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ABSTRACT OF THE DISSERTATION 

Synthesis and investigation of UV-cured, complex amphiphilic polymer films for use in anti-

biofouling applications 

by 

Jeremy Wayne Bartels 

Doctor of Philosophy in Chemistry 

Washington University in Saint Louis, 2010 

Professor Karen L. Wooley, Chairperson 

 

The overall emphasis of this dissertation research included the development of novel 

amphiphilic anti-fouling coatings having complex surface topography and compositional 

heterogeneity and a fundamental investigation of their properties.  These films were cultivated as 

non-fluorinated or non-fluorinated/non-PEGylated analogs to the hyperbranched fluoropolymer-

poly(ethylene glycol) (HBFP-PEG) film system.  The coating compositions consisted of the 

mixing and crosslinking of either two disparate polymers or a complex amphiphilic block 

copolymer with crosslinking agents.  A variety of crosslinking methods was analyzed, including 

vulcanization and UV-promoted thiol-ene reactions.  The coatings were analyzed using a variety 

of advanced methods, including thermomechanical techniques, tensile testing and surface 

analysis.   

A combinatorial series of UV-promoted, thiol-ene generated amphiphilic films was 

prepared by the crosslinking of varying wt% of 4-armed poly(ethylene glycol) (PEG) tetrathiol 

and equivalents of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) with alkene-

modified Boltorn polyesters.  The Boltorn-alkene components were prepared through the 
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esterification between commercially available Boltorn H30™ and 3-butenoic acid.  The 

thermomechanical attributes of the films were analyzed, showing an increase in Tg with an 

increase in PEG wt%, regardless of PETMP concentration.  The films were then studied for their 

bulk mechanical properties in both dry and wet state.  The nanoscopic surface features were 

probed using atomic force microscopy and contact angle analysis.  Additionally, a series of 

coatings were prepared at a low PETMP concentration with varying PEG wt% (0-35 wt%), 

where they were tested for anti-biofouling character and fouling release ability against Ulva 

marine algae.  The films have a vastly decreased spore settlement and growth when compared to 

commercial PDMS coatings. 

A non-fluorinated, non-PEGylated analog of the HBFP-PEG system was synthesized 

using RAFT copolymerization.  It was hypothesized that the non-ionic polar polymer, poly(N-

vinylpyrrolidinone) (PNVP), would work as a more durable replacement for the hydrophilic PEG 

of the original system and that the hydrophobic polymer polyisoprene (PIp) could be used as a 

low surface energy, potentially multi-crosslinkable analog of HBFP.  Vulcanization crosslinking 

methods were employed during polymer phase segregation, driven by differences in composition 

and macromolecular topology.  The new design differs not only in the chemical compositions 

(PIp for HBFP and PNVP for PEG), but also in the macromolecular architecture.  The complex 

films were analyzed using a variety of advanced surface analysis, including XPS, IRIR imaging, 

and XPS. 

A similar block copolymer system was investigated, PEO-b-PIp, as an additional analog 

to HBFP-PEG.  Two RAFT-capable PEO macro-CTAs, 2 and 5 kDa, were prepared and used for 

the polymerization of isoprene which yielded well-defined block copolymers of varied lengths 

and compositions.  Mathematical deconvolution of the GPC chromatograms allowed for the 
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estimation of the blocking efficiency, about 50% for the 5 kDa PEO macro-CTA and 64% for the 

2 kDa CTA.  Self assembly of the block copolymers in both water and decane was investigated 

and the resulting regular and inverse assemblies, respectively, were analyzed with DLS, AFM, 

and TEM to ascertain their dimensions and properties.  Assembly of PEO-b-PIp block 

copolymers in aqueous solution resulted in well-defined micelles of varying sizes while the 

assembly in hydrophobic, organic solvent resulted in the formation of different morphologies 

including large aggregates and well-defined cylindrical and spherical structures.  Additional 

investigation into the potential anti-fouling ability was performed using fluorescently-tagged 

biomolecule adsorption assays. 

During the studies of these analogs, several discoveries were made with the original 

HBFP-PEG system on which the dissertation author is listed as co-author.  Since the work was 

performed in conjunction with the dissertation author and is pertinent to the dissertation, the 

work is included in the Appendices.  Nanocompositing materials, specifically carbon nanotubes 

and nanoscopic silica, were either physically mixed or engineered to be phase-specific for either 

the HBFP domain or the PEG domain.  The nanocomposited HBFP-PEG materials were then 

subjected to a variety of mechanical tests in order to see how the compositing agents effected 

modulus in either dry or wet environments.  Additional advanced investigations into the unique 

mechanical properties of HBFP-PEG were performed using solid-state NMR.  At varying wt% 

PEG, the wetted film acts as either a structurally-reinforced material (sub-45 wt%) or as a 

mechanically-weakened hydrogel (>55 wt%).  The mechanism of the structural reinforcing was 

probed using a variety of advanced solid state NMR techniques, providing information into the 

unique mechanical properties of the HBFP-PEG material. 
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containing SWNTs: (b) HBFP-PEG45/SWNTs with 0.25  

wt% physical doping, (c) HBFP-PEG45/SWNTs with 1.0  

wt% physical doping, (d) HBFP-PEG45/SWNTs with 2.5  

wt% physical doping, (e) HBFP-PEG45-SWNT-g-PEG with  

0.05 wt% covalent incorporation, (f) HBFP-PEG45-SWNT-g- 

PEG with 0.1 wt% covalent incorporation, (g) HBFP-PEG45- 

SWNT-g-PEG with 0.25 wt% covalent incorporation and (h)  

HBFP-PEG45-SWNT-g-PEG with 0.5 wt% covalent incorporation. 

Figure A1-11. Direct comparison of elastic moduli of (a) HBFP-PEG45                      228 

and HBFP-PEG55, (b) HBFP-PEG45/SWNTs, (c) HBFP- 

PEG45-SWNT-g-PEG, (d) HBFP-PEG45/SiO2, and (e)  
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HBFP-PEG45-SiO2-g-HBFP as prepared () and after  

swelling in water (). 

Figure A1-12. Typical stress-strain curves of (a) HBFP-PEG45/SiO2                           230 

nanocomposite films containing 5 wt% physical doping  

and (b) HBFP-PEG45-SiO2-g-HBFP nanocomposite films  

containing 5 wt% covalent incorporation as the speed  

of testing was 2.54 mm/min.  Black curves were obtained  

from films as prepared and red ones were from those after  

swelling in DI water for > 5 minutes. 

Figure A1-13. DSC curves of HBFP-PEG45 (a) and nanocomposites                           232 

containing SiO2 nanoparticles: (b) HBFP-PEG45/SiO2  

with 1.0 wt% physical doping, (c) HBFP-PEG45/SiO2  

with 5.0 wt% physical doping, (d) HBFP-PEG45-SiO2- 
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Appendix 2 

Figure A2-1. The crosslinking reaction between HBFP (green) and                            247 

diamino PEG (blue), produces an amphiphilic HBFP-PEG  

crosslinked network, illustrated with the various structural  

elements and the resulting chemical environments.   

Figure A2-2. Rotor configuration for magic-angle spinning of hydrated                     250 

HBFP-PEG samples.  Wet samples were spun for two  

months with less than 1% weight loss. 
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Figure A2-3. Pulse sequence and phase routing for the 
19

F solid-echo                         250 

experiment.  The split 180
o
 pulse preceding the 90

o
-τ-90

o
  

suppresses baseline artifacts. 

Figure A2-4. Pulse sequence for characterization of the HBFP-PEG                           251 

interface.  Magnetization originates with 
19

F in the HBFP  

domain and is transferred to protons using a 
19

F→
1
H ramped  

cross-polarization transfer, followed first by 
1
H-

1
H spin  

diffusion of z-stored magnetization, and then by a 
1
H→

13
C  

ramped cross-polarization transfer, all under magic-angle  

spinning.  Detection of the PEG-domain 
13

C signal is by solid  

echo.  The sign of the observed 
13

C signal follows the spin- 

temperature alternation of the 
19

F spin lock.  The sign of the 
1
H  

spin-lock temperature is not alternated; that is, PEG-phase 
13

C  

signals from the second cross-polarization transfer are cancelled. 

Figure A2-5. Solid-state 
19

F NMR spectra of HBFP-PEG45 (left) and                        253 

HBFP-PEG55 (right) dry (top two rows) and hydrated to  

approximately 50% water by weight (bottom two rows).   

Each of the eight panels makes a comparison of a 
1
H→

19
F  

ramped cross-polarization (CP) spectrum obtained without  

magic-angle spinning, to either a 90ºx-τ-180ºy-τ rotor-synchronized  

Hahn echo (τ = 160 µs) obtained with spinning (rows 1 and 3), or  

a 90ºx-τ-90ºy-τ solid echo (τ = 13.5 µs) obtained without spinning  

(rows 2 and 4).  The CP spectra were also detected by solid echo.   
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All of the spectra arise exclusively from HBFP.  The spectra were  

obtained by the accumulation of 4096 scans, are scaled by sample  

weight, and are referenced to the 
19

F resonance of solid  

D-[3-
19

F1]alanine. 

Figure A2-6. 
19

F solid echo (top) and CP (bottom) NMR spectra of                            254 

HBFP homopolymer.  The CP transfer was made from protons  

in 0.8 ms.  Both spectra are the result of the ammumulation of  

4096 scans without magic angle spinning. 

Figure A2-7. CP 
13

C NMR spectra of the dry HBFP-PEG45 copolymer                     256 

obtained with a 0.2-ms 
1
H→

13
C ramped cross-polarization  

transfer (top) and detected by a Hahn echo (black) or solid  

echo (red), or with a 1.5-ms transfer and detected by a Hahn  

echo (bottom).  Only the regions between 45 and 85 ppm are  

shown.  The chemical shifts of the oxygenated methylene carbons  

in the PEG domains are between those in the HBFP domains.   

The low-field 72-ppm PEG signal and the HBFP oxygenated  

methylene-carbon signals are associated with a short T1ρ(H).   

The 
13

C radiofrequency carrier was centered on the PEG signals.  

The spectra were obtained with magic-angle spinning and proton  

decoupling and are the result of the accumulation of 16384 scans. 

Figure A2-8. CP 
13

C NMR spectra of HBFP homopolymer (top) and                          257 

hydrated HBFP-PEG45 block copolymer (bottom).  Only  

the regions between 25 and 125 ppm are shown.  The spectra  
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were obtained using a 
1
H→

13
C ramped cross-polarization  

transfer and detection by a solid echo with magic-angle spinning.   

The spectra were obtained by the accumulation of 32768 scans.   

The 70-ppm chemical shift of the ordered oxygenated methylene  

carbons in the PEG domain is between the shifts of the oxygenated  

methylene carbons in the HBFP domain. 

Figure A2-9. CP 
13

C NMR spectra of HBFP-PEG45 (left) and HBFP-                       259 

PEG55 (right) dry (top) and hydrated (bottom).  The spectra  

were obtained using a 7-ms 
1
H→

13
C ramped cross-polarization  

transfer without magic-angle spinning and were detected by  

a solid echo with 100-kHz proton decoupling.  Only the high- 

field 70-ppm PEG signal is observed.  Protonated aromatic- 

carbon signals from the wet HBFP domains are too broad to  

detect in the absence of spinning.  The spectra were obtained  

by the accumulation of 4096 scans, are scaled by sample weight  

(scale factors inset), and are referenced to external TMS. 

Figure A2-10. CP 
13

C NMR spectra of HBFP-PEG45 hydrated                                     260 

copolymer (top) and HBFP-PEG55 hydrated copolymer  

(bottom).  The spectra were obtained using a 7-ms 
1
H→

13
C 

 ramped cross-polarization transfer and detection by a rotor- 

synchronized Hahn echo with magic-angle spinning.  The  

spectra were the result of the accumulation of 8192 scans.   

Only the high-field 70-ppm PEG signal is observed.  The  
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T1ρ(H) of the HBFP domains on HBFP-PEG45 has been  

increased by PEG hydration and HBFP 
13

C signals pass the  

7-ms T1ρ(H) filter. 

Figure A2-11. FHHC 
13

C NMR spectra of HBFP-PEG45 (left) and                              261 

HBFP-PEG55 (right) dry (top) and hydrated (bottom).   

The spectra were obtained using a 0.8-ms 
19

F→
1
H  

ramped cross-polarization transfer, followed first by  

1
H-

1
H spin diffusion of z-stored magnetization for 50 ms,  

and then by a 7-ms 
1
H→

13
C ramped cross-polarization  

transfer (see Figure A2-4), all with magic-angle spinning.   

Magic-angle spinning eliminated shift anisotropy and reduced  

the linewidths of both wet and dry samples relative to those  

observed without spinning (see Figure A2-9).  The sign of the  

observed 
13

C signal followed the spin-temperature alternation of  

the 
19

F spin lock; that is, PEG-phase 
13

C signals from the second  

cross-polarization transfer were cancelled.  The spectra were  

detected by solid echo with magic-angle spinning and resulted  

from the accumulation of 32768 scans, scaled by sample  

weight (scale factors inset), and referenced to external TMS. 



xxv 

LIST OF SCHEMES 

Chapter 2 

Scheme 2-1.  Esterification of Boltorn H30 to produce Boltorn-ene.                                           47 

Scheme 2-2. Preparation of Boltorn-PEG films at varying PEG                                                51 

and PETMP concentrations. 

Chapter 3 

Scheme 3-1. Preparation of PEO macro-CTAs 2 and 3.                                                           110 

Scheme 3-2. Preparation of PEOn-b-PIpm polymers.                                                                111 

Scheme 3-3. Schematic illustrations of the aqueous assembly of 4-7 to                                  122 

give micelles 8-11, respectively, and decane assembly of 4-7  

to give inverse micellar assemblies 12-15, respectively. 

Scheme 3-4. PEO-b-PIp UV-promoted thiol-ene crosslinking with                                        133 

1,10 decanedithiol. 

Chapter 4 

Scheme 4-1. RAFT polymerization of N-vinylpyrrolidinone,                                                  165 

 producing polymer 2. 

Scheme 4-2. Chain extension reaction to produce PNVP120-b-PIpm,                                       168 

 where m = 710, 53, and 25 in the case of 3, 4, and 5, respectively. 

Scheme 4-3. S2Cl2 crosslinking of PNVPn-b-PIpm, showing the resultant                               176 

 sulfur-based linkages between polymer chains, where  

n = 120 and m = 710, 53 and 25 to afford crosslinked polymer  

films 6, 7 and 8, respectively. 

 



xxvi 

Appendix 1 

Scheme A1-1. Preparation of HBFP-PEG amphiphilic crosslinked networks.                           203 

Scheme A1-2. Functionalization of nanoscopic fillers: (a) SWNTs with                                   213 

diamine-terminated PEGs and (b) SiO2 nanoparticles grafted  

with HBFP; Preparation of nanocomposite films: (c) with  

physically doped fillers, HBFP-PEG45/SWNTs and  

HBFP-PEG45/SiO2, and (d) with functionalized fillers  

in situ, HBFP-PEG45-SWNT-g-PEG and HBFP-PEG45- 

SiO2-g-HBFP. 



xxvii 

LIST OF TABLES 

Chapter 2 

Table 2-1. Summary of the thermomechanical properties,                                                     61 

elemental analysis and contact angle for the Boltorn-PEG  

films and components.  Data for the antifouling (AF)  

series can be found in the following table, Table 2-2. 

Table 2-2. Summation of thermomechanical properties, elemental                                        62 

analysis and contact angle for the Boltorn-PEG films  

and components. 

Table 2-3. Summary of the mechanical properties for the                                                      69 

Boltorn-PEG films in both dry and wet conditions. 

Table 2-4. Critical surface pressures for 50% removal of                                                       77 

sporeling biofilms derived from curves in Figure 2-25  

and percent removal of sporeling biofilms at the single  

water pressure of 64 kPa.  Samples listed in order of  

ease of removal. 

Chapter 3 

Table 3-1. Molecular weight, polydispersity, and thermal analysis                                      113 

data for PEO macro-CTAs and PEO-b-PIp block copolymers. 

Table 3-2: Mn values for low and high molecular weight peaks,                                          117 

dn/dc of block copolymers and blocking efficiency calculated 

 from multi-peak mathematical deconvolution of GPC  

chromatograms and other GPC data. 



xxviii 

Table 3-3. Micellization data (aqueous solution).                                                                 123 

Table 3-4. Inverse micellization data (decane solution).                                                       123 

Chapter 4  

Table 4-1. Contact Angles for both non-crosslinked and S2Cl2-                                           179 

 crosslinked films. 

Table 4-2. Surface atomic concentrations of the non-crosslinked                                        181 

 and S2Cl2 crosslinked PNVP120-b-PIpm films, as determined  

by XPS  (See Figure 3.12 for XPS survey scans).   

Small silica signals from Si(2P) were seen in a few samples,  

and were not taken into account for atomic concentration calculations. 

Table 4-3. IR bands observed for PNVP120 -b-PIp53 non-crosslinked,                                 184 

 A, and PNVP120 -b-PIp53 S2Cl2-crosslinked, B, films and  

their tentative band assignments 

Appendix 1 

Table A1-1. Summary of mechanical properties of HBFP-PEG45/SWNTs                           224 

and HBFP-PEG45-SWNT-g-PEG nanocomposites containing  

varying amounts of carbon nanotubes fillers before and after  

water swelling. 

Table A1-2. Summary of mechanical properties of HBFP-PEG45/SiO2                                 231 

and HBFP-PEG-SiO2-g-HBFP nanocomposites containing  

varying amounts of nanoscopic silica particles before and  

after water swelling. 

 



xxix 

Appendix 2 

Table A2-1. Summary of data for HBFP-PEG45 and HBFP-PEG55                                      249 

amphiphilic networks before and after water swelling. 



xxx 

GLOSSARY OF TERMS AND ABBREVIATIONS 

 

ACVA  Azobiscyanovaleric acid 

AFM  Atomic force microscopy 

ATRP  Atom transfer radical polymerization 

CNT  Carbon nanotube 

CRP  Controlled radical polymerization 

CP  Cross-polarization 

CTA  Chain transfer agent 

DACM N-(7-dimethylamino-4-methylcoumarin-3-yl) maleimide 

DDMAT S-1-dodecyl-S’-(α,α’-dimethyl-α”-acetic acid)trithiocarbonate 

DIPEA N,N-diisopropylethylamine 

DLS  Dynamic light scattering 

DPTS  4-(Dimethylamino)pyridinium 4-toluenesulfonate 

DSC  Differential scanning calorimetry 

EDCI  1-[Dimethylamino)propyl]-3-ethylcarbodiimide methiodide 

EPR  Electron paramagnetic resonance 

GPC  Gel permeation chromatography 

HBFP  Hyperbranched fluoropolymer 

HOBt  Hydroxybenzotriazole monohydrate 

IRIRI  Internal reflectance infrared imaging 

MHz  Megahertz 

MPA  2,2-bis(hydroxymethyl) propionate 



xxxi 

MWCO Molecular weight cut-off 

NMRP Nitroxide-mediated radical polymerization 

RAFT  Reversible addition-fragmentation chain transfer 

PAA  Poly(acrylic acid) 

PCL  Poly(ε-caprolactone) 

PDI  Polydispersity index 

PDMS  Polydimethylsiloxane 

PEG  Poly(ethylene glycol) 

PEO  Poly(ethylene oxide) 

PETMP Pentaerythritol tetrakis(3-mercaptopropionate) 

PIp  Polyisoprene 

PNVP  Poly(N-vinylpyrrolidinone) 

PS  Polystyrene 

PTFE  Poly(tetrafluoroethylene) 

RMS  Root mean square 

SANS  Small angle neutron scattering 

SWNT  Single-walled carbon nanotube 

TEM  Transmission electron microscopy 

TBT  Tributyltin 

TFA  Trifluoroacetic acid 

TGA  Thermogravimetric analysis 

UV  Ultraviolet 

XPS  X-ray photoelectron spectroscopy 



1 

 

Chapter 1 

 

Introduction 

 

The biofouling of ships and other marine structures has been an ever since 

mankind built the first boats to sail the oceans.  This global nuisance is responsible for 

>$5.7 billion dollars per year in lost revenue for cargo and other ships due to the 

increased drag and related fuel costs.(1)  Historical  accounts of biofouling date as far 

back as the Carthaginians and Phoenicians, who were reported to have used tar and pitch 

on their sea-going vessels, both for water-proofing and anti-fouling purposes.(2)  The 

first written account of fouling comes from the Deipnosophistae,(3) wherein the Greek 

rhetorician and grammarian Athenaeus described the anti-fouling efforts taken in the 

construction of the great ship of Hiero I, which was coated with sheets of lead.  An 

account in 1627by Captain John Smith,(4) titled “The Generall Historie of Virginia, New 

England and the Summer Isles, together with the True Travels, Adventures, and 

Observations, and a Sea Grammar,” there is a description of the process of “graving,” 

where “a white mixture of Tallow, Sope [sic] and Brimstone; or Train-oile, Rosin, and 

Brimstone boiled together, is the best to preserve her calking [sic] and make her glib or 

slippery to passe [sic] the water; and when it is decayed by weeds, or Barnacles, which is 

a Barnacles, or kinde [sic] of fish like a long red worme [sic], will eat thorow [sic] all the 

Plankes if she be not sheathed, which is as casing the Hull under water with Tar, and 

Haire [sic], close covered over with thin boords [sic] fast nailed to the Hull, which though 

the Worme pierce, shee [sic] cannot endure the Tar.”  Christopher Columbus was 
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reported to have used “tallow and pitch” to aid with preventing barnacles or fouling 

worms from growing on sea-faring vessels.(5)  The first patent for an anti-fouling coating 

was awarded to William Beale in 1625 (British patent), based on a mixture of iron 

powder, cement and a mineral compound that was probably copper arsenide or copper 

sulfide.  Pitch and tar were primarily used up until the 18
th

 century, however various 

agencies, including the British Navy, started using lead sheathing.  Copper sheathing was 

first suggested in 1708 by Charles Perry, however it was rejected initially and not applied 

until decades later due to the high cost of implementation.(6)  Copper sheathing turned 

out to be highly successful, as it acts in two primary modes: 1)  The formation of a 

slightly soluble, extremely smooth surface coating which washes away slowly over time, 

taking built up marine fauna with it, and 2) The formation of toxic copper(II) species 

which actively prevents fouling accumulation.(7)  From the mid 1770s up until the 1890s, 

the British Royal Navy prepared copper sheathing over iron framing(8)  Ironically, the 

copper sheathing performed so well that little innovation occurred.  Few patents or new 

inventions surfaced until the late 1800s when steel, which is structurally strong but 

galvanically corrodes in a marine environment, became the building material of choice 

for ship building. 

The use of sheathing went out of practice when anti-fouling paints were 

developed in the late 19
th

 century.  In 1863, the first American patent for an antifouling 

paint for ships' hulls was issued to J.G. Tarr and A.H. Wonson(9) for a “copper oxide, tar 

and benzene mixture,” which claimed that a ship painted with this composition could 

have protection against growth of barnacle shells and seaweeds "for a period of twelve 

months, while another vessel painted in the common manner and employed in the same 
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trade became so foul in six weeks as to require scraping."  Unfortunately, many of the 

patented compositions for anti-fouling paints in this period were fraudulent, containing 

everything from kitchen salt to bat guano.(10)  Moreover, some coating formulations 

contained toxic metal salts of copper, arsenic or mercury, and typically used tar or pitch 

as the base, which would coat unevenly and be vulnerable to flaking or mechanical 

removal.(6)  The use of a less toxic active ingredient and more permanent base coating 

would not be developed until the late 20
th

 century.  Initial investigations into stronger 

base coatings came in the form of rosin-based formulations, such as “Italian Moravian” 

and “McInness’” so-called “hot plastic paints,” which were mixtures of copper salts and 

rosin, which would last up to 9 months in marine waters.  The use of rosin- or tar-based 

paints was soon abandoned for shellac-based compositions, such as Norfolk shellac-type 

paint, developed in 1906,(11) or related “cold plastic paints” which used solvent 

evaporation to form even coatings.  By the late 1920s, anti-fouling paint technology was 

at an adaquately advanced stage that formulations could keep ships out of dry dock for up 

to 18 months.(12)  It was around this time that the modes of fouling accumulation were 

elucidated, as were the mechanisms of fouling prevention and toxicity of chemical 

components to marine organisms.(13, 14)  This knowledge allowed for the development 

of more advanced coating compositions, such as leaching or ablative coatings.(15) 

In 1971, a British patent revolutionized maritime fouling research.(16)  Milne and 

Hails developed a “self-polishing copolymer” composition containing a potent new 

biocide, tributyltin, TBT, in the form of a metal acrylate, which allowed ships to go up to 

five years before needing dry dock.  This astonishing find, dubbed by many as the end-

goal in fouling research, now shifted new exploration into improving ship speed or 
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controlling/improving ablation rates rather than focusing on novel anti-fouling or biocidal 

components.(17)  The era of TBT was short-lived, however, when many shocking 

discoveries came forward about the effects of the biocide on marine life in the mid-

90s,(18) a finding which prompted outcries and global protests.  TBT is now considered 

to be “one of the most toxic compounds ever deliberately introduced to a marine 

environment by mankind.”(2, 19)  It was found that extremely low concentrations of 

tributyltin can cause defective shell growth in the oyster Crassostrea gigas (at a 

concentration of >20 ng/L) and development of male characteristics in female genitalia 

(imposex behavior) in the dog whelk Nucella lapillus at 1 ng/L.(18, 20)   Unfortunately, 

the toxicity was not just limited to marine anthropods.  Recent studies have shown that 

wild, dead sea otters and stranded bottlenose dolphins can possess extremely high levels 

of tributyltin in their livers.(21)  TBT also tends to bioaccumulate up to higher ranking 

predators, including commercially fished tuna.(22)  There have even been reports of TBT 

effecting large aquatic mammals, where a link between TBT concentration and hearing 

loss in whales was recently discovered.(23)  High levels were also discovered in the 

corpses of killer whales who were intentionally stranding themselves.(24)  A draft 

Assembly Resolution prepared by the Marine Environmental Protection Committee 

(MEPC) of the International Maritime Organization (IMO) proposed a global ban on the 

use of organotin compounds in antifouling paints at the 21st regular session in November 

1999, effective 2008.  Unfortunately, due to the long persistence time of TBT in marine 

silt and water (half-life ranging from several days in water near the surface, to several 

weeks in aerobic soils and several years in anaerobic solids),(25, 26) it is continuing to 

effect marine life to this day and is expected to do so for several decades.(27, 28)   
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Recent development of modern copper-based self-polishing (see Figure 1.1 for a 

schematic of a self-polishing coating) or leaching (see Figure 1.2 for a schematic of a 

biocide-leaching coating) coatings, generally produced from acrylic or methacrylic  

Figure 1.1.  Ablative, or “self-polishing,” coating deteriorating and releasing biocide 

load as a function of time from initial stage (left) to intermediate stage (middle) and final 

stage (right). 

 

 

Figure 1.2.  Biocide-leaching coating. 

 

polymer formulations, show promise in that they are much less toxic than TBT, and can 

provide long times between dry dock.  The state-of-the-art success and research of 

copper-based ablative formulations, which generally contain Cu2O, CuSCN or metallic 
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copper, may be useful for modern commercial and military applications, however a few 

countries, including Scandinavia, and even a few states like California have started 

monitoring and limiting docking of copper-painted ships in their harbors.(25, 26)  Many 

experts, both academic and military, believe it is only a matter of time before these 

copper-based formulations will be banned internationally just as TBT was,(17) which 

shifts the modern research focus into non-metal/non-biocide formulations. 

Understandably, modern anti-fouling research is now largely based on non-metal 

based coatings, either of the “non-fouling” (see Figure 1.3) or “fouling release” (see  

Figure 1.3.  Schematic representation of a non-fouling coating with an algae spore acting 

as the fouling organism. 

 

Figure 1.4.  Schematic representation of a fouling release coating with an algae spore 

acting as the fouling organism. 
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Figure 1.4) categories.  However, it should be noted, that there is ongoing research 

regarding environmentally-benign biocide formulations (Figure 1.5).(29)  Non-fouling 

coatings, by definition, prevent the initial fouling of marine organisms, and therefore, 

ultimate build up of a fouling community, through a variety of mechanisms.  Fouling 

release coatings are readily fouled, but retain special chemical and mechanical properties  

Figure 1.5.  Schematic representation of a biocide-release coating with an algae spore 

acting as the fouling organism. 

 

which allow weak attachments with fouling organisms.(30-32)  Therefore, outside forces, 

from drag or mechanical cleaning, can easily release the weakly-bound fouling 

organisms.(33)  

The mechanisms for fouling, which are still largely unknown and are not only 

species-dependent but surface-dependent, are only beginning to be understood on a 

molecular level.  Modern research into fouling biology has shown that a mixture of 

excreted extracellular polymers, including polysaccharides, lipopolysaccharides, proteins 

and nucleic acids, form a kind of biological “cement” which allows organisms to adhere 

to surfaces.(34)  Knowledge of this how adhesive sticks to surfaces in addition to the 

chemical make-up and crosslinking mechanisms is extremely useful in the generation of 
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anti-fouling coatings.  Research into non-toxic fouling release or anti-fouling coatings has 

demonstrated that there are a wide array of characteristics that influence anti-biofouling 

ability.  Fouling organisms tend to stick more readily to hydrophobic surfaces, including 

Teflon™, rather than hydrophilic surfaces.(35-37)  Properties such as surface 

roughness,(38-40) topography,(41) free energy,(42, 43) polymer composition,(44-46) and 

the mechanical properties of the bulk substrate(47) all play large roles in inhibiting or 

promoting adhesion of biomacromolecules and, thereby, whole organisms, onto 

substrates.(48)  An interesting switching behavior between hydrophobicity and 

hydrophilicity can be generated for responsive nanocomposite surfaces.(49)  Surfaces 

made from amphiphilic crosslinked networks of poly(ethylene glycol) (PEG) and 

hyperbranched fluoropolymers(50-54) or linear block fluorocopolymers containing PEG-

based segments,(44, 45, 55-57) have demonstrated excellent anti-fouling ability.  

Polymers composed of polydimethylsiloxane (PDMS),(17, 47, 58) hybrid xerogels,(59, 

60) and zwitterionic block copolymers(61-66) undergo self-cleaning in water.  

Interestingly, lithographically micropatterned PDMS surfaces further inhibit fouling 

organisms from attaching to surfaces,(40, 67) indicating that surface features are as 

important as composition in developing anti-biofouling coatings.  The major theme in 

these discoveries has been that high degrees of complexity are needed to combat the 

various mechanisms that fouling organisms rely upon for adhesion to substrates. 

Previous work in our lab has shown that hyperbranched fluoropolymers 

crosslinked with polyethylene glycol (HBFP-PEG, see Figure 1.6 for 1
st
 generation) form  
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Figure 1.6.  HBFP-PEG 1
st
 generation network showing the variety of domains and 

crosslinks. 

 

phase-segregated domains on the nano- and microscales.(50-54)  The formation of an 

amphiphilically-, morphologically- and topographically-complex surface environment as 

a result of the phase segregation is believed to be responsible for inhibiting 

biomacromolecule adsorption and adhesion of Ulva algae spores.(17, 68, 69)  The HBFP-

PEG system also possesses interesting mechanical(70, 71) and host-guest properties.(72)  

Despite HBFP-PEG’s excellent ability to resist adhesion, the fluorinated polymer domain 

is relatively expensive, difficult to produce and has unknown toxicity or bioaccumulation 

data.  These unfortunate factors are true of all fluoropolymers currently being researched 

in this area.  The primary research conducted in this dissertation, therefore, has been the 

1) duplication of the successes of the amphiphilic HBFP-PEG coating system using new 

polymer compositions, 2) exploration of rapid crosslinking methods, such as those 
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provided by UV curing, 3) expanding the types of materials that can achieve similar 

degrees of surface complexities, and 4) doing so by using common, commercially-

available components. 

Strategies into the development of analogs to the HBFP-PEG system were analyzed 

using a variety of different methods.  These novel coating analogs were designed and 

synthesized in order to exhibit similar surface topography and compositional 

heterogeneity to the original HBFP-PEG films, and provide similar anti-biofouling 

behavior.  For example, in Chapter 2, a combinatorial series of thiol-ene generated 

amphiphilic films were prepared by the crosslinking of varying wt% of 4-armed 

poly(ethylene glycol) tetrathiol and equivalents of pentaerythritol tetrakis(3-

mercaptopropionate) (PETMP) with alkene-modified Boltorn polyesters.  The Boltorn-

alkene components were prepared through the esterification between commercially 

available Boltorn H30™ and 3-butenoic acid.  The thermomechanical attributes of the 

films were analyzed, showing an increase in Tg with an increase in PEG wt%, regardless 

of PETMP concentration.  The films were then studied for their bulk mechanical 

properties in both the dry and wet state, where it was found that Young’s modulus is the 

highest at 0.75 eq SH/ene.  Young’s modulus did reduce slightly when wetted at constant 

PEG or constant PETMP, however ultimate tensile strength increased at constant PETMP 

concentration.  The nanoscopic surface features were investigated using atomic force 

microscopy and contact angle analysis, where it was observed that the surface of the 

amphiphilic films increased in nanoscopic roughness with increasing PEG wt%.  A series 

of coatings were then prepared at a low constant PETMP concentration with varying PEG 

wt% (0-35 wt%) and they were tested for anti-biofouling character and fouling release 
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ability against Ulva marine algae, where the films have a vastly decreased spore 

settlement and growth when compared to commercial PDMS coatings. 

In Chapter 3, the synthesis of a non-fluorinated, non-PEGylated analog of the 

HBFP-PEG system was performed.  It was hypothesized that the non-ionic polar 

polymer, poly(N-vinylpyrrolidinone) (PNVP), would work as a durable replacement for 

the hydrophilic PEG of the original system and that the hydrophobic polymer 

polyisoprene (PIp) could be used as a low surface energy, potentially multi-crosslinkable 

analog of HBFP.  In the HBFP-PEG system, two homopolymers were blended together 

and crosslinked using vulcanization methods during their phase segregation, driven by 

differences in composition and macromolecular topology.  The highly branched 

architecture of the HBFP, which provided large numbers of chemically reactive chain 

ends, allowed for rapid, kinetic trapping of the phase segregation events before 

equilibrium was reached.  The new design differs not only in the chemical compositions 

(PIp for HBFP and PNVP for PEG), but also in the macromolecular architecture.  Rather 

than working with two homopolymers, we chose to employ a block copolymer, which 

restricts the degree of phase segregation by covalently pre-attaching the incompatible 

hydrophobic and hydrophilic polymer chains prior to crosslinking.   

In Chapter 4, a similar block copolymer system, PEO-b-PIp, was investigated.  

Two RAFT-capable PEO macro-CTAs, 2 and 5 kDa, were prepared and used for the 

polymerization of isoprene which yielded well-defined block copolymers of varied 

lengths and compositions.  GPC analysis of the PEO macro-CTAs and block copolymers 

showed remaining unreacted PEO macro-CTA.  Mathematical deconvolution of the GPC 

chromatograms allowed for the estimation of the blocking efficiency, about 50% for the 5 
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kDa PEO macro-CTA and 64% for the 2 kDa CTA.  Self assembly of the block 

copolymers in both water and decane was investigated and the resulting micellar and 

inverse micellar assemblies, respectively, were analyzed with DLS, AFM, and TEM to 

ascertain their dimensions and properties.  Assembly of PEO-b-PIp block copolymers in 

aqueous solution resulted in well-defined micelles of varying sizes while the assembly in 

hydrophobic, organic solvent resulted in the formation of different morphologies 

including large aggregates and well-defined cylindrical and spherical structures.  

Additional investigation into the thiol-ene based crosslinking of PEO-b-PIp films and 

their potential anti-fouling ability was performed using fluorescently-tagged biomolecule 

adsorption assays. 

During the studies of these analogs, several discoveries were made with the 

original HBFP-PEG system on which the dissertation author is listed as co-author.  Since 

the work was performed in conjunction with the dissertation author and is pertinent to the 

dissertation, the work is included in the Appendices.  In Appendix 1, nanocompositing 

materials, specifically carbon nanotubes and nanoscopic silica, were either physically 

mixed or engineered to be phase-specific for either the HBFP domain or the PEG 

domain.  The nanocomposited HBFP-PEG materials were then subjected to a variety of 

mechanical tests in order to see how the compositing agents effected modulus in either 

dry or wet environments.  Additional advanced investigations into the unique mechanical 

properties of HBFP-PEG were performed using solid-state NMR, as can be observed in 

Appendix 2.  At varying wt% PEG, the wetted film acts as either a structurally-

reinforced material (sub-45 wt%) or as a mechanically-weakened hydrogel (>55 wt%).  

The mechanism of the structural reinforcing was probed using a variety of advanced solid 
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state NMR techniques, providing information into the unique mechanical properties of 

the HBFP-PEG material. 
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Chapter 2 

Anti-fouling PEGylated thiol-ene crosslinked networks 

[Portions of this work have been submitted for publication as Jeremy W. Bartels, Phillip 

M. Imbesi, John A. Finlay, Christopher Fidge, Jun Ma, Jonathan E. Seppala, Andreas M. 

Nystrӧm, Michael E. Mackay, John A. Callow, Maureen E. Callow and Karen L. Wooley 

to ACS Applied Materials and Interfaces, 2010] 

Abstract  

A combinatorial series of thiol-ene generated amphiphilic films were prepared by 

crosslinking alkene-modified Boltorn polyesters with varying wt% of 4-armed 

poly(ethylene glycol) (PEG) tetrathiol and varying equivalents of pentaerythritol 

tetrakis(3-mercaptopropionate) (PETMP).  The Boltorn-alkene components were 

prepared through the esterification of commercially available Boltorn H30™ with 3-

butenoic acid.  The subsequent crosslinking of the films was monitored using IR 

spectroscopy, where it was found that near-complete consumption of both thiol and 

alkene occurs around 0.75 eq alkene/SH.  The thermomechanical attributes of the films 

were analyzed, showing an increase in Tg with an increase in 4-armed PEG-tetrathiol 

wt%, regardless of PETMP concentration.  The bulk mechanical properties in both dry 

and wet state were studied, where it was found that Young‘s modulus was the highest at 
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0.75 eq SH/ene.  The Young‘s modulus was slightly lower for wet films at constant PEG 

or constant PETMP, however, ultimate tensile strength increased when PETMP was 

constant and the PEG concentration was increased.  The nanoscopic surface features were 

probed using Atomic Force Microscopy (AFM), where it was observed that the surface of 

the amphiphilic films became more nanoscopically rough with increasing PEG wt%.  A 

series of coatings were then prepared at a low PETMP concentration with varying PEG 

wt% (0-35 wt%) and tested for anti-fouling and fouling-release activity against the marine 

alga Ulva.  Spore settlement densities were lower on these films compared to that on 

standards of polydimethylsiloxane and glass. 
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Introduction 

 Over the past decade, there has been increased effort to devise non-biocidal anti-

fouling and fouling-release coatings that inhibit adhesion and/or promote detachment of 

marine fouling organisms on the hulls of ships and underwater structures.  Biocidal metal 

based paints, such as those containing tributylytin (TBT), which are banned from 

maritime application, or copper oxide formulations, which are currently in use, have been 

shown to be detrimental to many marine organisms.(1, 2)  While modern efforts toward 

non-toxic, anti-fouling coatings have focused primarily on fluoropolymers(3-6) and 

silicone elastomers,(7-10) it should be noted that there is a strong interest in novel 

formulations involving xerogels,(11) zwitterionic polymer coatings,(12-14) and 

PEGylated polymer compositions(3-6, 15, 16).  While formulation and chemistry of the 

substrate plays a vital role, additional studies have established that surface and bulk 

properties, including surface free energy,(17) mechanical properties/modulus,(18) 

wettability,(19) and roughness,(19-21) have a profound impact on both nano- and 

microscales.  It is anticipated that a combination of these factors, giving the polymer film 

a high degree of complexity, are needed to combat the various mechanisms that are used 

by fouling organisms for settlement and adhesion to substrates. 

Novel polymer coatings developed by thiol-ene UV photopolymerization methods have 

many attractive properties which can provide high extents of complexity, giving potential 

promise for anti-fouling applications.  The thiol-ene technique, used industrially since the 

1970’s,(22, 23) has recently demonstrated its importance(24) where it was employed as a 

“click” method between small molecules and larger macromolecules such as 

polymers(25) and proteins.(26)  This approach has also been used to build complex 
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nanostructures such as dendrimers(27) and star polymers.(28)  The thiol-ene process is 

also attractive for making bulk films because it is insensitive to oxygen,(29) gives low 

shrinkage,(30) imparts high thermo-stability, and proceeds to relatively high conversion, 

all while crosslinking at a rate that is as rapid as traditional UV-crosslinking.(31-33)  The 

thioether bonds in the crosslinked network lend interesting mechanical properties and 

provide chemical insensitivity to the final products.(31)  Bulk thiol-ene crosslinking has 

been used for nanoimprint lithography,(34, 35) inks,(36) adhesives(37) and 

biomaterials.(16, 38)  While traditional UV photocured films have several examples in 

modern anti-fouling literature,(39, 40) at the time of publishing, there are no known thiol-

ene generated coatings that have been tested for marine anti-fouling performance.(41)   

Selection of appropriate components is key when constructing an advanced thiol-ene 

coating.  Traditionally, thiol-ene coatings are prepared by crosslinking multi-thiol and 

multi-ene mixtures, comprised of small molecules, or a combination of small molecules 

and macromolecules.(31)  Modern compositions utilizing the branching monomer 2,2-

bis(hydroxymethyl) propionate (Bis-MPA) can readily create highly branched and 

functionalized polyesters, such as dendritic Boltorn™ polyols, which have special 

rheological and mechanical properties.(32)  The Boltorn polyols, or dendronized versions 

of poly(bis-MPA), contain a large number of hydroxyl groups, which can be readily 

esterified to form either thiol-functionalized(42, 43) or alkene-functionalized(44) 

macromolecules.  Bis-MPA can be grown divergently up to several generations from a 

variety of cores,(45, 46) specialized molecules,(47) and even from polymer 

backbones,(47-50).  Functionalized Boltorn macromolecules have been used in targeted 

drug delivery,(51, 52) packaging of Paclitaxel(53, 54) and Doxorubicin,(55) and vesicle 

preparation.(49)  Boltorn polymers have been used extensively in thiol-ene based 
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coatings,(43, 56, 57) where they provide unique mechanical properties including narrow 

Tg‘s,(58) and thermal stability.(56)  Fluorinated Boltorn thiol-ene coatings have also been 

investigated,(59) in addition to coatings containing organoclay nanocomposites for 

improved strength.(44) 

Previous investigations by our laboratory into coatings comprised of hyperbranched 

fluoropolymers crosslinked with poly(ethylene glycol), (HBFP-PEG), led into 

examination of alternative  coatings prepared by thiol-ene crosslinking of a highly 

branched, alkenylated Boltorn H30 polymer with thiol-modified PEG, in the presence of a 

small molecule crosslinker to assist with mechanical properties.  The interest in 

duplicating the success of HBFP-PEG comes from the wide range of unique properties of 

the coatings, including anti-fouling properties,(3, 4, 60) uncommon mechanical 

behavior,(61, 62) and interesting host-guest interactions with small organic 

molecules.(63)  The HBFP-PEG mode of action for biofouling prevention is believed to 

be a combination of complex surface topographies, morphologies, and compositions over 

nano- and microscopic dimensions.  These coatings are not without fault, as they come 

from expensive reagents, are difficult to synthesize, lack optical translucence and take 

long periods of time to adequately crosslink.  Therefore, exploration into thiol-ene based 

alternatives was conducted to develop highly PEGylated coatings with affordable, 

commercially available precursors, that utilize “click” methods, which yield films of high 

degrees of optical transparency, and that can rapidly crosslink, without compromising the 

tensile strength and surface complexity observed in the HBFP-PEG films.  In this work, 

the Boltorn H30 polyol was per-enylated using simple esterification chemistry to yield 

Boltorn-ene, which was subsequently photocrosslinked in a combinatorial array with 
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varying wt% of 10 kDa 4-armed PEG tetrathiol (0, 5, 15 and 25 wt%) and varying eq 

SH/ene pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) small molecule 

crosslinker (0.00, 0.25, 0.50, 0.75 and 1.00 eq SH/ene).  Reaction completion was 

monitored via  IR spectroscopy. The film surface and bulk properties were characterized 

by Atomic Force Microscopy, Contact Angle, and tensile/ thermomechanical 

experiments.  Additionally, a comprehensive anti-fouling study was performed against 

Ulva algae on Boltorn-PEG films across a wide range of PEG wt% (0-35 wt%). 

 

Experimental 

Instrumentation.  Infrared spectra were obtained from a Perkin–Elmer Spectrum BX 

FTIR system as neat films on NaCl plates.  
1
H-NMR (300 MHz) and 

13
C-NMR (75 MHz) 

spectra were recorded on a Varian Mercury 300 MHz spectrometer using the solvent as 

an internal reference.  Tetrahydrofuran-based Gel Permeation Chromatography 

(GPC(THF)) was conducted on a Waters Chromatography, Inc. (Milford, MA) model 

1515, equipped with a Waters model 5414 differential refractometer  and a three-column 

set of Polymer Laboratories, Inc. (Amherst, MA) gel mixed-bed styrene-divinylbenzene 

columns (PLgel 5µm Mixed C, 500 Å, and 10
4
 Å, 300 x 7.5 mm columns).  The system 

was equilibrated at 35 ºC in THF, which served as the polymer solvent and eluent (flow 

rate set to 1.00 mL/min).  Polymer solutions were prepared at a known concentration (ca. 

3 mg/mL) and an injection volume of 200 µL was used.  Data collection and analysis was 

performed with Breeze software.  The differential refractometer was calibrated with 

standard polystyrene material (SRM 706 NIST), of known refractive index increment, 
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dn/dc, (0.184 mL/g).  The dn/dc values of the analyzed polymers were then determined 

from the differential refractometer response.   

 UV crosslinking was performed by passing pre-gel coated slides through a Fusion 

UV 300S conveyor system equipped with a H bulb (300 Watts/inch) at a speed of 1 

m/min for a single pass. 

Glass transition temperatures (Tg) were measured by Differential Scanning 

Calorimetry (DSC) on a Mettler-Toledo DSC822
e
 (Mettler-Toledo, Inc., Columbus, OH), 

with a heating rate of 10 ºC/min.  Measurements were analyzed using Mettler-Toledo Star 

SW 7.01 software.  The Tg was taken as the midpoint of the inflection tangent, upon the 

third heating scan.  Thermogravimetric analysis was performed under N2 atmosphere 

using a Mettler-Toledo model TGA/SDTA851
e
, with a heating rate of 5 ºC/min.  

Measurements were analyzed using Mettler-Toledo Star SW 7.01 software.   

In order to provide additional information into the actual thiol concentration 

remaining in the Boltorn-PEG films post-crosslinking, an experiment was devised 

wherein a 1.5 mM solution of the pro-fluorescent molecule, N-(7-dimethylamino-4-

methylcoumarin-3-yl) maleimide (DACM) in 10 mM pH 7.4 buffer with a minute amount 

of DMF, was pipetted onto the Boltorn-PEG films and allowed to sit for 2 h.  The films 

were then washed extensively in deionized water, dried, and then imaged using 

fluorescence microscopy and compared against controls.  Optical microscopy was 

performed on an Nikon Eclipse E200 microscope (Nikon Corp., Tokyo, Japan) under 

bright-field conditions, and images were collected with an Nikon D-500 digital camera at 

4x objective, 1/15 exposure time and ISO 1600.  To probe surface thiol concentration, a 

1.5 mM solution of the pro-fluorescent molecule, N-(7-dimethylamino-4-
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methylcoumarin-3-yl) maleimide (DACM) in 10 mM pH 7.0 buffer with a minute amount 

of DMF, was pipetted onto the Boltorn-PEG films and allowed to sit for 2 h.  The films 

were then washed extensively in deionized water, dried, imaged using fluorescence 

microscopy and compared against controls.  The fluorescence was generated using a 

Semrock Brightline Calcofluor White Filter cube (CFW-BP01-Clinical-NTE) with an 

adsorption of 350 nm and emission of 440 nm.  The fluorescence properties of DACM 

are Abs/Em 383/463 nm.  The control images were digitally subtracted from the 

fluorescent images using ImageJ software (NIST).   

Tapping-mode AFM measurements were conducted in air with a Nanoscope III 

BioScope system (Digital Instruments, Santa Barbara, CA) operated under ambient 

conditions with standard silicon tips [type, OTEPSA-70; length (L), 160 μm; normal 

spring constant, 50 N/m; resonant frequency, 246–282 kHz].  

Contact angles were measured as static contact angles using the sessile drop 

technique(64) with a Tantec CAM micro-contact-angle meter and the half-angle 

measuring method. Advancing and receding contact angles (θa and θr) of 18 MΩ·cm
-1

 

nanopure water were measured on the films by placing a 2 µL drop on the surface, then 

increasing or decreasing the drop size by 1 µL, respectively.  Dynamic contact angle was 

measured over three hours in a similar manner, however, in between data points the film 

was submerged in DI water and prior to measurement the surface was quickly dried with 

a Kimwipe.  The reported values are an average of five such measurements on different 

regions of the same sample. 
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Elemental analysis was performed by Midwest Microlabs.  A single run was 

performed on each sample for the elements C, H and S, and the results were contrasted 

against theoretical concentration values based on component weight percentages. 

Tensile tests were performed on the combinatorial Boltorn-PEG series based upon 

a method adapted from ASTM D882-95a and conducted using a Rheometrics Solids 

Analyzer, RSA III (TA Instruments, New Castle, DE), at 22 °C at a constant rate of strain 

of 0.01 s
-1

 (Hencky Model) with an initial grip separation of ~5 mm.  For each sample: 

(1) at least five dry specimens (dimensions: 10 mm x 5 mm x 0.5–1.0 mm) were tested; 

(2) three pre-swollen specimens (incubation time: >7 d) were tested in an RSA III 

Immersion Fixture filled with artificial seawater.  Only samples in the ―C‖ and ―2‖ series 

(C1, C2, C3, C4, C5 and A2, B2, C2, D2) were tested wet.  The tensile modulus (Edry or 

Ewet, MPa) was calculated as the slope of the initial linear (Hookean) portion of the stress-

strain curve, and the ultimate tensile strength (σUTS, MPa) and strain to failure (εf, %) 

were also recorded.   

Materials.  3-butenoic acid (97%), pentaerythritol tetrakis (3-mercaptopropionate) 

(PETMP, 97%), 1-hydroxycyclohexylphenyl ketone (99%), vinyltrimethoxysilane (vinyl-

TMS, 98%), N-(7-dimethylamino-4-methylcoumarin-3-yl) maleimide (98%), 1,4-dioxane 

(99%), dichloromethane (DCM) (99%), magnesium sulfate (anhydrous, ReagentPlus
®
, 

≥99.5%) and toluene (99.8% anhydrous) were obtained from Sigma-Aldrich, Inc. (St. 

Louis, MO) and were used as received.  4-armed PEG tetrathiol (10,000 Da) was obtained 

from Laysan Biochem.  Boltorn H30™ was supplied by Perstorp.  Chloroform-d (D, 

99.8%) and d-MeOH (D, 99.8%) were obtained from Cambridge Isotope Labs.  4-

(Dimethylamino)pyridinium 4-toluenesulfonate (DPTS) was prepared using standard 
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literature procedures.(65, 66)  Vinyl-trimethoxysilane-modified glass slides were 

prepared by submerging fresh microscope slides in a 5 v/v% solution of vinyl-TMS in 

anhydrous toluene for one hour, followed by copious rinsing with toluene.  Argon ultra-

high purity grade gas (99.999%) was used as received from Praxair (St. Louis, MO).  

Coralife
®
 Scientific Grade Marine Salt that was used for the preparation of artificial 

seawater was mixed according to directions from the manufacturer.   

Boltorn-ene (1).  30.001 g of Boltorn H30 (8.57 x 10
-3

 mol, 1.0 eq) was added to 

a 500 mL round bottom flask equipped with a Teflon-coated stir bar.  Toluene (100 mL) 

was added to the flask, which was fitted with a distillation apparatus, and contents were 

heated at reflux for an hour to ensure that the polymer was dissolved while residual water 

was removed via azeotropic distillation.  DPTS (6.665 g, 2.26 x 10
-2

 mol, 10 wt%) and 3-

butenoic acid (38.758 g, 4.50 x 10
-1

 mol, 1.6 eq COOH per Boltorn-OH) were added to 

the flask, which was then equipped with a condenser and allowed to heat at reflux at a 

high stir rate for 2 days.  After the reaction was complete and slightly cooled, 300 mL of 

water was added to the mixture and the product was extracted with DCM (3 x 150 mL).  

The organic layer was dried over anhydrous MgSO4 and then concentrated, yielding 44.1 

g of a transparent, thick oil (90% yield).  
1
H NMR spectroscopy showed quantitative 

conversion.  The oil was stored at 4 °C to prevent side-reaction of the alkene groups.  

Mn
NMR

 = 5700 Da, Mw
GPC

 = 4800 Da (polystyrene equivalent), Mn
GPC

 = 2800 Da 

(polystyrene equivalent), Mw/Mn = 1.69.  Tg = -37 °C.  Tdecomp: 427 °C, 94% mass loss.  IR 

= 2944, 2882, 1736, 1650, 1564, 1470, 1222, 1126, 1010, 814, 684, 570 cm
-1

.  
1
H-NMR 

(300 MHz, CDCl3, ppm):  6.0-5.8 (br, —CH=CH2, 5.2-5.1 (br, =CH2, 4.4-4.1 (br, 

peripheral —CH2-C(O)-), 3.8-3.5 (br, internal —CH2-O-C(O)), 3.2-3.1 (br, —CH2-
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CH=CH2, 1.3-1.1 (br, multiplet -CH3).  
13

C-NMR (75 MHz, CDCl3, ppm):  206.4, 

173.4, 172.2, 170.8, 139.6, 130.6, 128.7, 126.2, 118.5, 107.2, 65.5, 48.8, 46.8, 39.9, 38.7, 

25.7, 21.1, 17.7.  Elemental analysis: C, 57.21%.  H, 6.51%. 

Combinatorial Boltorn-PEG film production.  A combinatorial array of 

Boltorn-PEG networks were prepared at varying PEG wt% (0, 5, 15 and 25 w/w% of 

Boltorn-ene, corresponding to A, B, C and D, respectively) and PETMP concentrations 

(0, 0.25, 0.50, 0.75 and 1.0 eq SH/ene, corresponding to 1, 2, 3, 4 and 5, respectively).  

Therefore, as an example, film C3 refers to a crosslinked film with 15 wt% PEG and 0.50 

eq SH/ene PETMP concentration.  The “SH” refers to thiols in the PETMP crosslinker 

and not from the PEG-tetrathiol, which are negligible in comparison.  The photoinitiator 

1-hydroxycyclohexylphenyl ketone was added as 5 w/w% of total solids to all samples.   

Preparation of Boltorn-PEG film A1.  Boltorn-ene (0.869 g, 1.52 x 10
-4

 mol) was 

mixed with 1-hydroxycyclohexylphenyl ketone (0.0516 g, 2.53 x 10
-4

 mol) in a 

scintillation vial.  The vial was charged with 16.0 mL of 1,4-dioxane, and the contents 

were vortexed until homogeneous.  The contents were then syringed (1 mL/slide) onto 

vinyl-TMS-modified glass slides and the solvent was allowed to evaporate over a 20 min 

period, producing a thick pre-gel on the surface of the glass slide.  The coated slides were 

then passed through a Fusion UV 300S conveyor system equipped with an H bulb (600 

Watts) at a speed of 1 m/min for a single pass.  Tg = -17 °C.  Tdecomp: 424 °C, 98% mass 

loss.  IR = 3492, 3082, 2944, 1736, 1644, 1472, 1244, 1130, 1010, 872, 762, 614 cm
-1

.  

Elemental analysis: C, 54.44%.  H, 6.65%.  S, 0.00%.  Contact angle:  Advancing  (θa) = 

60 ± 4°, Receding (θr) = 49 ± 1°, hysteresis = 11°. 
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Preparation of Boltorn-PEG film A2.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (1.749 g, 3.07 x 10
-4

 mol), PETMP (0.271 g, 5.55 x 10
-4

 

mol) and 1-hydroxycyclohexylphenyl ketone (0.104 g, 5.08 x 10
-4

 mol) mixed in a 

scintillation vial, dissolved in 16.0 mL of 1,4-dioxane.  Tg = -14 °C.  Tdecomp: 419 °C, 97% 

mass loss.  IR = 3492, 3082, 2944, 1736, 1644, 1472, 1244, 1130, 1010, 872, 762, 614 

cm
-1

.  Elemental analysis: C, 55.75%.  H, 6.48%.  S, 3.80%.  Contact angle:  Advancing  

(θa) = 74 ± 1°, Receding (θr) = 60 ± 1°, hysteresis = 14°. 

Preparation of Boltorn-PEG film A3.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.870 g, 1.53 x 10
-4

 mol), PETMP (0.279 g, 5.71 x 10
-4

 

mol) and 1-hydroxycyclohexylphenyl ketone (0.0589 g, 2.88 x 10
-4

 mol) mixed in a 

scintillation vial, dissolved in 16.0 mL of 1,4-dioxane.  Tg = 15 °C.  Tdecomp: 423 °C, 96% 

mass loss.  IR = 3492, 3082, 2944, 2856, 1736, 1644, 1472, 1244, 1130, 1010, 872, 762, 

614 cm
-1

.  Elemental analysis: C, 53.81%.  H, 6.46%.  S, 6.39%.  Contact angle:  

Advancing  (θa) = 77 ± 2°, Receding (θr) = 60 ± 2°, hysteresis = 17°. 

Preparation of Boltorn-PEG film A4.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.865 g, 1.52 x 10
-4

 mol), PETMP (0.425 g, 8.69 x 10
-4

 

mol) and 1-hydroxycyclohexylphenyl ketone (0.0662 g, 3.24 x 10
-4

 mol) mixed in a 

scintillation vial, dissolved in 16.0 mL of 1,4-dioxane.  Tg = 18 °C.  Tdecomp: 413 °C, 96% 

mass loss.  IR = 3492, 2944, 2856, 2754, 1736, 1472, 1244, 1130, 1010, 872, 762, 614 

cm
-1

.  Elemental analysis: C, 52.70%.  H, 6.45%.  S, 8.42%.  Contact angle:  Advancing  

(θa) = 79 ± 2°, Receding (θr) = 64 ± 2°, hysteresis = 15°. 

Preparation of Boltorn-PEG film A5.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.869 g, 1.52 x 10
-4

 mol), PETMP (0.559 g, 1.14 x 10
-3
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mol) and 1-hydroxycyclohexylphenyl ketone (0.0713 g, 3.49 x 10
-4

 mol) mixed in a 

scintillation vial, dissolved in 16.0 mL of 1,4-dioxane.  Tg = 16 °C.  Tdecomp: 428 °C, 94% 

mass loss.  IR = 3492, 2944, 2856, 2754, 2692, 1736, 1472, 1244, 1130, 1010, 872, 762, 

614 cm
-1

.  Elemental analysis: C, 51.16%.  H, 6.33%.  S, 9.91%.  Contact angle:  

Advancing  (θa) = 65 ± 2°, Receding (θr) = 51 ± 1°, hysteresis = 14°. 

Preparation of Boltorn-PEG film B1.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.877 g, 1.54 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.0434 g, 4.34 x 10
-6

 mol) and 1-hydroxycyclohexylphenyl ketone (0.0501 g, 2.45 x 10
-4

 

mol) mixed in a scintillation vial, dissolved in 16.0 mL of 1,4-dioxane.  Tg = -21 °C.  

Tdecomp: 412 °C, 98% mass loss.  IR = 3488, 3084, 2930, 1740, 1644, 1472, 1234, 1138, 

1011, 872, 762, 612 cm
-1

.  Elemental analysis: C, 57.63%.  H, 6.82%.  S, 0.19%.  Contact 

angle:  Advancing  (θa) = 69 ± 3°, Receding (θr) = 50 ± 2°, hysteresis = 19°. 

Preparation of Boltorn-PEG film B2.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (1.736 g, 3.05 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.0879 g, 8.79 x 10
-6

 mol), PETMP (0.277 g, 5.67 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.108 g, 5.27 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = -15 °C.  Tdecomp: 403 °C, 97% mass loss.  IR = 

3488, 3084, 2930, 1740, 1644, 1472, 1234, 1138, 1011, 872, 762, 612 cm
-1

.  Elemental 

analysis: C, 55.36%.  H, 6.64%.  S, 4.08%.  Contact angle:  Advancing  (θa) = 71 ± 1°, 

Receding (θr) = 49 ± 6°, hysteresis = 21°. 

Preparation of Boltorn-PEG film B3.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.864 g, 1.52 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.0445 g, 4.45 x 10
-6

 mol), PETMP (0.283 g, 5.86 x 10
-4

 mol) and 1-
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hydroxycyclohexylphenyl ketone (0.0596 g, 2.92 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = 10 °C.  Tdecomp: 384 °C, 96% mass loss.  IR = 

3488, 3084, 2930, 1740, 1644, 1472, 1234, 1138, 1011, 872, 762, 612 cm
-1

.  Elemental 

analysis: C, 53.72%.  H, 6.60%.  S, 6.94%.  Contact angle:  Advancing  (θa) = 73 ± 2°, 

Receding (θr) = 52 ± 5°, hysteresis = 21°. 

Preparation of Boltorn-PEG film B4.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.869 g, 1.53 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.0433 g, 4.33 x 10
-6

 mol), PETMP (0.415 g, 8.49 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0682 g, 3.34 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = 21 °C.  Tdecomp: 384 °C, 97% mass loss.  IR = 

3488, 2930, 2852, 2754, 2696, 1740, 1472, 1234, 1138, 1011, 872, 762, 612 cm
-1

.  

Elemental analysis: C, 52.84%.  H, 6.51%.  S, 8.64%.  Contact angle:  Advancing  (θa) = 

80 ± 2°, Receding (θr) = 63 ± 4°, hysteresis = 17°. 

Preparation of Boltorn-PEG film B5.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.870 g, 1.53 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.0444 g, 4.44 x 10
-6

 mol), PETMP (0.564 g, 1.15 x 10
-3

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0757 g, 3.71 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = 23 °C.  Tdecomp: 381 °C, 95% mass loss.  IR = 

3488, 2930, 2852, 2754, 2696, 1740, 1472, 1234, 1138, 1011, 872, 762, 612 cm
-1

.  

Elemental analysis: C, 51.79%.  H, 6.31%.  S, 10.05%.  Contact angle:  Advancing  (θa) = 

70 ± 1°, Receding (θr) = 52 ± 2°, hysteresis = 18°. 

Preparation of Boltorn-PEG film C1.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (3.486 g, 6.12 x 10
-4

 mol), with 4-armed PEG tetrathiol 
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(0.525 g, 5.25 x 10
-5

 mol) and 1-hydroxycyclohexylphenyl ketone (0.203 g, 9.95 x 10
-3

 

mol) mixed in a scintillation vial, dissolved in 24.0 mL of 1,4-dioxane.  Tg = -29 °C.  

Tdecomp: 397 °C, 98% mass loss.  IR = 3478, 3082, 2938, 1738, 1642, 1466, 1246, 1136, 

1008, 872, 764, 614 cm
-1

.  Elemental analysis: C, 56.98%.  H, 6.86%.  S, 0.36%.  Contact 

angle:  Advancing  (θa) = 58 ± 3°, Receding (θr) = 41 ± 3°, hysteresis = 17°. 

Preparation of Boltorn-PEG film C2.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (1.747 g, 3.07 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.260 g, 2.60 x 10
-5

 mol), PETMP (0.274 g, 5.60 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.116 g, 5.66 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 24.0 mL of 1,4-dioxane.  Tg = -16 °C.  Tdecomp: 388 °C, 98% mass loss.  IR = 

3478, 3082, 2938, 1738, 1642, 1466, 1246, 1136, 1008, 872, 764, 614 cm
-1

.  Elemental 

analysis: C, 55.26%.  H, 6.77%.  S, 3.47%.  Contact angle:  Advancing  (θa) = 76 ± 2°, 

Receding (θr) = 59 ± 3°, hysteresis = 15°. 

Preparation of Boltorn-PEG film C3.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (3.494 g, 6.13 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.526 g, 5.23 x 10
-5

 mol), PETMP (1.110 g, 2.27 x 10
-3

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.245 g, 1.20 x 10
-3

 mol) mixed in a scintillation vial, 

dissolved in 24.0 mL of 1,4-dioxane.  Tg = -4 °C.  Tdecomp: 378 °C, 97% mass loss.  IR = 

3478, 3082, 2938, 1738, 1642, 1466, 1246, 1136, 1008, 872, 764, 614 cm
-1

.  Elemental 

analysis: C, 53.68%.  H, 6.39%.  S, 6.04%.  Contact angle:  Advancing  (θa) = 86 ± 3°, 

Receding (θr) = 69 ± 3°, hysteresis = 17°. 

Preparation of Boltorn-PEG film C4.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (3.486 g, 6.11 x 10
-4

 mol), with 4-armed PEG tetrathiol 
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(0.525 g, 5.25 x 10
-5

 mol), PETMP (1.669 g, 3.42 x 10
-3

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.281 g, 1.38 x 10
-3

 mol) mixed in a scintillation vial, 

dissolved in 24.0 mL of 1,4-dioxane.  Tg = -10 °C.  Tdecomp: 376 °C, 94% mass loss.  IR = 

3478, 2938, 2858, 1752, 2692, 1738, 1466, 1246, 1136, 1008, 872, 764, 614 cm
-1

.  

Elemental analysis: C, 52.62%.  H, 6.59%.  S, 8.12%.  Contact angle:  Advancing  (θa) = 

76 ± 2°, Receding (θr) = 61 ± 2°, hysteresis = 15°. 

Preparation of Boltorn-PEG film C5.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (3.473 g, 6.09 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.528 g, 5.28 x 10
-5

 mol), PETMP (2.223 g, 4.55 x 10
-3

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.308 g, 1.51 x 10
-3

 mol) mixed in a scintillation vial, 

dissolved in 24.0 mL of 1,4-dioxane.  Tg = -10 °C.  Tdecomp: 373 °C, 92% mass loss.  IR = 

3478, 2938, 2858, 1752, 2692, 1738, 1466, 1246, 1136, 1008, 872, 764, 614 cm
-1

.  

Elemental analysis: C, 51.44%.  H, 6.44%.  S, 10.51%.  Contact angle:  Advancing  (θa) = 

19 ± 3°, Receding (θr) = 4 ± 2°, hysteresis = 15°. 

Preparation of Boltorn-PEG film D1.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.877 g, 1.54 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.215 g, 2.15 x 10
-5

 mol) and 1-hydroxycyclohexylphenyl ketone (0.0526 g, 2.58 x 10
-4

 

mol) mixed in a scintillation vial, dissolved in 16.0 mL of 1,4-dioxane.  Tg = -23 °C.  

Tdecomp: 386 °C, 97% mass loss.  IR = 3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 

1014, 872, 762, 614 cm
-1

.  Elemental analysis: C, 56.61%.  H, 7.00%.  S, 0.49%.  Contact 

angle:  Advancing  (θa) = 80 ± 3°, Receding (θr) = 62 ± 1°, hysteresis = 18°. 

Preparation of Boltorn-PEG film D2.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (1.744 g, 2.52 x 10
-4

 mol), with 4-armed PEG tetrathiol 
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(0.436 g, 4.36 x 10
-5

 mol), PETMP (0.274 g, 5.62 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.120 g, 5.89 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = -22 °C.  Tdecomp: 373 °C, 97% mass loss.  IR = 

3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  Elemental 

analysis: C, 54.54%.  H, 6.81%.  S, 3.50%.  Contact angle:  Advancing  (θa) = 72 ± 3°, 

Receding (θr) = 52 ± 2°, hysteresis = 20°. 

Preparation of Boltorn-PEG film D3.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.862 g, 1.51 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.218 g, 2.18 x 10
-5

 mol), PETMP (0.282 g, 5.77 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0636 g, 3.11 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = -15 °C.  Tdecomp: 357 °C, 96% mass loss.  IR = 

3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  Elemental 

analysis: C, 53.47%.  H, 6.62%.  S, 5.84%.  Contact angle:  Advancing  (θa) = 83 ± 2°, 

Receding (θr) = 65 ± 3°, hysteresis = 18°. 

Preparation of Boltorn-PEG film D4.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.875 g, 1.53 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.215 g, 2.15 x 10
-5

 mol), PETMP (0.417 g, 8.53 x 10
-3

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0743 g, 3.64 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = -9 °C.  Tdecomp: 367 °C, 97% mass loss.  IR = 

3492, 2926, 2860, 2752, 2696, 1738, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  

Elemental analysis: C, 52.66%.  H, 6.45%.  S, 7.77%.  Contact angle:  Advancing  (θa) = 

74 ± 3°, Receding (θr) = 59 ± 1°, hysteresis = 15°. 
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Preparation of Boltorn-PEG film D5.  The film was prepared in a similar manner 

as was film A1, with Boltorn-ene (0.876 g, 1.54 x 10
-4

 mol), with 4-armed PEG tetrathiol 

(0.219 g, 2.19 x 10
-5

 mol), PETMP (0.557 g, 1.14 x 10
-3

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0822 g, 4.02 x 10
-3

 mol) mixed in a scintillation vial, 

dissolved in 16.0 mL of 1,4-dioxane.  Tg = -8 °C.  Tdecomp: 362 °C, 96% mass loss.  IR = 

3492, 2926, 2860, 2752, 2696, 1738, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  

Elemental analysis: C, 51.50%.  H, 6.39%.  S, 13.44%.  Contact angle:  Advancing  (θa) = 

10 ± 1°, Receding (θr) = 3 ± 2°, hysteresis = 7°. 

Anti-fouling Boltorn-PEG film production.  A series of eight films were 

prepared for anti-fouling tests.  The synthesis is similar to that of the previous Boltorn-

PEG films, but the films were prepared at a constant 0.25 eq SH/ene PETMP 

concentration at varying PEG wt% (0, 5, 10, 15, 20, 25, 30 and 35 wt%), producing films 

AF0, AF5, AF10, AF15, AF20, AF25, AF30 and AF35, respectively.   

Preparation of Boltorn-PEG film AF0.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.208 g, 2.12 x 10
-4

 mol), PETMP (0.189 g, 

3.87 x 10
-4

 mol) and 1-hydroxycyclohexylphenyl ketone (0.0652 g, 3.19 x 10
-4

 mol) 

mixed in a scintillation vial, dissolved in 12.0 mL of 1,4-dioxane.  Tg = -14 °C.  Tdecomp: 

419 °C, 97% mass loss.  IR = 3492, 3082, 2944, 1736, 1644, 1472, 1244, 1130, 1010, 

872, 762, 614 cm
-1

.  Elemental analysis: C, 55.75%.  H, 6.48%.  S, 3.80%.  Contact 

angle:  Advancing  (θa) = 74 ± 4°, Receding (θr) = 60 ± 1°, hysteresis = 14°. 

Preparation of Boltorn-PEG film AF5.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.208 g, 2.12 x 10
-4

 mol), with 4-armed PEG 

tetrathiol (0.0610 g, 6.10 x 10
-6

 mol), PETMP (0.190 g, 3.89 x 10
-4

 mol) and 1-



43 

hydroxycyclohexylphenyl ketone (0.0721 g, 3.53 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -15 °C.  Tdecomp: 403 °C, 97% mass loss.  IR = 

3488, 3084, 2930, 1740, 1644, 1472, 1234, 1138, 1011, 872, 762, 612 cm
-1

.  Elemental 

analysis: C, 55.36%.  H, 6.64%.  S, 4.08%.  Contact angle:  Advancing  (θa) = 71 ± 1°, 

Receding (θr) = 49 ± 6°, hysteresis = 22°. 

Preparation of Boltorn-PEG film AF10.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.207 g, 2.12 x 10
-4

 mol), with 4-armed PEG 

tetrathiol (0.121 g, 1.22 x 10
-6

 mol), PETMP (0.189 g, 3.86 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0727 g, 3.56 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -15 °C.  Tdecomp: 383 °C, 98% mass loss.  IR = 

3488, 3084, 2930, 1740, 1644, 1472, 1234, 1138, 1011, 872, 762, 612 cm
-1

.  Elemental 

analysis: C, 54.44%.  H, 6.71%.  S, 4.25%.  Contact angle:  Advancing  (θa) = 64 ± 2°, 

Receding (θr) = 40 ± 2°, hysteresis = 24°. 

Preparation of Boltorn-PEG film AF15.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.211 g, 2.13 x 10
-4

 mol), with 4-armed PEG 

tetrathiol (0.181 g, 1.81 x 10
-5

 mol), PETMP (0.198 g, 4.05 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0797 g, 3.90 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -16 °C.  Tdecomp: 388 °C, 98% mass loss.  IR = 

3478, 3082, 2938, 1738, 1642, 1466, 1246, 1136, 1008, 872, 764, 614 cm
-1

.  Elemental 

analysis: C, 55.26%.  H, 6.77%.  S, 3.47%.  Contact angle:  Advancing  (θa) = 76 ± 2°, 

Receding (θr) = 59 ± 3°, hysteresis = 15°. 

Preparation of Boltorn-PEG film AF20.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.199 g, 3.49 x 10
-4

 mol), with 4-armed PEG 
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tetrathiol (0.302 g, 3.02 x 10
-5

 mol), PETMP (0.197 g, 4.03 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0822 g, 4.02 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -17 °C.  Tdecomp: 400 °C, 99% mass loss.  IR = 

3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  Elemental 

analysis: C, 54.51%.  H, 6.79%.  S, 3.51%.  Contact angle:  Advancing  (θa) = 72 ± 2°, 

Receding (θr) = 46 ± 6°, hysteresis = 26°. 

Preparation of Boltorn-PEG film AF25.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.216 g, 2.13 x 10
-4

 mol), with 4-armed PEG 

tetrathiol (0.302 g, 3.02 x 10
-5

 mol), PETMP (0.210 g, 4.30 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0822 g, 4.02 x 10
-3

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -22 °C.  Tdecomp: 373 °C, 97% mass loss.  IR = 

3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  Elemental 

analysis: C, 54.54%.  H, 6.81%.  S, 3.50%.  Contact angle:  Advancing  (θa) = 72 ± 3°, 

Receding (θr) = 52 ± 2°, hysteresis = 20°. 

Preparation of Boltorn-PEG film AF30.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.198 g, 2.10 x 10
-4

 mol), with 4-armed PEG 

tetrathiol (0.363 g, 3.63 x 10
-5

 mol), PETMP (0.187 g, 3.83 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0874 g, 4.28 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -21 °C.  Tdecomp: 379 °C, 97% mass loss.  IR = 

3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  Elemental 

analysis: C, 53.44%.  H, 6.78%.  S, 3.35%.  Contact angle:  Advancing  (θa) = 59 ± 2°, 

Receding (θr) = 39 ± 2°, hysteresis = 20°. 
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Preparation of Boltorn-PEG film AF35.  The film was prepared in a similar 

manner as was film A1, with Boltorn-ene (1.203 g, 2.11 x 10
-4

 mol), with 4-armed PEG 

tetrathiol (0.423 g, 4.23 x 10
-5

 mol), PETMP (0.187 g, 3.83 x 10
-4

 mol) and 1-

hydroxycyclohexylphenyl ketone (0.0902 g, 4.42 x 10
-4

 mol) mixed in a scintillation vial, 

dissolved in 12.0 mL of 1,4-dioxane.  Tg = -21 °C.  Tdecomp: 390 °C, 98% mass loss.  IR = 

3492, 3082, 2926, 1738, 1642, 1472, 1238, 1132, 1014, 872, 762, 614 cm
-1

.  Elemental 

analysis: C, 55.11%.  H, 6.76%.  S, 3.21%.  Contact angle:  Advancing  (θa) = 37 ± 1°, 

Receding (θr) = 24 ± 2°, hysteresis = 13°. 

Biofouling assays 

Leaching:  Coatings were supplied in nanopure deionised water from which they 

were transferred to seawater 24 hours before the start of the experiment. The slides 

remained wet and fully hydrated throughout the process. 

Settlement of spores:  Reproductive tissue from Ulva linza was collected from 

Llantwit Major, Wales (51840’N; 3848’W). Zoospores released from the seaweed were 

diluted with seawater to produce a zoospore suspension of 1.5  10
6
 zoospores mL

-1
 

using the method of Callow, et al.(67)  A suspension of zoospores (10 mL containing 1.0 

x10
6
 spores mL

-1
) was added to individual compartments of quadriperm dishes (Greiner) 

each containing a test surface.  After 1 h in darkness at ca. 20 
o
C, the slides were gently 

washed in seawater to remove unsettled (i.e. motile) zoospores. Slides were fixed using 

2.5% glutaraldehyde in seawater. The density of zoospores attached to the surface was 

counted on each of 3 replicates. Counts were made for 30 fields of view (each 0.17 mm
2
), 

1 mm apart across the central region of each slide, using a Zeiss epifluorescence 

microscope in conjunction with image analysis software (Imaging Associates Ltd.).(68)   
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Growth of sporelings:  Zoospores were settled on test samples and washed as 

described above.  The spores germinated and developed into sporelings (young plants) 

over 10 days.  Cultures were maintained in quadriperm dishes containing 10 mL of 

supplemented seawater medium that was changed every 2 days(69) and housed in an 

illuminated incubator (75 μmol m
-2

 s
-1

 incident irradiation). 

Sporeling biomass was determined in situ by measuring the fluorescence of the 

chlorophyll contained within the cells in a Tecan fluorescence plate reader (excitation = 

430 nm, emission = 670 nm).(70)  The biomass was quantified in terms of relative 

fluorescence units (RFU). The RFU value for each slide was the mean of 70 point 

fluorescence readings. The data are expressed as the mean RFU of 6 replicate slides; bars 

show SEM (standard error of the mean).  

Attachment strength of sporelings:  Strength of attachment of sporelings was 

assessed using an automated water jet which traversed the central region of each 

slide.(71)  Individual slides of each treatment were exposed to a single impact pressure.  

The range of pressures used were selected to span from low to high biomass removal.  

The biomass remaining in the sprayed area was assessed using a fluorescence plate reader 

(as above).  Percentage removal of biomass was calculated from readings taken before 

and after exposure to the water jet.  The critical impact pressure to remove 50% of the 

biomass was determined from plots of percentage removal vs water impact pressure.(70)  

A polydimethylsiloxane elastomer (PDMSe; Silastic® T2, Dow Corning, provided by Dr 

AB Brennan, University of Florida) was included in the assays as a standard fouling-

release coating.(70) 
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Results and discussion 

The highly alkenylated Boltorn-ene macromolecule was prepared in a manner 

similar to those previously published, wherein the dendritic polyester Boltorn H30 was 

esterified with 3-butenoic acid using a catalytic amount of DPTS (Scheme 1).  Water was  

Scheme 2-1.  Esterification of Boltorn H30 to produce Boltorn-ene. 

 

carefully removed from the carefully removed from the Boltorn H30 prior to reaction via 

distillation, and the mixture was allowed to reflux in anhydrous toluene for two days, 
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producing Boltorn-ene, 1, as a thick clear oil in high yield and quantitative conversion.  

1
H-NMR spectroscopy shows a product that appears to be in high purity (Figure 2-1).   

Figure 2-1.  
1
H-NMR spectroscopy images of Boltorn H30 (d-MeOH) and esterified 

Boltorn-ene (CDCl3). 
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Figure 2-2.  
13

C NMR spectroscopy of Boltorn H30, Boltorn-ene, and 4-armed PEG 

tetrathiol. 
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Figure 2-3.  GPC chromatogram of Boltorn-ene (THF). 

 

Additional information, such as 
13

C-NMR spectrum and GPC can be viewed in Figures 2-

2 and 2-3, respectively.  The oil was readily prepared and stored in plastic syringes inside 

a 4 °C refrigerator in order to minimize side reactions between the alkenes and 

atmospheric oxygen.  Due to the low Tg of the polymer, the syringes acted as an ideal 

dispensing tool for weighing Boltorn-ene in formulations.   

A combinatorial approach was used to ascertain to what extent the PEG and the 

PETMP contributed to the thermomechanical, tensile, and surface energy properties of 

crosslinked Boltorn-PEG films.  A 5 x 4 grid was prepared at constant Boltorn-ene 
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weight, with five thiol concentrations (0, 0.25, 0.50, 0.75 and 1.0 eq SH of the PETMP 

crosslinker per eq alkene of Boltorn-ene molecule, corresponding to 1, 2, 3, 4 and 5, 

respectively, against four PEG weight percentages (0, 5, 15, and 25 wt % of the Boltorn-

ene weight, corresponding to A, B, C and D, respectively).  For example, C3 would refer 

to a Boltorn-PEG coating containing 15 wt% PEG and 0.50 eq SH/ene PETMP (Scheme  

Scheme 2-2.  Preparation of Boltorn-PEG films at varying PEG and PETMP 

concentrations. 

 

2-2).  The photoinitiator, 1-hydroxycyclohexylphenyl ketone, was added at 5 wt% (w/w% 

of total solids), and the mixtures dissolved in 1,4-dioxane to ensure complete 

homogeneity during mixing and pre-gel dispersion.  The pre-gel solutions appear to be 
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shelf-stable at room temperature for several hours with no signs of premature crosslinking 

or gelation.  The pre-gel solutions were syringed onto freshly prepared vinyl-

trimethoxysilyl-modified glass slides to provide covalent crosslinks between the glass and 

the Boltorn-PEG film, whereby free thiols incorporated in the network react with the 

surface vinyl silane groups.  After the solutions were cast on the modified glass slides, a 

20 min time period allowed for excess solvent to evaporate leaving a thickened optically 

transparent pre-gel mixture.  The coated slides were then passed through a Fusion UV 

300S conveyor system equipped with a H bulb (600 Watts) at a speed of 1 m/min for a 

single pass, producing transparent, covalently bound coated glass of varying thicknesses 

between 100 and 500 µm.  The coated slides were then checked closely for defects, such 

as incomplete slide coverage, cracking or uneven thickness, prior to further analysis.   

The films were analyzed using infrared spectroscopy to determine relative 

amounts of thiol and alkene remained in the final crosslinked product.  This was 

accomplished by crosslinking a drop of pre-gel solution on a NaCl IR plate, followed by 

collection of the IR spectrum.  An example of the relevant IR regions can be seen in  
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Figure 2-4.  Example IR spectroscopy of Boltorn-PEG0 films (“A series”) at varying 

PETMP concentration.  The specific bands highlighted are the S-H stretch at ca. 2500 cm
-

1
 and the C=C stretch at ca. 1645 cm

-1
.   

 

Figure 2-5.  Example of IR spectroscopy results for Boltorn-PEG5 films (“B series”) at 

varying PETMP concentrations.  
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Figure 2-6.  Example IR spectroscopy of Boltorn-PEG15 films (“C series”) at varying 

PETMP concentration.  The specific bands highlighted are the S-H stretch at ca. 2500 cm
-

1
 and the C=C stretch at ca. 1645 cm

-1
. 

 

Figure 2-7.  Example IR spectroscopy of Boltorn-PEG25 films (“D series”) at varying 

PETMP concentration.  The specific bands highlighted are the S-H stretch at ca. 2500 cm
-

1
 and the C=C stretch at ca. 1645 cm

-1
. 
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Figure 2-5, which shows the “B series‖ as a typical example of the Boltorn-PEG films.  

The specific bands highlighted are the S-H stretch at ca. 2570 cm
-1

 and the C=C stretch at 

ca. 1645 cm
-1

, values which were normalized against the C=O stretch for the constant-

concentration Boltorn component.  It should be noted that the C-S stretch and S-S stretch 

are not easily observed and therefore cannot serve as an adequate measure for the 

formation of films.  As PETMP concentration was increased the band in the IR spectra 

corresponding to the S-H bond intensified providing evidence of excess or unconsumed 

thiol groups in the network while the stretch associated with the C=C bond decreased 

rapidly as the groups were consumed.  There appeared to be an equivalency at 

approximately 0.75 eq SH/ene PETMP concentration and an overabundance of thiol at 

1.0 eq SH/ene.  This deviation, which would predict an equivalency at 1.0 eq SH/ene, can 

likely be attributed to restricted mobility in the crosslinked films, where free thiol cannot 

readily access the small amount of free remaining alkene in the highly crosslinked 

network.  Varying PEG wt% does not appear to affect the extent of crosslinking.  This is 

due to PEG being relatively dilute with respect to the total thiol concentration across all 

of the mixtures (4 SH/10,000 Da molecule) compared to PETMP (4 SH/488 Da  



56 

Figure 2-8.  Normalized peak area of S-H and C=C stretches across the combinatorial 

series. 

 

molecule), which can be quantified and evaluated by comparing peak areas (Figure 2-8).  

It was observed that alkene consumption is relatively similar for all film compositions 

until 0.75 eq SH/ene PETMP.   At this ratio, films with no PEG (―A series‖) appear to 

reach reaction completion with approximately 10% of the free alkenes remaining in the 

bulk.  An excess of thiol remains at 1.0 eq SH/ene PETMP, which could either be in the 

form of partially reacted or non-reacted PETMP trapped in the bulk; whichever the form, 

an odor of PETMP can be noted from the films at this concentration. 
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 The mobility and degradability of the films were assessed using thermal analysis 

to determine how the components of the film can affect mechanical properties.  The Tg’s 

of the polymer films increase by approximately 20 °C as the PETMP concentration is 

increased from 0.0 to 1.0 eq SH/ene, regardless of PEG wt%, due to higher degrees of 

crosslinking achieved (Table 2-1, Figures 2-9 and 2-10).  However, there is an inverse  

Figure 2-9.  DSC of the Boltorn-PEG components. 
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Figure 2-10.  DSC plots for Boltorn-PEG films. 

 

relationship with PEG wt%, where the film’s Tg decreases by as much as 30 °C 

(depending on PETMP concentration) as PEG content  is increased, .  The PEG Tm peak 

(Figure 2-9), was not observed in any of the Boltorn-PEG film DSC plots, potentially due 

to the restricted mobility of crosslinked or partially crosslinked PEG prohibiting 

crystallization.  TGA analysis of the films (Table 2-1 and Figure 2-11) shows decreases in 

peak degradation with increasing PEG wt% and/or PETMP concentration, a logical 

finding considering both components have slightly lower peak degradation temperatures 

than that of the parent Boltorn-ene polymer (Figure 2-12).   
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Figure 2-11.  TGA mass loss and derivative mass loss for Boltorn-PEG films at varying 

PEG wt% and PETMP concentration. 

 

Figure 2-12.  TGA mass loss and derivative mass loss for Boltorn-PEG components. 
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The surface features of the films were examined using contact angle analysis and 

AFM.  There are a few trends that can be detected from the static initial contact angles 

(Table 2-1) and dynamic contact angles which were measured over a 3 h time period.  

Interestingly, regardless of PEG wt%, both advancing and receding contact angle appear 

to increase until 0.50-0.75 eq SH/ene, followed by a decline at 1.0 eq SH/ene.  This 

increase can be 



61 

Table 2-1.  Summary of the thermomechanical properties, elemental analysis and contact angle for the Boltorn-PEG films and 

components.  Data for the antifouling (AF) series can be found in the following table, Table 2-2. 
Sample PEG 

(wt%) 
Thiol 

content 
(eq SH/ene) 

   Thermomechanical Data Elemental Analysis Contact angle 

Tg,  
(°C) 

Tdecomp 
(°C) 

Carbon 

(%) 

Hydrogen 
(%) 

Sulfur 
(%) 

Advancing  

(θa, °) 

Receding  

(θr °) 

Hysteresis 

(θa - θr) 

Boltorn-ene 

PEG-SH4 

PETMP 

- 

- 

- 

- 

- 

- 

-37 

n/a (Tm = 54) 

n/a 

427 

396 

373 

57.21 

52.19 

41.88 

6.51 

8.78 

5.77 

- 

2.15 

26.34 

- 

- 

- 

- 

- 

- 

- 

- 

- 

A1 

A2 

A3 

A4 

A5 

0 

0 

0 

0 

0 

0 

0.25 

0.50 

0.75 

1.00 

-17 

-14 

15 

18 

16 

424 

419 

423 

413 

428 

54.44 

55.75 

53.81 

52.70 

51.16 

6.65 

6.48 

6.46 

6.45 

6.33 

0.00 

3.80 

6.39 

8.42 

9.91 

60 ± 4 

74 ± 4 

77 ± 2 

79 ± 2 

65 ± 2 

49 ± 1 

60 ± 1 

60 ± 2 

64 ± 2 

51 ± 1 

11 

14 

17 

15 

14 

B1 

B2 

B3 

B4 

B5 

5 

5 

5 

5 

5 

0 

0.25 

0.50 

0.75 

1.00 

-21 

-15 

10 

21 

23 

412 

403 

384 

384 

381 

57.63 

55.36 

53.72 

52.84 

51.79 

6.82 

6.64 

6.60 

6.51 

6.31 

0.19 

4.08 

6.94 

8.64 

10.05 

69 ± 3 

71 ± 1 

73 ± 2 

80 ± 2 

70 ± 1 

50 ± 2 

49 ± 6 

52 ± 5 

63 ± 4 

52 ± 2 

19 

21 

21 

17 

18 

C1 

C2 

C3 

C4 

C5 

15 

15 

15 

15 

15 

0 

0.25 

0.50 

0.75 

1.00 

-29 

-16 

-4 

-10 

-10 

397 

388 

378 

376 

373 

56.98 

55.26 

53.68 

52.62 

51.84 

6.86 

6.77 

6.39 

6.59 

6.44 

0.36 

3.47 

6.04 

8.12 

10.51 

58 ± 3 

76 ± 2 

86 ± 3 

76 ± 2 

19 ± 3 

41 ± 3 

59 ± 3 

69 ± 3 

61 ± 2 

4 ± 2 

17 

15 

17 

15 

15 

D1 

D2 

D3 

D4 

D5 

25 

25 

25 

25 

25 

0 

0.25 

0.50 

0.75 

1.00 

-23 

-22 

-15 

-9 

-8 

386 

373 

357 

367 

362 

56.61 

54.54 

53.47 

52.66 

51.00 

7.00 

6.81 

6.62 

6.45 

6.39 

0.49 

3.50 

5.84 

7.77 

13.44 

80 ± 3 

72 ± 3 

83 ± 2 

74 ± 3 

10 ± 1 

62 ± 1 

52 ± 2 

65 ± 3 

59 ± 1 

3 ± 2 

18 

20 

18 

15 

7 
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Table 2-2.  Summation of thermomechanical properties, elemental analysis and contact angle for the Boltorn-PEG films and 

components. 

Sample PEG 

(wt%) 

Thiol 
content 

(eq SH/ene) 

   Thermomechanical Data Elemental Analysis Contact angle 

Tg,  

(°C) 

Tdecomp 

(°C) 

Carbon 

(%) 

Hydrogen 

(%) 

Sulfur 

(%) 

Advancing  

(θa, °) 

Receding  

(θr °) 

Hysteresis 

(θa - θr) 

Boltorn-ene 

PEG-SH4 

PETMP 

- 

- 

- 

- 

- 

- 

-37 

n/a (Tm = 54) 

n/a 

427 

396 

373 

57.21 

52.19 

41.88 

6.51 

8.78 

5.77 

- 

2.15 

26.34 

- 

- 

- 

- 

- 

- 

- 

- 

- 

AF0 

AF5 

AF10 

AF15 

AF20 

AF25 

AF30 

AF35 

0 

5 

10 

15 

20 

25 

30 

35 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

-14 

-15 

-15 

-16 

-17 

-22 

-21 

-21 

419 

403 

383 

388 

400 

373 

379 

390 

55.75 

55.36 

54.44 

55.26 

54.51 

54.54 

53.44 

55.11 

6.48 

6.64 

6.71 

6.77 

6.79 

6.81 

6.78 

6.76 

3.80 

4.08 

4.25 

3.47 

3.51 

3.50 

3.35 

3.21 

74 ± 4 

71 ± 1 

64 ± 2 

76 ± 2 

72 ± 2 

72 ± 3 

59 ± 2 

37 ± 1 

60 ± 1 

49 ± 6 

40 ± 2 

59 ± 3 

46 ± 6 

52 ± 2 

39 ± 2 

24 ± 2 

14 

22 

24 

15 

26 

20 

20 

13 
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attributed to increased crosslinking density, in addition to increased hydrophobicity from 

the crosslinker.  The decline at 1.0 eq SH/ene.  This increase can be attributed to 

increased crosslinking density, in addition to increased hydrophobicity from the 

crosslinker.  The decline at 1.0 eq SH/ene is likely due to the presence of an excess of 

non-crosslinked/partially-crosslinked PETMP in the film, expressing excess hydrophilic 

thiol groups throughout the polymer bulk and surface which would lower contact angle.  

Contact angle hysteresis does not seem to change across PEG wt% or PETMP 

concentration, and is typically between 15° and 20°.  Visualization of the surface with 

AFM allows for additional investigation into surface roughness.  As can be seen in Figure 

2-13, the surface is nanoscopically rough in both dry and wet state, although the 

roughness decreases slightly as a function of wetness (see Figure 2-14 and 2-15 for all  

Figure 2-13.  AFM images of Boltorn-PEG film D2 in both (a) dry and (b) wet state.   
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Figure 2-14.  Dry AFM images of the combinatorial series of films as a function of PEG 

and PETMP.  All images are scaled at 100 nm height and are 10 x 10 µm. 
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Figure 2-15.  AFM images of the combinatorial series of films wetted for >24 h, as a 

function of PEG and PETMP.  All images are scaled at 100 nm height and are 10 x 10 

µm. 

 

AFMs).  In order to further examine this premise, a dynamic contact angle experiment 

was designed to measure the contact angle of the Boltorn-PEG films over 3 h to see how 

the surface reorganizes (Figure 2-16).  Depending on PEG wt% and PETMP 

concentration, the contact angle typically decreases over time, which can be observed in 

AFM as a decrease in surface roughness.   
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Figure 2-16.  Dynamic water contact angle (advancing and receiving) of the Boltorn-PEG 

films at 0, 30, 60, 120 and 360 min.   

 

 Mechanical properties of anti-fouling films were measured using tensile testing.  

The samples were run using a constant (Hencky) strain of 0.01s
-1

.  As can be seen in the 

contour plot of Young’s modulus, Edry, as a function of PEG wt% and PETMP  
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Figure 2-17.  Contour plot of Young’s modulus data for the combinatorial series as a 

function of PEG wt% (X axis) and PETMP concentration (Y axis).   
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Figure 2-18.  2D representation of Young’s modulus of the combinatorial series as a 

function of varying PETMP concentration. 

 

concentration (Figure 2-17 and 2-18), there is a strong dependence of modulus on thiol 

content, with maxima found at approximately 0.50-0.75 eq SH/ene crosslinker 

concentration for all PEG wt%.  The drop off from 0.75 eq SH/ene to 1.00 eq SH/ene 

likely is a result of excess crosslinker, as verified by IR
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Table 2-3.  Summary of the mechanical properties for the Boltorn-PEG films in both dry and wet conditions. 
 
 

Sample 

 
PEG 

(wt%) 

 
Thiol 

content 
(eq SH/ene) 

 Before swelling in water 
 

After swelling in water 

Ultimate tensile 
strength       

(UTS, MPa) 

Strain to 
failure 

(f, %) 

Edry 
(MPa) 

Ultimate tensile 
strength        

(UTS, MPa) 

Strain to 
failure 

(f, %) 

Ewet 
(MPa) 

A1 

A2 

A3 

A4 

A5 

0 

0 

0 

0 

0 

0 

0.25 

0.50 

0.75 

1.00 

140.8 ± 35.6 

790.7 ± 205.4 

2811.3 ± 679.3 

2095.9 ± 352.4 

1922.0 ± 477.4 

48 ± 8 

19 ± 6 

34 ± 6 

38 ± 11 

27 ± 7 

3.46 ± 1.28 

72.61 ± 8.20 

152.83 ± 18.12 

149.21 ± 7.28 

118.86 ± 9.86 

- 

1095.3 ± 293.2 

- 

- 

- 

- 

26 ± 3 

- 

- 

- 

- 

69.8 ± 10.13 

- 

- 

- 

B1 

B2 

B3 

B4 

B5 

5 

5 

5 

5 

5 

0 

0.25 

0.50 

0.75 

1.00 

134.7 ± 51.2 

532.4 ± 155.0 

2313.1 ± 374.2 

2098.6 ± 437.1 

1281.1 ± 356.8 

32 ± 20 

13 ± 4 

45 ± 11 

32 ± 10 

20 ± 10 

4.02 ± 0.93 

59.80 ± 3.12 

112.23 ± 7.46 

120.82 ± 17.48 

106.04 ± 6.69 

- 

952.9 ± 137.2 

- 

- 

- 

- 

21 ± 2 

- 

- 

- 

- 

63.55 ± 5.52 

- 

- 

- 

C1 

C2 

C3 

C4 

C5 

15 

15 

15 

15 

15 

0 

0.25 

0.50 

0.75 

1.00 

558.1 ± 212.7 

540.5 ± 173.3 

688.5 ± 106.5 

1192.1 ± 455.0 

651.7 ± 250.6 

78 ± 39 

14 ± 5 

11 ± 1 

19 ± 8 

11 ± 2 

17.68 ± 4.82 

53.30 ± 2.15 

77.20 ± 8.30 

95.89 ± 9.65 

86.66 ± 8.93 

71.0 ± 16.8 

853.2 ± 307.9 

788.7 ± 495.7 

521.4 ± 168.0 

1261.1 ± 153.9 

38 ± 13 

29 ± 13 

13 ± 11 

11 ± 2 

27 ± 3 

2.81 ± 0.57 

38.44 ± 1.87 

63.40 ± 20.42 

83.82 ± 20.42 

84.90 ± 13.72 

D1 

D2 

D3 

D4 

D5 

25 

25 

25 

25 

25 

0 

0.25 

0.50 

0.75 

1.00 

208.4 ± 49.1 

351.9 ± 40.1 

1330.2 ± 296.9 

1634.0 ± 123.7 

1591.6 ± 144.0 

66 ± 24 

11 ± 1 

27 ± 8 

23 ± 2 

30 ± 5 

4.22 ± 1.96 

44.57 ± 3.56 

84.14 ± 7.80 

104.62 ± 5.39 

93.32 ± 6.35 

- 

461.3 ± 197.8 

- 

- 

- 

- 

14 ± 5 

- 

- 

- 

- 

47.34 ± 4.80 

- 

- 

- 
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spectroscopy, partially plasticizing the crosslinked film.  There appears to be a minor 

effect with respect to the PEG, in that an increase in PEG wt% provides a small decrease 

in modulus.  Similar trends with PEG wt% and PETMP can be observed for the ultimate 

tensile strength (UTS).  Interestingly, the failure strains for the Boltorn-PEG films were 

remarkably low, from approximately 10-30%, with the exception of the films with no 

PETMP (A1, B1, C1 and D1), where the elongation was much higher, 30-80%, due to the 

low Tg and subsequent flexibility of the films.  A summary of measured modulus values, 

ultimate tensile strengths and % elongations have been compiled (Table 2-3).  , There 

does not appear to be as large a disparity between the Young’s modulus of wet and dry 

Boltorn-PEG films as was seen with the HBFP-PEG series, (REFS) however, there is a 

statistically significant difference in ultimate tensile strength (Figure 2-19). At a constant 

0.25 eq SH/ene crosslinker concentration (films A2, B2, C2 and D2),  

Figure 2-19.  Young’s modulus (left) and ultimate tensile strength (right) for the “2 

series” (A2, B2, C2 and D2) as measured dry and wetted by artificial seawater. 
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Figure 2-20.  Young’s modulus (left) and ultimate tensile strength (right) for the “C 

series” (C1, C2, C3, C4 and C5) as measured dry and wetted by artificial seawater. 

 

the modulus values for wet and dry films are similar with the exception of C2, which 

shows a decrease in modulus between the dry to wet state, whereas overall, the ultimate 

tensile strength actually increases when wet.  Additional tensile tests were performed for 

the rest of the “C series” (C1, C3, C4 and C5) (Figure 2-20), where similar trends can be 

observed for modulus, but not for ultimate tensile strength, which shows no apparent 

trends.   

The anti-fouling ability of Boltorn-PEG films at a constant PETMP concentration 

of 0.25 eq SH/ene with varying PEG wt% (0, 5, 10, 15, 20, 25, 30 and 35 wt%) against a 

soft fouling marine alga was assessed through a series of two experiments, viz. spore 

settlement (attachment) and the strength of attachment of sporelings (young plants), 

which was assessed by exposure to a range of impact pressures generated by a water jet. 

Spore settlement densities were low on all the amphiphilic coatings compared to that on a 

PDMSe standard (Figure 2-21).  Although spore density was low, it increased slowly with  
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Figure 2-21.  The settlement density of spores of Ulva on amphiphilic coatings after 1 h 

settlement.  (Glass standards settled with spores at the same time had heavier settlement 

densities ~ 767 spores mm
-2

).  Each point is the mean from 90 counts on 3 replicate 

slides.  Bars show 95% confidence limits. 

 

the PEG content of the coating.  One-way analysis of variance on spore density for the 

amphiphilic samples alone showed there were significant differences between the 

samples (F 7, 712 = 80 P<0.05).  A Tukey test showed that the settlement densities on the 

majority of coatings were significantly different to each other (at least at either end of the 

series), confirming the trend of increasing settlement density with increasing PEG 

content.  Due to the increase in surface roughness with increasing PEG wt%, (vide supra, 
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AFM discussion), it is possible that the settlement increases as a function of PEG directly 

due to the loss of a smooth, highly hydrophilic surface.  Self assembled monolayers 

formed from PEG inhibit the settlement of spores(72) and studies on PEG-containing 

systems have generally shown the opposite trend, i.e. settlement densities decrease with 

increasing PEG content.(73)  For the PEG-SAMs, the inhibition of settlement has been 

attributed to the increased hydrophilicity and subsequent hydration of the coating and for 

amphiphilic coatings, surface restructuring following immersion produced changes to 

surface nanostructure,(74) possibly making it more difficult for spores to ‗detect‘ and 

adhere to the surface.  Sporeling biomass was evaluated on all the coatings after 10 days 

of growth.  Sporelings grew normally on all the samples with no signs of toxicity, 

although as expected form the low density of settled spores, the amount of biomass was 

lower on the amphiphilic samples than on the PDMSe standard.  It is possible that the 

reduced spore settlement density could be due to residual surface thiols that effectively 

"cap" cysteine residues in the algal adhesive, preventing the formation of disulfide 

linkages, either in the adhesive protein itself or cementing glycoproteins.(75)  The 

DACM-thiol fluorescence experiment showed that there is a minor amount of surface 

thiols (~5-10 fluorescent %) present in the AF film series (Figure 2-22), which could be 

responsible for the non-fouling character of the Boltorn-PEG films.   
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Figure 2-22.  Surface DACM-thiol fluorescence of the anti-fouling coating series.   
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Figure 2-23.  Fluorescence of DACM-thiol conjugated films on the combinatorial series. 

 

It broadly followed that of spore settlement density and rose slightly with 

increasing PEG content of the coating. Due to delamination issues, sporeling strength of 

attachment was measured only for the 0%, 5%, 10% and 15% coatings.  Sporelings were  
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Figure 2-24.  Typical growth of Ulva sporelings on amphiphilic coatings after 10 days.  

From left; PDMSe, 0, 5, 10, 15, 20, 25, 30 and 35 PEG wt% coatings.  

 

Figure 2-25.  The growth of sporelings of Ulva on amphiphilic coatings after 10 days.  

Each point is the mean biomass from 6 replicate slides measured using a fluorescence 
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plate reader (RFU; relative fluorescence unit).  Error bars show standard error of the 

mean.  

 

attached more strongly on all the coatings than on the PDMSe standard, however, ease of 

removal increased with increasing PEG content, where the highest removal was observed 

from the 15% coating regardless of pressure.  The critical water pressures to remove 50% 

of the biofilms are shown in Table 2-4 and Figure 2-26.  The lines in Figure 2-26 have a 

distinctive shape that is not typical for sporeling detachment and was not seen in the 

previous experiments with the films (i.e. they contain a large flat region corresponding to 

mid-range water  

Table 2-4.  Critical surface pressures for 50% removal of sporeling biofilms derived from 

curves in Figure 2-25 and percent removal of sporeling biofilms at the single water 

pressure of 64 kPa.  Samples listed in order of ease of removal. 

Label Critical water pressure to 

remove 50% of biomass 

(kPa) 

 % removal at pressure of 64 

kPa 

 

PDMSe 50  75% 

15  Approx 93  57% 

10 Approx. 112  45% 

5  184  18% 

0  184  8% 
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Figure 2-26.  Percent removal of 10 day old sporelings of Ulva from amphiphilic 

coatings plotted as a function of surface water pressure (kPa).  Coatings were exposed to 

a range of different surface pressures from the water jet.  PDMSe is T2 Silastic.  

 

pressures).  The phenomenon might be connected with the extended growth period given 

to the sporelings in this experiment (10 rather than 7 days), but we do not know why this 

would cause a change in the shape of the release curve.  The coatings with PEG content 

greater than 15% delaminated and were not tested. 
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Conclusions 

Optimization of the design and synthesis of thiol-ene crosslinked Boltorn-PEG 

films was performed at varying PETMP concentration and PEG wt%.  Spectroscopic 

monitoring allowed for monitoring of the crosslinking reaction, where it was found that 

near-complete crosslinking occurs above 0.75 eq SH/ene PETMP concentration, 

regardless of PEG wt%.  Thermomechanical analysis was performed on the film set, 

where it was observed that there is a general increase in film Tg as a function of PEG 

wt%.  Tensile tests of films in both the dry and wet state revealed a dramatic increase in 

Young‘s modulus as a function of PETMP, reaching a peak at 0.75 eq SH/ene.  Young‘s 

modulus reduced slightly when saturated in artificial seawater, however, ultimate tensile 

strength increased at constant PETMP concentration.  The nanotopography of the films 

was analyzed using AFM, where increasing nanoroughness occurred with increasing PEG 

wt%.  A comprehensive anti-fouling study was performed against the green alga, Ulva, on 

Boltorn-PEG films at constant 0.25 eq SH/ene PETMP concentration across a wide range 

of PEG wt% (0-35 wt%), where it was observed that spore settlement density was lower 

when compared to a PDMSe coating.  There was a slight compromise in using a 0.25 eq 

SH/ene PETMP concentration, in that the films have lower Tg and modulus than films at 

higher PETMP concentration, however a balance was needed in order to prepare 

completely non-toxic films.  Additional studies looking into the improving adhesion to 

glass substrates to allow for complete fouling release studies are underway. 

A similar system will be introduced in Chapter 3, using a radically different 

architecture.  A transformation from Boltorn-ene, a hydrophobic polymer with extensive 

amounts of alkenes on the periphery, to a block copolymer morphology with alkenes 

along the backbone with PEG/PEO directly coupled to the polymer.  The synthesis and 
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characterization of this new polymer, PEO-b-PIp, is presented in total, as well as 

investigations into producing thiol-ene crosslinked coatings.  This system takes advantage 

of the unique assembly abilities of block copolymers, as well as the low polydispersity. 
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Chapter 3 

Evaluation of Isoprene Chain Extension from PEO Macromolecular 

Chain Transfer Agents for the Preparation of Dual, Invertible Block 

Copolymer Nanoassemblies and Anti-fouling Coatings 

[Portions of this work have been submitted for publications as Jeremy W. Bartels, Solène 

I. Cauët, Peter L. Billings, Lily Yun Lin, Jiahua Zhu, Darrin J. Pochan, Karen L. Wooley 

Macromolecules, 2010] 

Abstract.   

Two RAFT-capable PEO macro-CTAs, 2 and 5 kDa, were prepared and used for 

the polymerization of isoprene which yielded well-defined block copolymers of varied 

lengths and compositions.  GPC analysis of the PEO macro-CTAs and block copolymers 

showed remaining unreacted PEO macro-CTA.  Mathematical deconvolution of the GPC 

chromatograms allowed for the estimation of the blocking efficiency, about 50% for the 5 

kDa PEO macro-CTA and 64% for the 2 kDa CTA.  Self assembly of the block 

copolymers in both water and decane was investigated and the resulting regular and 

inverse assemblies, respectively, were analyzed with DLS, AFM, and TEM to ascertain 

their dimensions and properties.  Assembly of PEO-b-PIp block copolymers in aqueous 
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solution resulted in well-defined micelles of varying sizes while the assembly in 

hydrophobic, organic solvent resulted in the formation of different morphologies 

including large aggregates and well-defined cylindrical and spherical structures.  

Additional investigation into the bulk assembly and thiol-ene crosslinking of PEO-b-PIp 

films was performed.  The coatings were evaluated for anti-biofouling activity against 

fluorescently-tagged biomolecules. 
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Introduction 

Interesting chemical, physical and morphological complexity can be inherited from the 

self assembly of amphiphilic block copolymers.(1-7)  The generation of micelles in a 

solvent selective for a portion of the overall block copolymer structure,(8-10) and 

transformation into their stable, crosslinked variants,(11-13) have been achieved using a 

wide variety of well-defined multiblock copolymers.  Block copolymers within discrete 

self-assembled particles adopt a range of morphologies and dimensions, giving these 

micelle-based nanoobjects promise as devices to be applied to the emerging fields of 

nanomedicine(14-16) and nanomaterials.(17-20)   

The properties of polymer assemblies are dependent on the nature of the block 

copolymer components and their molecular-level organization within the nanoscale 

framework.(4, 5, 21)  Among the many types of amphiphilic block copolymers that have 

been investigated,(7, 20, 22) those containing poly(ethylene oxide) (PEO) as a 

hydrophilic chain segment, such as PEO-b-PCL(16, 23, 24) and PEO-b-PS,(25, 26) 

incorporate a non-ionic, anti-fouling shell layer, which has been shown to be important 

for biological applications.(27)  For instance, PEO-b-PCL filomicelle assemblies were 

capable of in vivo blood circulation for several days.(28)  In addition to these interesting 

cylindrical filomicelles, many other morphologies can be accessed from PEO-containing 

block copolymers.(3, 29-32)  However, because the PEO segment lacks reactive side 

chain groups, multi-functionality is often incorporated via the other polymer block 

segment(s).   
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The utility of polymer nanostructures, ultimately, relies on access to polymer building 

blocks that possess well-defined structures and that include functionality.  The advent of 

controlled radical polymerization (CRP)(33-36) has allowed for significantly greater 

access to functional block copolymer materials(37, 38) by a broader scientific population, 

providing for investigations into increased numbers and types of block copolymer 

assemblies in the bulk- and solution-states.  PEO-b-poly(diene) polymers are particularly 

attractive, because they combine the interesting properties of PEO with reactive, 

hydrophobic chain segments, which then gives an overall amphiphilic and functional 

block copolymer structure.  Although poly(ethylene oxide)-block-polybutadiene(6, 39-42) 

or poly(ethylene oxide)-block-polyisoprene, PEO-b-PIp,(9, 43-45) have long been used 

for materials applications,(46) their preparation by anionic polymerization methods(47) 

has hampered their wide-scale availability.   

The polymerization of isoprene under controlled radical polymerization conditions has 

been developed recently, and is emerging as a general method for the preparation of 

PIp-containing block copolymers (including PEO-b-PIp), which is allowing access to 

functional nanomaterials.  Controlled radical polymerization of isoprene was initially 

reported using nitroxide mediated polymerization (NMP).(9, 44, 48, 49)  Diblock 

copolymers of PEO-b-PIp have been successfully prepared by Grubbs via NMP methods 

using a PEO macro-initiator.(9, 44)  The solution-state properties of nanoassemblies 

derived from di- and triblock copolymers that include PEO and PIp segments have been 

investigated, including the formation of micelles and stable vesicles with small molecule 

additives,(8, 21, 50) or the formation of unusual assemblies with unique properties when 

thermoresponsive intermediate blocks were incorporated.(9)  Additionally, studies have 

been performed on PEO-b-PIp at various aqueous concentrations, expanding knowledge 
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of the physical properties of the block copolymers as they changed from micelle to gel-

like phases.(51)   

We were interested in investigating the solution-state assemblies of PEO-b-PIp in either 

water or organic solvents, to afford invertible, functional nanoscale objects, which could 

carry the reactive PIp units either in the core or the shell.  To gain access to these block 

copolymers, reversible addition-fragmentation chain transfer (RAFT) polymerization was 

employed, as we have experience with this system.(52-55)  Moreover, we were interested 

in studying in detail the efficiency of RAFT polymerization of isoprene from 

macromolecular chain transfer agents (macro-CTAs).  PEO macro-CTAs were, therefore, 

generated from simple amidation chemistry of an amino-terminated PEO and an acid-

functionalized RAFT agent known to polymerize isoprene readily, and used to afford 

block copolymers of PEO and PIp that possess interesting physical and solution-state 

properties.   

Previous studies using both dithioester-(56-61) and trithiocarbonate-based (26, 29, 62, 

63) PEO macro-CTAs have been reported for the synthesis of well-defined block 

copolymers with second blocks varying from hydrophilic(57, 58, 60, 61, 63) to 

hydrophobic.(29, 56, 59, 62, 64)  Problems related to low chain extension efficiency can 

remain when chain-extending from a hydrophilic polymeric CTA with a hydrophobic 

monomer, potentially due to the incompatibility between the polymer and the added 

monomer.(57)  The remaining PEO macro-CTA can be removed, typically, using 

precipitation and/or dialysis techniques, however, this depends upon the chemical nature 

of the block copolymers obtained and cannot always be achieved.  Knowing the exact 

composition of the final block copolymer and the amount of unreacted macroCTA 

contaminant is important when preparing nanoassemblies.(1)  Incomplete chain extension 
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is readily visible as a low molecular weight component through the use of gel permeation 

chromatography (GPC), so that mathematical treatment of the chromatograms provides a 

tool to fully characterize blocking efficiency and final product composition.  

Herein, is reported the use of two RAFT-capable, trithiocarbonate-based, PEO macro-

CTAs (Mn = 2 and 5 kDa), for the polymerization of isoprene to yield well defined block 

copolymers of varied lengths and compositions.  Analysis of the GPC chromatograms, 

including mathematical deconvolution, allowed for estimation of chain extension 

efficiencies from the PEO macro-CTAs and final product composition.  The resultant 

polymers were investigated for their abilities to assemble in both water and decane, and 

the resulting regular and inverse micellar nanostructures were analyzed with dynamic 

light scattering (DLS), atomic force microscopy (AFM), and transmission electron 

microscopy (TEM).   

 

Experimental 

Instrumentation.  Infrared spectra were obtained on a Perkin–Elmer Spectrum 

BX FTIR system as neat films on NaCl plates.  
1
H NMR (300 and 500 MHz) and 

13
C 

NMR (75 and 125 MHz) spectra were recorded on either a Varian Mercury 300 MHz or 

Inova 500 MHz spectrometer using the solvent as internal reference.  Glass transition 

(Tg), melting (Tm), and crystallization (Tc) temperatures were measured by differential 

scanning calorimetry on a Mettler Toledo DSC822
e
 (Mettler Toledo Inc., Columbus, 

OH), with a heating rate of 10 ºC/min.  Measurements were analyzed using Mettler 

Toledo Star SW 7.01 software.  The Tg was taken as the midpoint of the inflection 

tangent, upon the third heating scan.  Thermogravimetric analysis was performed under 

N2 atmosphere using a Mettler Toledo model TGA/SDTA851
e
, with a heating rate of 10 
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ºC/min.  Measurements were analyzed using Mettler Toledo Star SW 7.01 software.  Gel 

permeation chromatography was conducted on a system equipped with a Waters 

Chromatography, Inc. (Milford, MA) model 1515 isocratic pump, a model 2414 

differential refractometer, and a Precision Detectors, Inc. (Bellingham, MA) model PD-

2026 dual-angle (15 ° and 90 °) light scattering detector and a three-column set of 

Polymer Laboratories, Inc. (Amherst, MA) Styragel columns (PLgel 5µm Mixed C, 500 Å, 

and 10
4
 Å, 300 x 7.5 mm columns).  The system was equilibrated at 35 °C in 

tetrahydrofuran (THF), which served as the polymer solvent and eluent (flow rate set to 

1.00 mL/min).  Polymer solutions were prepared at a known concentration (ca. 3 mg/mL) 

and an injection volume of 200 µL was used.  Data collection was performed with 

Precision Detectors, Inc. Precision Acquire software.  Data analysis was performed with 

Precision Detectors, Inc. Discovery 32 software.  The differential refractometer was 

calibrated with standard polystyrene material (SRM 706 NIST), of known refractive 

index increment dn/dc (0.184 mL/g).  The dn/dc values of the analyzed polymers were 

determined using refractive index detector data.  Tapping-mode AFM measurements were 

conducted in air with a Nanoscope III BioScope system (Digital Instruments, Santa 

Barbara, CA) operated under ambient conditions with standard silicon tips [type, 

OTEPSA-70; length (L), 160 lm; normal spring constant, 50 N/m; resonant frequency, 

246–282 kHz].  Hydrodynamic diameters (Dh) and distributions for the micelles in 

aqueous or decane solutions were determined by DLS.  The DLS instrumentation 

consisted of a Brookhaven Instruments Limited (Worcestershire, U.K.) system, including 

a model BI-200SM goniometer, a model BI-9000AT digital correlator, a model EMI-

9865 photomultiplier, and a model 95-2 Ar ion laser (Lexel, Corp.; Farmindale, NY) 

operated at 514.5 nm.  Measurements were made at 25 ± 1 °C.  Prior to analysis, 
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solutions were filtered through a 0.45 µm Nylon filter (aqueous samples) or not filtered at 

all (decane).  Samples were then centrifuged in a model 5414 microfuge (Brinkman 

Instruments, Inc.; Westbury, NY) for 4 min to remove dust particles.  Scattered light was 

collected at a fixed angle of 90°.  The digital correlator was operated with 522 ratio 

spaced channels and initial delay of 0.5 µs, a final delay of 800 ms, and a duration of 10 

min.  A photomulitplier aperture of 400 µm was used, and the incident laser intensity was 

adjusted to obtain a photon counting of 300 kcps.  Only measurements in which the 

measured and calculated baselines of the intensity autocorrelation function agreed to 

within 0.1% were used to calculate particle size.  Particle size distributions were 

performed with the ISDA software package (Brookhaven Instruments Company), which 

employed single-exponential fitting, cumulants analysis, and non-negatively constrained 

least-squares particle size distribution analysis routines.   

Fluorescently-tagged biomolecule (Alexa-Fluor488-tagged Bovine Serum 

Albumin (BSA), Lipopolysaccharides from E. coli (LPSE) and S. minnesota (LPSS), and 

Lectin from C. Fragile (CFL)) adsorption testing of the PEO-b-PIp coatings (1.5 eq 

SH/alkene crosslinked) were tested in the following manner:  Approximately 100 µL of 

biomolecule solution was transferred onto a coated glass slide and allowed to sit for 10 

min, followed by extensive rinsing in pH 7.4 (5.0 mM) PBS buffer for 30 s.  The coatings 

were then allowed to dry before being imaged by fluorescence microscopy.  The images 

were analyzed using Image J software and the histograms were transformed into percent 

fluorescence values.  Because there was approximately 1 tag/biomolecule, quantitative 

correlation between fluorescence and the number of biomolecules adsorbed onto surfaces 

could be quantified and compared.   
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Materials  Isoprene (Ip) (99 %) was obtained from Sigma-Aldrich, Inc. (St. 

Louis, MO) and was purified by passage over a column of neutral alumina prior to use.  

Amine-terminated poly(ethylene oxide), 5 kDa and 2 kDa, (Intezyne Labs) were used as 

received.  1-[Dimethylamino)propyl]-3-ethylcarbodiimide methiodide (EDCI) (Aldrich), 

and hydroxybenzotriazole monohydrate (HOBt) (Novabiochem) were used as received.  

1,4-Dioxane (99%), N,N-dimethylformamide (DMF, 99.8% anhydrous), tetrahydrofuran 

(THF, 99.9%), dichloromethane (≥99%), diethyl ether,  (≥99 %, anhydrous), methanol 

(≥99.9%), 1-hydroxycyclohexylphenyl ketone (99%) and di-tert-butyl peroxide (98%), 

were used as received from Sigma Aldrich.  Chloroform-d (Cambridge Isotope Labs) was 

used as received.  1,10 decanedithiol (98%) was obtained from TCI and used as received.  

Argon ultra-high purity grade gas (99.999%) was used as received from Praxair (St. 

Louis, MO).  The RAFT agent, S-1-dodecyl-S’-(α, α’-dimethyl- α”-acetic 

acid)trithiocarbonate, 1, was prepared as previously reported.(65)  Due to the high 

volatility of isoprene and the high temperatures employed in the polymerization thereof, 

only thick-walled glass flasks, free of visible defects, were used for these experiments, 

each conducted with at least 50 % of the volume of the flask remaining free.(53, 54)  As 

further precaution, all polymerizations were performed in a fume hood with additional 

shielding.  Percent conversions of the isoprene polymerizations were determined using 

the method of Grubbs and co-workers,(44) where the molecular weight of the isolated 

polymer was determined with high field 
1
H NMR spectroscopy (500 MHz) and then set 

equal to the theoretical molecular weight.  While this method does introduce some error 

(assuming Mn
Theory

 = Mn
Actual

), it is not excessive when compared with the error associated 

with attempting to determine conversion of isoprene directly.(53) 



101 

Synthesis of 5 kDa PEO macro chain-transfer agent, 2.  To a 250 mL round 

bottom flask equipped with a Teflon-coated stir-bar, was added chain transfer agent 1 

(0.5476 g, 1.579 mmol, 1.5 eq), EDCI (0.4447 g, 1.497 mmol, 1.5 eq), and HOBt (0.2037 

g, 1.507 mmol, 1.5 eq).  After addition of DMF (50 mL), the flask was sealed with a 

rubber septum and its contents were allowed to stir for 1 h at ambient temperature.  In a 

separate 250 mL round bottom flask, mono-amino-terminated 5 kDa PEO (5.0023 g, 

1.000 mmol, 1.0 eq, Mn
GPC

 = 7,700 Da (polystyrene equivalent)) was dissolved in 

dichloromethane (30 mL), to which DMF (50 mL) was added.  After the contents of the 

initial round bottom flask had stirred for 1 h, the 5 kDa PEO solution was added and the 

reaction mixture was allowed to stir for 4 h at ambient temperature.  The product was 

purified via silica gel-based flash chromatography (eluting with CH2Cl2, gradient to 10% 

MeOH:CH2Cl2).  The product was dried in vacuo overnight, yielding 1.5496 g as a light 

yellow powder (30% yield).  Mn
NMR

 = 7,800 Da, Mw
GPC

 = 7,900 Da, Mn
GPC

 = 7,600 Da 

(polystyrene equivalent), Mw/Mn = 1.04.  Tm = 61.0 °C, Tc = 31.5 °C.  Tdecomp = 395.3 °C.  

IR (cm
-1

): 3000-2760, 1672, 1467, 1360, 1343, 1280, 1242, 1148, 1112, 1061, 963, 842, 

529.  
1
H NMR (500 MHz, chloroform-d, ppm):  3.7 – 3.5 (br, -CH2-CH2-O-), 3.5 (s, 

-O-CH3), 3.4 (br, m, -SC(S)S-CH2-(CH2)10-CH3), 1.9 (s, O-C(O)-C(CH3)2-S-), 1.3-1.2 

(br, -SC(S)S-CH2-(CH2)10-CH3), 0.9 (br t, -SC(S)S-CH2-(CH2)10-CH3). 
13

C NMR (75 

MHz, chloroform-d, ppm):  173.1, 70.8, 65.3, 58.3, 56.2, 37.1, 32.1, 29.8, 25.6, 22.9, 

14.4. 

Synthesis of 2 kDa PEO macro chain-transfer agent, 3.  The 2 kDa PEO macro 

chain-transfer agent, 3, was prepared following the same procedure as for 5 kDa PEO 

macro chain-transfer agent, 2, using chain transfer agent 1 (1.3699 g, 3.757 mmol, 1.5 
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eq), EDCI (1.1166 g, 3.759 mmol, 1.5 eq), HOBt (0.5075 g, 3.756 mmol, 1.5 eq), mono-

amino-terminated 2 kDa PEO (5.0019 g, 2.500 mmol, 1.0 eq, Mn
GPC

 = 2,500 Da 

(polystyrene equivalent)), DMF (100 mL) and dichloromethane (30 mL). The reaction 

yielded 2.7791 g of 3 as a yellowish-white powder (47% yield).  
1
H NMR spectroscopy 

confirmed complete functionalization.  Mn
NMR

 = 2,400 Da, Mw
GPC

 = 3,270 Da, Mn
GPC

 = 

3,200 Da (polystyrene equivalent), Mw/Mn = 1.03.  Tm = 50.4 °C, Tc = 9.9 °C.  Tdecomp: = 

377.5 °C.  IR (cm
-1

): 2990-2770, 1671, 1467, 1360, 1344, 1280, 1242, 1148, 1114, 1061, 

946, 843, 530.  
1
H NMR (500 MHz, chloroform-d, ppm):  3.6 – 3.3 (br, -CH2-CH2-O-), 

3.4 (s, -O-CH3), 3.2 (br, m, -SC(S)S-CH2-(CH2)10-CH3), 1.6 (s, O-C(O)-C(CH3)2-S-), 1.3-

1.2 (br, -SC(S)S-CH2-(CH2)10-CH3), 0.8 (br t, -SC(S)S-CH2-(CH2)10-CH3). 
13

C NMR (75 

MHz, chloroform-d, ppm):  172.6, 70.8, 59.3, 57.3, 40.1, 37.2, 32.1, 29.9, 26.1, 22.9, 

14.4. 

General procedure for synthesis of PEO112-b-PIp187 (4).  To a 50 mL bomb-

type Schlenk flask equipped with a Teflon coated magnetic stir bar was added Ip (2.5396 

g, 37.28 mmol, 373.0 eq), macro chain transfer agent 2, (0.5002 g, 0.100 mmol, 1.0 eq), 

and di-tert-butylperoxide (0.0070 g, 4.780 x 10
-5

 mol, 0.4 eq), along with 1,4-dioxane (15 

mL).  The mixture was degassed via 3 freeze-pump-thaw cycles.  Upon the final thaw the 

Schlenk flask was backfilled with Ar and placed in a temperature-regulated mineral oil 

bath set at 125 °C and left to react for 24 h.  After cooling the residual solvent and 

monomer were removed in vacuo.  Leftover contents of the flask were dissolved in a 

minimal amount of dichloromethane and precipitated 3 times into 500 mL methanol 

producing a transparent yellow oil.  The excess solvent was decanted off and the product 

was dried in vacuo, yielding 1.035 g (87% yield based on 27% conversion) of sticky 

yellow powder.  Mn
NMR

 = 18,000 Da, Mw
GPC

 = 23,200 Da, Mn
GPC

 = 18,000 Da 
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(polystyrene equivalent), Mw/Mn = 1.28.  (Tg)PIp = -60.0 °C, (Tm)PEO = 56.0 °C, (Tc)PEO = 

31.4 °C.  Tdecomp: = 401.8 °C.  IR (cm
-1

): 3020-2760, 1726, 1665, 1644, 1466, 1449, 1343, 

1280, 1242, 1148, 1114, 1061, 964, 842, 530.  
1
H NMR (500 MHz, chloroform-d, ppm): 

 5.8-5.7 (br, 1,2 CH=CH2), 5.2-5.1 (br, 1,4 -CH2-C(CH3)-CH-CH2-), 5.0-4.8 (br, 1,2 

CH=CH2), 4.8-4.6 (br, 4,3 C(CH3)-CH2), 3.7 – 3.5 (br, -CH2-CH2-O-), 3.4 (s, -O-CH3), 

3.2 (br, m, -SC(S)S-CH2-(CH2)10-CH3), 2.2-1.8 (br, CH2 isoprene backbone), 1.7-1.5 (br, 

isoprene backbone CH3), 1.6 (s, O-C(O)-C(CH3)2-S-), 1.4-1.2 (br, 

-SC(S)S-CH2-(CH2)10-CH3), 0.9 (br t, -SC(S)S-CH2-(CH2)10-CH3).  
13

C NMR (75 MHz, 

chloroform-d, ppm):  147.8, 135.1, 125.2, 124.5, 111.5, 72.2, 70.8, 69.3, 63.7, 62.2, 

59.3, 52.2, 44.8, 40.0, 38.7, 32.2, 31.0, 28.5, 26.9, 23.7, 19.0, 16.3, 14.4. 

General procedure for synthesis of PEO112-b-PIp47 (5).  PEO112-b-PIp47, 5, was 

prepared following the same procedure as for polymer 4 using the following amounts Ip 

(1.1927 g, 17.50 mmol, 186.5 eq), macro transfer agent 2 (0.5016 g, 9.381 x 10
-5

 mol, 1.0 

eq), and di-tert-butylperoxide (0.0041 g, 2.803 x 10
-5

 mol, .29 eq), along with 1,4-

dioxane (ca. 5 mL).  Purification was attempted repeatedly using precipitation in a variety 

of hydrophobic and hydrophilic solvents with no success, however a mixture of 400 mL 

deionized water and 350 mL methanol worked well, yielding a yellow oil.  Solvent was 

removed via rotary evaporation and the remaining polymer was dried in vacuo.  The final 

product consisted of 0.4500 g of sticky pale yellow powder (56% yield based on 25% 

conversion).  Mn
NMR

 = 8,500 Da, Mw
GPC

 = 11,500 Da, Mn
GPC

 = 8,600 Da (polystyrene 

equivalent), Mw/Mn = 1.34.  (Tg)PIp = -61.0 °C, (Tm)PEO = 55.3 °C, (Tc)PEO = 23.0 °C.  

Tdecomp: = 399.2 °C.  IR (cm
-1

): 2990-2770, 1649, 1466, 1360, 1343, 1280, 1148, 1114, 

1061, 946, 842, 668, 530.  
1
H NMR (500 MHz, dichloromethane-d2, ppm):  5.9-5.8 (br, 
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1,2 CH=CH2), 5.3-5.1 (br, 1,4 -CH2-C(CH3)-CH-CH2-), 5.1-4.9 (br, 1,2 CH=CH2), 4.9-

4.7 (br, 4,3 C(CH3)-CH2), 3.9 – 3.7 (br, -CH2-CH2-O-), 3.5 (s, -O-CH3), 3.2 (br, m, -

SC(S)S-CH2-(CH2)10-CH3), 2.3-2.0 (br, CH2 isoprene backbone), 1.8-1.6 (br, isoprene 

backbone CH3), 1.6 (s, O-C(O)-C(CH3)2-S-), 1.4-1.2 (br, -SC(S)S-CH2-(CH2)10-CH3), 1.0 

(br t, -SC(S)S-CH2-(CH2)10-CH3).  
13

C NMR (75 MHz, dichloromethane-d2, ppm):  

148.0, 135.1, 111.6, 70.8, 59.3, 52.1, 44.9, 40.0, 38.8, 37.2, 32.3, 31.1, 29.9, 28.6, 27.0, 

26.0, 23.7, 22.9, 22.3, 16.3, 14.4. 

General procedure for synthesis of PEO44-b-PIp60 (6).  PEO44-b-PIp60, 6, was 

prepared following the same procedure as for polymer 4 using the following amounts Ip 

(0.5089 g, 7.471 mmol, 150 eq), macro transfer agent 3 (0.1158 g, 4.936 x 10
-5

 mol, 1.0 

eq), and di-tert-butylperoxide (0.0027 g, 1.846 x 10
-5

 mol, 0.30 eq), along with 1,4-

dioxane (ca. 5 mL).  The crude product was dissolved in THF and precipitated into ice 

cold diethyl ether, which yielded a cloudy precipitate.  The final product consisted of 

0.1990 g of sticky yellow powder (97% yield based on 18% conversion).  Mn
NMR

 = 6,400 

Da, Mw
GPC

 = 8,300 Da, Mn
GPC

 = 6,500 Da (polystyrene equivalent), Mw/Mn = 1.29.  (Tg)PIp 

= -62.7 °C, (Tm)PEO = 47.3 °C, (Tc)PEO = 12.7 °C.  Tdecomp: = 397.0 °C.  IR (cm
-1

): 3040-

2720, 1732, 1660, 1644, 1520, 1466, 1360, 1344, 1280, 1242, 1147, 1114, 1061, 964, 

843, 734, 646, 532.  
1
H NMR (500 MHz, chloroform-d, ppm):  5.8-5.7 (br, 1,2 

CH=CH2), 5.2-5.0 (br, 1,4 -CH2-C(CH3)-CH-CH2-), 5.0-4.8 (br, 1,2 CH=CH2), 4.8-4.6 

(br, 4,3 C(CH3)-CH2), 3.7 – 3.5 (br, -CH2-CH2-O-), 3.4 (s, -O-CH3), 3.2 (br, m, 

-SC(S)S-CH2-(CH2)10-CH3), 2.2-1.8 (br, CH2 isoprene backbone), 1.7-1.5 (br, isoprene 

backbone CH3), 1.6 (s, O-C(O)-C(CH3)2-S-), 1.4-1.2 (br, -SC(S)S-CH2-(CH2)10-CH3), 0.9 

(br t, -SC(S)S-CH2-(CH2)10-CH3).  
13

C NMR (75 MHz, chloroform-d, ppm):  148.0, 
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135.3, 125.3, 124.5, 111.6, 70.8, 59.3, 52.0, 51.0, 44.9, 42.3, 40.0, 38.8, 37.1, 34.5, 32.2, 

30.6, 28.6, 27.0, 26.0, 23.7, 23.0, 16.3, 14.4. 

General procedure for synthesis of PEO44-b-PIp43 (7).  PEO44-b-PIp43, 7, was 

prepared following the same procedure as for polymer 4 using the following amounts Ip 

(0.5224 g, 7.660 mmol, 77.0 eq), macro transfer agent 3 (0.2251 g, 9.595 x 10
-5

 mol, 1.0 

eq), and di-tert-butylperoxide (0.0050 g, 3.419 x 10
-5

 mol, .30 eq), along with 1,4-

dioxane (ca. 5 mL).  The crude product was dissolved in THF and precipitated into ice 

cold diethyl ether which yielded a cloudy precipitate.  The final product consisted of 

0.3302 g of sticky yellow powder (88% yield based on 27% conversion).  Mn
NMR

 = 5,500 

Da, Mw
GPC

 = 6,900 Da, Mn
GPC

 = 5,300 Da (polystyrene equivalent), Mw/Mn = 1.30.  (Tg)PIp 

= -64.5 °C, (Tm)PEO = 49.0 °C, (Tc)PEO = 42.5 °C.  Tdecomp: = 399.5 °C.  IR (cm
-1

): 2990-

2770, 1733, 1644, 1523, 1466, 1360, 1344, 1280, 1242, 1147, 1112, 1061, 946, 842, 530.  

1
H NMR (500 MHz, chloroform-d, ppm):  5.8-5.7 (br, 1,2 CH=CH2), 5.2-5.1 (br, 1,4 

-CH2-C(CH3)-CH-CH2-), 5.0-4.8 (br, 1,2 CH=CH2), 4.8-4.6 (br, 4,3 C(CH3)-CH2), 3.7 – 

3.5 (br, -CH2-CH2-O-), 3.4 (s, -O-CH3), 3.2 (br, m, -SC(S)S-CH2-(CH2)10-CH3), 2.2-1.8 

(br, CH2 isoprene backbone), 1.7-1.5 (br, isoprene backbone CH3), 1.6 (s, 

O-C(O)-C(CH3)2-S-), 1.4-1.2 (br, -SC(S)S-CH2-(CH2)10-CH3), 0.9 (br t, 

-SC(S)S-CH2-(CH2)10-CH3).  
13

C NMR (75 MHz, chloroform-d, ppm):  178.1, 148.0, 

135.3, 129.1, 125.3, 124.5, 111.6, 72.2, 70.8, 67.0, 63.9, 59.3, 52.1, 50.9, 44.9, 42.3, 40.0, 

38.8, 37.2, 32.2, 31.1, 29.9, 28.5, 27.0, 26.0, 23.7, 23.0, 18.3, 17.5, 16.3, 14.4.  

 Preparation of polymer micelles (8)  In a 100-mL, round-bottom flask equipped 

with a magnetic stirring bar, diblock copolymer 4 (14.8 mg, 8.22 x 10
-6

 mol) was 

dissolved in DMF (15.0 mL), yielding a transparent pale yellow solution.  Water (15 mL) 
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was added dropwise via a syringe pump, complete with vigorous stirring, over a period of 

3 h, resulting in a clear solution.  The mixture was transferred to dialysis tubing (MWCO 

3,500 Da) and was dialyzed against DI water for 3 days to result in 37 mL of micelle 

solution.  For TEM imaging, phosphotungstic acid was used as a negative stain and 

osmium tetroxide (OsO4) as a positive stain.  Final concentration: 0.58 mg/mL.  

Hydrodynamic diameter (DLS): (Dh)i = 154 ± 49 nm, (Dh)v = 93 ± 37 nm, (Dh)n = 54 ± 38 

nm.  Dav(TEM) = 55 ± 18 nm.  H (AFM) = 8 ± 3 nm. 

Preparation of polymer micelles (9)  The same procedure as performed to 

produce micelle solution 8 was followed using diblock copolymer 5 (16.3 mg, 1.91 x 10
-5

 

mol), affording micelle solution 9.  Final concentration: 1.95 mg/mL.  Hydrodynamic 

diameter (DLS): (Dh)i  = 114 ± 9 nm, (Dh)v = 26 ± 4 nm, (Dh)n = 18 ± 4 nm.  Dav (TEM) = 

31 ± 4 nm.  H (AFM) = 4 ± 1 nm. 

Preparation of polymer micelles (10)  The same procedure as performed to 

produce micelle solution 8 was followed using diblock copolymer 6 (5.0 mg, 7.8 x 10
-7

 

mol), affording micelle solution 10.  Final concentration: 3.17 mg/mL.  Hydrodynamic 

diameter (DLS): (Dh)i = 83 ± 12 nm, (Dh)v = 31 ± 8 nm, (Dh)n = 21 ± 6 nm.  Dav(TEM) = 

30 ± 5 nm.  H (AFM) = 4 ± 1 nm. 

Preparation of polymer micelles (11)  The same procedure as performed to 

produce micelle solution 8 was followed using diblock copolymer 7 (20.0 mg, 3.6 x 10
-5

 

mol), affording micelle solution 11.  Final concentration: 1.4 mg/mL.  Hydrodynamic 

diameter (DLS): (Dh)i = 32 ± 9 nm, (Dh)v = 18 ± 4 nm, (Dh)n = 15 ± 4 nm.  Dav(TEM) = 

18 ± 3 nm.  H (AFM) = 2 ± 1 nm. 

Preparation of inverse polymer micelles (12)  In a 100 mL round-bottom flask 

equipped with a magnetic stirring bar, diblock copolymer 4 (13.8 mg, 6.4 x 10
-6

 mol) was 
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dissolved in THF (15.0 mL), yielding a transparent pale yellow solution.  Decane (25 mL) 

was added dropwise via a syringe pump, complete with vigorous stirring, over a period of 

2 h, resulting in an opaque solution.  Final concentration: 0.35 mg/mL.  Hydrodynamic 

diameter (DLS): (Dh)i = 569 ± 142 nm, (Dh)v = 515 ± 160 nm, (Dh)n = 252 ± 167 nm.  

(cylindrical micelles) Dav(TEM) = 34 ± 6 nm, (spherical micelles) Dav(TEM) = 25 ± 3 

nm.  H (AFM) = 11 ± 2 nm. 

Preparation of inverse polymer micelles (13)  The same procedure was 

performed to produce micelle solution 12 was followed using diblock copolymer 5 (13.7 

mg, 1.61 x 10
-5

 mol), affording micelle solution 13.   Final concentration: 0.34 mg/mL.  

Hydrodynamic diameter (DLS): (Dh)i = 556 ± 102 nm, (Dh)v = 641 ± 134 nm, (Dh)n = 434 

± 76 nm.  Dav(TEM) = 117 ± 42 nm.  H (AFM) = 6 ± 1 nm. 

Preparation of inverse polymer micelles (14)  The same procedure was 

performed to produce micelle solution 12 was followed using diblock copolymer 6 (5.9 

mg, 9.2 x 10
-7

 mol), affording micelle solution 14.  Final concentration: 0.20 mg/mL.  

Hydrodynamic diameter (DLS): (Dh)i = 414 ± 122 nm, (Dh)v = 487 ± 187 nm, (Dh)n = 308 

± 84 nm.  Dav(TEM) = 179 ± 54 nm.  H (AFM) = 7 ± 2 nm. 

Preparation of inverse polymer micelles (15)  The same procedure was 

performed to produce micelle solution 12 was followed using diblock copolymer 7 (12.7 

mg, 2.3 x 10
-5

 mol), affording micelle solution 15.  Final concentration: 0.32 mg/mL.  

Hydrodynamic diameter: Dav(TEM) = 356 ± 71 nm.  H (AFM) = 4 ± 2 nm.  DLS did not 

yield suitable correlation for data analysis.   

General procedure for synthesis of PEO112-b-PIp114 for anti-fouling tests (16).  

To a 50 mL bomb-type Schlenk flask equipped with a Teflon coated magnetic stir bar 

was added Ip (4.5201 g, 6.636 x 10
-2

 mol, 175 eq), macro chain transfer agent 2, (2.0329 
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g, 3.789 x 10
-4

 mol, 1.0 eq), and di-tert-butylperoxide (0.0170 g, 1.16 x 10
-4

 mol, 0.3 eq), 

along with 1,4-dioxane (15.5 mL).  The mixture was degassed via 3 freeze-pump-thaw 

cycles.  Upon the final thaw the Schlenk flask was backfilled with Ar and placed in a 

temperature-regulated mineral oil bath set at 125 °C and left to react for 24 h.  After 

cooling the residual solvent and monomer were removed in vacuo.  Leftover contents of 

the flask were dissolved in a minimal amount of dichloromethane and precipitated 3 

times into 1L 1:1 methanol:water producing a transparent yellow oil.  The excess solvent 

was decanted off and the product was dried in vacuo, yielding 2.931 g (94% yield based 

on 24% conversion) of sticky yellow powder.  Mn
NMR

 = 14 kDa, Mw
GPC

 = 40 kDa, Mn
GPC

 

= 28 kDa, Mw/Mn = 1.40.  IR (cm
-1

): 3020-2760, 1726, 1665, 1644, 1466, 1449, 1343, 

1280, 1242, 1148, 1114, 1061, 964, 842, 530.  
1
H NMR (500 MHz, chloroform-d, ppm): 

 5.8-5.7 (br, 1,2 CH=CH2), 5.2-5.1 (br, 1,4 -CH2-C(CH3)-CH-CH2-), 5.0-4.8 (br, 1,2 

CH=CH2), 4.8-4.6 (br, 4,3 C(CH3)-CH2), 3.7 – 3.5 (br, -CH2-CH2-O-), 3.4 (s, -O-CH3), 

3.2 (br, m, -SC(S)S-CH2-(CH2)10-CH3), 2.2-1.8 (br, CH2 isoprene backbone), 1.7-1.5 (br, 

isoprene backbone CH3), 1.6 (s, O-C(O)-C(CH3)2-S-), 1.4-1.2 (br, 

-SC(S)S-CH2-(CH2)10-CH3), 0.9 (br t, -SC(S)S-CH2-(CH2)10-CH3).  
13

C NMR (75 MHz, 

chloroform-d, ppm):  147.8, 135.1, 125.2, 124.5, 111.5, 72.2, 70.8, 69.3, 63.7, 62.2, 

59.3, 52.2, 44.8, 40.0, 38.7, 32.2, 31.0, 28.5, 26.9, 23.7, 19.0, 16.3, 14.4. 

Procedure for the synthesis of UV-promoted thiol-ene crosslinked PEO-b-PIp 

coatings (17).  A large batch of PEO112-b-PIp114 thiolene crosslinked films was prepared 

by first weighing the polymer (0.7544 g, 9.2 x 10
-5

 mol, 8200 Da), decanedithiol (0.6349 

g, 3.1 x 10
-3

 mol, 1.5 eq SH/alkene), 1-hydroxycyclohexylphenyl ketone (0.0680 g, 5 wt 

%) and 15 mL of 1,4 dioxane into a scintillation vial and stirring at 60 ºC for 20 min to 

ensure homogeneity of all the components.  Argon was bubbled through the solution for 5 
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minutes, then solution was cast (ca. 1 mL) onto vinyltrimethoxysilane-modified glass 

slides and allowed to evaporate for 10 minutes.  Slides were then passed through a Fusion 

UV 300S conveyor unit (H bulb) at 1 m/min for three passes to ensure complete 

crosslinking.  Post-crosslinking, the films were incubated in artificial seawater for 72 

hours, followed by copious rinsing with distilled water, followed by air drying. 
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Results and Discussion 

Synthesis and characterization of PEO-b-PIp block copolymers 

Mono-functional RAFT PEO macro-CTAs 2 and 3 were prepared through amidation 

reaction between acid-functionalized RAFT agent DDMAT, 1, and monoamino-

functionalized PEO polymers of 5 and 2 kDa molecular weight, respectively (Scheme 4-

1).   

Scheme 4-1.  Preparation of PEO macro-CTAs 2 and 3. 

 

The macro-CTAs were obtained in modest yield, moderate losses likely occurred 

during the chromatography required to purify the final product.  Both the α-methoxy and 

the ω-dodecyl chain ends were visible in the 
1
H NMR spectra and the integration of their 

respective peaks agreed with a 1:1 theoretical ratio.  The PEO macro-CTAs, therefore, 

showed complete trithiocarbonate functionality by 
1
H NMR spectroscopy, which allowed 

for polymerization of isoprene for the formation of amphiphilic block copolymers.   

Differing degrees of isoprene chain extension from the two macro-CTAs gave a series 

of block copolymers having variation in the hydrophilic-hydrophobic balance and overall 

polymer chain lengths, by control of the relative individual block lengths.  Two lengths of 

poly(isoprene) were chain extended from each PEO precursor, 2 and 3, (Scheme 4-2), 

using standard RAFT conditions.  The initial reaction mixtures of 2 or 3 in 1,4-dioxane, 

to which is added isoprene and then t-butyl peroxide, existed as opaque heterogeneous 
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poorly dissolved solutions.  After only ca. 1 h of heating at 125 °C, as the polymerization 

progressed, the solutions became transparent, and had reached ca. 25-30% conversion of 

isoprene after 24 h.  The polymers were obtained in high yields by precipitation into 

methanol or cold diethyl ether, with the exception of polymer 5, which required the 

addition of water to methanol.  For polymer 5, the high weight fraction of PEO rendered 

methanol inadequate as a non-solvent for the block and water had to be added to allow for 

the precipitation to occur.  Polymers 4-7 had interesting solubility properties across a 

wide range of solvent polarity showing a potential ability to spontaneously form 

assemblies in different solvents.  This finding triggered our consideration of the invertible 

nature that the assemblies might possess. 

Scheme 4-2.  Preparation of PEOn-b-PIpm polymers 

 

Both 
1
H and 

13
C NMR spectroscopy were used to determine the compositions of the 

polymers (Figures 4-1 and 4-2) and to confirm the removal of non-reacted isoprene 

monomer.  The final degree of polymerization of isoprene was determined using 
1
H NMR 

by integration of the vinyl peaks of the polyisoprene block against the methoxy peak of 

the PEO chain end.   
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Figure 4-1.  
1
H NMR spectra (500 MHz, CDCl3 and CD2Cl2) for 5 kDa PEO-block 

series, macro-CTA 2, and PEO-b-PIp block copolymers 4 and 5 (left) and 2 kDa PEO-

block series, macro-CTA 3, and PEO-b-PIp block copolymers 6 and 7 (right).   

 

 

Figure 4-2.  
13

C NMR spectra of 5k series polymers (left) and 2k series polymers (right).  

Detailed assignments can be found in the experimental section. 
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Table 4-1.  Molecular weight, polydispersity, and thermal analysis data for PEO macro-

CTAs and PEO-b-PIp block copolymers. 

Polymer Mn
NMR

 

(Da) 

Mn
GPC

 

(Da)
a
 

PDI
a
 Tg (°C)

b
 Tm (°C)

c
 Tdecomp (°C) 

2 7,800 7,600 1.04 n/a 61.0 395.3 

3 2,400 3,200 1.03 n/a 50.4 377.5 

4 18,000 18,000 1.28 -60.0 56.0 401.8 

5 8,500 8,600 1.34 -61.0 55.3 399.2 

6 6,400 6,500 1.29 -62.7 47.3 397.0 

7 5,500 5,300 1.30 -64.7 49.0 399.5 

a
Pre-dialysis value.  

b
Polyisoprene region.  

c
Poly(ethylene oxide) region. 

 

In addition, thermogravimetric analysis (TGA, Figure 4-3) and differential scanning 

calorimetry (DSC, Figure 4-4) were performed to assess thermal properties for the block 

copolymers.  Results are presented 

 

 



114 

Figure 4-3.  Thermogravimetric analysis (TGA) mass loss and derivative mass loss plots 

of 2k series (top) and 5k series (bottom). 
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Figure 4-4.  Differential Scanning Calorimetry (DSC) plots of 2k series (left) and 5k 

series (right) zoomed in on the PEG Tm region (full plot not shown). 

 

with molecular weight and polydispersity data in Table 4-1.  Longer block lengths of both 

PEO and PIp resulted in higher glass transition temperatures.  As would be expected, 

incorporation of isoprene resulted in lower melting transition temperatures of the PEO 

block.  

GPC Analysis 

In order to better understand the relationship between polymer size/composition and 

structure obtained during solution assembly, accurate determination of block sizes must 

be obtained.  GPC analysis of the PEO macro-CTAs and block copolymers (Figure 4-5) 

showed that unreacted PEO macro-CTA remained present in all block copolymer 

samples.  The elution volume of the low molecular weight shoulder present in the 

chromatogram of the block copolymers corresponded to that of the PEO macro-CTA.  

Multi-peak mathematical deconvolution of the peaks (Figure 4-6) enabled the calculation 
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of Mn for both the block copolymer and remaining PEO macro-CTA with respect to the 

polystyrene calibration curve (Table 4-2).  The molecular weight calculated for the 

shoulder corresponded to that obtained for the PEO macro-CTA itself. 

Figure 4-5.  THF-GPC chromatograms of 5 kDa PEO-block series, macro-CTA 2, and 

PEO-b-PIp block copolymers 4 and 5 (left) and 2 kDa PEO-block series, macro-CTA 3, 

and PEO-b-PIp block copolymers 6 and 7 (right). 

 

A variety of factors can cause incomplete chain extension or blocking including low 

functionality of the chain-transfer agent or low chain-extension efficiency.  It is not 

believed that low functionality of the macro-CTAs can be a cause of incomplete blocking 

in this case.  Incomplete amidation reaction during preparation of the PEO macro-CTAs 

would leave PEO-NH2 in the reaction mixture unable to participate in further 

polymerization.  
1
H NMR analysis of the PEO macro-CTAs after column 

chromatography showed good correlation between methoxy chain-end and dodecyl chain-

end of the trithiocarbonate and demonstrated high functionalization of the macro-CTAs.  

However, it is believed that incompatibility between the hydrophilic macro-CTA and 

hydrophobic isoprene monomer could be a major contributor to low or slow chain-

transfer in this case.  Due to the presence of unreacted PEO macro-CTA, the DP of 
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isoprene as calculated by 
1
H NMR is inexact.  In order to calculate the actual DP of 

isoprene the unreacted PEO macro-CTA should be removed.  Dialysis was performed on 

each of the copolymers against water for five days to attempt to remove unreacted starting 

material, with mixed results.  Therefore, an estimation of the amount of unreacted PEO 

macro-CTA present and blocking efficiency was carried out through mathematical 

deconvolution of GPC chromatograms.   

 

Table 4-2: Mn values for low and high molecular weight peaks, dn/dc of block 

copolymers and blocking efficiency calculated from multi-peak mathematical 

deconvolution of GPC chromatograms and other GPC data. 

Polymer Mn, shoulder
GPC

 (Da) Mn, block
GPC

 (Da) dn/dc 
Blocking 

Efficiency 

4 7,700 22,900 0.1057 0.46 

5 4,200 11,800 0.1029 0.52 

6 3,100 8,300 0.1076 0.63 

7 3,000 7,000 0.0911 0.65 

 

Following the method used by Gao et al.(66), gel permeation chromatography was used 

to estimate the chain extension efficiency of the PEO macro-CTAs for each 

polymerization.  Mathematical deconvolution of the GPC chromatograms provided a 

multi-peak fitting for all polymer peaks with a low molecular weight peak corresponding 

to the unreacted macro-CTA and one or several peaks corresponding to the actual block 

copolymer.  Using the polystyrene calibration of the DRI detector it was possible to 

calculate Mn for each component individually, MCTA the molecular weight of the 
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remaining PEO macro-CTA and Mblock the molecular weight of the block copolymer.  

(dn/dc) values for PEO macro-CTAs and for pure polyisoprene were determined as 

0.0740 and 0.1246 respectively using response vs. concentration plots from the 

differential refractometer.   
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Figure 4-6.  Example of multi-peak mathematical deconvolution of GPC chromatogram 

of polymer 7. blockA  corresponds to the area of peaks 1 + 2 and CTAA  corresponds to the 

area of peak 3. 

 

(dn/dc) values for the “pure” block copolymers were calculated following equation 1 

using the calculated Mn of the peaks (Table 4-2) and the (dn/dc) values for PEO macro-

CTAs and pure polyisoprene determined earlier.   

 IP

IP

CTA

CTA

block dc

dn
w

dc

dn
w

dc

dn



























 (1) (67) 
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with CTAw  and IPw weight fractions of PEO-CTA and polyisoprene in block copolymer 

sample, calculated using Mn of the CTA peak and block copolymer peak (Table 4-2). 

The instantaneous response from the DRI detector at a given retention volume i, iR , is 

given by equation 2.  The area of a peak on the GPC chromatogram, PA , can be expressed 

as a sum of the response from the DRI detector over the elution volume of the peak, 

equation 3.  

 
i

i

i c
dc

dn
kR 










 (2) 

with k  DRI detector constant, idc

dn









 specific refractive index of the fraction (mL/g) and 

ic  instantaneous mass concentration in retention volume i (g/mL). 

 

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






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






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i

i

i

N

i

i

i

N

i

iP m
dc

dn
kVc

dc

dn
kVRA

000

..

 (3) 

with Vcm ii   instantaneous mass of polymer in retention volume i  and V  volume 

fraction measured. 

Equation 3 can be simplified to express PA  as a function of dn/dc of the polymer, Mn of 

the polymer and number of moles of polymer in the sample.  The area of the peak 

corresponding to the unreacted macro-CTA, CTAA , and the total area of the peak 

corresponding to the block copolymer, blockA , have been expressed in this way in equation 

4 and 5, respectively.   

 
 CTACTA

CTA

CTA nM
dc

dn
kA 










 (4) 

with CTAn  number of moles of remaining macro-CTA. 
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 blockblock

block

block nM
dc

dn
kA 










 (5) 

with blockn  number of moles of block copolymer in the sample. 
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 (6) 

Finally, the mole fraction of block copolymer or blocking efficiency, bx , can be 

developed from equation 4 and 5 to get equation 6 in which all terms have either been 

previously calculated or measured from the GPC chromatogram.  Using equation 6, it was 

possible to calculate the blocking efficiency for all polymers (Table 4-2).  The blocking 

efficiency was estimated to be around 50% for the 5 kDa and 64% for the 2 kDa PEO 

macro-CTA polymer series.  The length of the PEO macro-CTA seems to have an 

influence on the blocking efficiency for the chain extension of isoprene, however, the 

effect of the PEO macro-CTA chain length on the extension of other hydrophobic 

monomers has not yet been reported.   

Micellization of PEO-b-PIp in both aqueous and organic solvent 

Block copolymers 4-7, respectively, were assembled into micelles using solvent-

induced micellization procedures, giving water-stable micelles 8-11 and decane-stable 

inverse assemblies 12-15 (Scheme 4-3).  The resulting structures were analyzed via DLS, 

AFM and TEM to evaluate the type of morphologies obtained and their domain sizes 

(Tables 4-3 and 4-4).   
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Scheme 4-3.  Schematic illustrations of the aqueous assembly of 4-7 to give micelles 8-

11, respectively, and decane assembly of 4-7 to give inverse micellar assemblies 12-15, 

respectively. 
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Table 4-3.  Micellization data (aqueous solution). 

Micelle Dh (Int.), nm Dh (Vol.), nm Dh (Num.), nm D (TEM)
a
, nm Dcore (TEM)

b, c
, nm Height (AFM), nm 

8 154 ± 49 93 ± 37 54 ± 38 55 ± 18 30 ± 6 8 ± 3 

9 114 ± 9 26 ± 4 18 ± 4 31 ± 4 13 ± 3 4 ± 1 

10 83 ± 12 31 ± 8 21 ± 6 30 ± 5 24 ± 5 4 ± 1 

11 32 ± 9 18 ± 4 15 ± 4 18 ± 3 8 ± 2 2 ± 1 

a
 Phosphotungstic acid stain; 

b
 OsO4 stain; 

c
 See Figure 4-9 for images 

 

Table 4-4.  Inverse micellization data (decane solution). 

Micelle Dh (Int.), nm Dh (Vol.), nm Dh (Num.), nm D (TEM)
a
, nm Height (AFM), nm 

12 569 ± 142 515 ± 160 252 ± 167 34 ± 6 
c
 

25 ± 3 
d
 

11 ± 2 

13 556 ± 102 641 ± 134 434 ± 76 -
e
 6 ± 1 

14 414 ± 122 487 ± 187 308 ± 84 -
e
 7 ± 2 

15 -
b
 -

b
 -

b
 -

e
 4 ± 2 

a
 OsO4 stain;

 b
 Insufficient correlation; 

c
 cylindrical inverse micelle; 

d
 spherical inverse micelle; 

e 
the dimensions of the 

assemblies could not be accurately determined, as they are not confirmed as spherical or vesicular in nature. 
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Aqueous-based micellization was achieved through the dissolution of block copolymers 

4-7 into DMF followed by the slow addition of an excess of water.  The micellar 

solutions, 8-11, were then dialyzed against nanopure water for several days to remove 

traces of organic solvent.  All of the block copolymers readily formed mono-modal 

aqueous spherical micelles, whose particle diameters followed trends relative to the 

parent copolymer, e.g. longer block length PEO relative to PIp gave smaller particles, and 

shorter overall polymer chain length afforded smaller particle assemblies.  These trends, 

summarized in Table 4-3, can be easily observed through DLS data, Figure 4-7, and on 

both negatively- and positively-stained TEM images (Figures 4-8 and 4-9, respectively). 
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Figure 4-7.  Typical DLS plots and corresponding correlation curve obtained for micelle 

solution 8 produced from polymer 4 (upper left), micelle solution 9 produced from 

polymer 5 (upper right), micelle solution 10 produced from polymer 6 (lower left), and 

micelle solution 11 produced from polymer 7 (lower right). 
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Figure 4-8.  TEM images of PEO-b-PIp diblock copolymer aqueous micelles 8, 9, 10 and 

11 using phosphotungstic acid as negative stain. 
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Figure 4-9.  TEM images of aqueous micelles of PEO-b-PIp block copolymers with 

OsO4 staining.  Core diameter (PIp) is listed in the lower left corner of each image. 

 

As measured by TEM, block copolymer 4 formed large particles of 55 ± 18 nm 

diameter with slight irregularities, whereas 5 formed more regularly-shaped particles of 

31 ± 4 nm diameter, with the smaller deviation reflecting the particle quality.  The 

particles were also analyzed by AFM to obtain an estimate of particle height on a mica 

substrate (Figure 4-10).  Although the TEM and DLS diameter values were in good 
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agreement, the AFM-measured heights were substantially low, which is likely due to an 

affinity of the PEO shell for the hydrophilic mica surface, perhaps combined with PEO 

crystallization events that occur upon drying, resulting in a spreading and reorganization 

of micelle structure as has been noted before for this block copolymer system by Glynos 

et al.(45)  The combination of these data demonstrates that the PEO-b-PIp block 

copolymers can readily form well-defined micelles of varying sizes in aqueous solution. 

Figure 4-10.  AFM images PEO-b-PIp diblock copolymer aqueous micelles 8, 9, 10 and 

11, together with average height values. 

 

To determine how the polymers assemble in hydrophobic solvent, micellization 

conditions were altered to induce formation of inverse micelles in decane.  Decane 

provides a hydrophobic non-reactive solvent environment with a high boiling point.  



129 

 

Inverse assemblies, 12-15, of block copolymers 4-7, respectively, were obtained through 

dissolution the copolymers into THF followed by the slow addition of an excess of 

decane.  It should be noted that post-assembly dialysis was not performed, as had been 

done for the aqueous micelles, due to solvent cost.  All solutions had minute amounts of 

precipitate that appeared post-assembly.   

Figure 4-11.  TEM images of PEO-b-PIp diblock copolymer inverse assemblies 12 using 

OsO4 as positive stain. 
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Each block copolymer readily formed assemblies of interesting sizes and morphologies, 

yet each was heterogeneous.  DLS analysis of the assemblies 12-14 showed larger 

structures, in comparison to the aqueous assemblies (see Figure 4-12 for representative 

DLS figures or Table 4-4 for listing).  In the case of assembly 12, sub-100 nm structures 

were also present.  DLS examination of inverse micelle 15 yielded insufficient 

correlation, and further attempts to inspect the solution post-centrifugation and filtration  

Figure 4-12.  Typical DLS plots and corresponding correlation curve obtained for inverse 

assembly solution 11 produced from polymer 4 (left), assembly 12 produced from 

polymer 5 (center), assembly 13 produced from polymer 6 (right).  Polymer 7 did not 

produce well-correlated inverse assemblies by DLS. 

 

yielded no results.  TEM analysis of assembly 12, stained using OsO4-stain, which 

selectively stains PIp, showed bundled mixtures of long cylinders and sub-100 nm 

spheres (Table 4-4) which was also confirmed by DLS and AFM (Figures 4-11 and 4-13).  

AFM and DLS analysis of assemblies 13-15 showed larger aggregates (Figure 4-13 and 

Table 4-4), consistent with vesicles, but the exact nature of these supramolecular 

structures could not be confirmed by TEM.  Due to the difficulties in performing cryo-
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TEM with high boiling and crystallizable solvents, such as decane, attempts to obtain 

cryo-TEM images were unsuccessful.  The assembly of PEO-b-PIp block copolymers in 

hydrophobic, organic solvent resulted in the formation of either a mixture of cylindrical 

and spherical morphologies or large aggregates of sizes consistent with vesicular 

structures, depending on the block lengths. 

Figure 4-13.  AFM images of PEO-b-PIp diblock copolymer inverse assemblies 12, 13, 

14 and 15. 

 

PEO-b-PIp Anti-fouling coatings 

A large batch of PEO-b-PIp (16) was synthesized and characterized in a similar manner 

to the previous polymers (see Figure 4-14 for NMR).  The polymer was then crosslinked  
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Figure 4-14.  PEO112-b-PIp114 
1
H NMR spectrum (left) and 

13
C NMR spectrum (right). 

 

across several dithiol concentrations (Figure 4-15) using UV-promoted thiol-ene methods 

(Scheme 4-4), and in a large batch (17) of a single dithiol concentration.  The films were  
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Scheme 4-4.  PEO-b-PIp UV-promoted thiol-ene crosslinking with 1,10 decanedithiol.  
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Figure 4-15.  IR spectra of UV-promoted thiol-ene crosslinked PEO-b-PIp films at 

varying dithiol content.  The specific bands highlighted are the S-H stretch at ca. 2500 

cm
-1

 and the =CH2 wag at ca. 840 cm
-1

 

 

optically transparent across all dithiol concentrations, however upon wetting the films 

would take on an opaque character.  The surfaces were interesting on a nanoscale, as 

probed by AFM (Figure 4-16) in both the dry and wet state.  The PEO-b-PIp coatings (1.5  

 

Figure 4-16.  AFM images of PEO-b-PIp crosslinked films at 1.5 eq SH/alkene 

concentration of dithiol, both in dry state (a) and post-1 hr minute artificial seawater 

incubation (b). 
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eq SH/alkene crosslinked) were tested against four fluorescently tagged (Alexa-Fluor 

488) biomolecules (0.8-1.3 tags/ biomolecule):  Bovine Serum Albumin (BSA), 

Lipopolysaccharides from E. coli (LPSE) and S. minnesota (LPSS), and Lectin from C. 

Fragile (CFL).  The images were analyzed using Image J software and the histograms 

were transformed into percent fluorescence values (see Figure 4-17).  Because there was 

  

Figure 4-17.  Fluorescence histograms of the (left) glass control sample, (center) 

Intersleek control and (right) PEO-b-PIp thiol-ene crosslinked surface. 

 

approximately 1 tag/biomolecule, quantitative correlation between fluorescence and the 

number of biomolecules adsorbed onto surfaces could be quantified and compared.  

Results demonstrated that the test coatings performed comparably to a commercial 

example (Intersleek 900) and much better than glass controls (see Figure 4-18), a finding 

which could show potential for marine anti-fouling ability. 
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Figure 4-18.  Fluorescence of various tagged-biomolecules on PEO-b-PIp thiol-ene 

crosslinked surface versus Intersleek 900 and glass controls. 

 

Conclusions 

Highly interesting, multi-functional, amphiphilic PEO-b-PIp block copolymers were 

prepared via RAFT polymerization, for which challenges were encountered, yet well-

defined structures were obtained.  In this study, two RAFT-capable PEO macro-CTAs, 

having Mn values of 2 and 5 kDa, were prepared and used for the polymerization of 

isoprene, affording block copolymers of varied lengths and compositions.  GPC analysis 

of the PEO macro-CTAs and block copolymers showed remaining unreacted PEO macro-

CTA.  Following analysis of the GPC chromatograms using mathematical deconvolution, 
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the blocking efficiency was estimated to be around 50% for the 5 kDa PEO macro-CTA 

and 64% for the 2 kDa CTA.  The resultant polymers were also investigated for their 

abilities to self assemble in both water and decane, and the resulting regular and inverse 

assemblies, respectively, were analyzed with DLS, AFM, and TEM to ascertain their 

dimensions and properties.  Assembly of PEO-b-PIp block copolymers in aqueous 

solution resulted in uniform micelles of varying sizes while the assembly in hydrophobic, 

organic solvent resulted in the formation of heterogeneous morphologies, including large 

aggregates, cylindrical and spherical structures.  Thiol-ene crosslinked films of PEO-b-

PIp showed promise against fouling biomacromolecules in the form of fluorescently-

tagged proteins, lipopolysaccarhides and lectin. 

 In an attempt to duplicate the success of this polymer system, an alternative 

hydrophilic polymer, poly(N-vinylpyrrolidinone) (PNVP), was substituted in the place of 

PEO as can be seen in Chapter 4.  This new polymer, PNVP-b-PIp, has advantages over 

PEO-b-PIp in that the lactam of PNVP is highly chemically and oxidatively resistant 

(compared to PEO, which is oxidatively susceptible).  The polymer was crosslinked using 

a different methodology, involving vulcanization using sulfur monochloride, leading to 

interesting films that were investigated using advanced surface characterization 

techniques such as XPS and IRIR imaging. 
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Chapter 4 

Amphiphilic Crosslinked Networks Produced From the Vulcanization 

of Nanodomains Within Thin Films of Poly(N-vinylpyrrolidinone)-b-

Poly(isoprene) 

[Portions of this work have been published previously as Jeremy W. Bartels, Peter L. 

Billings, Biswajit Ghosh, Marek W. Urban, C. Michael Greenlief, and Karen L. Wooley 

Langmuir, 2009, 25(16), 9535–9544] 

ABSTRACT  

Diblock copolymers of poly(N-vinylpyrrolidinone) (PNVP) and poly(isoprene) (PIp) 

were employed as building blocks for the construction of complex crosslinked networks 

that present surfaces having amphiphilic character, imparted by covalent trapping of 

compositionally heterogeneous phase-separated morphologies.  The kinetics for the 

homopolymerization of N-vinylpyrrolidinone by RAFT techniques was studied, and the 

initially obtained PNVP-based macro-RAFT agents were then extended to PNVP-b-PIp 

block copolymers.  Therefore, the PNVP chain length was held constant at a number-

averaged degree of polymerization of 120, while the PIp chain length was varied to 

afford a series of three PNVP120-b-PIpx block copolymers (where x = 710, 53 and 25).  

These materials were then crosslinked individually using sulfur monochloride, to produce 

complex amphiphilic networks.  The nanoscopically-resolved topographies of these films 
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were analyzed using atomic force microscopy, and their compositional heterogeneities 

were probed by X-ray photoelectron spectroscopy and internal reflectance infrared 

imaging techniques.  Additionally, the surfaces were analyzed to determine the extent of 

surface reorganization under aqueous conditions.   
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Introduction 

Recent work in non-toxic fouling release or anti-fouling coatings has demonstrated that 

a wide array of properties can influence anti-biofouling ability.  Properties such as 

surface roughness,(1-3) topography,(4) free energy,(5, 6) polymer composition,(7-9) and 

the mechanical properties of the bulk substrate(10) all play large roles in inhibiting or 

promoting adhesion of biomacromolecules and, thereby, whole organisms, onto 

substrates.(11)  An interesting switching behavior between hydrophobicity and 

hydrophilicity can be generated for responsive nanocomposite surfaces,(12) whereas we 

have focused on coincident combinations of hydrophobic and hydrophilic components in 

complex networks.  Surfaces made from amphiphilic crosslinked networks of 

poly(ethylene glycol) (PEG) and hyperbranched fluoropolymers(13-17) or linear block 

fluorocopolymers containing PEG-based segments,(7, 8, 18-20) have demonstrated 

excellent anti-fouling ability.  Polymers composed of polydimethylsiloxane (PDMS),(9, 

10, 21) hybrid xerogels,(22) and zwitterionic block copolymers(23-25) undergo self-

cleaning in water.  Interestingly, lithographically micropatterned PDMS surfaces further 

inhibit fouling organisms from attaching to surfaces,(2, 26) indicating that surface 

features are as important as composition in developing anti-biofouling coatings.  

Therefore, the key message has been that high degrees of complexity are needed to 

combat the various mechanisms that fouling organisms rely upon for adhesion to 

substrates. 

Previous work in our lab has shown that hyperbranched fluoropolymers crosslinked 

with polyethylene glycol (HBFP-PEG) form phase-segregated domains on the nano- and 

microscales.(13-17, 27)  The formation of an amphiphilically-, morphologically- and 
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topographically-complex surface environment as a result of the phase segregation is 

believed to be responsible for inhibiting biomacromolecule adsorption and adhesion of 

Ulva algae spores.(21, 28, 29)  Despite HBFP-PEG’s excellent ability to resist adhesion, 

the fluorinated polymer domain is relatively expensive and difficult to produce, and has 

unknown toxicity or bioaccumulation data, similar to most fluoropolymers currently 

being researched in this area.  PEG, while relatively cheap and available, is known to 

undergo oxidative degradation,(30) which would be problematic in the highly oxygenated 

marine environment over prolonged periods of time.  Our most recent interest has been in 

the duplication of the successes of the amphiphilic HBFP-PEG system, both in anti-

biofouling ability and interesting mechanical(31)
,
(32) and other related properties,(33) 

while exploring the importance of the particular hydrophobic and hydrophilic polymer 

compositions, expanding the types of materials that can achieve similar degrees of 

surface complexities, and doing so by using common, commercially-available 

components.   

This strategy involved the synthesis of a non-fluorinated, non-PEGylated analog of the 

HBFP-PEG system that was expected to exhibit similar surface topography and 

compositional heterogeneity.  In addition to replacing the compositions of the polymer 

components, our new design replaces the combination of hyperbranched and linear 

architectures with two linear structures and, moreover, preconnects those two units into a 

block copolymer precursor, providing an amphiphilic block polymer coating that is 

inexpensive and mechanically tough with potential anti-biofouling character.  It was 

hypothesized that the non-ionic polar polymer, poly(N-vinylpyrrolidinone) (PNVP), 

would work as a durable replacement for the hydrophilic PEG of the original system,(34-
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36) and that the hydrophobic polymer polyisoprene (PIp) could be used as a low surface 

energy, potentially multi-crosslinkable analog of HBFP.(37)  In the HBFP-PEG system, 

two homopolymers were blended together and crosslinked during their phase segregation, 

driven by differences in composition and macromolecular topology.  The highly branched 

architecture of the HBFP, which provided large numbers of chemically reactive chain 

ends, allowed for rapid, kinetic trapping of the phase segregation events before 

equilibrium was reached.  The new design differs not only in the chemical compositions 

(PIp for HBFP and PNVP for PEG), but also in the macromolecular architecture.  Rather 

than working with two homopolymers, we chose to employ a block copolymer, which 

restricts the degree of phase segregation by covalently pre-attaching the two incompatible 

hydrophobic and hydrophilic polymer chains.   

A major synthetic challenge, then, was faced, in the need to prepare the block 

copolymer structure comprised of PNVP and PIp chain segments.  The reactivities of 

NVP and Ip differ substantially, and monomer reactivity and choice of polymerization 

methodology both play roles in the ability to achieve well-controlled polymerizations and 

afford well-defined block copolymers.  NVP has been reported to be polymerized in a 

controlled radical method by reversible addition-fragmentation chain transfer (RAFT) 

polymerization using as a chain transfer agent, a xanthate,(34, 35) a dithiocarbamate,(38) 

or, in one instance involving copolymerization with acrylates, a trithiocarbonate.(39)  

Controlled radical polymerization of isoprene was initially reported using nitroxide 

mediated polymerization,(40-42) and also recently has been reported to be performed 

with RAFT, specifically with trithiocarbonate chain transfer agents.(43-45)  Since control 

of both blocks with any one RAFT agent is not yet possible, the decision was made to use 
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a trithiocarbonate, as this functionality is known to afford good control for the 

polymerization of isoprene and to offer a reasonable level of control for the 

polymerization of NVP.  This single RAFT agent was selected as a compromise.   

The final amphiphilic block copolymers were then investigated as micro- and 

nanoscopically-resolved amphiphilic crosslinked networks.  Coincident with the phase-

segregation process, crosslinking was performed by vulcanization methods using sulfur 

monochloride, previously reported for PIp block copolymers(37) and other block 

copolymer-containing polydienes.(46)  The existence of micro- and nano-domains 

enriched in each of the components of PNVP or PIp and their ability to undergo dynamic 

reorganization upon swelling with water were confirmed using X-ray photoelectron 

spectroscopy (XPS), internal reflectance infrared imaging (IRIRI) spectroscopy, and 

atomic force microscopy (AFM). 

 

Experimental 

Instrumentation.  Infrared spectra were obtained on a Perkin–Elmer Spectrum BX FTIR 

system as neat films on NaCl plates.  
1
H NMR (300 and 500 MHz) and 

13
C-NMR (75 and 

125 MHz) spectra were recorded on either a Varian Mercury 300 MHz or Inova 500 

MHz spectrometer using the solvent as internal reference.  Tetrahydrofuran-based gel 

permeation chromatography (GPC(THF)) was conducted on a Waters Chromatography, 

Inc. (Milford, MA) model 1515, equipped with a Waters model 5414 differential 

refractometer, a Precision Detectors, Inc. (Bellingham, MA) model PD-2026 dual-angle 

(15 º and 90 º) light scattering detector and a three-column set of Polymer Laboratories, 

Inc. (Amherst, MA) gel mixed-bed styrene-divinylbenzene columns (PLgel 5µm Mixed C, 
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500 Å, and 10
4
 Å, 300 x 7.5 mm columns).  The system was equilibrated at 35 ºC in 

THF, which served as the polymer solvent and eluent (flow rate set to 1.00 mL/min).  

Polymer solutions were prepared at a known concentration (ca. 3 mg/mL) and an 

injection volume of 200 µL was used.  Data collection was performed with Precision 

Detectors, Inc. Precision Acquire software.  Data analysis was performed with Precision 

Detectors, Inc. Discovery 32 software.  Inter-detector delay volume and the light 

scattering detector calibration constant were determined from a nearly monodisperse, 

linear polystyrene standard (Pressure Chemical Co., Mp = 90,000 g/mol, Mw/Mn < 1.04).  

The differential refractometer was calibrated with standard polystyrene material (SRM 

706 NIST), of known refractive index increment dn/dc (0.184 mL/g).  The dn/dc values 

of the analyzed polymers were then determined from the differential refractometer 

response.  N,N-Dimethylformamide-based gel permeation chromatography (GPC(DMF)) 

was conducted on a Waters Chromatography, Inc. (Milford, MA) system equipped with 

an isocratic pump model 1515, a differential refractometer model 2414, and a two-

column set of Styragel HR 4 and HR 4E 5 µm DMF 7.8 × 300 mm columns.  The system 

was equilibrated at 70 °C in pre-filtered DMF containing 0.05 M LiBr, which served as 

polymer solvent and eluent (flow rate set to 1.00 mL/min).  Polymer solutions were 

prepared at a concentration of ca. 3 mg/mL and an injection volume of 200 µL was used.  

Data collection and analysis was performed with Empower Pro software (Waters, Inc.).  

The system was calibrated with poly(ethylene glycol) standards (Polymer Laboratories, 

Amherst, MA) ranging from 615 to 442,800 Da.   

Glass transition temperatures (Tg) were measured by differential scanning calorimetry 

on a Mettler-Toledo DSC822
e
 (Mettler-Toledo, Inc., Columbus, OH), with a heating rate 
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of 10 ºC/min.  Measurements were analyzed using Mettler-Toledo Star SW 7.01 

software.  The Tg was taken as the midpoint of the inflection tangent, upon the third 

heating scan.  Thermogravimetric analysis was performed under N2 atmosphere using a 

Mettler-Toledo model TGA/SDTA851
e
, with a heating rate of 5 ºC/min.  Measurements 

were analyzed using Mettler-Toledo Star SW 7.01 software.   

Tapping-mode AFM measurements were conducted in air with a Nanoscope III 

BioScope system (Digital Instruments, Santa Barbara, CA) operated under ambient 

conditions with standard silicon tips [type, OTEPSA-70; length (L), 160 μm; normal 

spring constant, 50 N/m; resonant frequency, 246–282 kHz].  Contact angles were 

measured as static contact angles with the sessile drop technique(47) with a Tantec CAM 

micro-contact-angle meter and the half-angle measuring method. Advancing and receding 

contact angles (θa and θr) of 18 MΩ·cm
-1

 nanopure water were measured on the films by 

placing a 2 uL drop on the surface, then increasing or decreasing the drop size by 1 uL, 

respectfully.  The reported values are an average of five such measurements on different 

regions of the same sample.  Hydrodynamic diameters (Dh) and size distributions for the 

micelles in aqueous solutions were determined by dynamic light scattering (DLS).  

Dynamic light scattering measurements were conducted with a Brookhaven Instruments, 

Co. (Holtsville, NY) DLS system equipped with a model BI-200SM goniometer, BI-

9000AT digital correlator, and a model EMI-9865 photomultiplier, and a model Innova 

300 (Coherent Inc., Santa Clara, CA), or a model 95-2 (Lexel, Corp.; Farmindale, NY) 

Ar ion laser operated at 514.5 nm.  Measurements were made at 20 ± 1°C.  Prior to 

analysis, solutions were filtered through a 0.22 μm Millex-GV PVDF membrane filter 

(Millipore Corp., Medford, MA) and then centrifuged in a model 5414 microfuge 
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(Brinkman Instruments, Inc., Westbury, NY) for 10 min to remove dust particles.  

Scattered light was collected at a fixed angle of 90°.  The digital correlator was operated 

with 522 ratio spaced channels, an initial delay of 5 μs, a final delay of 100 ms, for a 

duration of 10 min.  A photomultiplier aperture of 400 μm was used, and the incident 

laser intensity was adjusted to obtain a photon counting of between 200 and 300 kcps.  

Only measurements in which the measured and calculated baselines of the intensity 

autocorrelation function agreed to within 0.1% were used to calculate particle size.  The 

calculations of the particle size distributions and distribution averages were performed 

with the ISDA software package (Brookhaven Instruments Company), which employed 

single-exponential fitting, cumulants analysis, non-negatively constrained least-squares 

(NNLS), and CONTIN particle size distribution analysis routines.  All determinations 

were made in triplicate. 

The XPS measurements for the PNVP, PIp, and crosslinked PNVP-b-PIp network 

coatings were collected to examine the compositions of the polymer surfaces before and 

after incubation in water.  A VSW twin X-ray source was used in this study.  X-ray 

photoelectron spectra were taken with Al Kα radiation (1486.7 eV), with the anode 

operating at 400 W, with a take-off angle of 42 degrees.  A cylindrical mirror analyzer 

(model 15-255GAR, Physical Electronics, Inc.) was operated at a fixed pass energy of 25 

eV.  For each sample, O(1s), N(1s), C(1s), Cl(1s), and S(2p) core level spectra were 

collected, and nonlinear curve fitting software was used for data analysis.  The spectra 

were fit to the sums of Lorentzian and Gaussian line shapes.  Through peak fitting, the 

components associated with different surface bonded species in the spectra were 

identified.  For studying the effect of the water treatment on the surface composition, the 
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samples were incubated in DI water, and this was followed by drying at room 

temperature in vacuo overnight.  The shifts in the binding energies in the C(1s) region in 

each of the samples due to surface charging were corrected by all the C(1s) component 

peaks being referenced to the saturated C binding energy of 285.0 eV.  All the samples 

were found to contain Si contaminants (2 – 8%) at the surface, and rinsing with THF 

before the experiments did not reduce the contamination level.   

Internal reflection infrared (IRIR) images were obtained using a Bio-Rad FTS 

7000 Stingray system equipped with internal reflection IR imaging (IRIRI) providing 1  

µm
2
 spatial resolution.(48)  This system consists of a Bio-Rad FTS 7000 spectrometer, a 

Varian 600 UMA microscope, an Image IR focal plane array (FPA) image detector, and 

IRIRI.  The IRIR images were collected using the following spectral acquisition 

parameters: under sampling ratio 2, rapid-scan speed 5 Hz, number of images per step 64, 

and spectral resolution 4 cm
-1

.  In a typical experiment, spectral data set acquisition time 

was 1 min and image processing was performed using ENVI software (The Environment 

for Visualizing Images, Research Systems, Inc.) version 3.5.(48) 

Materials.  Isoprene (Ip) (99 %), and N-vinylpyrrolidinone (NVP) (99 %) were 

obtained from Sigma-Aldrich, Inc. (St. Louis, MO) and were purified by passage over a 

column of neutral alumina prior to use.  1,4-dioxane (99%, Sigma-Aldrich), diethyl ether,  

(≥99 %, ACS Grade, anhydrous, Sigma-Aldrich), methanol (Chromasolv, ≥99.9%, 

Sigma-Aldrich), 1,4 dimethoxybenzene (99%, Sigma-Aldrich), tert-butyl peroxide (98%, 

Sigma-Aldrich), sulfur monochloride (S2Cl2, 98%, Sigma-Aldrich), and chloroform-d 

(Cambridge Isotope Labs) were used as received.  Azobiscyanovaleric acid (ACVA, 

Sigma-Aldrich) was recrystallized from methanol and stored in a freezer prior to use.  
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Argon ultra-high purity grade gas (99.999%) was used as received from Praxair (St. 

Louis, MO).  The RAFT agent, S-1-dodecyl-S’-(α,α’-dimethyl-α”-acetic 

acid)trithiocarbonate, 1, was prepared as previously reported.(49, 50)  Coralife
®

 

Scientific Grade Marine Salt that was used for the preparation of artificial seawater was 

mixed according to directions from the manufacturer.  Due to the high volatility of 

isoprene and the high temperatures employed in the polymerization thereof, only thick-

walled glass flasks, free of visible defects, were used for these experiments, each 

conducted with at least 50 % of the volume of the flask remaining free.  As further 

precaution, all polymerizations were performed in a fume hood with additional shielding.  

Percent conversions of the isoprene polymerizations were determined using the method 

of Grubbs and co-workers,(42) where the molecular weight of the isolated polymer was 

determined with high field 
1
H-NMR spectroscopy (500 MHz) and then set equal to the 

theoretical molecular weight.  While this method does introduce some error (assuming 

Mn
Theory

 = Mn
Actual

), it is not excessive when compared with the error associated with 

attempting to determine conversion of isoprene directly.(37) 

Poly(N-vinyl pyrrolidinone) (2).  To a 50 mL Schlenk flask equipped with a Teflon-

coated stir bar, was added chain transfer agent 1 (0.3282 g, 9.001 x 10
-4

 mol, 1 eq), NVP 

(20.0106 g, 0.1800 mol, 200 eq), ACVA (0.0253 g, 9.03 x 10
-5

 mol, 0.1 eq), and 1, 4-

dimethoxybenzene (0.0385 g, 2.79 x 10
-4

, 0.3 eq).  After adding 20.0 mL of 1, 4-dioxane, 

the flask was fitted with a rubber septum and the mixture was degassed via three freeze 

pump thaw cycles.  After the final thaw, the flask was backfilled with argon and a 100 μL 

aliquot was removed for conversion analysis.  Once the flask equilibrated to room 

temperature, it was immersed in an 80 °C oil bath under constant stirring for 24 h.  At 24 
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h, a final aliquot was removed, for monomer conversion analysis, and the reaction was 

quickly quenched by submersion into liquid nitrogen.  After thawing, the flask was 

temporarily evacuated to remove excess monomer and solvent.  The resultant crude mass 

was re-dissolved in minimal dichloromethane and precipitated three times into diethyl 

ether, producing a fluffy white powder, which was dried in vacuo in a dessicator, yielding 

8.1176 g (54 % yield based on a conversion of 75 %) of polymer.  The polymer was 

maintained in a vacuum desiccator in order to prevent water accumulation.  Mn
NMR

 = 

13700 Da, Mw
GPC(DMF)

 = 28300 Da (poly(ethylene oxide) equivalent), Mn
GPC(DMF)

 = 17600 

Da (poly(ethylene oxide) equivalent), Mw/Mn = 1.61.  Tg = 82.5 °C.  TGA in N2: 338-468 

°C, 79% mass loss.  IR = 3457, 2951, 1669, 1492, 1459, 1422, 1287, 924, 727, 643, 422 

cm
-1

.  
1
H NMR (500 MHz, chloroform-d, ppm):  4.1-3.4 (br, —CH-N-C(O)), 3.4–3.0 

(br, —CH2-N-C(O)), 2.5–2.1 (br, —N-C(O)-CH2), 2.1-1.9 (br, —CH2-CH2-N-C(O)), 1.9-

1.5 (br, —CH2-CH-N-C(O)), 3.34 (br, multiplet —C(S)-S-CH2-C10H20-CH3), 1.5-1.2 (br, 

—C(S)-S-CH2-C10H20-CH3), 0.8-0.9 (br triplet, —C(S)-S-CH2-C10H20-CH3).  
13

C NMR 

(75 MHz, CDCl3, ppm):  174.3, 43.7, 40.8, 33.7, 30.3, 21.4, 17.1, 12.9. 

General procedure for analysis of poly(N-vinylpyrrolidinone) polymerization 

kinetics.  To a 25 mL round bottom Schlenk flask equipped with a magnetic stir bar was 

charged chain transfer agent, 1, (0.3034 g, 8.32 x 10
-4

 mol, 1.00 eq), N-

vinylpyrrolidinone (7.6391 g, 6.87 x 10
-2

 mol, 83 eq), and ACVA (0.0224 g, 7.99 x 10
-5

 

mol, 0.3 eq) and 1, 4-dimethoxybenzene (0.0349 g, 2.52 x 10
-4

 mol, 0.3 eq), along with 

6.0 mL of 1, 4-dioxane.  The mixture was then degassed by three freeze-pump-thaw 

cycles, after the third thaw cycle the flask was backfilled with argon and a small aliquot 

(ca. 100 μL) was removed for conversion analysis.  The polymerization was initiated by 
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immersion in a temperature-regulated oil bath set to 80 °C.  Aliquots (ca. 100 μL) were 

removed via gas-tight syringe at the following time points: 30, 60, 120, 180, 240, 300, 

and 360 minutes.  Each aliquot was dissolved in 1 mL of chloroform-d and then placed 

into an NMR tube and immersed in an ice-water bath to quench further reaction.  After 

360 min the polymerization was quenched by immersion in liquid nitrogen and purified 

as previously mentioned (vide supra).  The aliquots were then analyzed by 
1
H NMR 

spectroscopy to determine percent conversion.  

Preparation of Poly(N-vinylpyrrolidinone-b-polyisoprene) (PNVP120-b-PIp710) (3).  

To a 25 mL reinforced-wall Schlenk flask equipped with a Teflon coated stir bar, was 

added macrotransfer agent 2 (1.0129 g, 7.60 x 10
-5

 mol, 1 eq), isoprene (8.3594 g, 0.1227 

mol, 1600 eq), tert-butyl peroxide (0.0117 g, 8.00 x 10
-5

 mol, 0.95 eq), and 1, 4 

dimethoxybenzene (0.0102 g, 7.38 x 10
-5

, 0.95 eq).  After adding 10.0 mL of 1, 4-

dioxane, a 100 μL aliquot was withdrawn and the flask was screwed tight with a Teflon 

stopcock, and the cloudy mixture was subjected to three freeze pump thaw cycles.  After 

the final thaw, the flask was backfilled with argon and immersed in a 125 °C oil bath 

under constant stirring for 24 h.  After ca. 1 hour reaction time, the flask contents became 

clear and homogeneous.  At the 24 h mark, the reaction mixture was quickly quenched by 

submersion into liquid nitrogen, and upon thaw, a final aliquot was removed for 

monomer conversion analysis.  After thawing, the flask was evacuated to remove excess 

monomer and solvent, then the resultant sticky mass was re-dissolved in minimal 

dichloromethane and precipitated three times into methanol, yielding a sticky white mass, 

which was collected and dried in a desiccator under vacuum, yielding 4.827 g of opaque 

tacky polymer (59 % yield based on a conversion of 44 %).  Mn
NMR

 = 62000 Da, 
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Mw
GPC(THF)

 = 186000 Da (polystyrene equivalent), Mn
GPC(THF)

 = 76100 Da (polystyrene 

equivalent), Mw/Mn = 2.44.  (Tg)PIp = -59.7 °C, (Tg)PNVP = 88.8 °C.  TGA in N2: 246-393 

°C, 55% mass loss (PIp block); 393-473 °C, 38% mass loss (PNVP block).  IR = 3419, 

2961, 2922, 2853, 1671, 1440, 1376, 1288, 1002, 888, 841, 570, 420 cm
-1

.  
1
H NMR (500 

MHz, chloroform-d, ppm):  5.8-5.6 (br, 1,2 —CH=CH2), 5.3-5.1 (br, 4,1 —CH2-

C(CH3)-CH-CH2-), 5.1-4.8 (br, 1,2 —CH=CH2), 4.8-4.6 (br, 4,3 —C(CH3)-CH2), 4.1-3.4 

(br, —CH-N-C(O)), 3.4–3.0 (br, —CH2-N-C(O)), 2.5–2.1 (br, —N-C(O)-CH2), 2.1-1.7 

(br, —CH2-CH2-N-C(O) and —CH2 isoprene backbone), 1.7-1.5 (br, —CH2-CH-N-C(O) 

and isoprene backbone —CH3), 3.34 (br, multiplet —C(S)-S-CH2-C10H20-CH3), 
13

C-

NMR (75 MHz, CDCl3, ppm):  174.2, 146.1, 133.7,  123.4, 122.6, 109.7, 50.2, 43.3, 

38.4, 36.8, 30.5, 26.8, 25.0, 21.9, 21.5, 17.0, 14.4.  A film was cast of this polymer by 

drop deposition from CH2Cl2 onto a glass microscope slide followed by drying under 

ambient conditions for analysis by contact angle ((water)advancing = 95 ± 1° and 

(water)receding = 70 ± 6°) and AFM (rms roughness = 2 nm). 

Preparation of Poly(N-vinylpyrrolidinone-b-polyisoprene) (PNVP120-b-PIp53) (4).   

Polymerization was carried out as outlined in experimental section for polymer 3, where 

5.0065 g macrotransfer agent 2 (3.85 x 10
-4

 mol, 1 eq), 25.6405 g isoprene (3.76 x 10
-1

 

mol, 980 eq), and 0.0107 g tert-butyl peroxide (7.3 x 10
-5

 mol, 0.2 eq) were reacted 

together, yielding 8.809 g of a rough-textured slightly tacky polymer (4) (67 % yield 

based on a conversion of 6 %).  Mn
NMR

 = 17300 Da, Mw
GPC(THF)

 = 226000 Da 

(polystyrene equivalent), Mn
GPC(THF)

 = 77800 Da (polystyrene equivalent), Mw/Mn = 

2.903.  (Tg)PIp = -58.8 °C, (Tg)PNVP = 84.9 °C.  TGA in N2: 312-392 °C, 21% mass loss 

(PIp block); 392-475 °C, 69% mass loss (PNVP block).  IR = 3420, 2960, 2924, 2853, 
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1659, 1494, 1462, 1441, 1375, 1318, 1291, 911, 843, 736, 649, 470, 420 cm
-1

.  
1
H NMR 

(500 MHz, chloroform-d, ppm):  5.8-5.6 (br, 1,2 —CH=CH2), 5.3-5.1 (br, 4,1 —CH2-

C(CH3)-CH-CH2-), 5.1-4.8 (br, 1,2 —CH=CH2), 4.8-4.6 (br, 4,3 —C(CH3)-CH2), 4.1-3.4 

(br, —CH-N-C(O)), 3.4–3.0 (br, —CH2-N-C(O)), 2.5–2.1 (br, —N-C(O)-CH2), 2.1-1.7 

(br, —CH2-CH2-N-C(O) and —CH2 isoprene backbone), 1.7-1.5 (br, —CH2-CH-N-C(O) 

and isoprene backbone —CH3), 3.34 (br, multiplet —C(S)-S-CH2-C10H20-CH3). 
13

C-

NMR (75 MHz, CDCl3, ppm):  170.4, 146.3, 133.8, 127.1, 123.6, 122.9, 109.9, 50.4, 

43.2, 42.0, 38.3, 37.1, 33.3, 29.9, 26.9, 25.3, 22.1, 16.8, 14.6.  A film was cast of this 

polymer by drop deposition from CH2Cl2 onto a glass microscope slide followed by 

drying under ambient conditions for analysis by contact angle ((water)advancing = 81 ± 2° 

and (water)receding = 61 ± 5°) and AFM (rms roughness = 5 nm). 

Preparation of Poly(N-vinylpyrrolidinone-b-polyisoprene) (PNVP120-b-PIp25) (5).  

Polymerization was carried out in a manner similar to 3, where 0.5016 g macrotransfer 

agent 2 (3.78 x 10
-5

 mol, 1 eq), 1.1538 g isoprene (1.69 x 10
-2

 mol, 450 eq), and 0.0027 g 

tert-butyl peroxide (1.9 x 10
-5

 mol, 0.5 eq) were reacted together, yielding 0.909 g of a 

tacky yellow powder polymer (80 % yield based on a conversion of 6 %).  Mn
NMR

 = 

15400 Da, Mw
GPC(THF)

 = 27900 Da (polystyrene equivalent), Mn
GPC(THF)

 = 9000 Da 

(polystyrene equivalent), Mw/Mn = 3.08.  (Tg)PIp = -69.1 °C, (Tg)PNVP = 87.1 °C.  TGA in 

N2: 281-416 °C, 48% mass loss (PIp block); 416-476 °C, 41% mass loss (PNVP block).  

IR = 3417, 2961, 2925, 2133, 1651, 1495, 1463, 1445, 1376, 1293, 1173, 887, 649, 422 

cm
-1

.  
1
H NMR (500 MHz, chloroform-d, ppm):  5.8-5.6 (br, 1,2 —CH=CH2), 5.3-5.1 

(br, 4,1 —CH2-C(CH3)-CH-CH2-), 5.1-4.8 (br, 1,2 —CH=CH2), 4.8-4.6 (br, 4,3 —

C(CH3)-CH2), 4.1-3.4 (br, —CH-N-C(O)), 3.4–3.0 (br, —CH2-N-C(O)), 2.5–2.1 (br, —
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N-C(O)-CH2), 2.1-1.7 (br, —CH2-CH2-N-C(O) and —CH2 isoprene backbone), 1.7-1.5 

(br, —CH2-CH-N-C(O) and isoprene backbone —CH3), 3.34 (br, multiplet —C(S)-S-

CH2-C10H20-CH3), 
13

C-NMR (75 MHz, CDCl3, ppm): 175.5, 147.8, 135.3, 124.5, 111.5, 

45.1, 42.0, 38.7, 32.2, 31.7, 28.5, 27.0, 23.7, 18.6, 16.3.  A film was cast of this polymer 

by drop deposition from CH2Cl2 onto a glass microscope slide followed by drying under 

ambient conditions for analysis by contact angle ((water)advancing = 107 ± 5° and 

(water)receding = 73 ± 3°) and AFM (rms roughness = 36 nm). 

Procedure for producing crosslinked PNVP120-b-PIp710 via vulcanization with 

sulfur monochloride (6). 

In a 100 mL round bottom flask, PNVP120-b-PIp710 was dissolved in 50 mL 

dichloromethane under constant stirring at room temperature.  A 1:1 mixture (v/v%) of 

sulfur monochloride and dichloromethane was slowly added dropwise to this flask, with 

25 eq S2Cl2 per alkene to ensure complete crosslinking.  The reaction mixture was left to 

stir overnight at room temperature.  No significant aggregates or precipitates formed, but 

the solution turned a dark amber color after ca. 16 h reaction time.  The solution was 

carefully drop-deposited onto pre-cleaned microscope slides.  The evaporation of 

dichloromethane accelerated and completed crosslinking, leaving thin films with minimal 

bubbles or related defects, giving surface 6.  The slides were placed in a vacuum 

desiccator for 24 h in order to remove excess solvent and sulfur monochloride.  In order 

to remove any unreacted sulfur monochloride and related small molecule sulfur 

byproducts, the slides were soaked in a benzene solution for 30 min, washed with 

dichloromethane, and placed in a vacuum desiccator for an additional 6 h.  The films 

adhered strongly to glass, and did not delaminate, swell, or dissolve when exposed to a 
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wide variety of solvents.  The film surfaces were analyzed with tapping-mode atomic 

force microscopy in order to ascertain topography and roughness.  In addition to 

examining dry films, water-swollen films were analyzed by swelling the film slides in 

artificial seawater for one hour, removal of excess water by wicking with a Kimwipe, and 

AFM analysis was immediately performed thereafter on the surface.  (water)advancing = 96 

± 4° and (water)receding = 75 ± 1°; (rms roughness)dry = 86 nm and (rms roughness)wet = 81 

nm.  

Procedure for producing crosslinked PNVP120-b-PIp53 via vulcanization with 

sulfur monochloride (7). 

This sample was prepared in a similar manner as 6, but with 29 eq S2Cl2 per alkene, 

giving surface 7.  The final film was stretchy and had a slight yellow color.  (water)advancing 

= 47 ± 10° and (water)receding = 26 ± 5°; (rms roughness)dry = 47 nm and (rms 

roughness)wet = 43 nm. 

Procedure for producing crosslinked PNVP120-b-PIp25 via vulcanization with 

sulfur monochloride (8). 

This sample was prepared in a similar manner as 6, but with 100 eq S2Cl2 per alkene, 

giving surface 8.  The final film was brittle and yellow.  (water)advancing = 57 ± 3° and 

(water)receding = 41 ± 2°; (rms roughness)dry = 76 nm and (rms roughness)wet = 17 nm. 

Procedure for producing micelle 9, from PNVP120-b-PIp25. 

Polymer 5 (3.0 mg) was prepared as a 0.6 mg/mL THF solution inside a scintillation 

vial equipped with a rubber septum to prevent evaporation.  To this solution, 10 mL of 

nanopure water was added slowly, over the course of 3 h under high stir.  The resulting 

micelle solution was dialyzed (SpectraPor cellulose dialysis tubing having a MWCO = 6-
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8 kDa) for two days against nanopure (18 MΩ·cm) water to remove THF, and based on 

final volume, the solution had a final concentration of approximately 0.3 mg/mL.  DLS:  

Dh (Intensity):  680 ± 120 nm, Dh (Volume):  550 ± 80 nm, Dh (Number):  290 ± 140 nm. 

Procedure for producing micelle 10, from PNVP120-b-PIp25. 

Additionally, polymer 5 (32.0 mg) was prepared as a 6.4 mg/mL THF solution inside a 

scintillation vial equipped with a rubber septum to prevent evaporation.  To this solution, 

5.0 mL of nanopure water was added slowly, over the course of 3 h under high stir.  The 

resulting micelle solution was dialyzed (SpectraPor cellulose dialysis tubing having a 

MWCO = 6-8 kDa) for two days against nanopure (18 MΩ·cm) water to remove THF, 

and based on final volume, the solution had a final concentration of approximately 1.7 

mg/mL.  DLS:  Dh (Intensity):  430 ± 50 nm, Dh (Volume):  490 ± 90 nm, Dh (Number):  

290 ± 130 nm. 

 

Results and Discussion 

Preparation of the amphiphilic block copolymers, PNVP120-b-PIpn, required conditions 

that would provide for controlled polymerization of the two monomers NVP and Ip, 

having significant differences in chemical reactivity and physical properties.  Previous 

work in our lab on the RAFT-based polymerization and chain extension of isoprene 

involved the use of the trithiocarbonate, S-1-dodecyl-S’-(α,α’-dimethyl-α”-acetic acid) 

trithiocarbonate, DDMAT, 1, initially reported by Lai in 2000.(49, 50)  The 

trithiocarbonate unit does not decompose at the high temperature required for RAFT 

polymerization of isoprene,(43-45, 50) and it is compatible with a wide range of vinyl 
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monomers, from hydrophilic species like N-isopropylacrylamide,(51) to hydrophobic 

monomers such as isoprene.(44)   

The synthetic approach began with the polymerization of NVP to generate PNVP120, 

which then later served as a macroRAFT agent for the extension of Ip.  RAFT 

polymerization of NVP was explored using 1 as the RAFT agent and azobiscyanovaleric 

acid, ACVA, as the initiator, under conditions that were similar to those employed by 

Gnanou(38) (80 ºC reaction temperature and 1,4-dioxane as solvent, Scheme 3-1).  A 

small molecule, 1, 4-dimethoxybenzene, was added in small amounts as an internal 

standard for NMR spectroscopy to determine monomer conversion and evaluate the 

kinetics of the polymerization. 

The kinetics of polymerization were established using 
1
H NMR spectroscopy analysis, 

showing linear ln[Mo]/[M] vs. time up to ca. 240 min, followed by a slight reduction in 

the rate of monomer consumption (Figure 3-1), as is observed typically during RAFT 

polymerization.  A linear increase in Mn vs. conversion was also observed, as further 

support of the controlled nature of this polymerization (Figure 3-2). The relatively slow 

kinetics are in contrast to the uncontrolled polymerization of NVP, using similar reaction 

conditions and stoichiometry but in the absence of CTA 1, which results in a thick, 

viscous insoluble gel in less than one hour.   

Scheme 3-1.  RAFT polymerization of N-vinylpyrrolidinone, producing polymer 2. 
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Figure 3-1.  Pseudo first order kinetic plot of ln([M0]/[M]) vs. time for the 

homopolymerization of NVP via RAFT. 

 

                                                       

Figure 3-2.  Molecular weight vs. conversion for homopolymerization of NVP via 

RAFT. 
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Although the polymer chain growth proceeded uniformly, GPC analysis showed that 

the polydispersity index (PDI) values were not ideal, ca. 1.6 (Figure 3-4).  However, it 

should be noted that polydispersity was not a top priority for the preparation of polymer 

chains that would eventually become crosslinked networks, as the PDI of the 

hyperbranched fluoropolymer networks, which serve as the inspiration for this work, 

were based upon polymer precursors with PDI’s >2.5.  Recent reports from Klumperman 

have shown that numerous side reactions and chain terminations are possible for the 

polymerization of NVP, which may offer insight regarding the non-ideal GPC traces of 

the PNVP .(52)  Of interest was the construction of PNVP having sufficient chain length 

and retention of the trithiocarbonate chain ends to allow for further chain extension 

reactions to provide for the growth of a series of PIp chain lengths and investigate a range 

of amphiphilic block copolymer hydrophobic:hydrophilic ratios.  Therefore, using a 

stoichiometry of 200:1, monomer:CTA, the monomer conversion was continued to 75% 

to give PNVP, 2, with a number average molecular weight (Mn) of 13700 Da, which 

corresponded to a degree of polymerization of 120, as determined by 
1
H end-group 

analysis (Scheme 3-1 and Figure 3-3 for NMR and Figure 3-3 for GPC). 
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Figure 3-3.  
1
H NMR (500 MHz, CDCl3) spectrum of P(NVP), 2. 

 

Scheme 3-2.  Chain extension reaction to produce PNVP120-b-PIpm, where m = 710, 53, 

and 25 in the case of 3, 4, and 5, respectively. 
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Figure 3-4.  DMF GPC chromatogram of 2.  The sharp peak at ~21 minutes corresponds 

to a positive flow rate marker (0.5 % methanol). 

 

Chain extension reactions were performed on the macroRAFT agent, 2, with isoprene, 

employing conditions similar to those of Perrier(45) and Wooley(44) (Scheme 3-2), 

polymerizing at a reaction temperature of 125 and using t-butyl peroxide as the initiator.  

The feed ratio of Ip to the macroRAFT agent, 2, was varied to allow for syntheses of 

three block copolymers, 3, 4, and 5, and was set at a high value in each reaction to 

compensate for the low conversion typically achieved by RAFT polymerization of Ip.  

The number average molecular weight values, Mn, were determined via 
1
H NMR 



170 

spectroscopy post-purification, and GPC analysis confirmed the existence of a a block 

copolymer architecture (see Figures 3-5 and 3-6), however it should be noted that  

Figure 3-5.  GPC chromatograms of 3-5 (via THF GPC). 
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Figure 3-6.  GPC stack plot of 2-5 plotted on a logarithmic scale. 

 

homopolymer remains in the block copolymer after precipitation, giving evidence as to 

the partial blocking efficiency and subsequent incomplete removal of the PNVP 

macroCTA.  
1
H NMR spectroscopy also confirmed the presence of both PNVP and PIp 

blocks in 3 (Figure 3-7), with resonances diagnostic of PIp appearing along with 

resonances consistant with the parent polymer, 2.   The different regioisomers of the 

polyisoprene repeat units were readily observed in the region between 5.9 – 4.6 ppm of 

the 
1
H NMR spectrum, corresponding to the 1,2-, 4,1-, 1,2-, and 4,3- isomers (from high 

to low ppm).  As was the case in all block copolymers studied, the 4,1- repeat unit makes 

up approximately 80% of the backbone.  Comparison of the chain-end methyl protons of 
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the original RAFT agent, at 0.9 ppm, versus PNVP polymer peaks at 3.4 – 3.0 ppm was 

used to calculate the degree of polymerization and the molecular weight for PNVP, while 

comparison between existing backbone methine PNVP protons and new vinylic protons 

that arise from PIp was used to calculate molecular weight for all block copolymers.  

GPC and 
13

C NMR spectroscopy were also used to confirm the structures (Figure 3-5, 3-

6, 3-8). 

Figure 3-7.  
1
H NMR spectra of PNVPn-b-PIpm, 3, 4, and 5, where n = 120 and m = 710, 

53 and 25, respectively. 
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Figure 3-8.  
13

C NMR spectrum of 2, 3, 4 and 5. 

 

Thermal analysis of 2 and the block copolymers 3-5 by differential scanning 

calorimetry indicated a Tg of 85 ºC for the PNVP component and Tg’s typical for PIp at 

ca. -60 ºC.  The Tg value for each block shifted slightly depending on the percent PIp 

incorporation, as shown in Figure 3-9; the relative intensities of the PIp vs. PNVP Tg 

transitions were directly proportional to the relative block ratios.  Thermogravimetric 

analysis can be seen in Figure 3-10. 
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Figure 3-9.  DSC traces of PNVP, 2, and PNVP120-b-PIpm, 3-5, block copolymers.
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Figure 3-10.  TGA mass loss (left) and derivative mass loss (right) plots of polymers 2, 

3, 4 and 5. 

 

Complex surfaces of PNVP and PIp were prepared through crosslinking of the block 

copolymers with S2Cl2.  Scheme 3-3 outlines the crosslinking methodology, wherein 

excess sulfur monochloride was added to dilute polymer solutions in dichloromethane 

and the mixture was allowed to undergo reaction overnight.  Films of the resulting 

viscous reaction mixture were then cast onto glass microscope slides and were cured at 

ambient temperature, upon evaporation of the dichloromethane solvent.  Once 

crosslinked, the films produced from polymers 3, 4, and 5, are designated as 6, 7, and 8, 
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respectively.  Excessive washes of the films with benzene and dichloromethane produced 

only trace amounts of non-crosslinked leachate.  The resultant film  

Scheme 3-3.  S2Cl2 crosslinking of PNVPn-b-PIpm, showing the resultant sulfur-based 

linkages between polymer chains, where n = 120 and m = 710, 53 and 25 to afford 

crosslinked polymer films 6, 7 and 8, respectively. 

 

properties depended on the mol percent PIp incorporation.  Films with higher mol percent 

PIp, 6, were brittle, whereas lower mol percent PIp produced stretchy and rubber-like 

films, 7 and 8.  Film 8, which had the lowest PIp content was qualitatively less elastic 

than was 7 and was not as brittle as 6.   

AFM surface measurements indicated that the polymers had complex surface features, 

both before and after crosslinking (Figure 3-11).  In the case of 6, the higher PIp 

incorporation produced disordered surfaces, with RMS roughness 230 times more rough 

after crosslinking than was measured for the non-crosslinked film.  It is expected that the 
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surface of 3 is dominated by the low Tg PIp, which provides for smoothing to occur, 

whereas 6 contains complex topographic features that were trapped kinetically during the 

crosslinking process.  A lower PIp incorporation ratio produced micro- and nano-

topographies, which highlight the phase segregation inherent to the films, and the rigidity 

of the PNVP dominant phase.  In the case of polymers 4 and 5, the surface RMS 

roughness also increased upon the process of casting pre-gel solutions with coincident 

drying and covalent crosslinking.  It should be noted that the addition of sulfur 

monochloride to the reactive surface can result potentially result in bulking or shrinkage 

effects, which would also have an effect on surface complexity and RMS roughness. 

Figure 3-11.  AFM images of PNVP120-b-PIpm films, both non-crosslinked (a, d, g), 

S2Cl2-crosslinked (b, e, h), and crosslinked films swollen in artificial seawater (c, f, i).   
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Interestingly, when the crosslinked films were exposed to artificial seawater for 15 min, 

patted dry and imaged immediately in air under ambient conditions, there was an 

appearance of rounded, water-swollen peaks that dominate the nano-to-microscale 

landscape of all of the films.  These observations are similar to previous results obtained 

with the HBFP-PEG system.(16)  The roughness observed in the water-swollen films is 

essentially equivalent to dry films, providing evidence that the complex surface features 

remain intact in a marine environment.   

Contact angle experiments were performed on each crosslinked and non-crosslinked 

film composition, with the data supporting the heterogeneity and complexity of these 

complex surfaces, as shown in Table 3-1.  Interesting trends can be observed in the 

contact angle data.  Primarily, the percent PIp incorporation did not seem to have a strong 

effect on the surface features before crosslinking, but there is evidence that is did affect 

surface characteristics at the post-crosslinked stage.  Each of the three surfaces was 

hydrophobic prior to crosslinking, likely because of the migration of the low surface 

energy PIp to the surface during the casting of the non-crosslinked block copolymers.  

The block copolymer that contained the longest PIp chain segment, 3, and having an 

overall majority of the composition being PIp, retained its hydrophobic character upon 

crosslinking also, to afford 6.  In contrast, the majority PNVP of 4 and 5 led to 

hydrophilic characteristics for the surfaces of their crosslinked networks, suggesting a 

chemically-fixed arrangement that arises from RMS surface roughness that presents 

PNVP on the surfaces of 7 and 8.   

 



179 

Table 3-1.  Contact Angles for both non-crosslinked and S2Cl2-crosslinked films.   

Sample
a
 Advancing 

Contact Angle 

(θa, °)
b 

Receding 

Contact Angle 

(θr, °)
b 

Contact Angle 

Hysteresis  

(θa – θr, °) 

Surface 

RMS 

roughness 

(nm) 

3 95 ± 1 70 ± 6 25 2
c
 

4 81 ± 2 61 ± 5 20 5
c
 

5 107 ± 5 73 ± 3 34 36
c
 

6 96 ± 4 75 ± 1 21 86
c
, 81

d
 

7 47 ± 10 26 ± 5 21 47
c
, 43

d
 

8 57 ± 3 41 ± 2 16 76
c
, 17

d
 

a
Polymer 2 did not display a water contact angle, as it is readily soluble in water.  

b
Contact angle values are averages obtained from pentuplicate measurements.  

c
RMS 

roughness of dry film.  
d
RMS roughness after swelling with artificial seawater.   

 

To investigate the compositional heterogeneities of the surfaces, the atomic 

concentrations of the surface elements in each of the PNVP120-b-PIpm coatings, 3-8, were 

determined by X-ray photoelectron spectroscopy (XPS).  The findings are summarized in 

Table 3-2.  The change in atomic composition as the coatings changed from non-

crosslinked to S2Cl2-crosslinked follows a trend common to all three compositions, 

wherein oxygen and nitrogen composition increased and carbon content decreased, 

indicative of a surface with increased pyrrolidinone-expression (the only source of N and 

O) and a reduction in the presentation of carbon-rich isoprene content when compared to 
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non-crosslinked surfaces.  The presence of increased PNVP surface content upon 

crosslinking is in agreement with the contact angle data.  The survey scans for all 

polymer film scans can be viewed in Figure 3-12.   

Figure 3-12.  XPS plots of PNVP-b-PIp polymer films 3 and 6 (left), films 4 and 7 

(center), and films 5 and 8 (right). 
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Table 3-2.  Surface atomic concentrations of the non-crosslinked and S2Cl2 crosslinked PNVP120-b-PIpm films, as determined 

by XPS  (See Figure 3-12 for XPS survey scans).  Small silica signals from Si(2P) were seen in a few samples, and were not 

taken into account for atomic concentration calculations. 

 Non-crosslinked, 3-5 S2Cl2-crosslinked, dry, 6-8 

Polymer O(1s) N(1s) C(1s) Cl(1s) S(2p) O(1s) N(1s) C(1s) Cl(1s) S(2p) 

PNVP120-b-PIp710 0.109 0.003 0.888 N.A. N.A. 0.310 0.128 0.344 0.022 0.194 

PNVP120-b-PIp53 0.11 0.006 0.885 N.A. N.A. 0.143 0.033 0.798 0.005 0.015 

PNVP120-b-PIp25 0.114 0.004 0.882 N.A. N.A. 0.348 0.127 0.320 0.003 0.202 
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The amphiphilic compositional heterogeneity of the surfaces of these materials was 

assessed by internal reflectance infrared (IRIR) spectroscopy for the samples having 

intermediate PNVP and PIp content, 4 and 7.  Traditional IR spectroscopy was employed 

to obtain the bulk compositional information, and as a means to identify characteristic 

absorbance bands before and after crosslinking.  For IRIR imaging, the films were cast on 

poly(tetrafluoroethylene) (PTFE) surfaces, and then imaged.  PTFE was used as a 

substrate to avoid complications that had occurred in initial experiments from glass slide 

vibrational bands, which showed –CH=CH-Si bands in and around the region for lactams 

(ca. 1590 cm
-1

) and led to poor images and IR spectra.  Once cast on PTFE, two-

dimensional IRIR images were collected by tuning into the 1664 and 1447 cm
-1 

bands, 

which are attributed to –C=O stretching of the PNVP lactam and –CH2– deformation 

bands of PIp, respectively.  All bands were normalized against the 1447 cm
-1

 band.  As 

seen in Figure 3-13, there is a certain degree of chemical heterogeneity manifested by 

color (red = high content; blue = low content) changes due to uneven distribution of 

PNVP and PIp components, consistent with the topographic features observed in the 

AFM images.  Since IRIR imaging allows for the collection of IR images from 1 x 1 µm
2 

areas and also obtains a chemical signature of those areas, IR spectra from areas labeled 

A and B were collected.  Images A and B of Figure 3-13 illustrate a distribution of the 

PNVP and PIp for the non-crosslinked surface (Figure 3-13, sections (a) and (c)), as well 

as for the crosslinked surface (Figure 3-13, sections (b) and (d)), respectively.  From this 

information, it was concluded that both films possess microscale heterogeneities, in 

addition to the nanoscopically diverse structures observed in AFM images.  Additionally, 

while both images appear morphologically multi-faceted, yet similar to one another in 
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complexity, there are substantial differences between non-crosslinked and crosslinked 

films as confirmed by their respective IR signatures. 

Figure 3-13.  (a) and (b), IRIR images collected from 64 x 64 µm
2
 areas of PNVP120 -b-

PIp53 non-crosslinked and crosslinked films prepared on PTFE substrates, respectively, 

tuned to 1447 cm
-1

.  (c) and (d), IR spectra collected from areas A and B (5 x 5 µm
2
) of 

IRIR (a) and (b), respectively. 

 

Comparison of spectroscopic changes between non-crosslinked and crosslinked 

films demonstrates the increased band intensities of the 2957, 2860, and 2920 cm
-1

 bands 

due to asymmetric and symmetric –CH3 , and symmetric –CH2- stretching vibrations, 

respectively.  A summary of all tentative assignments can be seen in Table 3-3.  Perhaps 

the most notable difference between the two surfaces can be seen in the decrease of the 

1664 cm
-1

 band(53) of the –C=O stretching vibrations when going from a non-
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crosslinked to a crosslinked surface, which suggests a burrowing of the PNVP segments 

into the film and away from the air-surface interface.  This result is in contrast to the 

water contact angle and XPS data, which indicated an increase in hydrophilic character 

and PNVP atomic signals, respectively, upon crosslinking.  Although the sampling depth 

of XPS and IRIRI are somewhat different (a few nm in XPS and approximately 70 nm in 

IRIRI), the trends observed in both experiments are the same. Upon crosslinking the 

concentration of C diminishes, and IRIRI experiments indicate the loss C=O groups.  

Further experiments are needed to better understand this complex and heterogeneous 

system.   

 

Table 3-3.  IR bands observed for PNVP120 -b-PIp53 non-crosslinked, A, and PNVP120 -b-

PIp53 S2Cl2-crosslinked, B, films and their tentative band assignments  

Band A (cm
-1

) B (cm
-1

) 

νa of CH3 2957 2957 

νs of CH2 2920 2920 

νs of CH3 2860 2860 

 -C=O str of lactam 1664 1658 

-CH=C - str - 1630 

-CH=CH str of –CH=CH-Cl - 1606 

δ -CH2 1447 1447 

νa  = Asymmetric stretching 

νs = Symmetric stretching 

δ = Deformation 

 

Differences in properties for the block copolymers were observed also in the solution 

state.  The polymer with lower isoprene content, 5, was found to disperse and undergo 

spontaneous self assembly into micelles when added directly from the solid state to 

water.  This behavior was unique, as 3 and 4 were completely insoluble in water or 

related polar solvents, such as methanol or DMF.  A closer look at a controlled addition 

of water to a THF solution containing 5 produced micelles 9 and 10, containing two 
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different solution concentrations, 0.3 mg/mL and 1.7 mg/mL, respectively.  The solutions 

were analyzed using dynamic light scattering (DLS), which showed bimodal 

hydrodynamic diameter (Dh) distributions, including the expected nanoscopic micelles 

having Dh values around 70 – 100 nm and also the appearance of larger assemblies with 

Dh values in the hundreds of nanometers.   

 

Conclusions 

With our interest in the preparation of non-toxic anti-fouling coatings that rely on 

combinations of surface morphology, topography and composition dispersed on the nano- 

and microscopic size scales, we have now extended the types of materials involved to 

include commodity polymers.  To have appropriate building blocks, the generation of 

interesting and novel amphiphilic polymers, PNVP120-b-PIpm, was required to achieve the 

subsequent production of nanoscopically-resolved films having morphologically- and 

topographically-complex surface features.  Controlled radical polymerization techniques 

were applied to the polymerization of common monomers to afford unique amphiphilic 

block copolymers, which served as the components for an attempted cheap production of 

these complex films.  A variety of surface analysis methods were used to probe the 

heterogeneity, including methods such as XPS and AFM and IRIR imaging.  The 

complex surface features could provide evidence as to which structure-property 

relationships are important in designing anti-fouling coatings, i.e. to what degree 

chemical composition plays versus that of morphological and topographical nano- or 

microscopic surface features in preventing adsorption and adhesion of proteins, marine 

organisms, etc.  The interesting differences in surface characteristics of these unique 
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amphiphilic block copolymers carried to the solution state, for which only the polymer 

with the shortest PIp chain segment, PNVP120-b-PIp25, was capable of undergoing self 

assembly in an aqueous environment, giving rise to micelles.   
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Chapter 5 

Conclusions 

 

Newer generations of anti-fouling materials that are rapidly crosslinkable, durable and 

commercially available polymer film analogs to HBFP-PEG were developed.  The films were 

prepared from primarily commercially available, non-toxic reagents and were engineered to be 

crosslinked in such an efficient manner (room temperature curing, rapid time of cure with little to 

no impact on the film properties).  The overall emphasis of this dissertation research was in the 

development of novel amphiphilic anti-fouling coatings having complex surface topography and 

compositional heterogeneity and a fundamental and thorough investigation of their 

mechanical/thermomechanical, surface and biofouling properties.   

A series of Boltorn-PEG films were prepared by the thiol-ene photocrosslinking of 

Boltorn-ene and 4-armed PEG tetrathiol with PETMP, as was reported in Chapter 2.  The main 

feed ingredient, Boltorn-ene, was easily prepared by the simple esterification of commercially 

available Boltorn H30™ polyol and 3-butenoic acid.  IR spectroscopy was employed to monitor 

completion of the thiol-ene reaction, where it was found that near-complete crosslinking 

occurred above 0.75 eq SH/ene PETMP concentration.  Thermomechanical analysis was 

performed on the film set, where it was observed that Tg increased as a function of PEG wt%, a 

range of over 30+ degrees from 0 to 25 wt%.  Tensile tests of films in both the dry and wet state 

revealed a dramatic increase in Young’s modulus as a function of PETMP, reaching a peak at 

0.75 eq SH/ene.  The nanotopography of the films was analyzed using AFM and was 

supplemented with contact angle analysis, where increasing roughness occurred with increasing 

PEG wt%.  A comprehensive anti-fouling study was performed against Ulva algae on Boltorn-
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PEG films at constant 0.25 eq SH/ene PETMP concentration across a wide range of PEG wt% 

(0-35 wt%), where it was observed that spore settlement and growth was much lower when 

compared to commercial PDMSe coatings. 

The investigation into using common trade monomers to create interesting and complex 

amphiphilic block copolymers, with which to form anti-fouling coatings, was investigated in 

Chapter 3.  The preparation of non-toxic anti-fouling coatings that produced complex surface 

morphology, topography and composition dispersed on the nano- and microscopic size scales 

was generated by the preparation of a series of interesting and novel amphiphilic PNVP120-b-

PIpm copolymers.  Controlled radical polymerization techniques were applied to the 

polymerization of common monomers to afford unique amphiphilic block copolymers, which 

served as the components for an attempted cheap production of these complex films.  Different 

block sizes were investigated in order to achieve nanoscopically-resolved films having 

morphologically- and topographically-complex surface features.  A variety of surface analysis 

methods were used to probe the heterogeneity, including methods such as XPS and AFM and 

IRIR imaging.  The complex surface features could provide evidence as to which structure-

property relationships are important in designing anti-fouling coatings, i.e. to what degree 

chemical composition plays versus that of morphological and topographical nano- or 

microscopic surface features in preventing adsorption and adhesion of proteins, marine 

organisms, etc.   

Highly interesting, multi-functional, amphiphilic PEO-b-PIp block copolymers were 

prepared via RAFT polymerization, spurning investigating into the challenges that occurred 

during polymer purification.  In Chapter 4, two RAFT-capable PEO macro-CTAs, having Mn 

values of 2 and 5 kDa, were prepared and used for the polymerization of isoprene, affording 
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block copolymers of varied lengths and compositions.  GPC analysis of the PEO macro-CTAs 

and block copolymers showed remaining unreacted PEO macro-CTA.  Following analysis of the 

GPC chromatograms using mathematical deconvolution, the blocking efficiency was estimated 

to be around 50% for the 5 kDa PEO macro-CTA and 64% for the 2 kDa CTA.  The resultant 

polymers were also investigated for their abilities to self assemble in both water and decane, and 

the resulting regular and inverse assemblies, respectively, were analyzed with DLS, AFM, and 

TEM to ascertain their dimensions and properties.  Assembly of PEO-b-PIp block copolymers in 

aqueous solution resulted in uniform micelles of varying sizes while the assembly in 

hydrophobic, organic solvent resulted in the formation of heterogeneous morphologies, including 

large aggregates, cylindrical and spherical structures.  Thiol-ene crosslinked films of PEO-b-PIp 

showed promise against fouling biomacromolecules in the form of fluorescently-tagged proteins, 

lipopolysaccarhides and lectin. 

Additional work into both improving and fundamentally studying the mechanical 

properties of HBFP-PEG were studied as reported in the Appendices.  In Appendix 1 it was 

shown that the mechanical properties of amphiphilic crosslinked HBFP-PEG45 networks can be 

improved by introducing nanoscopic fillers, including SWNTs and SiO2 nanoparticles.  Each 

nanofiller was incorporated into the polymer networks non-covalently and was also engineered 

through chemical functionalization to perform as phase-designated reinforcing functional 

materials.  SWNT-g-PEG and SiO2-g-HBFP were designed to (1) improve the dispersion of 

fillers, nanotubes or spherical nanoparticles, in the amphiphilic matrices, (2) enhance the non-

covalent interactions between the nanofillers and the polymers, and more importantly, (3) 

maintain reactive functionalities to be further covalently integrated into the complex networks. 
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Significantly greater reinforcement was achieved by covalent incorporation of SWNT-g-PEG 

into HBFP-PEG, than was observed for the physical doping method, whereas higher moduli 

were measured for nanocomposites physically doped with SiO2 nanoparticles than for 

nanocomposites containing SiO2-g-HBFP designed for covalent incorporation.   

The internal chemical environment within HBFP-PEG polymer networks was probed 

using solid-state NMR studies, reported in Appendix 2.  The results have provided unambiguous 

determination of the molecular-level structural reorganizations that lead to unique macroscopic 

mechanical properties for amphiphilic crosslinked networks of HBFP and PEG, wherein wetted 

HBFP-PEG networks with sub-45 wt% PEG showed stiffening as a result of rearrangement, 

proving the mechanism postulated in previous publications, whereas networks with greater than 

55 wt% PEG showed properties similar to common hydrogel materials (that is, swelling of the 

matrix with a loss in modulus).   

The applications of these materials towards preparing readily crosslinked commercial 

film coatings can be realized by undertaking a series of follow up experiments which are 

currently ongoing.  Experiments into improving and investigating the adhesion of the thiol-ene 

coatings onto glass and eventually metal substrates is needed for end-use applicability.  

Additional investigation into the low VOC crosslinking of the films using natural sunlight can 

help provide impetus for using the films in an environmental and cost-efficient manner.  

Improvements into tuning the Young’s modulus of the Boltorn-PEG films, perhaps involving the 

inclusion of silane components, could also be useful for improving latent non-fouling ability.  

Varying the type and MW of the PEG’s in all of the polymer film compositions would lead to a 

better understanding of structure-property relationships, perhaps emulating the success of the 

properties discovered in the investigation of HBFP-PEG as seen in the Appendices. 
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An interesting series of crosslinked polymer film analogs were synthesized and 

crosslinked using commercially available or easily prepared non-toxic polymer components coupled 

with rapid crosslinking methods for ultimate use for marine anti-fouling applications.  The overall impact 

of this work is not immediately realized, as many properties and functionalities still need fine tuning and 

improvement, but it can be seen that this work was striving towards providing the next generation of 

advanced materials in area or marine anti-fouling coatings, as well as answering many fundamental 

questions that occurred along the way. 
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Appendix 1 

Hierarchical Inorganic-Organic Nanocomposites Possessing Amphiphilic 

and Morphological Complexities:  Influence of nanofiller dispersion on 

mechanical performance 

[Portions of this work have been published previously as Jinqi Xu, Jeremy W. Bartels, David 

A. Bohnsack, Tzu-Chia Tseng, Michael E. Mackay and Karen L. Wooley, Advanced 

Functional Materials, 2008, 18, 2733-2744] 

 

Abstract 

Novel nanocomposites possessing ternary compositions and complex morphologies 

have been prepared from amphiphilic crosslinked hyperbranched fluoropolymer-

poly(ethylene glycol) (HBFP-PEG) in the presence of pristine and chemically-functionalized 

nanoscopic fillers, single-walled carbon nanotubes (SWNTs) and silica nanoparticles (SiO2).  

Both SWNTs and SiO2 were engineered specifically to become phase-designated reinforcing 

functional materials, SWNT-g-PEG and SiO2-g-HBFP, which (1) improved the dispersion of 

fillers, nanotubes or spherical nanoparticles, in the amphiphilic matrices, (2) enhanced the 

non-covalent interactions between nanofillers and polymers, and more importantly, (3) 

maintained reactive functionalities to be further covalently integrated into the complex 

networks.  Tensile moduli (Edry) for these as-prepared SWNT-containing composites 

increased by up to 430% relative to the unfilled material, while those incorporated with SiO2 

had a 420% increase of Edry.  After swelling in water, the water absorption within the micro- 

and nano-channels of PEG-rich domains rigidified or softened the entire crosslinked network, 

as determined by the amount of PEG. 
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Introduction 

Over the past decade, amphiphilic chemically-crosslinked networks, 

comprised of co-continuous hydrophobic and hydrophilic phases, have been studied 

actively with designs for their broad application as biomedical devices, or their use in 

various other industries.(1, 2)  Unlike typical hydrogels,(3-5) these complex 

crosslinked networks undergo morphological isomerization upon changes between 

organic and aqueous media, and have been described as being „smart‟ by Erdodi and 

Kennedy.(1)  This distinct phenomenon leads to reorganization of two phase-

incompatible components on the surface as well as in the interior domains, and further 

transformations, to afford many unique materials properties, such as mechanical 

behavior,(6) morphological variability,(7, 8) sub-surface compartmentalizations and 

membrane performance,(9, 10) surface anti-biofouling,(10-12) and bio-capability.(13, 

14)  Moreover, such properties can be expanded with the variety and attributes of 

chemical compositions that polymers possess and the complexity and control of 

architectures that polymers provide,(15) making it feasible to fabricate these 

amphiphilic crosslinked networks into intelligent devices for many fields, including 

the marine coatings industry.(7, 11)  It is challenging to devise efficient, 

environmentally-benign, and universally-applicable anti-fouling and fouling-release 

coatings to prevent biofouling (i.e., inhibit adhesion and promote detachment) on the 

surfaces of ships and underwater structures.(16, 17)  Historically, the application of 

traditional biocidal antifouling paints containing tributylytin (TBT) or copper 

compounds has exerted severe effects on marine lifeforms.(16-18)  Recent efforts 

toward non-toxic, anti-biofouling coatings have focused primarily on fluoropolymers 

and silicone elastomers,(16, 17, 19) since these two polymers feature low critical 

surface energy, good chemical stability, and interesting mechanical properties.  
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Several studies have found that bioadhesion behaviors can be correlated with surface 

and bulk properties, including the critical surface energy,(16, 19) elastic modulus,(20, 

21) thickness,(22) and surface wettability,(23) roughness(24)
 
 and reconstruction.(11, 

25, 26) 

Our strategy to develop novel, non-toxic anti-fouling materials utilizes 

amphiphilic crosslinked networks, which has relied upon chemically-crosslinked 

hyperbranched fluoropolymer-poly(ethylene glycol) (HBFP-PEG) materials (Scheme 

A1-1).  This system was designed to provide complex surface topographies, 

morphologies, and compositions over nanoscopic and microscopic dimensions.(6, 7, 9, 

11, 27)  The ability of this material to inhibit protein adsorption and marine organism 

settlement has proven to be exceptional;(11) results that were attributed to intrinsic 

properties of both fluoropolymer and PEG, but also from surface features derived 

from the complex network and its surface reconstruction under water.(7)  In addition 

to remarkable surface characteristics, coatings for marine application must be 

mechanically robust.  Interestingly, our recent studies(6) on a series of HBFP-PEG 

crosslinked systems with varying ratios of hydrophobic HBFP/hydrophilic PEG 

showed that these materials exhibit unusual mechanical performance.  The 

crosslinked networks, unlike hydrogels, became rigidified upon swelling with water 

(ca. 10-50 × enhancement of the elastic moduli, in comparison to the samples when 

dry) when PEG was the minority phase, whereas, when PEG was the majority 

component, they behaved as hydrogels, experiencing tensile modulus reductions upon 

water swelling.(6) 
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Scheme A1-1.  Preparation of HBFP-PEG amphiphilic crosslinked networks. 

 

In order to further improve mechanical performance of these amphiphilic 

crosslinked networks without impairing the anti-fouling performance, two types of 

exceptional nanoscopic fillers, one-dimensional single-walled carbon nanotubes and 

zero-dimensional silica nanoparticles, were chosen in our studies, since it has been 

shown in recent literature that a small amount of incorporation of these materials can 

improve bulk mechanical properties remarkably.  These two well-studied nanofillers 

were chosen based upon their different compositions and aspect ratios, together with 

their abilities to undergo surface modification reactions and their demonstrated 

abilities to enhance the mechanical properties of polymer matrices.  Research has 

shown that SWNTs have great potential as reinforcement fillers because of their 

exceptional mechanical, thermal, and electronic properties.(28-35)  For instance, the 

tensile modulus of an isolated SWNT is up to 1 TPa, its tensile strength is 50-150 GPa, 

and its strain at fracture is only 5-10%.(34, 36-38)  However, pristine SWNTs with 

large aspect ratios prefer to form aggregates, due to the strong, intrinsic van der Waals 
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interactions among nanotubes, and are insoluble in organic solvents or water.  

Uniform dispersion of SWNTs within polymer matrices,(29, 32, 33) is critical to 

improve the mechanical performance of the polymers, through the formation of 

nanocomposites.(28, 30, 31)  Recently, many examples(39-45) have been used to 

show that chemical functionalization of carbon nanotubes (CNTs), to introduce small 

groups or polymer chains that were compatible with the polymer matrix, was one of 

most effective methods for improving dispersion.  Such modification not only 

overcame the dispersion problem, but also introduced covalent and/or strong non-

covalent interactions (such as hydrogen bonding, - interactions, or ionic 

interactions) between carbon nanotubes and their surrounding polymers.  As a result, 

the load transfer from the matrix to the nanotubes was enhanced, while the 

occurrences of nanotubes pulling out from the matrix (rather than fracturing) and 

slippage among nanotubes were suppressed.(46-48)  Similarly, amorphous SiO2 

nanoparticles with large surface areas and high surface energies form agglomerates 

readily.(49-51)  The presence of many hydroxyl groups on their surfaces provides 

numerous methods to perform further chemical modification,(28, 31, 49-51) including 

sol-gel processing and in situ polymerization.  Improved dispersion of SiO2 

nanoparticles in various polymer matrices and optimization of SiO2/polymer 

interfaces to maximize stress transfer have led to excellent mechanical performance of 

many SiO2-containing polymer nanocomposites.(52-56)   

Physical and covalent incorporation of SWNTs and SiO2 nanoparticles into 

matrices comprised of both HBFP and PEG was explored as a means to prepare four 

different types of amphiphilic ternary nanocomposites, for investigation of their 

mechanical properties.  The HBFP-PEG crosslinked network has been known to be an 

intricate system with the presence of phase segregation, since HBFP is hydrophobic 
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and amorphous while PEG is hydrophilic and semi-crystalline.  Previous studies(7, 

11) demonstrated that HBFP-PEG45 (containing 45 wt% PEG), the most effective 

coating composition against protein adsorption and marine organism settlement, 

coincidently possessed the most complex, nanoscopically-resolved features on its 

surfaces.  Therefore, we have focused upon HBFP-PEG45 in our current efforts.  

Herein, two strategies, physical doping and covalent incorporation, have been 

employed to introduce „phase-designated‟ SWNTs and SiO2 nanoparticles into HBFP-

PEG45.  The nanoscopic filler-to-polymer vs. filler-to-filler interactions determine the 

location and dispersion of any nanofiller, e.g. SWNTs or SiO2 nanoparticles 

integrated within crosslinked polymer networks, which then determine the overall 

properties of the nanocomposites.  In the present study, we have engineered SWNTs 

with diamine-terminated PEGs through amidation (SWNT-g-PEG), while SiO2 

nanoparticles were grafted with HBFP via in situ polymerization (SiO2-g-HBFP).  

Given that SWNT-g-PEG is hydrophilic and SiO2-g-HBFP is hydrophobic, the 

surfaces of these polymer-modified nanofillers were engineered to be structurally and 

morphologically equivalent with one specific phase of HBFP-PEG45, and also 

equipped for covalent integration into the network, providing an optimized nanofiller-

polymer interface.  The mechanical properties of four types of nanocomposites, as 

prepared in the dry state and after swelling in water, were investigated.  HBFP-

PEG45/SWNTs and HBFP-PEG45/SiO2 were prepared via physical doping, and 

HBFP-PEG45-SWNT-g-PEG and HBFP-PEG45-SiO2-g-HBFP through covalent 

integration of SWNT-g-PEG and SiO2-g-HBFP, respectively, each with HBFP and 

PEG.  Through this systematic study, we show that improved dispersion of 

nanoscopic reinforcing fillers within the complex amphiphilic crosslinked network 

could be achieved by using the covalent incorporation method.  However, the 
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mechanical properties, especially the elastic moduli (E), of as-prepared 

nanocomposites containing SWNTs or SiO2 nanoparticles were greatly improved by 

either preparation method.  In addition, water-swollen nanocomposites, like the 

original HBFP-PEG systems,(6) exhibited atypical mechanical performance, 

rigidifying or softening, depending upon the amount of PEG. 

 

Experimental 

Materials: SWNTs (prepared via Chemical Vapor Deposition method, 

diameter = 1.1 nm, length = 0.5-100 m, 90+%), bis(3-aminopropyl) terminated PEG 

(Mn = 1,600 Da, DPn = 34), N,N-diisopropylethylamine (DIPEA, 99+%), and sodium 

(30 wt% dispersion in toluene, <0.1 mm particle size) were purchased from Aldrich 

Chemical Co. (Milwaukee, WI) and used as received.  

Pentafluorophenyltriethoxysilane was from Gelest, Inc. (Morrisville, PA).  

Hyperbranched fluoropolymer (Mn = 9,000 Da, Mw/Mn = 2.5) and 3,5-

bis[(pentafluoro-benzyl)oxy]benzyl alcohol (A2B monomer for HBFP) were 

synthesized according to a procedure reported previously.(57)  Silica nanoparticles 

(average particle size: 10 nm, surface area: ~ 640 m
2
/g; 99.5% purity) were acquired 

from Nanostructured & Amorphous Materials, Inc. (Houston, TX).  Prior to use, 

toluene and THF were distilled from Na/benzophenone.  

Characterization: Infrared spectra were acquired on a Perkin-Elmer Spectrum 

BX FT-IR instrument using KBr pellets.  
1
H and 

19
F NMR spectra were recorded on a 

Varian 300 spectrometer interfaced to a UNIX computer using Mercury software.  
1
H 

NMR spectra were acquired at 300 MHz, using the solvent proton signal as internal 

reference.  
19

F NMR spectra were acquired at 282.2 MHz, using TFA as an external 

reference.  Optical microscopy was performed on an Olympus IX-70 inverted 
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microscope (Olympus Corp., Tokyo, Japan) under bright-field conditions, and images 

were collected with an Olympus model C-5060 digital camera.  SEM was performed 

using a Hitachi S-4500 field-emission scanning electron microscope.  Samples were 

coated with gold.  TEM cross-sections were prepared by using cryo-microtome (CRX, 

Power Tome XL, RMC, Boeckeler Instruments, Tucson, Arizona) at -60 °C.  The 

sections were picked up on formvar-coated nickel grids and then imaged with a JEOL 

100CX transmission electron microscope.  TGA was conducted on a Mettler-Toledo 

TGA/SDTA851
e
 instrument under a N2 flow of 50 mL/min.  DSC was performed on a 

Mettler-Toledo instrument equipped with DSC822
e
 module, calibrated with an indium 

standard.  Heating and cooling rates of 10 °C/min were employed.  Melting 

temperatures (Tm) were recorded as the peak point of a melting endotherm, upon the 

first heating scan, and the glass transition temperatures (Tg) were determined as the 

midpoint of the inflection tangent, upon the third or subsequent heating scan using the 

STAR
e
 SW 7.01 software.   

Functionalization of SWNTs: Following the reported procedures,(58-60) the 

as-received pristine SWNTs (150 mg) were sonicated for 2-3 h at ca. 40 °C in 

aqueous nitric acid solution (3 M), then heated at reflux for 2-3 d.  After the mixture 

was allowed to cool to room temperature (rt), it was diluted with DI water, and then 

the resulting SWNTs were collected by membrane filtration (0.22 m pore size), 

washed (DI water 5×), and dried under vacuum.  Typically, acid-treated SWNTs (40 

mg) and diamine-terminated PEGs (650 mg) were stirred at 140 °C under nitrogen for 

2-4 d, followed by addition of THF (ca. 20 mL) and 1 h sonication.  The reaction 

mixture was then transferred to a pre-soaked dialysis tube (MWCO: ca. 12,000-

14,000 Da) and dialyzed against THF for 4-5 d.  After vigorous centrifugation to 
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remove insoluble SWNT solids, a dark-colored solution was acquired and then dried 

in vacuo to obtain SWNT-g-PEG. 

Grafting Polymerization of HBFP onto SiO2 Nanoparticles: SiO2 

nanoparticles were first surface functionalized with pentafluorophenyl groups.  A 

sample of pristine SiO2 nanoparticles (2.0 g) was preheated at 150 °C under vacuum 

for several hours to remove possible water adsorbed on their surfaces, followed by 

addition of anhydrous toluene (35 mL) under N2.  After 15 min sonication, 

pentafluorophenyltriethoxysilane (1.4 mL) was added to the SiO2 dispersion in 

toluene.  After solvent removal via centrifugation, these SiO2 nanoparticles were then 

cured at 170 °C overnight under vacuum.  Pentafluorophenyl-functionalized SiO2 

(PFP-SiO2, 2.2 g) contained 3.4 wt% of pentafluorophenyl groups based upon TGA 

analysis.  After a pre-treatment (3 h vacuum at 100 °C), PFP-SiO2 (0.35 g) was mixed 

with 3,5-bis[(pentafluorobenzyl)oxy]benzyl alcohol (1.94 g) and anhydrous THF (20 

mL) under N2 at rt, followed by sonication and the addition of sodium (1.51 mL, 30 

wt% suspension in toluene) to begin the polymerization.(57)  The reaction mixture 

was maintained at reflux for 3-4 d.  Additional aliquots of sodium were added after 1 

and 3 d.  The reaction mixture was then allowed to cool to rt and the polymerization 

was quenched by precipitation into a dilute NaHCO3 aqueous solution.  Upon 

isolation by centrifugation, the solid mixture was dissolved in CH2Cl2 and then 

centrifuged to separate the HBFP-grafted silica nanoparticles (SiO2-g-HBFP) from the 

unbound HBFP polymer.  After excessive CH2Cl2 washing (>5×, monitoring the 

filtrate by IR until no free HBFP was observed), neat SiO2-g-HBFP (1.30 g, 57% 

yield) was obtained and dried under vacuum overnight.  In addition, a control 

experiment on the generation of HBFP was conducted in the presence of pristine SiO2 

nanoparticles, which indicated that  5% unbound HBFP remained as a contaminant. 
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Preparation of HBFP-PEG45/SWNTs and HBFP-PEG45/SiO2 

Nanocomposites: A pre-gel solution of amphiphilic HBFP-PEG45 was prepared 

before the introduction of unfunctionalized nanoscopic fillers and formation of free-

standing nanocomposite films.(27)  Typically, HBFP (2.0 g, 4.16 mmol of 

pentafluorophenyl groups), diamine-terminated PEG (45 wt%, 1.64 g, 2.01 mmol of 

amino groups) and DIPEA (0.54 g, 4.16 mmol) were dissolved in anhydrous THF (50 

mL).  The solution was heated at reflux for 20 h under nitrogen to provide the pre-gel 

HBFP-PEG45 mixture, which remained clear and was later mixed with varied 

amounts of SWNTs or SiO2 nanoparticles.  Following a standard protocol,(6) 

microscope glass slides (Fisher Scientific, 75 mm × 25 mm × 1 mm) were surface 

functionalized with trimethylsilyl groups to afford a hydrophobic surface.  Viscous 

pre-gel solutions of HBFP-PEG45 with doped nanoscopic fillers, after sonication, 

were cast onto trimethylsilyl-functionalized glass slides via drop deposition and were 

allowed to dry for several hours under ambient conditions.  After these slides were 

cured at 100-110 °C under nitrogen for 2 h, the bubble-free, free-standing 

nanocomposite films, HBFP-PEG45/SWNTs and HBFP-PEG45/SiO2, were obtained 

by razor-peeling from the glass surfaces.  Their thicknesses ranged from 200 to 500 

µm as measured by a digital micrometer. 

Preparation of HBFP-PEG45-SWNT-g-PEG and HBFP-PEG45-SiO2-g-

HBFP Nanocomposites:  Similar procedures as above were performed.  The mixture 

of pre-gel HBFP-PEG45-SWNT-g-PEG was obtained after the 20-h-reflux procedure 

upon a reaction mixture in THF containing HBFP (2.0 g, 4.16 mmol of 

pentafluorophenyl groups), diamine-terminated PEG (45 wt%, 1.64 g, 2.01 mmol of 

amino groups), DIPEA (0.54 g, 4.16 mmol), and varied amounts of SWNT-g-PEG.  

In contrast, the pre-gel mixture of HBFP-PEG45-SiO2-g-HBFP was prepared from the 
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mixture of diamine-terminated PEGs (45 wt%, 1.64 g, 2.01 mmol of amino groups), 

DIPEA (0.54 g, 4.16 mmol) and varied amounts of HBFP and SiO2-g-HBFP, in which 

the total mass of HBFP added and HBFP contributed from SiO2-g-HBFP remained 

constant at 2.0 g (4.16 mmol of pentafluorophenyl groups).  These viscous, clear pre-

gel solutions, after sonication, were then cast onto trimethylsilyl-functionalized glass 

slides via drop deposition and cured as described above.  The thicknesses of these 

nanocomposite films, HBFP-PEG45-SWNT-g-PEG and HBFP-PEG45-SiO2-g-HBFP, 

also ranged from 200 to 500 µm. 

Tensile Measurements on Dry and Swollen HBFP-PEG45 Nanocomposites: 

Tensile measurements, based upon a test method adapted from ASTM D882-95a, 

were conducted using a Rheometrics Solids Analyzer, RSA III (TA Instruments, New 

Castle, DE), at 22 °C.  The speed of testing was 2.54 mm/min and the initial grip 

separation was 10 mm. For each sample:  (1) at least five dry specimens (dimensions: 

22 mm × 6 mm × 0.2-0.5 mm) were tested; (2) two or three specimens were swollen 

in DI water for > 5 min and then tested after re-measuring their swollen cross-

sectional areas (i.e., width and thickness; employed in the calculation of tensile 

modulus).  Due to slack in the film being taken up at the start of the test, a 

considerable toeing region was observed for many samples.  This was corrected for by 

extrapolating the linear regime of the stress-strain response to zero stress, which was 

defined as the zero strain origin.  For the dry samples, the tensile modulus (Edry, MPa) 

was calculated as the slope of the initial linear (Hookean) portion of the stress-strain 

curve, and the ultimate tensile strength (σUTS, MPa) and strain to failure (εf, %) were 

also recorded.  For the swollen films, the time needed (ca. 1-2 minutes) to complete 

the re-measurement of swollen cross section area and affix the samples to the 
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instrument for evaluation introduced uncertainties in the measured quantities at higher 

strain values, such that only the tensile modulus (Ewet, MPa) data are reported. 

 

Results and Discussion 

Functionalization of SWNTs with PEG (SWNT-g-PEG) 

To prepare the SWNTs for compatibility with the hydrophilic, PEG-rich 

phases of the HBFP-PEG nanocomposites, functionalization of carbon nanotubes with 

diamine-terminated PEGs was performed (Scheme A1-2a).  Pristine SWNTs were 

partially oxidized upon strong acid treatment, introducing carboxylic acid groups 

mainly on the ends of the nanotubes and also on defect sites along the nanotubes.(61)  

Thermal reactions of the carboxylic acid-functionalized carbon nanotubes with 

diamine-terminated PEGs then afforded SWNT-g-PEG through amidation.(58-60)  

The covalent attachment of PEG to SWNTs was supported by IR analyses, by the 

appearance of amide C=O stretching at 1663 cm
-1

 in SWNT-g-PEG (Figure A1-3b) 

and coincident disappearance of the C=O stretching band of carboxylic acids at 1720 

cm
-1

 in acid-treated SWNTs (Figure A1-3a).  In addition, the strong peak at 1113 cm
-1

 

(C-O stretching) and broad band centered at 2890 cm
-1

 (C-H stretching) (Figure A1-

3b) confirmed the presence of PEG.  However, other structures, via acid-amine 

zwitterionic interactions(60) or non-covalent physical adsorption of the diamine-

terminated PEG upon the SWNTs,(62) could also be partially responsible for the 

SWNT-g-PEG conjugate.  Thermogravimetric analysis (TGA, Figure A1-1) indicated 

that SWNT-g-PEG contained ca. 5 wt% SWNTs.  As expected,  
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Figure A1-1.  DSC curves (left) of diamine-terminated PEGs and SWNT-g-PEG and 

TGA mass loss curves (right) of SWNTs, SWNT-g-PEG and diamine-terminated 

PEGs. 

 

SWNT-g-PEG was soluble in tetrahydrofuran (THF), dichloromethane, water, and 

other common solvents, remaining as stable dispersions for months.  
1
H NMR 

spectroscopy in CDCl3 (Figure A1-2) observed the characteristic broad peak of the 

methylene protons of  

     

Figure A1-2.  Solution-state 
1
H NMR spectrum (left, 300 MHz, CDCl3) of SWNT-g-

PEG and solution-state 
19

F NMR spectrum (right, 282.2 MHz, CDCl3) of HBFP (red 

line) and SiO2-g-HBFP (black line). 
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the PEG chains, a fraction of whose motions were slowed by close proximity to the 

neighboring carbon nanotubes.(59) 

Scheme A1-2.  Functionalization of nanoscopic fillers: (a) SWNTs with diamine-

terminated PEGs and (b) SiO2 nanoparticles grafted with HBFP; Preparation of 

nanocomposite films: (c) with physically doped fillers, HBFP-PEG45/SWNTs and 

HBFP-PEG45/SiO2, and (d) with functionalized fillers in situ, HBFP-PEG45-SWNT-

g-PEG and HBFP-PEG45-SiO2-g-HBFP. 
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Figure A1-3.  FTIR spectra of (a) acid-treated SWNTs, (b) SWNT-g-PEG, (c) 

pristine SiO2 nanoparticles, (d) SiO2-g-HBFP, and (e) HBFP. 

 

SiO2 Nanoparticles Grafted with HBFP  

 The surface chemistry of the SiO2 nanoparticles was modified to provide 

fluoroaromatic groups for partitioning within the hydrophobic, HBFP-rich domains, 

and covalent integration into the polymer matrix.  Pristine SiO2 nanoparticles were 

first modified with the functionalized silane coupling agent, 

pentafluorophenyltriethoxysilane, to introduce pentafluorophenyl groups (PFP) onto 

the surface, which later were involved in the growth of HBFP (Scheme A1-2b).  The 

amount of PFP within these PFP-functionalized SiO2 nanoparticles (PFP-SiO2) was 

determined to be ca. 3.4 wt%, i.e., approximately 63 PFP groups per SiO2 particle (ca. 

4 % consumption of hydroxyl groups available on the SiO2 nanoparticle surface), 
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based upon TGA analysis (Figure A1-4).  Adapted from procedures reported 

previously,(57)  

            

Figure A1-4.  DSC curves (left) of SiO2 nanoparticles, HBFP and SiO2-g-HBFP as 

well as a physical mixture of SiO2 nanoparticles and HBFP (inset), and TGA mass 

loss curves (right) of SiO2 nanoparticles, PFP-SiO2, SiO2-g-HBFP and HBFP. 

 

the A2B monomer for HBFP, 3,5-bis[(pentafluorobenzyl)oxy]benzyl alcohol, was 

polymerized in the presence of PFP-SiO2 in THF via direct condensation, facilitated 

by the addition of fine sodium metal.  This procedure allowed for grafting of the 

growing HBFP units onto the silica nanoparticles and also continued propagation 

from the nanoparticle surfaces, to give a combination of “grafting-onto” and 

“grafting-from” hyperbranched polymer brush growth upon the inorganic 

nanoparticulate substrates.  After the polymerization was quenched, exhaustive 

washing and centrifugation removed unbound HBFP and afforded HBFP-grafted SiO2 

nanoparticles (SiO2-g-HBFP).  Characterization by gel permeation chromatography 

(GPC) determined that unbound HBFP had a number average molecular weight (Mn) 

of 2,700 Da with a relatively broad molecular weight distribution (Mw/Mn = 2.5); the 

HBFP of SiO2-g-HBFP was assumed to possess similar Mn and Mw/Mn. 

 IR and NMR spectroscopy observed characteristic data for both the SiO2 

nanoparticles and the HBFP in samples of SiO2-g-HBFP.  The spectrum of SiO2-g-



216 

HBFP (Figure A1-3d) exhibits the characteristic C-F stretching at 1165 cm
-1

 as does 

HBFP (Figure A1-3e), and also contains the anti-symmetric stretching of Si-O-Si at 

1065 cm
-1

, which is similar to that of pristine SiO2 at 1120 cm
-1

 (Figure A1-3c).  

Moreover, for SiO2-g-HBFP particles, the C-C stretching modes of phenyl groups 

were present within the 1450-1650 cm
-1

 range while the C-H stretching was observed 

from 2830-3100 cm
-1

.  In addition, SiO2-g-HBFP particles gave a similar 
19

F NMR 

spectrum as that observed for the unbound HBFP (Figure A1-2).  The existence of a 

peak at -153 ppm, from the labile para-fluorine of the pentafluorophenyl groups,(57) 

indicated that SiO2-g-HBFP retained the reactive sites that are capable of undergoing 

nucleophilic substitution with amine groups of PEG, to allow for covalent integration 

into the HBFP-PEG crosslinked networks.   

Although the IR and NMR spectroscopy data could not confirm covalent 

coupling between the SiO2 nanoparticles and HBFP, interestingly, the glass transition 

temperature (Tg) of HBFP was raised to ca. 65 C in SiO2-g-HBFP, 10 C higher than 

that of HBFP or a physical mixture of HBFP and pristine SiO2 nanoparticles (Figure 

A1-4), demonstrating the influence of covalently-incorporated silica on the mobility 

of the surrounding polymers.  Moreover, the fact that the entire SiO2-g-HBFP sample 

was able to be dispersed into THF, chloroform and dichloromethane provided further 

evidence for the covalent coupling.  A high weight percentage of silica nanoparticles, 

25.4 wt%, was found in SiO2-g-HBFP, as observed by TGA (Figure A1-4).  As 

shown in Figure A1-5a, PFP-functionalized silica nanoparticles still tended to form 

agglomerates, since they retain the high surface area and surface energy as those of 

pristine SiO2.  Such aggregations were partially disassembled to improve dispersion 

of SiO2 via the grafting of HBFP.  In this case, discrete HBFP-coated SiO2 

nanoparticles were visible (Figure A1-5b).  Control experiments, involving the 
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polymerization of the A2B monomer in the presence of pristine SiO2 nanoparticles, 

followed by the typical washing protocols, indicated that  5% unbound HBFP 

remains as a contaminant.  However, this contaminant is not viewed as a liability, as 

the ultimate incorporation of these SiO2-g-HBFP into the HBFP-PEG matrices 

involves the addition of HBFP.   

Figure A1-5.  Typical SEM micrographs of (a) PFP-SiO2 nanoparticles and (b) SiO2-

g-HBFP; TEM cross-sectional micrographs of cryo-microtomed samples of (c) 

HBFP-PEG45/SWNTs with 0.25 wt% physical doping and (d) HBFP-PEG45-SWNT-

g-PEG with 0.25 wt% covalent incorporation. 

 

Preparation of HBFP-PEG45 Nanocomposite Films  

 The formation of amphiphilic HBFP-PEG45 crosslinked networks involved 

the preparation of a pre-gel mixture of HBFP and diamine-terminated PEGs, by 



218 

heating the polymer reagents in THF at reflux for 20 h, followed by drop deposition 

and curing at 110 C for 2 h.(7, 27)  HBFP-PEG45 nanocomposites with physically 

doped nanofillers, HBFP-PEG45/SWNTs and HBFP-PEG45/SiO2, were prepared 

through the mixing (sonication) of varying amounts of nanofillers with the pre-gel 

mixture (Scheme A1-2c), while those with covalent integration of modified 

nanofillers, HBFP-PEG45-SWNT-g-PEG and HBFP-PEG45-SiO2-g-HBFP were 

from the pre-gel mixture of HBFP, diamine-terminated PEGs, and controlled amounts 

of the functionalized fillers, SWNT-g-PEG or SiO2-g-HBFP (Scheme A1-2d).   

 TEM images of HBEP-PEG nanocomposites containing 0.25 wt% SWNTs 

(Figure A1-5c and A1-5d) indicate the uneven distribution of carbon nanotubes in 

these networks, with better dispersion occurring for the SWNTs that had undergone 

PEG grafting and covalent incorporation into the crosslinked polymer networks.  

Optical microscopy was performed as well (Figure A1-6b), which showed that the 

physical dispersion of pristine SWNTs in the amphiphilic HBFP-PEG network was  
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Figure A1-6.  Optical micrographs of (a) HBFP-PEG45, (b) HBFP-PEG45/SWNTs 

with 0.25 wt% physical doping, (c) HBFP-PEG45-SWNT-g-PEG with 0.25 wt% 

covalent incorporation, (d) HBFP-PEG45-SWNT-g-PEG with 0.5 wt% covalent 

incorporation, (e) HBFP-PEG45/SiO2 with 5 wt% physical doping, and (f) HBFP-

PEG45-SiO2-g-HBFP with 5 wt% covalent incorporation; Scale Bar: 100 m. 

 

poor.  As expected, carbon nanotube aggregates were formed throughout the entire 

network, even when the doping amount was the lowest, 0.25 wt%.  In contrast, 

HBFP-PEG45-SWNT-g-PEG films with ≤ 0.25 wt% covalent incorporation exhibited 

no noticeable conglomerates on the micrometer scale (Figure A1-6c), however, 

aggregation emerged and became prevailing with further addition of SWNT-g-PEG to 

higher wt% loadings (Figure A1-6d).  For nanocomposites prepared from HBFP-

PEG45 with silica nanoparticles, the agglomeration of SiO2 certainly existed in the 

matrix, even though SiO2 particles were chemically grafted with HBFP as noted by 
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SEM (Figure A1-5b).  These differences are correlated with the mechanical 

performance of the nanocomposites (vide infra). 

 

Mechanical Properties of HBFP-PEG45/SWNTs and HBFP-PEG45-

SWNT-g-PEG 

The tensile properties of the nanocomposites were determined as dry films (as 

prepared) and wet (after swelling in water).  Typical stress-strain curves before and 

after water swelling are shown in Figure A1-7.  These remarkable changes suggest 

that the mechanical performance of these nanocomposites were dependent upon the 

type and amount of nanofiller, and the incorporation strategy used, as well as the 

absence or presence of water. 
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Figure A1-7.  Typical stress-strain curves of (a) HBFP-PEG45/SWNTs with 2.5 wt% 

physical doping, (b) HBFP-PEG45-SWNT-g-PEG with 0.5 wt% covalent 

incorporation, (c) HBFP-PEG45/SiO2 with 1.0 wt% physical doping, and (d) HBFP-

PEG45-SiO2-g-HBFP with 1.0 wt% covalent incorporation, as-prepared ( and ) and 

after swelling in water (). 
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Figure A1-8.  Typical stress-strain curves of HBFP-PEG45/SWNTs nanocomposite 

films containing (left) 0.25 wt% SWNTs, (center) 0. 5 wt% SWNTs and (right) 1.0 

wt% SWNTs as the speed of testing was 2.54 mm/min.  Black curves were obtained 

from films as prepared and red ones were from those after swelling in DI water for > 

5 minutes. 

 

Figure A1-9.  Typical stress-strain curves of HBFP-PEG45-SWNT-g-PEG 

nanocomposite films containing (left) 0.05 wt% SWNTs, (center) 0.1 wt% SWNTs 

and (right) 0.25 wt% SWNTs as the speed of testing was 2.54 mm/min.  Black curves 

were obtained from films as prepared and red ones were from those after swelling in 

DI water for > 5 minutes. 

 

Before Swelling in Water 

 Uniform dispersion of nanofillers within polymer matrices and proper 

engineering of the nanofiller/polymer interfacial regions are indispensable to 
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maximize the load transfer from the polymer to the nanofillers, resulting in the 

expected superior mechanical performance.(46-48)  Consistent with the occurrence of 

SWNT aggregation, the tensile properties of as-prepared HBFP-PEG45/SWNTs 

nanocomposites exhibited none to moderate improvement over the control sample, 

HBFP-PEG45 (Table A1-1), with increasing SWNT loadings.  For instance, there was 

little change in elastic modulus (Edry) when the doping amount of pristine SWNTs 

was 0.25 wt%.  The highest extent of physical doping, 2.5 wt% SWNTs, did lead to a 

modest 77% increase of Edry.  In addition, the ultimate tensile strength (σUTS) and the 

strain-to-failure (f) values of HBFP-PEG/SWNTs were approximately 1.0 MPa and 

300%, respectively, nearly equivalent to those of HBFP-PEG45.  Such mechanical 

performance was foreseen because the main interplay between SWNTs and the 

amphiphilic network was based upon weak van der Waals interactions.  Furthermore, 

the existence of SWNT bundles reduces the interfacial contact area between the 

nanotubes and polymer matrix, and also encourages slippage among SWNTs during 

tensile stretching.  As a consequence, the stress transfer from the crosslinked HBFP-

PEG amphiphilic network to SWNTs was limited.
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Table A1-1.  Summary of mechanical properties of HBFP-PEG45/SWNTs and 

HBFP-PEG45-SWNT-g-PEG nanocomposites containing varying amounts of carbon 

nanotubes fillers before and after water swelling. 

Films 
SWNTs 

[wt%] 

PEG 

[wt%] [a]
 

Before swelling in water 

Ewet 

[MPa] [b]  
Ewet/Edry 

Ultimate 

tensile 

strength 

[UTS, MPa] 

Failure 

strain 

[f, %] 

Edry 

[MPa] 

HBFP-

PEG45 [c] 
0 45 0.985 ± 0.057 300 ± 60 1.44 ± 0.24 13.0 ± 2.5 9.0 

HBFP-

PEG45 

/SWNTs 

0.25 45 1.03 ± 0.07 320 ± 20 1.15 ± 0.15 13.7 ± 2.4 12 

0.5 45 0.880 ± 0.091 280 ± 50 2.12 ± 0.33 14.9 ± 1.0 7.1 

1.0 45 0.806 ± 0.033 270 ± 30 2.10 ± 0.45 11.0 ± 2.4 5.3 

2.5 45 1.07 ± 0.14 300 ± 30 2.55 ± 0.52 18.8 ± 2.4 7.4 

HBFP-

PEG45-

SWNT-g-

PEG 

0.05 46 1.05 ± 0.10 300 ± 30 2.11 ± 0.35 11.6 ± 1.7 5.5 

0.1 47.5 1.36 ± 0.19 310 ± 40 3.62 ± 0.63 12.5 ± 2.0 3.5 

0.25 51 2.33 ± 0.42 240 ± 50 20.5 ± 4.0 [d] 5.32 ± 0.60 0.26 

0.5 58 3.20 ± 0.11 80 ± 15 63.4 ± 10 [d] 2.52 ± 0.52 0.04 

[a] It was the total wt% of the diamine-terminated PEGs added and the PEG amount 

(calculated upon TGA analyses) from the SWNT-g-PEG introduced.  [b] After 

swelling in DI water for > 5 min.  [c] Previously reported.(6)  [d] Edry of HBFP-

PEG55 was 11.9 MPa.(6) 

 

 Since the crystalline polymer domains participate in the reinforcement of the 

network, it is important to understand the influence of carbon nanotubes on the 

crystallization process.  It is known that CNTs can act as nucleating agents for several 

semi-crystalline polymers,(41, 47) including PEG.(45, 63, 64)  However, many 

factors can alter the crystallization, including the interactions of the pristine or 

functionalized CNTs with their adjacent polymer chains, the thermal history of 

nanocomposites, and the amount of CNTs introduced.(45, 63, 64)  For instance, 

fluorinated SWNTs exerted little changes on the crystallinity of PEG with up to 4 

wt% loading.(45, 63, 64)  As for HBFP-PEG, the properties of the phase segregated 

domains of semi-crystalline, hydrophilic PEG have been shown to be controlled 

partially through the curing process, which was performed at 110 °C, a temperature 
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that is significantly higher than the Tg of HBFP and the Tm of PEG.(7, 11, 27)  The 

molten diamine-terminated PEGs reacted efficiently with HBFP to form the HBFP-

PEG crosslinked amphiphilic network, resulting in suppression but not disappearance 

of crystallinity.  Certainly, one-dimensional SWNTs could affect the formation of 

such complex networks to some degree.  DSC studies (Figure A1-10a-d) indicated 

that the latent heats of fusion of HBFP-PEG45/SWNTs with a physical doping of 0.25 

to 2.5 wt% were within ca. 28 to 31 J/g, similar to that of HBFP-PEG45.  Meanwhile, 

the Tm values for the PEG phases within these nanocomposites were lowered by ca. 2-

5 °C, in comparison to that of HBFP-PEG45 (ca. 49 °C).  Since there was no apparent 

increase in the degree of PEG crystallinity, the moderate improvements in Edry 

observed for HBFP-PEG45/SWNTs are attributed mainly to the reinforcing effect of 

CNTs. 

 

Figure A1-10.  DSC curves of (a) HBFP-PEG45 and nanocomposites containing 

SWNTs: (b) HBFP-PEG45/SWNTs with 0.25 wt% physical doping, (c) HBFP-

PEG45/SWNTs with 1.0 wt% physical doping, (d) HBFP-PEG45/SWNTs with 2.5 
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wt% physical doping, (e) HBFP-PEG45-SWNT-g-PEG with 0.05 wt% covalent 

incorporation, (f) HBFP-PEG45-SWNT-g-PEG with 0.1 wt% covalent incorporation, 

(g) HBFP-PEG45-SWNT-g-PEG with 0.25 wt% covalent incorporation and (h) 

HBFP-PEG45-SWNT-g-PEG with 0.5 wt% covalent incorporation. 

 

 The moduli of SWNT-containing nanocomposites increased significantly 

when SWNTs were covalently integrated into the HBFP-PEG45 network (Table A1-1, 

Figure A1-11b).  HBFP-PEG45-SWNT-g-PEG nanocomposites with 0.05 wt% and 

0.1 wt% covalent incorporation of PEG-functionalized SWNTs exhibited 47% and 

150% increase in Edry, respectively, over HBFP-PEG45; much better than observed 

for any of the physically incorporated HBFP-PEG45/SWNTs, even with 2.5 wt% 

doping.  It is important to note that the actual amounts of PEG present in such 

covalently-integrated nanocomposites were higher than 45 wt%, due to contributions 

introduced from SWNT-g-PEG (Table A1-1).  In fact, the actual amounts of PEG in 

the two nanocomposites containing 0.05 wt% and 0.1 wt% functionalized SWNTs 

were only slightly higher than 45 wt%.  However, DSC studies (Figure A1-10e-f) 

demonstrated that their latent heats of fusion were approximately 16 J/g, much lower 

than HBFP-PEG45, and they possessed two melting transitions of PEG crystallites at 

ca. 30 °C and 44 °C.  Clearly, the influence exerted by the PEG-coated SWNTs 

during the phase segregation and curing processes improved the dispersion of carbon 

nanotubes in the network (Figure A1-6b-c).  Therefore, it is reasonable to conclude 

that the high Edry values are due to the optimized contact areas and numerous 

interactions between SWNTs and the polymer matrices, including weak van der 

Waals interactions and stronger interactions, such as covalent attachment, mechanical 

interlocking, and hydrogen bonding.(40, 43, 46) 
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 An even more significant effect was observed at higher loadings of SWNT-g-

PEG.  HBFP-PEG45-SWNT-g-PEG with 0.25 wt% and 0.50 wt% covalent 

incorporation contained actual amounts of PEG in excess of 50 wt% (Table A1-1, 

Figure A1-11c).  DSC studies (Figure A1-10g-h) also showed much higher latent 

heats of fusion (> 40 J/g) than observed for HBFP-PEG45.  Therefore, Edry increased 

for HBFP-PEG45-SWNT-g-PEG with 0.25 wt% and 0.5 wt % covalent incorporation 

(51 wt% and 58 wt% actual PEG, respectively) by 73% and 430%, respectively, in 

comparison to HBFP-PEG55 (55 wt% PEG), whose Edry was 11.6 MPa.(6)  As 

anticipated, σUTS was also improved while f decreased.  Attempts to prepare 

nanocomposites with higher loadings of SWNT-g-PEG (≥ 1 wt%) resulted in brittle 

films that could not be handled without damaging the sample prior to evaluation, 

presumably due to the overwhelming relative amount of PEG, which prevented 

complete crosslinking throughout an established matrix.  The existence of even 0.25-

0.5 wt% of SWNT-g-PEG could induce the aggregation of SWNTs as shown in 

Figure A1-6d, but it also positively affected the crystallization of PEG.  Therefore, 

besides enhanced molecular interfacial interactions (vide supra), increased degrees of 

PEG crystallites could also contribute to the large improvement in tensile modulus for 

these two HBFP-PEG45-SWNT-g-PEG samples having higher SWNT loadings. 
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Figure A1-11.  Direct comparison of elastic moduli of (a) HBFP-PEG45 and HBFP-

PEG55,(6) (b) HBFP-PEG45/SWNTs, (c) HBFP-PEG45-SWNT-g-PEG, (d) HBFP-

PEG45/SiO2, and (e) HBFP-PEG45-SiO2-g-HBFP as prepared () and after swelling 

in water (). 

 

After Swelling in Water 

 It was suggested previously that water swelling in the PEG-rich domains of 

the HBFP-PEG networks can play contrasting roles which are dependent upon the 

amount of PEG introduced, relative to the HBFP.(6)  Water swelling resulted in 

opposing effects, either rigidification or softening of the networks, with the crossover 

point being at ca. 50 wt% of PEG.  HBFP-PEG45/SWNTs with varying amounts of 

physical doping and HBFP-PEG45-SWNT-g-PEG with 0.05 wt% and 0.1 wt% 

covalent incorporation exhibited Ewet values, 11.0 to 18.8 MPa, similar to that of 
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HBFP-PEG45 after swelling in water, as expected, since these nanocomposites 

contained around 45 wt% of PEG (Table A1-1, Figure A1-11a-c).  Their ratio of Ewet 

to Edry was > 3, and even up to 12, an extraordinary enhancement.  The current 

hypothesis is that water swelling in the micro- and nano-channels of crystalline PEG-

rich phases led to the disappearance of PEG crystallites, but such swollen domains 

remained within the network and deformed the amorphous HBFP-rich regions, 

rigidifying the whole network.(6)  For HBFP-PEG45-SWNT-g-PEG with 0.25 wt% 

and 0.5 wt% covalent incorporation, their Ewet values were 5.32 MPa and 2.52 MPa, 

respectively, much lower than their Edry values (Table A1-1, Figure A1-11c).  Like 

HBFP-PEG55 (Figure A1-11a) and HBFP-PEG63,(6) water swelling in the PEG-rich 

domains simply softened the whole network (as water swelling does with 

hydrogels(3-5)) when PEG existed as the major and dominant phase. 

 

Mechanical Properties of HBFP-PEG45/SiO2 and HBFP-PEG45-SiO2-g-

HBFP  

Before Swelling in Water 

 Differing from pristine SWNTs, silica nanoparticles dispersed in the HBFP-

PEG45 network can interact strongly with the polymer matrices, i.e., with the PEG-

rich regions through H-bonding.(65, 66)  The presence of such strong non-covalent 

interactions is capable of intensifying the load transfer from the polymer to its 

neighboring SiO2, as can be seen in typical stress-strain curves in Figure A1-12.  As 

anticipated, Edry increased around 400-420%  
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Figure A1-12.  Typical stress-strain curves of (a) HBFP-PEG45/SiO2 nanocomposite 

films containing 5 wt% physical doping and (b) HBFP-PEG45-SiO2-g-HBFP 

nanocomposite films containing 5 wt% covalent incorporation as the speed of testing 

was 2.54 mm/min.  Black curves were obtained from films as prepared and red ones 

were from those after swelling in DI water for > 5 minutes. 

 

for HBFP-PEG45/SiO2 with 1 or 5 wt% physical doping, compared to HBFP-PEG45 

(Table A1-2, Figure A1-11d).  Meanwhile, σUTS became higher while f remained the 

same (within experimental error).  The occurrence of inevitable agglomeration of 

pristine SiO2 in the network probably contributes to the little variation between the 1 

wt% and 5 wt% doping.  In addition, the crystallization of PEG was affected slightly 

under the low loading levels (Figure A1-13b-c).  Both nanocomposites showed 

smaller latent heats of fusion (ca. 20 J/g) than HBFP-PEG45, since the strong 

interactions between SiO2 and its nearby PEG chains can restrict the mobility of these 

chains and the formation of PEG crystallites.(65, 66) 

 Through the grafting strategy, the surface features of SiO2 nanoparticles were 

altered with the intention to transform them to present hydrophobic surfaces.  

Surprisingly, HBFP-PEG45-SiO2-g-HBFP nanocomposites, where SiO2-g-HBFP was 

similar to the hydrophobic HBFP-rich phases and covalently integrated into the entire 

network, exhibited poorer mechanical properties than those observed for HBFP-
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PEG45/SiO2 (Table A1-2, Figure A1-11e), although there was still improvement over 

HBFP-PEG45 at 1 wt% loading.  Edry for HBFP-PEG45-SiO2-g-HBFP with 1 wt% 

loading improved 170% over HBFP-PEG45, however, when the loading was 5 wt% 

there was no statistical difference in comparison to the Edry for HBFP-PEG45.  DSC 

studies showed decreased crystallinity in these SiO2-g-HBFP-containing systems 

(Figure A1-13d-e).  Further studies are required to determine the structure-property 

relationships for these materials, including whether the SiO2-g-HBFP nanoparticles 

present an incompletely-coated, amphiphilic surface that influences the regions within 

HBFP-PEG to which the nanofillers partition. 

Table A1-2.  Summary of mechanical properties of HBFP-PEG45/SiO2 and HBFP-

PEG-SiO2-g-HBFP nanocomposites containing varying amounts of nanoscopic silica 

particles before and after water swelling. 

Samples 
SiO2 

[wt%] 

PEG 

[wt%] 

Before swelling in water 

Ewet 

[MPa] [a]
 Ewet/Edry

 Ultimate 

tensile strength 

[UTS, MPa] 

Failure 

strain 

[f, %] 

Edry 

[Mpa] 

HBFP-

PEG45 [b] 
0 45 0.985 ± 0.057 300 ± 60 1.44 ± 0.24 13.0 ± 2.5 9.0 

HBFP-

PEG45 

/SiO2 

1.0 45 1.86 ± 0.14 260 ± 40 7.56 ± 1.04 15.2 ± 1.5 2.0 

5.0 45 2.41 ± 0.10 340 ± 30 7.15 ± 0.21 18.2 ± 2.2 2.6 

HBFP-

PEG45-

SiO2-g-

HBFP 

1.0 45 1.47 ± 0.29 250 ± 30 3.86 ± 1.00 12.8 ± 1.8 3.3 

5.0 45 1.67 ± 0.16 320 ± 20 1.23 ± 0.14 11.3 ± 1.2 9.2 

[a] After swelling in DI water for > 5 min.  [b] Previously reported.(6)  



232 

 

Figure A1-13.  DSC curves of HBFP-PEG45 (a) and nanocomposites containing SiO2 

nanoparticles: (b) HBFP-PEG45/SiO2 with 1.0 wt% physical doping, (c) HBFP-

PEG45/SiO2 with 5.0 wt% physical doping, (d) HBFP-PEG45-SiO2-g-HBFP with 1.0 

wt% covalent incorporation, and (e) HBFP-PEG45-SiO2-g-HBFP with 5.0 wt% 

covalent incorporation. 

 

After Swelling in Water 

 The SiO2-containing HBFP-PEG nanocomposite samples contained PEG as a 

minority phase, giving what is now characterized as the standard behavior of an 

increased modulus after water swelling.  As shown in Table A1-2 and Figure A1-11d-

e, the four SiO2 nanocomposites exhibited similar Ewet values, 11.3 to 18.2 MPa, since 

the amount of PEG relative to HBFP was 45 wt%. 

 

Conclusions 

 In summary, we have demonstrated that the mechanical properties of 

amphiphilic crosslinked HBFP-PEG45 networks can be improved by introducing 

nanoscopic fillers, including SWNTs and SiO2 nanoparticles.  Each nanofiller was 
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incorporated into the polymer networks non-covalently and was also engineered 

through chemical functionalization to perform as phase-designated reinforcing 

functional materials.  SWNT-g-PEG and SiO2-g-HBFP were designed to (1) improve 

the dispersion of fillers, nanotubes or spherical nanoparticles, in the amphiphilic 

matrices, (2) enhance the non-covalent interactions between the nanofillers and the 

polymers, and more importantly, (3) maintain reactive functionalities to be further 

covalently integrated into the complex networks. 

Significantly greater reinforcement was achieved by covalent incorporation of 

SWNT-g-PEG into HBFP-PEG, than was observed for the physical doping method.  

The covalent incorporation of PEG-functionalized SWNTs at 0.5 wt% of loading into 

HBFP-PEG45 gave a 430 % increase of elastic modulus as prepared, which exceeded 

the 77% increase in Edry for the physically-doped material, even at 2.5 wt% loading.  

The improved mechanical properties can be attributed to improved dispersion of 

SWNTs upon PEG grafting onto SWNTs and their covalent integration into the 

HBFP-PEG, in comparison to the physical doping of pristine SWNTs into HBFP-

PEG.  In addition, the existence of PEG crystallites is critical to the mechanical 

performance of SWNT-containing nanocomposites as prepared.  It is clear that one-

dimensional SWNTs, when functionalized with PEG, affected the crystallization of 

PEG.  Such influence is expected to be generally applicable to other semi-crytalline 

polymers, broadening and fortifying the application of target polymer-functionalized 

SWNTs within matrices of multiple polymer components.  As expected, swelling with 

water rigidified the amphiphilic crosslinked networks when PEG was the minor phase, 

whereas it softened the nanocomposites when the amount of PEG increased to 

become the major component.   
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For the samples loaded physically and covalently with silica nanoparticles, 

surprising results were obtained.  Higher moduli were measured for nanocomposites 

doped with SiO2 nanoparticles than for nanocomposites containing SiO2-g-HBFP 

designed for covalent incorporation.  The physically-incorporated SiO2 nanoparticles 

gave greater than 400% increase in Edry at loadings of 1-5 wt%.  In contrast, the 

modulus decreased with increased loading of SiO2-g-HBFP, providing no difference 

from neat HBFP-PEG45 when the loading was 5 wt%.  The strong non-covalent 

interactions between hydroxyl groups on the surfaces of silica nanoparticles and PEG 

chains could make the load transfer more effective, explaining the significant moduli 

increases with HBFP-PEG45/SiO2.  Meanwhile, SiO2-g-HBFP is expected to have 

many of those hydrophilic surface sites buried beneath the HBFP coating, which 

would reduce the polar, hydrophilic and hydrogen-bonding interactions and may place 

these nanofillers into different domains or interfaces within HBFP-PEG. 

Our studies suggest that control of the location and dispersion of the nanofiller 

is a prerequisite to improving the mechanical performance of polymers, especially 

those with complex network structures.  At this point, we have investigated two types 

of nanofillers of differing compositions, shapes and surface chemistries.  It is 

interesting that the main correlation that can be drawn is that those nanofillers having 

a hydrophilic surface, capable of favorable interactions with and crystallization of the 

PEG-rich phases within HBFP-PEG complex networks, provide significant increases 

in modulus, when the samples were analyzed as prepared, in the dry state.  

Furthermore, even in the presence of the nanofillers, swelling of micro- and 

nanochannels of PEG-rich domains gave the most dramatic modulus increases, but 

these effects gave end results that are similar to HBFP-PEG45, having no nanofiller 

present.  Further studies are needed to probe the exact structural details that lead to the 
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observed properties, which will then allow for new directions to be followed that may 

produce materials that can take advantage of both the influences of water and 

nanofillers. 
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Appendix 2 

Solid-state NMR investigations of the unusual effects resulting from the 

nanoconfinement of water within amphiphilic crosslinked polymer 

networks 

[Portions of this work have been published previously as Ryutaro Ohashi, Jeremy W. 

Bartels, Jinqi Xu, Karen L. Wooley, and Jacob Schaefer Advanced Functional Materials, 

2009, 19(21), 3404-3410] 

 

Abstract 

Two types of solid-state 
19

F NMR experiments were used to characterize phase-

separated hyperbranched fluoropolymer-poly(ethylene glycol) (HBFP-PEG) crosslinked 

networks.  Mobile (soft) domains were detected in the HBFP phase by a rotor-

synchronized Hahn echo under magic-angle spinning conditions, and rigid (hard) 

domains by a solid echo with no magic-angle spinning.  The mobility of chains was 

detected in the PEG phase by 
1
H→

13
C cross-polarization transfers with 

1
H spin-lock 

filters with and without magic-angle spinning.  The interface between HBFP and PEG 

phases was detected by a third experiment, which utilized a 
19

F→
1
H-(spin diffusion)-

1
H→

13
C double transfer with 

13
C solid-echo detection.  The results of these experiments 

show that composition-dependent PEG inclusions in the HBFP glass rigidify on 

hydration, consistent with an increase in macroscopic tensile strength.
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Introduction 

The combination of dissimilar polymer components to effect microscopic phase 

segregation is a simple process, whereby the polymers order themselves and produce 

well-defined nanoscopic features.(1-3)  Such processes have led to materials having 

feature sizes below those accessed lithographically for use in microelectronics devices.(4)  

For many applications, however, the interest is merely in the hybridization of 

incompatible polymer materials to produce domains of nanoscopic size.  These materials 

possess distinctive compositions and properties, even in the absence of high degrees of 

order.  Of particular interest are mixing of cationic vs. anionic polyelectrolytes,(5) or 

hydrophilic vs. hydrophobic polymers,(6, 7) to achieve interpenetrating, self-assembled 

polymer networks that have utility for tissue-engineering scaffolds,(8) complex delivery 

vessels,(9) membranes,(10) and non-toxic anti-biofouling coatings.(11)   

Distinguishing features of amphiphilic crosslinked networks arise from the properties 

of the individual hydrophobic and hydrophilic polymer components, which can be 

trapped kinetically by subsequent covalent crosslinking between the dissimilar regimes.  

These materials(12) have many desirable features including unique swelling 

properties(13-16) important for anti-fouling coatings for the marine environment,(17) and 

inhibition of biomolecule adsorption or promotion of release(18) for use as potential 

pharmaceutical or biomedical devices.  Such systems can be prepared readily, but often 

pose unique challenges in the characterization of their heterogeneous structures and 

morphologies.  Surface analyses have observed compositional heterogeneity(19) and 

complex topographies(20) for amphiphilic crosslinked networks.  SANS,(21) X-ray,(22) 

TEM,(23) and EPR(24) studies have confirmed the extension of the morphological 

heterogeneity in addition to nano- and microphase segregation throughout the bulk of 

such materials.   
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Crosslinking of a hyperbranched fluoropolymer (HBFP, Mn = 9000 Da) by bis(3-

amino-propyl)-terminated poly(ethylene glycol) (PEG, Mn = 1600 Da) creates a complex 

amphiphilic network (Figure A2-1).(20)  The hyperbranched architecture of HBFP 

introduces n + 1 pentafluorophenyl groups, where n is the degree of polymerization.  

Each pentafluorophenyl group is capable of undergoing reaction with an amino terminus 

of the di-functional linear PEG to produce a crosslinked network, containing 

intermolecular crosslinks, intramolecular loops, or attached PEGs that retain a free amino 

terminus (Figure A2-1).  Because of the coincident phase segregation and covalent 

crosslinking, domains that are rich in hydrophobic HBFP or hydrophilic PEG are 

generated, which are connected by an amphiphilic interface.  The composition of such 

crosslinked networks is altered according to the stoichiometry of the HBFP and PEG 

employed during their preparation.  These materials were found to have unique properties 

that were hypothesized to result from nanoscopic channels and confinement of guest 

molecules.(23, 25)  Interestingly, when PEG was the minor component, swelling with 

water gave a ten-fold increase in modulus, relative to the dry state, whereas when PEG 

was the major component, the materials behaved as ordinary hydrogels, exhibiting a ten-

fold reduction in modulus upon the introduction of water.(25)  Trapping of water within 

PEG-rich nanochannels was invoked to explain the unusual increase in modulus for 

samples having less than 50 wt% PEG. 
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Figure A2-1.  The crosslinking reaction between HBFP (green) and diamino PEG (blue), 

produces an amphiphilic HBFP-PEG crosslinked network, illustrated with the various 

structural elements and the resulting chemical environments.   

 

In an effort to find molecular-level evidence for this behavior, solid-state NMR 

studies were undertaken to investigate the chemical and physical environment within 

these complex networks at compositions just below and above 50 wt% PEG, each with 

and without the addition of water.  Two networks were investigated, HBFP-PEG45 and 

HBFP-PEG55, having 45 and 55 wt% PEG, respectively.  Solid-state NMR was used to 

probe those domains and the interfacial contact areas between them using 
19

F (HBFP) 
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and 
13

C (PEG) at natural abundance.  The results of these experiments show that when 

PEG is the minor component, and the interfacial PEG regions of HBFP-PEG networks 

become swollen with water, the interface is constrained and rigidified.  In contrast, when 

PEG is the major component, swelling with water provides greater mobility throughout 

the matrix, giving rise to hydrogel-like characteristics. 

 

Experimental 

Materials.  Tetrahydrofuran (Aldrich, HPLC grade inhibitor free), N,N-

diisopropylethylamine (Aldrich, 99 % +), chlorotrimethylsilane (Aldrich, 99 % +), 

poly(ethylene glycol) bis (3-aminopropyl) terminated (Mn = 1600 Da, DPn = 34, Aldrich) 

and sodium (30 wt% dispersion in toluene, <0.1 mm particle size) were used as received.  

Prior to use, toluene and THF were distilled from Na/benzophenone.  The hyperbranched 

fluoropolymer (HBFP, Mn = 9,000 Da, Mw/Mn = 2.5) was synthesized according to a 

previously reported procedure (20, 26). 

Procedure for the preparation of hyperbranched fluoropolymer with bis(3-

aminopropyl) terminated poly(ethylene glycol), HBFP-PEG45.  Mixtures of HBFP (2.0 g, 

4.2 mmol of pentafluorophenyl groups), diamine-terminated PEG (45 wt%, 1.64 g, 2.01 

mmol of amino groups) and DIPEA (0.54 g, 4.2 mmol) were dissolved in anhydrous THF 

(50 mL).  The solution was heated at reflux for 20 h under nitrogen to provide the pre-gel 

HBFP-PEG45 mixture, then cast onto trimethylsilyl-functionalized glass slides via drop 

deposition.  The slides were allowed to dry for several hours under ambient conditions, 

and were then cured at 110 °C under nitrogen for 2 h, producing bubble-free, free-

standing films that could be easily removed from the glass substrate with a razor blade 

and cut into pieces for mechanical properties testing (Table A2-1) and evaluation by 

solid-state NMR. 
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Table A2-1.  Summary of data for HBFP-PEG45 and HBFP-PEG55 amphiphilic 

networks [a] before and after water swelling.(25)   

[a] Tensile measurements were performed on a RSA III instrument under ambient 

conditions.  [b] After swelling in water for 5 min. 

 

Solid-State NMR Spectrometer.  Experiments were performed at 12 T using a four-

frequency transmission-line probe(27) having a 12-mm long, 6-mm inner-diameter 

analytical coil, and a Chemagnetics/Varian ceramic spinning module.  Samples were 

spun using a thin-wall Chemagnetics/Varian (Fort Collins, CO/Palo Alto, CA) 5-mm 

outer-diameter zirconia rotor at 6250 Hz, with the speed under active control and 

maintained to within ±2 Hz.  A Tecmag Apollo console (Houston, TX) controlled the 

spectrometer.  A 2-kW American Microwave Technology power amplifier was used to 

produce radio-frequency pulses for 
13

C (125 MHz).  The 
1
H (500 MHz) and 

19
F (470 

MHz) radio-frequency pulses were generated by 2-kW Creative Electronics tube 

amplifiers driven by 50-W American Microwave Technology power amplifiers.  All 

final-stage amplifiers were under active control(28).  The -pulse lengths were 7 μs for 

13
C and 5 μs for 

1
H and 

19
F. 

Hydrated samples were sealed in rotors using gaskets cut from a 1/16-inch thick sheet 

of silicone rubber, cooled by liquid nitrogen, and inserted cold on both sides of friction-fit 

boron nitride spacers that positioned the sample in the center of the analytical coil (Figure 

A2-2).  With this arrangement, a hydrated sample, approximately 50% by weight water, 

could be spun at 6 kHz for two months with a weight loss of less than 1%. 

Films PEG wt % Ultimate tensile 

strength [σUTS, MPA] 

Failure strain 

[εf, %] 

Edry [MPA] Ewet [MPA] 

[b] 

Swelling % based 

on mass [b] 

Swelling % based on 

volume [b] 

HBFP-PEG45 45 0.985 ± 0.057 30 ± 60 1.44 ± 0.24 13.0 ± 2.5 85 100 

HBFP-PEG55 55 1.29 ± 0.22 13 ± 20 11.9 ± 1.8 0.95 ± 0.31 112 125 
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Figure A2-2.  Rotor configuration for magic-angle spinning of hydrated HBFP-PEG 

samples.  Wet samples were spun for two months with less than 1% weight loss. 

 

Pulse Sequences.  The pulse sequence and phase table for the 
19

F solid-echo 

experiment (90ºx-τ-90ºy-τ, with τ = 13.5 µs) are shown in Figure A2-3.  A split 180
o
 pulse 

preceding the solid-echo sequence and synchronized with the acquisition phase resulted 

in flat baselines over 150 kHz and a null signal from an empty rotor. 

 

 
Figure A2-3.  Pulse sequence and phase routing for the 

19
F solid-echo experiment.  The 

split 180
o
 pulse preceding the 90

o
-τ-90

o
 suppresses baseline artifacts. 
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The pulse sequence for FHHC 
13

C NMR with solid-echo detection is shown in Figure 

A2-4.  The acquisition phase followed the spin-temperature alternation of the initial 
19

F 

spin lock.  The 
1
H spin-lock spin temperature of the second cross-polarization was not 

alternated.  Thus, 
13

C signals arising from the protons of the PEG domains exactly 

cancelled.  The HH spin diffusion period was 50 ms, selected by optimizing the final 
13

C 

signal intensity for both wet samples.  The refocusing time, τ, for 
19

F and 
13

C solid-echo 

experiments was 13.5 μs (which includes half the width of the refocusing 90
o
 pulse).  The 

second half of the sequence of Figure A2-4 (no 
19

F channel) was used for solid-echo 
13

C 

experiments with no spin-diffusion filtering. 

 
Figure A2-4.  Pulse sequence for characterization of the HBFP-PEG interface.  

Magnetization originates with 
19

F in the HBFP domain and is transferred to protons using 

a 
19

F→
1
H ramped cross-polarization transfer, followed first by 

1
H-

1
H spin diffusion of z-

stored magnetization, and then by a 
1
H→

13
C ramped cross-polarization transfer, all under 
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magic-angle spinning.  Detection of the PEG-domain 
13

C signal is by solid echo.  The 

sign of the observed 
13

C signal follows the spin-temperature alternation of the 
19

F spin 

lock.  The sign of the 
1
H spin-lock temperature is not alternated; that is, PEG-phase 

13
C 

signals from the second cross-polarization transfer are cancelled. 

 

The refocusing time for all rotor-synchronized magic-angle spinning Hahn-echo 

experiments was Tr=160 μs, corresponding to a 6250-Hz spinning speed.  Ramped cross-

polarization transfers were made in 7 ms for HC, and 0.8 ms for HF and FH.  The 
13

C 

radiofrequency carrier was on resonance for the PEG signal.  Proton dipolar decoupling 

was 100 kHz during data acquisition.  A sequence recycle time of 6 s was used for cross-

polarization, Hahn-echo, and solid-echo experiments for fully relaxed spectra. 

 

Results and discussion 

Fluorine-19 NMR.   

Two types of solid-state 
19

F NMR experiments were used to characterize the HBFP 

domains of the phase-separated HBFP-PEG block copolymers.  Mobile (soft) domains 

were detected by a rotor-synchronized Hahn echo under magic-angle spinning 

conditions,(29) and rigid (hard) domains by a solid echo with no magic-angle spinning 

(Figure A2-4, experimental section).(30)  The spectra of dry HBFP-PEG45 and HBFP-

PEG55 are similar to one another (Figure A2-5, top), and to HBFP homopolymer (Figure 

A2-6).  All three materials are predominantly solid-like.  Based on microscopy to 

determine which of the two components in the copolymers is the continuous phase,(23) 

the NMR results suggest that HBFP-PEG45 can be described as a low-Tg HBFP glass 

with PEG inclusions, whereas HBFP-PEG55 is more like a PEG glass with a constrained-

rubber HBFP filler.  The latter has the greater tensile modulus in the dry state,(25, 31) 

which is hypothesized as being due to crystalline PEG-rich domains in the dry samples.  
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These materials exhibited melting transitions at 47-48 
o
C, as measured by differential 

scanning calorimetry.  

 

Figure A2-5.  Solid-state 
19

F NMR spectra of HBFP-PEG45 (left) and HBFP-PEG55 

(right) dry (top two rows) and hydrated to approximately 50% water by weight (bottom 

two rows).  Each of the eight panels makes a comparison of a 
1
H→

19
F ramped cross-

polarization (CP) spectrum obtained without magic-angle spinning, to either a 90ºx-τ-

180ºy-τ rotor-synchronized Hahn echo (τ = 160 µs) obtained with spinning (rows 1 and 3), 

or a 90ºx-τ-90ºy-τ solid echo (τ = 13.5 µs) obtained without spinning (rows 2 and 4).  The 

CP spectra were also detected by solid echo.   All of the spectra arise exclusively from 

HBFP.  The spectra were obtained by the accumulation of 4096 scans, are scaled by 

sample weight, and are referenced to the 
19

F resonance of solid D-[3-
19

F1]alanine. 
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Figure A2-6.  

19
F solid echo (top) and CP (bottom) NMR spectra of HBFP homopolymer.  

The CP transfer was made from protons in 0.8 ms.  Both spectra are the result of the 

ammumulation of 4096 scans without magic angle spinning. 

 

The HBFP domains (and presumably the interface between HBFP and PEG domains) 

were detected by a third 
19

F NMR experiment, which utilized a 
1
H→

19
F cross-

polarization (CP) transfer.  In each repeat unit of HFBP, there are 9 protons and 9 

fluorines.  However, the protons are clustered in or near the central protonated ring of the 

repeat unit (Figure A2-1).  Most of the fluorines are therefore more than 5 Å from a 

proton.  This geometry, combined with significant local motion about HBFP mainchain 

oxygen linkages, means that the 
1
H→

19
F CP transfer results in a much smaller 

19
F signal 

than does a direct-excitation experiment (Figure A2-5, CP vs solid echo, top left). 

While the CP signal for dry HBFP-PEG55 is indistinguishable from that for dry 

HBFP-PEG45 (Figure A2-5, top two rows), the CP, Hahn echo, and solid echo 
19

F NMR 

spectra of wet HBFP-PEG55 and HBFP-PEG45 are markedly dissimilar (Figure A2-5, 

bottom two rows).  Although both materials are still predominantly solid-like, the 

increased narrow-line Hahn-echo signals for HBFP-PEG55 relative to that for HBFP-

PEG45 indicates an increased concentration of mobile domains for wet HBFP-PEG55.  
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By contrast, the increased 
19

F CP intensity for wet HBFP-PEG45 relative to that for 

HBFP-PEG55 (wet or dry) shows an increased proton-fluorine contact for HBFP-PEG45.  

This means a stronger coupling for the same number of spins, or the same coupling for 

more spins, resulting from a reduction in local motion or tighter chain packing.  We 

describe either of these situations as rigidification. 

 

Carbon-13 NMR.   

Abundant protons in the PEG domains means that the 
1
H→

13
C CP spectra of the 

copolymers are dominated by the PEG oxygenated methylene carbons at 70-72 ppm(32) 

(Figure A2-7, top).  This shift is an exclusive PEG signature (Figure A2-8).  The 
13

C 

signal is detected both as a Hahn echo (black) or a solid echo (red) (Figure A2-7).  For 

the latter, the phase of the 90
o
 pulse matched the phase of the carbon spin lock, which for 

isolated natural-abundance 
13

C results in a standard full-size signal (vide infra.). 
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Figure A2-7.  CP 

13
C NMR spectra of the dry HBFP-PEG45 copolymer obtained with a 

0.2-ms 
1
H→

13
C ramped cross-polarization transfer (top) and detected by a Hahn echo 

(black) or solid echo (red), or with a 1.5-ms transfer and detected by a Hahn echo 

(bottom).  Only the regions between 45 and 85 ppm are shown.  The chemical shifts of 

the oxygenated methylene carbons in the PEG domains are between those in the HBFP 

domains.  The low-field 72-ppm PEG signal and the HBFP oxygenated methylene-carbon 

signals are associated with a short T1ρ(H).  The 
13

C radiofrequency carrier was centered 

on the PEG signals. The spectra were obtained with magic-angle spinning and proton 

decoupling and are the result of the accumulation of 16384 scans. 
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Figure A2-8.  CP 

13
C NMR spectra of HBFP homopolymer (top) and hydrated HBFP-

PEG45 block copolymer (bottom).  Only the regions between 25 and 125 ppm are shown.  

The spectra were obtained using a 
1
H→

13
C ramped cross-polarization transfer and 

detection by a solid echo with magic-angle spinning.  The spectra were obtained by the 

accumulation of 32768 scans.  The 70-ppm chemical shift of the ordered oxygenated 

methylene carbons in the PEG domain is between the shifts of the oxygenated methylene 

carbons in the HBFP domain. 

 

The 72-ppm low-field PEG peak is due to chains with gauche defects and has an 

extremely short T1ρ(H).(32)  The 70-ppm high-field peak is due to chains with an all-

trans conformation, some of which are in crystallites in dry HBFP-PEG.  The T1ρ(H) 

associated with the high-field peak is longer than that for the low-field peak, consistent 

with less mobility for the more ordered chains.  Thus, with an increase in the length of 
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the CP transfer time, the intensity of the low-field peak decreases relative to the 70-ppm 

high field peak (Figure A2-7, bottom).   

Hydration of HBFP-PEG55 has little effect on the 7-ms T1ρ(H)-filtered 70-ppm 
13

C 

CP peak (the 72-ppm peak has been totally removed by the filter), whereas hydration of 

HBFP-PEG45 results in more than a doubling of the solid-echo signal intensity (Figure 

A2-9).  This result suggests a relative increase in the T1ρ(H) of the more ordered PEG 

components(33) for wet HBFP-PEG45, which can only occur by an increase in 

constraints; that is, a decrease in mobility.  An increase in mobility would make the 70-

ppm high-field peak more like the 72-ppm low-field peak with its very short T1ρ(H).  

Hydration of HBFP-PEG45 also increases the T1ρ(H) of the HBFP domains so that 
13

C 

signals pass the 7-ms T1ρ(H) filter of the CP transfer (Figure A2-10, top).  The increase in 

T1ρ(H) means an increase in constraints (decrease in mobility), consistent with the 

increase in 
19

F-
1
H contact observed in the short 

1
H→

19
F CP transfer of Figure A2-5 

(bottom, left). 
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Figure A2-9.  CP 

13
C NMR spectra of HBFP-PEG45 (left) and HBFP-PEG55 (right) dry 

(top) and hydrated (bottom).  The spectra were obtained using a 7-ms 
1
H→

13
C ramped 

cross-polarization transfer without magic-angle spinning and were detected by a solid 

echo with 100-kHz proton decoupling.  Only the high-field 70-ppm PEG signal is 

observed.  Protonated aromatic-carbon signals from the wet HBFP domains are too broad 

to detect in the absence of spinning.  The spectra were obtained by the accumulation of 

4096 scans, are scaled by sample weight (scale factors inset), and are referenced to 

external TMS. 
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Figure A2-10.  CP 

13
C NMR spectra of HBFP-PEG45 hydrated copolymer (top) and 

HBFP-PEG55 hydrated copolymer (bottom).  The spectra were obtained using a 7-ms 

1
H→

13
C ramped cross-polarization transfer and detection by a rotor-synchronized Hahn 

echo with magic-angle spinning.  The spectra were the result of the accumulation of 8192 

scans.  Only the high-field 70-ppm PEG signal is observed.  The T1ρ(H) of the HBFP 

domains on HBFP-PEG45 has been increased by PEG hydration and HBFP 
13

C signals 

pass the 7-ms T1ρ(H) filter. 

 

The same increase in T1ρ(H)-filtered 
13

C CP solid-echo intensity on hydration is 

observed when a PEG 
13

C signal is directly linked by an FHHC experiment to 
19

F in an 

adjacent HBFP domain (Figure A2-11).  This experiment (Figure A2-4) starts with a 

magnetization transfer from fluorines to protons in HBFP followed by storage along the 

static field for a mixing time of 50 ms.  Magnetization transfer between protons during 

mixing to diffusing water is impossible because of the inherently weak coupling to 

mobile species.  The relatively low H spin density in HFBP and the HFBP interface 

means that in 50 ms, HH spin diffusion cannot extend much beyond the HBFP 

domains.(34)  We estimate the spin-diffusion range by √(Dtm), where 
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Figure A2-11.  FHHC 

13
C NMR spectra of HBFP-PEG45 (left) and HBFP-PEG55 

(right) dry (top) and hydrated (bottom).  The spectra were obtained using a 0.8-ms 

19
F→

1
H ramped cross-polarization transfer, followed first by 

1
H-

1
H spin diffusion of z-

stored magnetization for 50 ms, and then by a 7-ms 
1
H→

13
C ramped cross-polarization 

transfer (see Figure A2-4), all with magic-angle spinning.  Magic-angle spinning 

eliminated shift anisotropy and reduced the linewidths of both wet and dry samples 

relative to those observed without spinning (see Figure A2-9).  The sign of the observed 

13
C signal followed the spin-temperature alternation of the 

19
F spin lock; that is, PEG-

phase 
13

C signals from the second cross-polarization transfer were cancelled.  The spectra 

were detected by solid echo with magic-angle spinning and resulted from the 

accumulation of 32768 scans, scaled by sample weight (scale factors inset), and 

referenced to external TMS. 

 

D ≈ 10
-12

 cm
2
/s(35) and tm = 50 ms, a distance of approximately 20 Å.  We take this 

distance of approximately 10-15 covalent bonds as the extent of the interface.  The final 

1
H→

13
C transfer is to a locally ordered PEG carbon (as determined by chemical shift), 

which is necessarily in the interfacial region and so adjacent to a HBFP lattice.  This 

signal was zero when the initial 
19

F spin-temperature alternation was suppressed.  That is, 
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there is no contribution to the signals of Figure A2-11 from the PEG domains.  The 

protons making the transfer to the 70-ppm 
13

Cs are in the interface. 

 Carbon-13 Solid Echos.   

The use of the term “solid echo” is unconventional for 
13

C experiments at natural 

abundance.  What we mean by this usage is that the phase of the 
13

C 90
o
 pulse is the same 

as the phase of the 
13

C spin lock during the cross-polarization transfer.  Thus, the 90
o
 

pulse is along the direction of the 
13

C magnetization.  For an isolated carbon, the pulse 

has no effect, and a full-size signal is observed.  However, for 
13

Cs that are part of 

homogeneous dipolar interactions,(26) the 
13

C signal detected as a solid echo could be 

larger than a standard Hahn echo.  The increase in intensity for the solid-echo (red) 

relative to Hahn-echo (black) HBFP peaks in Figure A2-7 may be due to such refocusing, 

or to the shorter evolution time of the solid-echo experiment, and poor refocusing due to 

slow internal motions in the Hahn-echo experiment.  In any event, our motivation for the 

solid-echo 
13

C detection for HBFP-PEG copolymers was simply to ensure detection of 

PEG 
13

Cs at the interface that might have partial homogeneous coupling to immobile 

19
Fs, while avoiding possible interferences from simultaneous 

19
F and 

1
H decoupling. 

 Hydration and Domain Rigidification.   

The observed increased intensity for the HBFP-PEG45 
13

C PEG 70-ppm signal on 

hydration (Figure A2-9, left) means an increase in T1ρ(H) and therefore rigidification of 

locally ordered PEG chains within the PEG phase.  If hydration of these chains had 

resulted in more mobility, T1ρ(H) would have decreased and the 70-ppm signal would not 

have passed the 7-ms spin-lock filter.   The increase in T1ρ(H) (Figure A2-10) and 
19

F-
1
H 

contact (Figure A2-5, CP, bottom left) show a similar rigidification within the HBFP 

phase on hydration.  With both HBFP and PEG phases constrained, the rigidification of 

the interface of HBFP-PEG45 on hydration (Figure A2-11, left) is not a surprise.  The 
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lack of a similar increase in signal intensity for HBFP-PEG55 on hydration (Figure A2-9, 

right) agrees with the absence of rigidification on swelling of the majority PEG 

component. 

 Hydration and Mechanical Properties.   

The hydration effects on PEG domains and interfaces are consistent with the 

increase in tensile modulus for HBFP-PEG45 and decrease in tensile modulus for HBFP-

PEG55.  We believe that HBFP-PEG55 with its PEG continuous phase becomes more 

like a PEG hydrogel with a mobile HBFP filler on hydration.  HBFP-PEG45 by contrast 

remains a HBFP glass although now with water-swollen PEG inclusions and its tensile 

modulus accordingly increases on swelling by water.  Both of these comparisons are 

consistent with an increased segregation of PEG to the solid-water interface and a 

roughening of the PEG-domain surface for HBFP-PEG45.  Thus, varying the amount of 

PEG in an amphiphilic crosslinked film alters the properties from a material with 

discrete, constrained regions of HBFP with swollen inclusions of PEG and superior 

mechanical properties, to one with localized HBFP inside a PEG hydrogel and inferior 

mechanical properties.(25, 31)   

 

Conclusions 

Solid-state NMR studies have provided unambiguous determination of the 

molecular-level structural reorganizations that lead to unique macroscopic mechanical 

properties for amphiphilic crosslinked networks of HBFP and PEG.  Insights into the 

internal chemical environment within these polymers are expected to lead to their 

development as complex functional materials for broad utility, from membranes for fuel 

cells, to substrates for tissue engineering, to robust antifouling coatings for biomedical 
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and marine applications.  Gradient forms of these materials are also being designed as 

interesting transitional biomaterials and antifouling surfaces.   
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