stiff channels, the average low and high cell densities are 2.5 ´105  and 

7.5 ´105  cells/cm
2
, respectively.  

+
p<0.05 with respect to stiff ECM. 

*
p<0.05 with respect to 

narrow (20 m) channels. N>30 cells per condition, from at least three separate experiments. 
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Greater nuclear YAP localization in stiffer and more confined ECMs 

Given the previously described dependence of YAP localization on cell morphology [23] and our 

measurements of the influence of channel width on cell morphology (Fig. 3B), we examined the 

effect of confinement on YAP distribution inside the channels made of soft or stiff ECMs. Since 

cell density influenced mechanosensitive YAP activity on flat 2D substrates (Fig. 2), we first 

posited whether a similar density-dependence could occur in confined ECMs. Surprisingly, we 

found that nuclear YAP localization did not change significantly between low and high cell 

density conditions for any given channel width or ECM stiffness (Fig. 4). These results indicate 

that YAP activity in epithelial clusters in confinement is less sensitive to cell density as compared 

to the epithelial colonies on flat substrates (compare Figs. 2 and 4).  

Inside soft channels, we found that nuclear YAP localization increased with decreasing 

channel width (for either cell density), which indicated a rise in YAP activation in more confined 

ECMs (Figs. 4, 5B). The epithelial clusters confined inside narrow (20 m) channels showed an 

approximately three-fold increase in nuclear YAP localization compared to ones located in the 

wide (200 m) channels (Fig. 4). Next, to examine the effect of ECM stiffness on YAP activation 

in confinement, we repeated these experiments in channels made of stiff (120 kPa) PA gels. As 

expected, the cell clusters inside the stiff channels showed relatively high nuclear localization 

regardless of the channel width (Fig. 4, 5A). Overall, in stiffer channels, we found higher nuclear 

YAP compared to soft substrates for any given channel width. Thus, our results demonstrate that 

higher matrix elasticity regulates nuclear YAP localization even for epithelial clusters trapped 

inside channels, which is in agreement with earlier observations on flat PA gels [11].  
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Figure 5: Enhanced YAP nuclear localization in stiffer and narrower channels. 

Representative immunofluorescence images of YAP (green), nuclei stained with DAPI (blue), 

and merged for epithelial cells embedded inside (A) stiff and (B) soft channels of varying 

width.  Scale bar = 50 µm.  
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Discussion 

Mechanical signals are abundantly present in the microenvironment that surrounds the living 

cells. In recent years, there has been an increasing appreciation that the mechanical properties of 

the ECM, such as stiffness and matrix topography, impact fundamental cellular functions through 

cell-ECM interactions. In cancer metastasis, epithelial clusters escape from the primary tumor and 

pass through ECMs of varying mechanical properties before arriving at the secondary sites. It is 

now known that the elasticity and microstructure of the ECM surrounding the epithelial clusters 

can independently prepare these cells for malignant transformation [24, 28-30]. Specifically, on 

stiffer substrates, higher actomyosin contractility and stronger cell-ECM adhesions lead to the 

dissolution of cell-cell adhesions, resulting in epithelial-to-mesenchymal transition (EMT) [28]. 

Recent studies, including our work, have shown that MCF10A mammary epithelial cells cultured 

on stiff collagen-coated PA gels undergo EMT and attain invasive phenotype [24, 29]. 

Additionally, we have shown that ECM topography can perpetuate mesenchymal transformation 

independently of matrix stiffness [24], which was consistent with previous findings [30]. We also 

found that the elongated cell morphology in narrower channels was associated with a 

confinement-sensitive induction of EMT, even in softer ECMs [24].  

In this study, we argue that the ECM-dependent biological response in clustered 

epithelial cells, e.g., stiffness- and confinement-dependent EMT [24], due to the mechanical cues 

presented by the ECM should be processed by signaling pathways that are transmitted through the 

nucleus. Since YAP is known as the classical transducer of ECM stiffness [11, 23], we shortlisted 

it as a potential candidate for instructing ECM-sensitive responses in epithelial clusters. While it 

is known that ECM stiffness and cells shape can regulate YAP distribution in single cells, it is not 

yet clear how these parameters might affect YAP localization in epithelial cells that typically 

grow in clusters with intact cell-cell junctions. Given that the disassembly of tight junctions is 

known to enable ZO2-mediated translocation of YAP to the nucleus, it would be important to 

understand the regulation of YAP activity during ECM-dependent EMT [31]. This gap in 

knowledge persists mainly because of an absence of matrix platforms that permit an orthogonal 

control over topography and stiffness of the ECM around the epithelial clusters. In this work, we 

addressed this challenge by utilizing a matrix platform for culturing cell clusters in PA channels 

of varying width and stiffness [24].  

We have shown for the first time that matrix confinement alters the dependence of YAP 

activation on ECM stiffness. While previous studies have indicated that YAP remains inactive on 

soft substrates [11, 22], our results demonstrate that confining the epithelial clusters inside the 

narrow channels can lead to nuclear YAP localization even on soft ECMs. On stiff substrates, 
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most cells in the cluster showed maximal YAP activation regardless of the channel width.  We 

attribute this result to the similar influences of ECM stiffness and confinement on cell 

morphology. Here, cells confined within narrow channels were forced to become less round, 

which was similar to the cellular elongation and simultaneous nuclear YAP localization observed 

on flat stiff substrates [23]. Even in wide channels, cells near the channel walls showed higher 

nuclear YAP localization than those in the interior of the epithelial cluster. It is possible that cells 

near the channel walls intimately interact with the wall surface and align themselves along the 

walls. This rise in spreading and elongation along the channel walls may enhance cellular 

mechano-activation, as we have argued in previous studies [4, 5, 24, 27], and thus lead to higher 

YAP activation. The current understanding of stiffness-dependent YAP activation has mainly 

been derived from experiments of isolated non-epithelial cells on flat surfaces. Our matrix 

platform of epithelial clusters in ECMs of defined stiffness and topography brings a fresh 

perspective to our understanding of how stiffness and topography of the ECM regulate YAP 

distribution in epithelial clusters. The results presented in this study, along with our previous 

findings [24, 27], present a novel framework for ECM stiffness- and confinement-sensitive EMT 

markers and YAP activity in epithelial clusters. We have also shown that nuclear YAP 

localization increases in sparser epithelial clusters cultured on 2D substrates, which is in 

agreement with another recent study [26]. However, our measurements for epithelial clusters 

inside channels of varying width show that the density-dependent YAP activity does not hold true 

in confined ECM settings. It should be noted that the presented framework of ECM- and density-

dependent YAP activity in epithelial clusters has only been tested for an immortalized epithelial 

cell line (MCF-10A) and could potentially differ in other cell lines and primary cultures. It is 

likely that the influence of ECM confinement on YAP activity in clustered cells might also 

regulate cellular behaviors other than EMT, such as migration and differentiation, for a variety of 

cell types and matrices that have not been covered thus far. 
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