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Transformation Theory
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The general structure of quantum mechanical calculations
There are three steps in every quantum mechanical calculation:
(1) Prepare a system

Let a state be prepared by measuring an observable A. If
Ay = athg, {a, g} ~ the set of eigenvalues, eigenvectors of A,
we can start the system in
‘I'(O) = Ya
by choosing systems for which an observation of A at t = 0 reveals a.
(2) Wait in time

IfH Xn = Enxn, the initial state
¥(0) = Z {xn|¥a) Xn
n

evolves in time into

O(t) = 3 e Ent/R (1 9ha) xn.

(3) Observe B

If By, = beby, observation of B will reveal the value b with probability

) 2
S~ (dplxn) e B (xniba)|

n
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Unitary transformations

A transformation U is linear if
U(athy + bipa) = a(Uthr) + b(0a)
for all a, b, ¥, ¥o. U is unitary if
(U1 |Ta) = (1, 92)

for all 1, 9.
The 3D vector analogue for this would be that

(O0)- (0d) =7
for all #, 1. This is valid for rotations in 3D. Thus a unitary transformation is a complex

multidimensional extension of a rotation. [For real multidimensional vectors these are
called orthogonal transformations.]

Matrix representations

In an orthonormal basis set {@n}, {7 would have a matrix representation

Umn = (¢mlff¢n)

If 14, 1, are two (arbitrary) vectors with the matrix representations

Yo = Z andn,
n
¢b = Z bn¢na
then
(Yalty) = Za;bn-
Since

Upa =Y anlUdn = Zan(fi’klgﬁbnwk =" ¢rUknan,
n ﬂ,k k'n

(ﬁlbalﬁ'ﬂbb) = Z Uitma:nUknbn

kmn
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Thus U is unitary <=

Stapbn= Y. UtmamUknbn, all ar, by,
n

km,n
ap = 3 amUtmUkn, all am
k.m
Jmn - Z Ui.‘mUkn- {lj
k

Now the inverse operator {/~! is the operator for which

-~ -

v-l-U =1,
with 1 the identity operator. Since the matrix representation for 1is 6mn,

Omn = (Qbm‘fj—lfjlﬁbn)
= % [fj_l]mk Ukn-

Comparison with (1) shows that I is unitary <= -1 =Ulm.
mn nm

Contrast these two cases: If you transpose and take the complex conjugate of a ma-
trix, you get

(i) the original matrix if the operator is Hermitian,

(ii) the inverse operator if the operator is unitary.

Basis set transformations are unitary

Let {¢n} be an orthonormal basis set, let T be a linear transformation, and let
oy, = Ty
be the vector into which T transforms ¢;. In matrix form,

Wy = ;wnli%k} b = ;Tnk ¢n

with

Top = (¢n|¢k) = (¢n|T¢k}-
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T will give a transformation to a new orthonormal basis set if

Oke = (Yrlve)
= %(ka‘ﬁmlTnE‘ﬁn)

= > T Tneldmlén)
mn
=2 TnxTne
n
which shows (compare this with (1)) that T}; is the matrix representation of a unitary

transformation. That is, a “rotation” of an orthonormal basis set gives a new orthonormal

basis set.

Of course the T}, are the components of 9. in the basis set {¢n}. Writing Ty, = 1/),(;"),

1/,{1) wgl) o
= [ o | = [l

and the fact that [T],; = [T I]En just reflects the orthonormality of the vectors {i.} and

[T Nkn = [T*Jnk = (Wbnldi)* = (Brltin)

are just the matrix elements of the transformation from the {1} basis set to the {¢n} ba-
sis set.

Translations in space and time are unitary

If a system in state ¥(r) is translated a distance d in space, the state is converted into

Wr-d)=Y = (—dai) Y=Y - (—%d- 933) ¥(r)

1 il
n=0 . n=0 T

o0 1 7 . 7 I
=3 = (-3d-8) v =P hu(r)
n=0""

That is, translations in space are generated by the opeartor

Tspace = e_id'f’ /h






20 April 2011 Transformation Theory

Since ) o
(emtdP/h e~ i0B/Ryyy) = ()| 4P/R e PIR yy) = (31, 4),

Tsmcﬁ is unitary. We say that p;, the momentum conjugate to z, generates translation
down the z-axis.

Time evolution changes i
Tg — U(t) = e~/ g,

The operator g~ iHt/h ¢hat generates time evolution has the same form as T_gpace. Time
evolution is just translation down the time axis.

In both these example, a unitary operator is associated with an Hermitian operator,

. [ oy +
‘unitary’ = e™? x constant x ‘Hermitian

The quantum calculation revisited

Since e—z‘fh/nxn ~iEnt/h

1) and waiting a time ¢ can be written

=e Xn, the probability of seeing ‘b’ after starting a system in

- 2
3~ (Dlxm) (xmle ™ Pxn) xnaba) | -

mmn

Let Rpa = (Xn | Tpa)

generate the unitary transformation associated with the basis set transformation

{#a} — {xn},

while Sy,, = (¢l xn) generates the {xn} — {¢p} transformation.

If
Umn(t) = (Xm|€_'.m’Ir hxn) = ¢~ Ent/ r‘dmn,
then
Z Ul:m(t)Ukn(t) = Z elEmt/hakme_tEnt/thn - (Smn.
k k
Symbolically,

U(t) = U(@E)2(0), with U(t)=e iHU/A

U(t) is a unitary transformation.
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Putting all this together, the sought probability is

2

= (3T () Rlual”

Z Smemn(t)Rna
m,n

The calculational problem consists of making three unitary transformations. We start
from a basis set fixed by A, rotate to a basis set fixed by H , rotate e~ tHt/ ﬁ, and then
transform to a basis set fixed by B.

Dirac’s abstraction

Suppose we prepare a system in state 1, at £ = 0 and then immediately measure ‘z’.
According to the previous calculation, we see ‘z’ with probability |{¢z|s)[?

that, since there were many basis sets in which 1, could be represented, one should distin-

. Dirac argued

guish the idea of an abstract representation of a state from the idea of a particular repre-
sentation in some basis set.

Suppose a system is prepared in a state 9. To represent this abstractly we write

)

for the state vector. Now the probability of seeing ‘b’ in this state is

[CAIR

But it is only the label ‘b’ in this expression which has some information content. If we re-
place ¢, — |b), then
B|b) = b|b)

and the probability of seeing ‘b’ is
{(blw) 2.

From this point of view the wave function of Schrédinger is just
Y(z) = (=(¥).

A basis set expansion

¥(z) = 3 (¢nl¥(z))dn

n
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becomes

(z|p) = ;<wl¢n)<¢n|¢>.

In the abstract this is just

Y) = Zn: |¢n){dnlt)

Zn: |én}{¢nl

is, for any orthonormal basis set {¢y, }, the ‘identity’ operator.

This last result makes it easy to develop basis set expansions. Returning to the origi-
nal experiment,

w(t) = ety

and we seek

(@l B(e) = (le™ )
n; (blxm){(xmle™ TLIﬂan)(X1n|¢’a) _

= (bl En)e Ent/R (B, |a)

n

Finally, let us consider two different matrix representations of some operator A,

mn —(¢m|A¢’ ),
AW = (| Ay

To see how they are related, we calculate

AY =(wilAdy)
= n;(qbkwm) (qu|;‘1¢n> (bnlthe)

=§l(¢k|¢m)l‘1£ﬁ%(¢n|¢e)-

If we define a linear transformation 5 by

PYp=S¢p,  alll,
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then
{@nlve) =[Slnes
(Wkldm) =[5 en,
AW = T;I[S-llkmAST?AISJne
=[S AS]ke
or

Al = g-14(d) g

More colloquially, we say that a unitary transformation S transforms some operator A —
S-148.
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