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A Vector Space Language for Quantum Mechanics
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The inner product

Given two vectors in 3D, we can construct a number by forming the dot (scalar) prod-
uct

w -V = UplWy + vyw‘y + VW5,

In n dimensions where v would have components v, v9, . . . Un, this product becomes

T
w-v = Z ;U
i=1
The vector v can be thought of as a function v(i) for which the independent variable i
only assumes integer values. From this it is a small step to picturing a function of a con-
tinuous variable x, v(x), as a vector with an infinite number of components. The exten-

sion of the dot product is

_/m w(z) v(z)dz.

o
If w(z) and v(z) are complez functions, it is natural to introduce a complex conjugation

in such a way as to make the product of a vector with itself be a real number. Hence we

define the inner product of two functions (z) and ¢(z).

W) = [ (@) 9(a) da.

All predictions of quantum mechanics can be written as an inner product of two vectors.
That is, the map

2 vectors — a number
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is a fundamental tool of quantum mechanics.

Basis sets

Along with this definition of the inner product of two vectors, we can import the jar-
gon of vector analysis into quantum mechanics. A wave function ¥(z) is a state vector. A

normalized state vector is simply a unit vector,

(U(2)|¥(x)) = 1.

An orthonormal basis set is a set of vectors {¢n()}52 for which

0, ifm # n (orthogonality)
(dm(z)lén(z)) = { .

if m = n (normalization)

and for which any state vector can be represented
o8]
U(z) = )_ cngn(z).
n=0
The expansion coefficients {c,}52; can be determined from

cn = (Pn(x)|¥(z)).

Since the column matrix

provides the same information as W(z}, this matrix will also be called (and thought of as)

“a vector”. If

O(z) = Y dpoyp(z)
k=0
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represents a different vector, the inner product reduces to

oo

OO(I)(J:)* U(x)dz

o0}
= Z dmcn [

m,n=0 Fe:

[o.0]
Z dz.ck.
k=0

@) = [

oo

o dm(z)* Pn(z) dz

This may also be written as a matrix product,

a
€2

{(I)I‘I’} — [dlad2s”']* €2

Hermitian operators

Since a measuring apparatus behaves like a classical object, “observables” come from clas-
sical mechanics: position, velocity, energy, angular momentum,. . ..

These quantities are usually expressed in terms of canonically conjugate coordinates and
momenta, g1, ...,4f,P1, - - -, Py if there are f degrees of freedom in the system. Quantum

mechanics associates with each classical observable

=2
Pi D s e ]
., —, H=—+V(F), L=7xp,...
ai 5 (7) P

an Hermitian linear operator
iji’ TE.I;,—’ ﬂ? El e
An operator
Ais Hermitian <= (¢|Ad) = (Ay|¢) for all 9, §.

The Hermiticity of the Hamiltonian H guarantees that

(¥(z,t)|¥(z,t)) = (¥(=,0)|2(,0))
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at all £. Thus time evolution leads to a rotation of the state vector in the (vector) space of

possible states.

If A has a set of eigenvectors, eigenfunctions

Api(e) = apdile), k=12,...,

and A is Hermitian, then

ar{Beldr) = (delAdy) = (Adeldr) = ab{drldr),

or
(ar, — af H{deldy) = 0. (1)

The k = £ case of (1) shows that all the eigenvalues of A are real. If a, # ag, (1) shows
that all {(¢s|¢p) = 0. That is, the eigenvectors corresponding to different eigenvalues
must be orthogonal. If there are n (linearly independent) eigenvectors of A with the same
eigenvalue, (1) says nothing. But these vectors define an n-dimensional subspace and any
set of orthonormal vectors in this subspace is a set of eigenvectors corresponding to the

same eigenvalue of A.

In summary, the Hermiticity of A assures us that we can find an orthonormal set of
vectors, with each vector an eigenvector of A with a real eigenvalue. We argue that this
set must be a basis set because of “physical completeness”, because the set of eigenvectors
of A exhausts what can be realized physically. The index/label k may have a continuous

set of allowed values, but usually such labels are restricted to a discrete set.

The Expectation

In classical mechanics, observation of @ on a system in state p, g gives Q(p, q) with cer-
tainty. In quantum mechanics, however, observation of @ on a system in a state ¥ does
not necessarily give a definite answer. Repeating the same experiment exactly does not

necessarily give the same result. In this case, of course, one can’t predict explicitly what
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will be seen in a measurement. One can, however, predict the ezpectation — the average

result which many repetitions of the measurement would give. Explicitly,

(@) = {T|QY) (2)

Here are some examples of this:

(i) Observation of ‘q’ (a continuous label). Suppose we define

{1: ifa <q<b,

0, otherwise.

The expectation of this @ is just the probability that we will see a < ¢ < b, so
b 2
Probla < g <8 = [ dg [¢(o)I".
a

Thus |¥(t)|? gives the distribution on g. Observation of g itself gives

I s 8} 9

(@) = (¥(@)Q¥(@) = [ (o) qda,

from (2) directly, or from the physical interpretation of |@(t)|2. Similarly,

() = (@@IQ*0@) = [ W@l da,

() = (V@I = [ %@ e da,

(F(@) = (W@)IfQu@) = [ 1¥(@)f(a)dr

(ii) observation of a @ for which the corresponding Q has discrete eigenvalues. Suppose

Q¢rla) = Mpdple), k=0,1,2,...

on
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with {¢1(¢)} an orthonormal basis set. We can represent

= cxdrla)

The expectation of Q(p, g) is

Q) = (¥|Q¥)
= (; cm®m(q |chn¢n(‘1) Z%d’m )|;Cnf\n¢'n(Q))

=Y c:‘ncm\nwmm) =3 |ck|2Ak,
m,n

Similarly,

(@) = (¥(g)|Q*U(q)) = kf: leal?A2,
c=()

(@®) = (T(g)|Q%¥(q)) = AZ ler 223,
=0

(f(2)) = (L) F(Q) Z ekl (\e)-

=0
This will hold for any f(g) only if the only possible values of @ which can be observed are

the eigenvalues A1, Mg, ... and the probability of seeing g = Ay, is

e = |(or,19) 2

G
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