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Abstract: If H denotes a Hilbert space of analytic functions on a region � � Cd , then the weak product is defined
by

HˇH D

(
h D

1X
nD1

fngn W

1X
nD1

kfnkHkgnkH <1

)
:

We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier
algebras of H and of HˇH coincide.
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1 Introduction

Let d be a positive integer and letR D
Pd
iD1 zi

@
@zi

denote the radial derivative operator. For s 2 R the holomorphic
Besov space Bs is defined to be the space of holomorphic functions f on the unit ball Bd of Cd such that for some
nonnegative integer k > s

kf k2k;s D

Z
Bd

j.I CR/kf .z/j2.1 � jzj2/2.k�s/�1dV.z/ <1:

Here dV denotes Lebesgue measure on Bd . It is well-known that for any f 2 Hol.Bd / and any s 2 R the quantity
kf kk;s is finite for some nonnegative integer k > s if and only if it is finite for all nonnegative integers k > s, and
that for each k > s k � kk;s defines a norm on Bs , and that all these norms are equivalent to one another, see [2]. For
s < 0 one can take k D 0 and these spaces are weighted Bergman spaces. In particular, B�1=2 D L2a.Bd / is the
unweighted Bergman space. For s D 0 one obtains the Hardy space of Bd and one has that for each k � 1 kf k2

k;0

is equivalent to
R
@Bd jf j

2d� , where � is the rotationally invariant probability measure on @Bd . We also note that
for s D .d � 1/=2 we have Bs D H2d , the Drury-Arveson space. If d D 1 and s D 1=2, then Bs D D, the classical
Dirichlet space of the unit disc.

Let H � Hol.Bd / be a reproducing kernel Hilbert space such that 1 2 H. The weak product of H is denoted
by H ˇ H and it is defined to be the collection of all functions h 2 Hol.Bd / such that there are sequences
ffi gi�1; fgi gi�1 � H with

P1
iD1 kfikHkgikH <1 and for all z 2 Bd , h.z/ D

P1
iD1 fi .z/gi .z/.
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We define a norm on HˇH by

khk� D inf

(
1X
iD1

kfikHkgikH W h.z/ D

1X
iD1

fi .z/gi .z/ for all z 2 Bd

)
:

In what appears below we will frequently take H D Bs , and will use the same notation for this weak product.
Weak products have their origin in the work of Coifman, Rochberg, and Weiss [5]. In the frame work of the

Hilbert space H one may consider the weak product to be an analogue of the Hardy H1-space. For example, one
has H2.@Bd / ˇ H2.@Bd / D H1.@Bd / and L2a.Bd / ˇ L2a.Bd / D L1a.Bd /, see [5]. For the Dirichlet space D
the weak product D ˇD has recently been considered in [1, 3, 6, 7, 9]. The space H2

d
ˇH2

d
was used in [10]. For

further motivation and general background on weak products we refer the reader to [1] and [9].
Let B be a Banach space of analytic functions on Bd such that point evaluations are continuous and such that

1 2 B. We use M.B/ to denote the multiplier algebra of B,

M.B/ D f' W 'f 2 B for all f 2 Bg :

The multiplier norm k'kM is defined to be the norm of the associated multiplication operatorM' W B! B. It is easy
to check and is well-known that M.B/ � H1.Bd /, and that for s � 0 we have M.Bs/ D H1.Bd /. For s > d=2
the space Bs is an algebra [2], hence Bs D M.Bs/, but for 0 < s � d=2 one has M.Bs/ ¨ Bs \H

1.@Bd /: For
those cases M.Bs/ has been described by a certain Carleson measure condition, see [4, 8].

It is easy to see that M.H/ � M.H ˇ H/ � H1 (see Proposition 3.1). Thus, if s � 0, then M.Bs/ D
M.Bs ˇ Bs/ D H

1. Furthermore, if s > d=2, then Bs D Bs ˇ Bs D M.Bs/ since Bs is an algebra. This raises
the question whether M.Bs/ and M.Bs ˇ Bs/ always agree. We prove the following:

Theorem 1.1. Let s 2 R and d 2 N. If s � 1 or d � 2, then M.Bs/ DM.Bs ˇ Bs/.

Note that when d � 2, then Bs is an algebra for all s > 1. Thus for each d 2 N the nontrivial range of the Theorem
is 0 < s � 1. If d D 1 then the theorem applies to the classical Dirichlet space of the unit disc and for d � 3 it
applies to the Drury-Arveson space.

2 Preliminaries

For z D .z1; :::; zd / 2 Cd and t 2 R we write eitz D .eitz1; :::; e
itzd / and we write hz; wi for the inner product

in Cd . Furthermore, if h is a function on Bd , then we define Ttf by .Ttf /.z/ D f .eitz/. We say that a space
H � Hol.Bd / is radially symmetric, if each Tt acts isometrically on H and if for all t0 2 R, Tt ! Tt0 in the strong
operator topology as t ! t0, i.e. if kTtf kH D kf kH and kTtf � Tt0f kH ! 0 for all f 2 H. For example, for
each s 2 R the holomorphic Besov space Bs is radially symmetric when equipped with any of the norms k � kk;s ,
k > s.

It is elementary to verify the following lemma.

Lemma 2.1. If H � Hol.Bd / is radially symmetric, then so is HˇH.

Note that if h and ' are functions on Bd , then for every t 2 R we have .Tt'/h D Tt .'T�th/, hence if a space is
radially symmetric, then Tt acts isometrically on the multiplier algebra. For 0 < r < 1 we write fr .z/ D f .rz/.

Lemma 2.2. If H � Hol.Bd / is radially symmetric, and if ' 2 M.H ˇ H/, then for all 0 < r < 1 we have
k'rkM.HˇH/ � k'kM.HˇH/.

Proof. Let ' 2M.HˇH/ and h 2 HˇH, then for 0 < r < 1 we have

'rh D

�Z
��

1 � r2

j1 � reit j2
.Tt'/h

dt

2�
:
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This implies

k'rhk� �

�Z
��

1 � r2

j1 � reit j2
k.Tt'/hk�

dt

2�
� k'kM.HˇH/khk�:

Thus, k'rkM.HˇH/ � k'kM.HˇH/.

3 Multipliers

The following Proposition is elementary.

Proposition 3.1. We have M.H/ �M.HˇH/ � H1 and if ' 2M.H/, k'kM.HˇH/ � k'kM.H/.

As explained in the Introduction, the following will establish Theorem 1.1.

Theorem 3.2. Let 0 < s � 1. Then M.Bs/ DM.Bs ˇ Bs/ and there is a Cs > 0 such that

k'kM.BsˇBs/ � k'kM.Bs/ � Csk'kM.BsˇBs/

for all ' 2M.Bs/.

Here for each s we have the norm on Bs to be k � kk;s , where k is the smallest natural number > s.

Proof. We first do the case 0 < s < 1. Then k D 1, and kf k2
Bs
D

R
Bd j.I C R/f .z/j

2dVs.z/, where dVs.z/ D
.1 � jzj2/1�2sdV.z/. For later reference we note that a short calculation shows that

R
Bd jRf j

2dVs � kf k
2
Bs

.
We write kR'kCa.Bs/ for the Carleson measure norm of jR'j2, i.e.

kR'k2Ca.Bs/ D inf

8̂<̂
:C > 0 W

Z
Bd

jf j2jR'j2dVs � Ckf k
2
Bs

for all f 2 Bs

9>=>; :
Since k'f k2

Bs
D

R
Bd j'.z/.I CR/f .z/C f .z/R'.z/j

2dVs.z/ it is clear that k'kM.Bs/ is equivalent to k'k1C
kR'kCa.Bs/. Thus, it suffices to show that there is a c > 0 such that kR'kCa.Bs/ � ck'kM.BsˇBs/ for all
' 2M.Bs ˇ Bs/.

First we note that if b is holomorphic in a neighborhood of Bd and h D
P1
iD1 figi 2 Bs ˇ Bs , thenZ

Bd

j.Rh/RbjdVs �

1X
iD1

Z
Bd

j.Rfi /giRbjdVs C

Z
Bd

j.Rgi /fiRbjdVs

�

1X
iD1

kfikBs

0B@Z
Bd

jgiRbj
2dVs

1CA
1=2

C kgikBs

0B@Z
Bd

jfiRbj
2dVs

1CA
1=2

� 2

1X
iD1

kfikBskgikBskRbkCa.Bs/:

Hence Z
Bd

j.Rh/RbjdVs � 2khk�kRbkCa.Bs/;

where we have continued to write k � k� for k � kBsˇBs .
Let ' 2M.Bs ˇ Bs/ and let 0 < r < 1. Then for all f 2 Bs we have f 2; 'rf 2 2 Bs ˇ Bs , henceZ

Bd

jf j2jR'r j
2dVs D

Z
Bd

jR.'rf
2/ � 'rR.f

2/j jR'r jdVs
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� 2.k'rf
2
k� C k'k1kf

2
k�/kR'rkCa.Bs/

� 2.k'kM.BsˇBs/kf
2
k� C k'k1kf

2
k�/kR'rkCa.Bs/

� 4k'kM.BsˇBs/kf k
2
Bs
kR'rkCa.Bs/:

Next we take the sup of the left hand side of this expression over all f with kf kBs D 1 and we obtain
kR'rk

2
Ca.Bs/

� 4k'kM.BsˇBs/kR'rkCa.Bs/ which implies that kR'rkCa.Bs/ � 4k'kM.BsˇBs/ holds for
all 0 < r < 1. Thus, for 0 < s < 1 the result follows from Fatou’s lemma as r ! 1.

If s D 1, then kf k2
2;1
�

R
@Bd j.I CR/f .z/j

2d�.z/ and the argument proceeds as above.
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