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Abstract 

Functional connectivity refers to shared signals among brain regions and is typically 

assessed in a task free state. Functional connectivity commonly is quantified 

between signal pairs using Pearson correlation. However, resting-state fMRI is a 

multivariate process exhibiting a complicated covariance structure. Partial 

covariance assesses the unique variance shared between two brain regions 

excluding any widely shared variance, hence is appropriate for the analysis of 

multivariate datasets as exemplified by fMRI. However, calculation of partial 

covariance requires inversion of the covariance matrix, which, in most functional 

connectivity studies, is not invertible owing to rank deficiency. Here we apply 

Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD 

covariance matrix. We investigate the network organization and brain-state 

dependence of partial covariance-based functional connectivity. Although RSNs are 

conventionally defined in terms of shared variance, removal of widely shared 

variance, surprisingly, improved the separation of RSNs in a spring embedded 

graphical model. This result suggests that pair-wise unique shared variance plays a 

heretofore unrecognized role in RSN covariance organization.  In addition, 

application of partial correlation to fMRI data acquired in the eyes open vs. eyes 

closed states revealed focal changes in uniquely shared variance between the 

thalamus and visual cortices. This result suggests that partial correlation of resting 

state BOLD time series reflect functional processes in addition to structural 

connectivity.  
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Introduction 

The brain is highly active even in the absence of observable behavior (Raichle, 

2011). Intrinsic brain activity is not random, but rather exhibits a stereotypical 

correlation structure (Biswal et al., 2010). Spontaneous fluctuations in the blood 

oxygen level dependent (BOLD) signal (Ogawa et al., 1993) have been used to 

investigate the organization of intrinsic activity in the resting-state, i.e., in the 

absence of explicit task performance (Biswal et al., 1995). This phenomenon 

commonly is referred to as functional connectivity; the associated topographies 

define resting-state networks (RSNs). Seed based correlation mapping (Biswal et al., 

2010) and spatial independent component analysis (sICA) (Beckmann et al., 2005) 

together account for the vast majority of functional connectivity studies. These 

techniques are able to define RSN topographies but do not isolate variance unique to 

brain region pairs. Partial covariance techniques offer the possibility of improved 

understanding of brain organization by more precisely attributing widely and 

uniquely shared variance in different brain states. However, partial covariance 

analysis of fMRI datasets has been difficult owing to the rank deficiency, hence non-

invertibility, of high dimensional fMRI datasets (Schafer and Strimmer, 2005). 

Extant strategies for dealing with this problem in the context of resting-state fMRI 

are listed in Table 1.  

 

Covariance Matrix Conditioning via Shrinkage 

BOLD time-series give rise to an empirical covariance matrix of the form: Σ̂ =

1

𝑇
(𝑋 − �̅�)𝑡(𝑋 − �̅�), where 𝑋 ∈ ℝ𝑇×𝑀  (𝑇 time points and 𝑀 regions of interest [ROI]) 
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with the overbar indicating the column mean. When M is large, Σ̂ typically is ill-

conditioned, i.e., not invertible. Ledoit-Wolf shrinkage describes a process wherein 

rank deficient covariance matrices can be made invertible by shrinkage (Ledoit and 

Wolf, 2003). Defining  Σ̃ = (1 − 𝛼)Σ̂ + 𝛼Δ, where 𝛼 is a tuning parameter and Δ is 

the shrinkage target (Ledoit and Wolf, 2004), yields an invertible matrix. Shrinkage 

targets vary in form but generally have some favorable property. In this case, the 

shrinkage target is full rank.  The value of  that results in Σ̃ that most closely 

approximates the theoretical value of Σ (the true covariance matrix given infinite 

data) has in the past been determined using cross-validation e.g., (Efron and Morris, 

1975). However, it has been shown that the optimal value of  can be calculated in 

closed form under weak assumptions (Ledoit and Wolf, 2003)1. Matrix shrinkage is 

a low bias strategy in the sense that Σ̃ is close to the true theoretical covariance 

matrix. Given Σ̃, partial covariance and related quantities in high dimensional 

covariance matrices can be calculated.  

 

Ledoit-Wolf regularization has previously been used to condition resting-state 

BOLD covariance matrices (Varoquaux et al., 2012, Deligianni et al., 2014) but the 

properties and consequences of this approach to functional connectivity have not 

been thoroughly investigated. In order to introduce this approach to the broader 

neuroimaging community, we first demonstrate the favorable properties of the 

partial covariance quantity. Specifically, partial covariance matrices calculated using 

                                                        
1 The weak assumptions are that the first four moments of the true covariance 
matrix are defined. 
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Ledoit-Wolf regularization can be calculated with large numbers of ROIs and have 

improved test-retest reliability compared to full covariance matrices. We use the 

partial covariance quantity to investigate RSN organization. RSNs are defined by 

their widely shared variance; the partial covariance quantity removes this variance. 

It is unclear what, if any, RSN organization remains in the partial covariance matrix. 

Partial covariance functional connectivity has been reported to be 

topographicallysimilar to structural connectivity (i.e., constant over short time-

scales). We next investigate the brain-state dependence of the partial correlation 

quantity using a well-established contrast: eyes open vs. eyes closed.  

 

Methods 

Subject Characteristics 

Two datasets are used in this study. Dataset A consisted of 57 adults (mean age: 30 

years, range: 18-45 years). All subjects were neurologically and psychiatrically 

normal on examination and neuropsychological testing. These subjects were 

enrolled as controls in ongoing imaging studies and two short resting state fMRI 

scans with the eyes open and fixated were collected. Dataset B consisted of 10 adults 

(mean age: 25 years, range: 22 – 31 years). Two long resting state fMRI scans were 

collected, one with eyes open and the other with eyes closed. All subjects provided 

written informed consent in accordance with the Washington University in St Louis 

Institutional Review Board. 

 

Scanning Parameters 

Commented [JM1]: They are calculated by inversion; 
you don't want to invert the matrix of them. 

Commented [JM2]: What does reported to be mean? 
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Image acquisition was performed using a 3T Siemens Trio scanner (Erlangen, 

Germany) equipped with a standard 12-channel head coil.  A high-resolution 

structural scan was acquired using a 3-dimensional sagittal T1-weighted 

magnetization-prepared rapid gradient echo (MPRAGE, echo time [TE] = 16 msec, 

repetition time [TR] = 2,400 msec, inversion time [TI] = 1,000 msec, flip angle = 8°, 

256  256 acquisition matrix, 111mm voxels).  This scan was used for atlas 

registration.  High-resolution 2D multi-slice oblique axial spin density/T2-weighted 

fast spin echo (FSE) structural images were also acquired using slice tilts and 

positions computed by slice preregistration (TE=455 msec, TR = 3,200 msec, 256  

256 acquisition matrix, 1 acquisition, 111mm voxels). These T2-weighted FSE 

data were used for fMRI atlas registration.  Resting state fMRI scans were collected 

using a gradient spin-echo sequence (TE = 30 msec, TR = 2200 msec, field of view = 

256 mm, flip angle = 90°, 4mm isotropic voxels) sensitive to blood oxygen level 

dependent (BOLD) contrast (Ogawa et al., 1993). In dataset A, two six-minute 

resting state fMRI runs (164 volumes per run) were acquired during which 

participants were asked to fixate on a visual cross-hair and not fall asleep. In dataset 

B, two forty-five minute resting state fMRI runs (1225 volumes per run) were 

acquired. During one run the participants were asked to fixate on a visual cross-hair 

(Eyes open; EO) and during the other run the participants were asked to keep their 

eyes closed (EC) but not to fall asleep. The order of these scans were 

counterbalanced across subjects.  

 

Preprocessing 
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Initial preprocessing of resting state fMRI data followed conventional methods as 

previously described (Brier et al., 2014). Generic preprocessing of fMRI data 

included correction for slice-dependent intensity differences related to interleaved 

acquisition (debanding) (Hacker et al., 2013), rigid body correction for head 

movement within and between fMRI runs, and atlas transformation. Volumes 

strongly contaminated by head movement (Power et al., 2012) were removed and 

voxelwise replaced with linearly interpolated values (Power et al., 2013). Frame 

censoring was computed using the DVARS measure (Smyser et al., 2010) modified 

to include a 10mm FWHM Gaussian spatial pre-blur2. The frame exclusion threshold 

was set at 0.7% rms BOLD signal change over successive frames, counting only 

voxels within the brain (Brier et al., 2014). Excluded frames were replaced with 

linear interpolations only for the purposes of facilitating preprocessing. Only 

subjects with fewer than 40% of frames excluded were passed on to the next stage 

of processing.  Signals of non-interest were extracted from white matter, ventricles, 

and the global signal averaged over the whole brain (Fox et al., 2009). These signals 

of non-interest along with movement time-series and their first temporal 

derivatives were regressed from the voxelwise BOLD time-series. In order to 

investigate the effects of global signal regression (GSR) on the calculation of partial 

covariance matrices, a subset of the following analyses were performed without 

GSR. The residual BOLD time-series was then low-pass filtered to retain frequencies 

below 0.1Hz and spatially smoothed with Gaussian blur (6mm FWHM in each 

direction). The linearly interpolated volumes were excluded in all subsequent 

                                                        
2 This pre-blur step was used only to calculate DVARS and was not carried forward. 
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analyses. Following preprocessing, an average of 308 (stdev = 30) frames were 

retained for each subject. These BOLD time-series were autocorrelated across 

approximately 3 frames (6.6 seconds); thus each subject had approximately 103 

degrees of freedom. 

 

Region of Interest Definition 

In Dataset A, we used two sets of regions of interest (ROI) to examine the effects of 

matrix conditioning under different degrees of rank deficiency. The first set 

contained 36 ROIs representing 5 RSNs including the default mode, dorsal attention, 

executive control, salience, and sensorimotor network (Brier et al., 2012). The 

second set contained 264 ROIs representing 12 RSNs including somatomotor, 

cingulo-opercular, auditory, default mode, parietal encoding/retrieval, visual, 

fronto-parietal control, salience, subcortical, ventral attention, dorsal attention, and 

cerebellum networks (Power et al., 2011). Each ROI was a 6mm radius sphere 

centered on previously published coordinates.  

 

Covariance Calculations and Ledoit-Wolf Shrinkage 

For each subject, the BOLD time-series extracted from 𝑀 = 36 or 𝑀 = 264 ROIs had 

length 𝑇, where 𝑇 is the number of BOLD frames that were not contaminated with 

movement. Thus, define 𝑋 ∈ ℝ𝑇×𝑀 . The sample covariance matrix is then defined as 

Σ̂ =
1

𝑇
(𝑋 − �̅�)𝑡(𝑋 − �̅�). Because large subspaces in the covariance matrix are highly 

related and because the condition 𝑇 ≫ 𝑀 is not satisfied, Σ̂ is rank deficient and 

therefore uninvertible. We define the shrunken covariance matrix as Σ̃ = (1 − 𝛼)Σ̂ +
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𝛼Δ (Ledoit and Wolf, 2004, Schafer and Strimmer, 2005). 𝛼 was calculated in closed-

form as described in (Ledoit and Wolf, 2003) and Δ is the identity matrix (Ledoit 

and Wolf, 2004). The details of the calculation of  are described in Appendix 1. 

 

Full and Partial Covariance  

For each subject, the sample and conditioned covariance matrix have the form: 

Σ̂ = [

�̂�1 ⋯ �̂�𝑖,𝑗

⋮ ⋱ ⋮
�̂�𝑗,𝑖 ⋯ �̂�𝑖

]               Σ̃ = [

�̃�1 ⋯ �̃�𝑖,𝑗

⋮ ⋱ ⋮
�̃�𝑗,𝑖 ⋯ �̃�𝑖

]  

where 𝑖, 𝑗 ∈ [1, … ,36] or 𝑖, 𝑗 ∈ [1, … ,264] and 𝜎𝑖 denotes the variance of the i-th time-

series and 𝜎𝑖,𝑗  denotes the full covariance between the i-th and j-th time-series. The 

off-diagonal values in Σ̂−1 or Σ̃−1 quantify the partial covariance between the i-th 

and j-th time-series accounting for all other time-series.  To conform with the 

definition of partial correlations (Weatherburn, 1961) and resolve a sign flip 

associated with inverting the covariance matrix we always scaled Σ̂−1 and Σ̃−1 by a 

factor of −1. This sign manipulation ensures that the reported partial covariances 

have the same sign as the corresponding partial correlations. For the purpose of 

demonstrating the favorable properties of Ledoit-Wolf regularization as applied to 

fMRI data we use covariance as it is the general case (Dataset A). However, the 

application of matrix shrinkage is equally valid for correlation matrices (see 

Supplemental Material) and is used in the investigation of Dataset B in order to 

conform to the extant literature. 

 

Graphical LASSO Comparison 
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In Dataset A, we compared the results of partial covariance values calculated using 

Ledoit-Wolf shrinkage with an extant L1-based method, namely, the graphical LASSO 

(Friedman et al., 2008). The inverse covariance matrix was estimated for each 

subject using a range of a priori defined penalty value. It is also possible to 

determine a penalty value by cross-validation. We calculated the ideal penalty 

coefficient using a popular cross-validation scheme (Bien and Tibshirani, 2011). To 

compare these results with the previous results, we calculated the correlation 

across all ROI pairs and subjects. 

 

Identification of Topography Sensitive to Eyes Open vs. Eyes Closed 

In order to investigate the changes in widely and uniquely shared variance in 

Dataset B we first identified a set of ROIs that were most affected by the eyes open 

vs. eyes closed contrast. We divided the entire grey matter into 9mm isotropic ROIs 

and calculated the correlation between each ROI and all voxels for the EO and EC 

condition separately. The resulting parametric volumes were averaged across 

subjects to yield 𝐶𝐸𝑂(𝑀 × 𝑉) and 𝐶𝐸𝐶(𝑀 × 𝑉) where M is the number of 9mm 

isotropic ROIs and V is the number of voxels. Given M ROIs, there exist (𝑀
2

) 

functional connectivity pairs; these data require data reduction. To achieve concise 

summary topographies we adopted a PCA approach. Let 𝑋 = 𝐶𝐸𝑂 − 𝐶𝐸𝐶 .  PCA is 

performed on X such that 𝑋(𝑀, 𝑉 ∈ 𝐺𝑀) = 𝑈𝑆𝑊𝑇  where GM is the grey matter 

mask. The number of significant principal components is determined by an 

information criteria (Minka, 2000). Let 𝑤𝑖 be the ith column of W with length M. The 

topography of the effect of Eyes Open vs. Eyes Closed is defined as: 
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𝑇𝑖 =
1

√𝑀
∑ 𝑤𝑖(𝑚) ∙ 𝑋(𝑚)

𝑀

𝑚=0

 

𝑇𝑖  has length V and represents a topography. Large values (positive and negative) 

were extracted to form ROIs (|𝑇𝑖| > 0.05; cluter size > 100 voxels). 

 

Intersubject Variability as a Funciton of Brain State 

To quantify the level of inter-subject variability we calculated the distance between 

a single subject’s full/partial correlation matrix in the EO or EC condition and the 

group average without that single subject. For some subject n, either full or partial, 

EO or EC, the inter-subject variability for generic matrix C is defined as: 

𝜎𝑛 =
1

𝑁
∑ ‖𝐶𝑛 − (

1

𝑁 − 1
∑ 𝐶𝜂

𝜂≠𝑛

)‖

2

𝑁

𝑛=1

 

Thus, four distributions (full/partial, EO/EC) are then subjected to a matrix type 

(full, partial) by condition (EO, EC) repeated measures ANOVA. 

 

Results 

Matrix shrinkage accomplished significant matrix conditioning 

We calculated Σ̂ in the 36 and 264 ROI sets with and without GSR (Figure 1A). The 

covariance matrices exhibited block organization commonly observed in resting-

state BOLD fMRI correlation matrices. With GSR, positive blocks along the diagonal 

correspond to within RSN correlations and off-diagonal blocks of negative 

correlations indicate anti-correlations (e.g., between the default-mode network 

(DMN) and dorsal attention network (DAN)). Without GSR, the same block 
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organization was evident, but all values were shifted towards positive values. Σ̃, 

computed as described in section 2.5, is shown in Figure 1B. The difference between 

Σ̂ and Σ̃ is not apparent to the eye (Figure 1A vs 1B). However, the effect of matrix 

conditioning is clearly evident in the eigenspectra (Figure 1C). The critical feature 

evident in Figure 1C is the exponential decrease in eigenvalues of Σ̂ (blue line), 

especially in the larger ROI set. In contrast, the eigenvalues of Σ̃ showed a less steep 

decline in the smaller ROI set, and a plateau in the larger ROI set ( is the lower 

bound).  

 

Matrix invertibility is frequently quantified as the condition number, defined as the 

ratio of the largest to smallest eigenvalue. In practice, matrices with condition 

numbers less than ~104 are invertible using standard double precision arithmetic. 

In the larger ROI set the condition number was intolerably large but was made 

significantly smaller with shrinkage (Figure 1D). For the 36 ROI set matrix 

shrinkage improved the condition number by about a factor of 2. However, for the 

264 ROI set matrix conditioning improved the condition number from a value 

representing the limits of machine precision (~1017) to an invertible condition 

(~103). This improvement in condition number was achieved with  less than 0.05 

for all conditions (Figure 1E). By way of comparison, the value of  obtained in a 

highly cited study of gene expression data using Ledoit-Wolf regularization with 100 

variables was 0.20 (Schafer and Strimmer, 2005). In the present data, significant 

conditioning was achieved with a relatively small amount of shrinkage. Similar 

results were achieved for correlation matrices (Supplemental Figure 1). 



 

 13 

 

Matrix conditioning stabilized matrix inversion and improved test-retest reliability 

The results shown in Figure 1 demonstrate a dramatic improvement in condition 

number following modest conditioning. The error in matrix inversion is bounded by 

the condition number (Conte and de Boor, 1980). To investigate this important 

effect, we report empirical results using the present data and a split sample 

approach. More specifically, the full and partial covariance matrices derived from 

the first and second fMRI runs were compared with and without conditioning. 

Assuming stationarity, the results obtained from both runs should be the same. Non-

stationarity of BOLD time-series has been reported, e.g., (Chang and Glover, 2010, 

Allen et al., 2012), but recent results suggest that this effect is small when 

appropriate models are used (Lindquist et al., 2014).  Accepting this view, the 

difference between the first and second runs is interpretable in terms of test-retest 

reliability. To quantify the difference between the matrices resulting from the first 

and second fMRI runs, we calculated the Euclidean distance (Frobenius norm) 

between the corresponding matrices. We subjected these log transformed Euclidean 

distance measures to a linear model investigating the effect of matrix regularization 

correcting for the  value. Matrix conditioning had little effect on the full covariance 

matrices, but reduced the distance between the inverse covariance matrices by 

more than 10 orders of magnitude in the case of the larger ROI set (Figure 2A) and 

by a factor of 10 in the smaller ROI set. We also observed a negative relationship 

between the distance between the inverse covariance matrices prior to 

regularization and . This effect was approximately the same with and without GSR. 
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Thus, matrix conditioning, as implemented here, was sufficient to stabilize the 

inversion step even for a large number of ROIs. This result follows from the 

relationship between condition number and inversion precision and has practical 

utility in improving test-retest reliability of high-dimensional partial correlations. 

 

We next investigated the structure of the first vs second run differences, which we 

define as error for the present purposes. Unstructured error may be reduced by 

increasing numbers of subjects, increasing the amount of data acquired in a single 

subject, or by averaging across ROIs. However, structured error is more difficult to 

remove. Thus, reduction of structured error is an ideal characteristic of an analytic 

approach. The mean (across subjects) error for each of the matrix types was 

investigated. As noted above, the magnitude of the error differs by orders of 

magnitude depending on conditioning and ROI number. We investigated the 

presence or absence of structured error. Accordingly, the error was Z-transformed 

(removing the mean and normalizing by the standard deviation across ROI pairs), 

thereby scaling all results to approximately the same range. The full covariance 

matrices are presented above the diagonal in Figure 2B,C. The first vs. second run 

differences were clustered roughly by RSN; critically these differences were not 

affected by conditioning. The first vs. second run differences in partial covariance 

matrices (below the diagonal, Figure 2B,C) exhibited no structure in the 36 ROI set. 

In contrast, in the 264 ROI set, the differences without conditioning were structured 

(red arrows); conditioning removed this structure. To quantify the effect of 

conditioning on error structure in inverse covariance matrices, we calculated the 
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first eigenvalue of each difference matrix (Table 2). Large and small first eigenvalues 

correspond, respectively, to structured and unstructured error. A large first 

eigenvalue indicates similar error structure across some set of ROIs; averaging or 

other data reduction techniques will not remove this error. On the other hand, a 

small first eigenvalue indicates random error across ROIs that is removable via 

averaging or other approaches. Matrix conditioning significantly reduced this metric 

of structured error in the inverse covariance matrices, particularly in the large ROI 

set (all p<10–6). We emphasize that without removing the overall effect of 

magnitude (Z-scoring), the effect of conditioning would have been much more 

marked. 

 

The relationship between partial covariance analysis and global signal regression is 

shown in the Supplemental Material (Supplemental Figure 2). 

 

Ledoit-Wolf shrinkage and LASSO (L1) based methods yielded similar results 

We have demonstrated the utility of Ledoit-Wolf shrinkage in the computation of 

partial covariance matrices. A frequently used alternative, namely, the graphical 

LASSO approach, enforces an L1 penalty on the inverse solution (Friedman et al., 

2008). We compared the calculated partial covariance values resulting from the 

graphical LASSO approach vs. the present Ledoit-Wolf based approach. As there 

exists no closed form method to select the weight of the L1 penalty (), we calculated 

partial covariance matrices over a range of  values [0.10 0.25 0.50 0.75 0.90].  The 

264 ROI case failed to converge after 1 week of computation. Accordingly, we report 
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a comparison between the graphical LASSO approach and the Ledoit-Wolf approach 

for the 36 ROI case (Figure 3A). To simulate the thresholding effect of the L1 penalty 

in the Ledoit-Wolf based result, we thresholded the absolute value of the data over a 

range of  values [0.00 0.01 … 0.25]. For all values of  and  L1:L2 correlation was 

high (r > 0.50). However, there was obvious structure in the L1:L2 correlation 

results. The highest correlation was found with no L2 thresholding (=0) and 

minimal L1 sparsity (=0.10) (Figure 3B). Similarly high correlation was found 

between the penalty determined by cross-validation (=0.12) (Figure 3C). Sparsity 

is a requirement for inversion in L1 based methods, but increasing sparsity reduces 

test-retest reliability (Varoquaux et al., 2012). The present approach avoids sparsity 

altogether and is computationally feasible for larger ROI sets. 

Partial covariance exhibits strong homotopy and reveals novel features of RSN 

organization 

Having demonstrated the practical utility of Ledoit-Wolf regularization for the 

computation of partial covariance functional connectivity, we now investigate the 

brain organization that is revealed by this approach. We analyzed the 36 ROI set as 

the larger ROI set does not explicitly include homotopic ROIs. Full covariance 

matrices (Figure 4A, above the diagonal) demonstrate the familiar block 

organization reflecting RSN organization. This feature is notably absent in the 

partial covariance matrix (Figure 4A, below the diagonal). Instead, the partial 

covariance matrix is dominated by homotopic functional connectivity, although this 

feature is not immediately obvious on inspection of Figure 4A. To more clearly 

demonstrate this feature, we display the values of Figure 4A in histogram format 
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(Figure 4B). In both the full and partial covariance results, homotopic values (shown 

in blue) were concentrated in the right tail of the distribution. However, the 

separation between homotopic versus other covariance values was more complete 

using partial covariance (Figure 4B, enlargement).  

 

The topography of homotopic functional connectivity differed in the full versus 

partial covariance results. Repeated measures ANOVA revealed that both full 

(F14,786=3.44, p=0.000018) and partial (F14,786=23.7, p<10–8) homotopic covariance 

values varied across brain regions (Figure 4C). However, in detail, the topographies 

of homotopic full and partial covariance were not correlated (r = 0.088, p = 0.76). 

This result suggests that partial covariance reveals features in the functional 

organization of the brain that are not captured in the full covariance values.  

 

Full covariance functional connectivity is dominated by clusters of widely shared 

variance (RSNs); partial covariance calculation removes that variance. We next 

investigated if RSN organization still existed after removing the variance that 

defines RSNs using a semi-quantitative graphical approach. Full and partial 

covariance matrices were thresholded using a one-sample t-test (across subjects) 

against the null-hypothesis of no covariance. t-statistics corresponding to 

suprathreshold (p<0.001, uncorrected) ROI pairs were used as edge weights in a 

graph. The resultant graph was displayed using a force directed algorithm (Hu, 

2005). In the force directed results obtained with the 36 ROI set, nodes belonging to 

the same RSN were clustered for both mean Σ̃ (Figure 4D) and mean Σ̃−1 (Figure 
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4E). RSNs are conventionally defined in terms of widely shared variance between 

multiple ROIs; partial covariance removes that shared variance. Therefore one 

might expect RSN structure to fall apart the force directed graphical model derived 

from partial covariance analysis. However, contrary to this expectation, the 

separation between RSNs was more complete in the result obtained with mean Σ̃−1. 

Comparable results were obtained with the 264 ROI set (Supplemental Figure 3). 

The critical observation here is that clustering of nodes by RSN affiliation persisted 

in the partial covariance results even though shared signals were removed. In full 

covariance matrices, RSN affiliation is reflected in block organization. This feature is 

not apparent in partial covariance matrices (Figure 4A, below the diagonal). 

Nevertheless, nodes in the same RSN remained clustered. Inspection of the force 

directed graph result obtained with the 36 ROI set suggests that RSNs are clustered 

in the partial covariance results on the basis of conditionally dependent pair-wise 

connections. Thus, RSNs can be defined in two ways: 1) on the basis of widely 

shared variance across a set of ROIs and 2) on the basis of uniquely shared variance 

between pairs of member ROIs.  

 

Partial Correlation is Focally Dependent on Changes in Brain State 

Partial correlation functional connectivity has been proposed to more closely 

approximate structural connectivity (e.g., white matter tractography). If partial 

correlation functional connectivity were a simple reflection of structural 

connectivity (Smith et al., 2013) it would be insensitive to brain state. To test this 

hypothesis, we investigated the partial correlation organization in two commonly 
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investigated brain states: eyes open (EO) and eyes closed (EC). We began by 

identifying a topography of brain regions sensitive to the EO vs. EC full correlation 

contrast (see Methods). Two significant principal components were identified 

(Figure 5A). From these topographies, eight ROIs were extracted. Full and partial 

correlation functional connectivity was calculated (Figure 5B). Full correlation 

functional connectivity was dramatically affected by the change in brain state 

(Figure 5C, above diagonal) whereas partial correlation functional connectivity was 

relatively unchanged (Figure 5C, below diagonal). However, partial correlations 

between the thalamus and visual areas and the thalamus and frontal areas were 

affected. Thus, partial correlation organization is modifiable by brain state and those 

perturbations are relatively focal compared to full correlation changes. 

 

Next we investigated the inter-subject variability in the full and partial correlation 

matrices in the EO and EC condition. The inter-subject variability was calculated as 

the distance (Euclidean norm) between a single subject’s matrix and the group 

mean (less that subject)’s matrix (Table 3). These values were subjected to a 

correlation type (full, partial) by condition (EO, EC) repeated measures ANOVA. 

There was a significant effect of correlation type (F(1,9)=11.11, p=0.0088) wherein 

the partial correlation matrices showed less inter-subject variability. There was no 

effect of condition (F(1,9)=0.0046, p=0.95) nor an interaction (F(1,9)=0.27, p=0.62). 

 

Discussion 

Summary 
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This report utilizes an approach to covariance matrix conditioning that facilitates 

calculation of high dimensional partial covariance matrices for the assessment of 

functional connectivity. This approach yields partial covariance matrices that are 

stable within subjects and reproducible across subject groups. Application of this 

computational strategy provided insight into the brain’s functional organization. For 

example, RSNs are defined by both their widely shared variance and by pair-wise 

unique shared variance. Finally, partial correlations are sensitive to brain state 

suggesting they contain dynamic representations of brain connectivity and not 

simple 1:1 reflections of structural connectivity. 

 

Matrix shrinkage circumvents limitations in extant approaches to partial covariance 

calculation 

The favorable properties of partial correlation and covariance computation in the 

context of resting state fMRI have been frequently recognized (Table 1). The 

primary challenge has been overcoming rank deficiency of high-dimensional BOLD 

fMRI covariance matrices. The simplest approach is to limit the dimensionality of 

the system (Marrelec et al., 2006, Fransson and Marrelec, 2008, Zhang et al., 2008). 

This approach has the advantage of avoiding ill conditioned matrices but limits the 

scope of the scientific inquiry. The present matrix shrinkage strategy provides 

computational stability and enables study of large partial covariance organizations. 

 

The second extant approach to overcoming the rank deficiency problem is 

dimensionality reduction using PCA followed by ICA (Liang et al., 2011, Yu et al., 
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2011, Smith et al., 2013). The covariance matrix calculated over independent 

components is full rank and therefore invertible. However, this approach includes 

an arbitrary parameter (the number of components retained in the PCA step) and 

does not allow for investigation of partial correlations between individual regions, 

although, partial correlations between RSNs can be computed. Ledoit-Wolf 

shrinkage involves no arbitrary parameters and supports the computation of partial 

correlations between a priori selected ROIs. 

 

The third approach in the extant literature for calculating partial correlations is 

imposing an L1 penalty to constrain the inversion step (Varoquaux et al., 2010, 

Fiecas et al., 2013, Smith et al., 2013). The L1 norm forces small values in the inverse 

matrix to 0. This procedure effectively reduces the number of free parameters in the 

inversion computation. This approach includes a tunable parameter determined by 

simulation but allows for the investigation of large number of ROIs. One of the 

consequences of the L1 constraint is that the inverse covariance matrix is sparse 

(i.e., has many off-diagonal 0s). This feature has been described as an advantage 

(Varoquaux et al., 2010) but a recent report has argued that the L1 constraint is too 

strict (Ryali et al., 2012). Ryali and colleagues used the elastic net (linear 

combination of the L1 and L2 penalty (Hastie et al., 2009)) to constrain the inversion 

step at the cost of an additional free parameter. The L2 norm penalizes large values 

in the inverse but does not force small values to zero. The present approach is 

analogous to imposing a pure L2 penalty without any tunable parameters.  
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Thus, the present approach for calculating partial correlation/covariance values has 

three primary advantages over alternative approaches. First, the calculation of 

Ledoit-Wolf shrinkage is possible for a large number of ROIs and computation time 

does not dramatically increase as in non-closed form solutions (e.g., graphical 

LASSO). Second, this approach does not assume a model (e.g., sparsity). Sparsity 

may be appropriate for some forms of connectivity (e.g., white matter tractography) 

but has not been conclusively demonstrated for functional measures. Finally, the 

arbitrary parameter is calculated in closed form, precludes simulations, reduces 

computational burden, and stabilizes interpretation. 

 

Previous applications of matrix shrinkage to functional connectivity 

Covariance matrix shrinkage has been recently used in the investigation of 

functional connectivity (Varoquaux et al., 2012, Deligianni et al., 2014, Shou et al., 

2014). Stein’s paradox (Stein, 1956) asserts that a shrunken estimate of the mean 

outperforms the sample mean in predicting the true mean of a multivariate 

distribution. Shou and colleagues used knowledge of the group functional 

connectivity matrix to predict the retest outcome in subjects scanned twice. 

Shrinkage of individual functional connectivity matrices towards the group mean 

improved test-retest reliability. This result is consistent with the known behavior of 

multivariate distributions under shrinkage (Efron and Morris, 1975) but represents 

an application of matrix shrinkage very different from the present use. We used 

shrinkage to improve matrix invertibility. Nevertheless, we observed that partial 

covariance estimates were more reliable than full covariance estimates both at the 
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individual and group level. Other work has used Ledoit-Wolf shrinkage to calculate 

partial correlation values (Varoquaux et al., 2012, Deligianni et al., 2014), but these 

studies did not systematically investigate the properties of the Ledoit-Wolf 

approach. 

 

Homotopy dominates partial covariance organization.  

Large partial covariance values identify variance uniquely shared between two 

variables. In the present results (Figure 4), the largest partial covariance values 

were observed between homotopic brain regions. Strong homotopic functional 

connectivity is well documented (Salvador et al., 2008) and is thought to be 

supported by callosal and other commissural fibers (O'Reilly et al., 2013, Shen et al., 

2015). It has been suggested that that unique shared variance implies direct 

communication between brain regions (Smith et al., 2013). This is an appealing 

notion but it is not entirely supported by the present results. Over all ROI pairs, the 

largest partial covariance value was observed between left and right primary visual 

cortex (Figure 4C). The only known direct inter-hemispheric connections between 

primary visual cortices connect the representations of the vertical meridian (Van 

Essen et al., 1982). It seems unlikely that this anatomy supports the observed high 

degree of unique shared variance. Hence, some other mechanism may be 

responsible for identification of highly reliable inter-hemispheric partial 

correlations in primary visual cortex. One hypothesis that potentially explains the 

present observations is that high degrees of shared variance may arise from 

common efferents or afferents (Adachi et al., 2012).  
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RSN organization is preserved in partial covariance matrices. 

Direct comparison of full and partial covariance matrices reveals several striking 

differences. Partial covariance matrices lacked the familiar RSN-related block 

organization that dominates full covariance matrices. Loss of prominent RSN 

organization follows from the definition of both RSNs and partial covariance. RSNs 

are defined by shared variance between member regions; this shared variance was 

removed in partial covariance matrices. What remains is unique shared variance 

between regions. Surprisingly, this organization is sufficient to separate RSNs in 

force-directed graphs (Figure 4D). This result may reflect some underlying 

skeletonized organization of the brain (van den Heuvel et al., 2012). We note that 

partial covariance matrices were reliable, which suggests that they reflect some 

biologically important aspect of brain organization.  

 

Partial Correlation Functional Connectivity is Sensitive to Brain State 

The similar organization of partial correlation functional connectivity and structural 

connectivity has been previously observed (Smith et al., 2013). The extent to which 

partial correlations represent structural connectivity alone or dynamic brain 

organization is unclear. The contrast of brain organization in the eyes open vs. eyes 

closed state is an operationally simple contrast that is known to elicit functional 

connectivity changes.  Closing of the eyes elicits a change in mean BOLD signal in 

primary visual (Bianciardi et al., 2009) as well as non-visual cortices (Marx et al., 

2003, McAvoy et al., 2008). Functional connectivity is also affected. Consistent with 
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previous literature we found broad changes in full correlation functional 

connectivity (Figure 5) (Jao et al., 2013, Liang et al., 2014, Xu et al., 2014). In 

particular, we observed an increasingly strong negative correlation between visual 

cortices and the thalamus (Zou et al., 2009, McAvoy et al., 2012). In the partial 

correlations, functional connectivity between the thalamus and visual regions is also 

made more negative by eye closure. This demonstrates that the change in functional 

connectivity between the thalamus and visual cortex due to eye state is mediated by 

uniquely shared variance while the other, more broad, modulations are due to 

widely shared variance. Speculatively, we hypothesize that the changes in broadly 

shared variance may be due to arousal (Tagliazucchi and Laufs, 2014) while the 

changes in uniquely shared variance may be more attributable to the eye condition-

related brain-state change. Regardless of the exact mechanism, this result 

demonstrates that partial correlation based functional connectivity is modulated by 

brain state. This modulation indicates that uniquely shared variance reveals 

functional brain organization, not simply structural connectivity. 
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Appendix 1 

In this appendix we briefly outline the calculation of the Ledoit-Wolf shrinkage 

parameter . This approach was originally described in (Ledoit and Wolf, 2003) and 

code is generously made available by those authors3. We outline the process briefly. 

Capital letters denote matrices, lower case letters denote elements in a matrix, and t 

indicates transpose. 

Given data in the form 

𝑋 ∈ ℝ𝑇×𝑀 

the empirical covariance matrix is calculated as 

Σ̂ =
1

𝑇
(𝑋 − �̅�)𝑡(𝑋 − �̅�) 

where the overbar indicates the column mean. The shrinkage target is computed as  

Δ = �̅� ∙ 𝐼 

where �̅� = 〈𝑑𝑖𝑎𝑔(Σ̂)〉𝑀 and 𝐼 is the identity matrix of ℝ𝑀×𝑀. The shrinkage 

parameter is calculated as follows. Define: 

𝑝𝑖𝑗 =
1

𝑇
∑{(𝑥𝑖𝑡 − �̅�𝑖)(𝑥𝑗𝑡 − �̅�𝑗) − Σ̂𝑖𝑗}

2
𝑇

𝑡=1

 

𝑐 = ‖Σ̂ − Δ‖
2

2
 

From this, the shrinkage constant can be calculated: 

𝛼 =
(∑ 𝑝𝑖𝑗 𝑐⁄ )

𝑇
  

                                                        
3 http://www.ledoit.net/cov1para.m 
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Table/Figure Captions 

Table 1: Literature Review. Table summarizing previous reports utilizing partial 

correlation/ covariance approaches. Table shows the reference, solution adopted to 

allow partial correlation estimation, number of ROIs and number of subject. The 

general area of scientific inquiry is also noted. 

 

Table 2: 1st eigenvalue of Z transformed difference of 1st and 2nd half scan 

session. Table shows the mean (standard deviation) of the largest eigenvalue of the 

Z transformed difference between the first and second fMRI runs. This is computed 

separately for the 36 and 264 ROI set, with and without GSR, and for the covariance 

and inverse covariance matrices. The far right column shows the t and p values for 

the comparison of the sample (unconditioned) and conditioned condition.  

 

Table 3: Inter-subject Variability. Mean (standard deviation) values of  as 

calculated in the methods. Low values correspond to low levels of inter-subject 

variability. 

 

Figure 1: Matrix conditioning significantly improves the condition number of 

BOLD covariance matrices. A: BOLD covariance matrices (𝚺) calculated in the 36 

and 264 ROI set with and without global signal regression (GSR). Matrices with GSR 

exhibit familiar block organization representing resting-state networks (RSNs). 

Matrices without GSR exhibit similar organization biased towards positive values. B: 

Conditioned BOLD covariance matrices (�̂�) in the same configuration as A. Notably, 
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there is no visual difference between matrices in A and B. C: Mean eigenspectra of 

matrices in A and B.  The blue line indicates the eigenspectra corresponding to 𝚺 and 

the red lines indicates the eigenspectra corresponding to �̂�. The eigenvalues of 𝚺 

decay towards zero but the eigenvalues of �̂� plateau at a non-zero constant. D: 

Quantification of matrix invertibility by mean condition number. The condition 

number is defined as the ratio of the largest eigenvalue to the smallest. E: mean 

shrinkage coefficient () in each ROI set with and without global signal regression. 

Error bars indicate standard error of the mean estimated across subjects. 

 

Figure 2: Matrix conditioning is sufficient to constrain the covariance inverse. 

A: Mean Euclidean distance between covariance and inverse covariance matrices 

calculated from the first and second fMRI sessions. Blue bars display results without 

conditioning; red bars display results with conditioning. Error bars represent 

standard deviation across subjects. Asterisks indicate significant differences; in this 

case p < 0.001. Conditioning had no significant effect on distance for full covariance 

results, but significantly reduced the distance (error) between the inverse 

covariance matrices. B: Z-transformed (removal of mean and normalization by 

standard deviation) mean difference between the first and second sessions without 

conditioning. Full covariance results are above the diagonal; partial covariance 

results are below the diagonal. Red arrow heads indicate organized pattern of large 

values in the inverse matrix. C: Same as B, but with conditioning. Structured noise is 

absent in the conditioned result. 
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Figure 3: Ledoit-Wolf shrinkage and L1 based methods yield similar results. A: 

The correlation (using ROI pairs and subjects as samples) between the partial 

covariance quantities resulting from the present Ledoit-Wolf shrinkage based 

approach and the graphical LASSO approach are presented for varying L1 penalty 

weights (β) and varying absolute thresholds applied to the Ledoit-Wolf based 

approach (ρ). Only representative β values are shown as LASSO is computationally 

expensive. B: Scatter plot illustrating the maximal correlation result (ρ=0 and 

β=0.10) between the two techniques. C: Same as B, but =0.12 which was 

determined by cross-validation. 

 

Figure 4: The partial covariance matrix is dominated by homotopic functional 

connectivity and contains RSN organization. A: Full (above diagonal) and partial 

(below diagonal) covariance matrices shown for the 36 ROI set with GSR. Black 

boxes denote RSN membership. B: Histogram of full and partial covariance values 

with homotopic covariance values in blue. Inset magnifies right side of distribution. 

Homotopic covariance is large in both distributions, but is better separated in the 

partial covariance result. C: Mean full and partial covariance between homotopic 

brain regions (error bars are standard error. D: The 36 ROI covariance and partial 

covariance matrix were transformed into a graph representations. The position of 

each node optimized using an automated algorithm (Hu, 2005). Colors denote a 

priori RSN membership. Lines indicating connections are omitted from the 264 ROI 

result for visual clarity. 
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Figure 5: Partial Correlation Organization is Modulated by Brain-state A: First 

two principal components of the EO vs. EC full correlation contrast. Strongly 

affected regions (positive and negative) were extracted to form ROIs. ROIs are 

superimposed as colored regions. B: Full (above diagonal) and partial (below 

diagonal) correlation matrices using extracted ROIs in the EO and EC condition. C: 

ROI-pair-wise contrasts of the EO and EC condition. Cell color indicated t-statistic 

value. White X indicated p < 0.001, uncorrected for multiple comparisons. 

 

 
Supplemental Figure 1: Matrix conditioning significantly improves the 

condition number of BOLD correlation matrices. A: BOLD correlation matrices 

(�̂�) calculated in the 36 and 264 ROI set with and without global signal regression 

(GSR). Matrices with GSR exhibit familiar block organization representing resting-

state networks (RSNs). Matrices without GSR exhibit similar organization biased 

towards positive values. B: Conditioned BOLD correlation matrices (�̃�) in the same 

configuration as A. Notably, there is no visual difference between matrices in A and 

B. C: Mean eigenspectra of matrices in A and B.  The blue line indicates the 

eigenspectra corresponding to �̂� and the red lines indicates the eigenspectra 

corresponding to �̃�. The eigenvalues of �̂� decay towards zero but the eigenvalues of 

�̃� plateau at a non-zero constant. D: Quantification of matrix invertibility by mean 

condition number. The condition number is defined as the ratio of the largest 

eigenvalue to the smallest. E: mean shrinkage coefficient () in each ROI set with 

and without global signal regression. 
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Supplemental Figure 2: Partial covariance matrices do not depend on global 

signal regression. A: Mean Z transformed covariance (above the diagonal) and 

partial covariance (below the diagonal) matrices. B: Scatter plots show the 

relationship between the result derived with and without GSR. Red line indicates the 

line of identity. In full covariance matrices, GSR represents roughly an additive 

constant, however the partial covariance results are nearly invariant to GSR. Inset in 

each plot is the slope (m) and intercept (b) or the best fit linear regression. 

 

Supplemental Figure 3: RSN organization in 264 ROI set. Figure in same style as 

Figure 4D but examined in the 264 ROI set.  
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Table 1 
Reference Conditioning Strategy # of ROIs/ 

components 

# of Subjects 

 

Scientific Topic 

Liu et al., 2008 No conditioning 90 31 controls, 31 

schizophrenics 

Small world structure in 

schizophrenia 

Balenzuela et al., 

2010 

No conditioning 90 12 controls, 12 

back pain patients 

Graph analysis of functional 

connectivity in lower back pain 

Zhang et al., 2011 No conditioning 90  63 controls, 

30 MDD 

Small world structure in major 

depressive disorder 

Marrelec et al., 2006 Limit # of ROIs 6 7 Motor system organization 

Fransson and 

Marrelec, 2008 

Limit # of ROIs 9 17 DMN organization 

Zhang et al., 2008 Limit # of ROIs 5 17 Thalamic organization 

Liang et al., 2011 ICA dimensionality 

reduction 

38 6 rats Network organization in the awake 

rate 
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Yu et al., 2011 ICA dimensionality 

reduction 

57 19 controls, 19 

schizophrenics 

Small world structure in 

schizophrenia 

Smith et al., 2013* ICA dimensionality 

reduction 

22/78 20 Methods development for the 

connectome project 

Varoquaux et al., 

2010 

L1 Normalization 122 20 Covariance model selection 

Fiecas et al., 2013 L1 Normalization 90 25 Test-retest reliability assessment 

Smith et al., 2013* L1 Normalization 22/78 20 Methods development for the 

connectome project 

Ryali et al., 2012 Elastic Net Normalization 90 22 Stability of different regularization 

techniques 

Varoquaux et al., 

2012 

Markov Structure (L1 and 

Ledoit-Wolf) 

105 12 RSN vs small-world brain 

organization 

Deligianni et al., 

2014 

Ledoit-Wolf shrinkage 82 17 Relationship between BOLD and 

EEG functional connectivity 
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* Smith et al., 2013 compared multiple approaches so is presented twice 
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Table 2 
1st eigenvalue of Z transformed difference of 1st and 2nd half scan session 
   Sample Conditioned t,p 

3
6

 R
O

I 
Se

t 

w/ GSR 
Covariance 17.8 (6.4) 17.8 (6.6) 0.7, 0.49 
Inverse 16.7 (3.4) 13.0 (2.0) 7.3, <10–8 

w/o GSR 
Covariance 19.0 (4.7) 19.0 (4.8) 0.5, 0.64 
Inverse 17.2 (3.5) 13.0 (2.1) 8.5, <10–10 

      

2
6

4
 R

O
I 

Se
t 

w/ GSR 
Covariance 108.2 (34.2) 107.6 (35.4) 1.3, 0.19 
Inverse 138.9 (20.9) 35.2 (5.6) 35.5, <10–39 

w/o GSR 
Covariance 128.4 (30.8) 128.3 (31.0) 1.0, 0.28 
Inverse 146.6 (22.8) 35.0 (4.5) 38.1,<10–40 
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Table 3 
 Full Correlation Partial Correlation 
EO 1.33 (0.46) 0.91 (0.26) 
EC 1.30 (0.31) 0.95 (0.25) 
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