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ABSTRACT 

Organic Cation Transporters (OCTs) are polyspecific, facilitative transporters of the Solute Carrier 

(SLC) family of membrane transport proteins that play major physiological roles in metabolite and 

drug clearance. OCT1 (SLC22A1) and OCT2 (SLC22A2) are expressed in hepatocytes and 

proximal tubule cells, whereas OCT3 (SLC22A3) is expressed in astrocytes. OCTs are promising 

drug targets, and thus elucidating the molecular mechanisms of substrate recognition in OCTs is 

crucial for rational drug design. While small, monovalent OCT substrates have been well-

characterized, the ability of OCTs to transport or interact with larger, multiply charged cations 

remains largely unexplored. Xenopus laevis oocytes expressing mammalian OCTs were used to 

assess transport of polyamines, ubiquitous polyvalent cations of broad physiological and 

pharmacological import, but for which transport mechanisms in eukaryotic cells are unknown. 

Comparative dose-response analysis of radiolabelled substrate uptake revealed that the naturally 

occurring, trivalent polyamine spermidine is transported with lower affinity, but at similarly high 

turnover, than the model substrate methyl-4-phenylpyridinium (MPP+). To further investigate 

substrate specificity in OCTs, polyamine analogs of varying charge and hydrophobic character 

were screened for competition against MPP+: hydrophobicity is a principal requirement for 

polycationic substrate recognition, and OCT3 exhibits significantly higher hydrophobicity 

requirements than either of the two other isoforms. A hydrophobic cleft potentially capable of 

accommodating a variety of structures has been identified in the OCT structure by homology 

modelling of OCT1. In OCT3, replacement of an absolutely conserved residue within this pocket, 

D475 (TM11), by charge reversal (D475R), charge neutralization (D475N), or even charge 

replacement (D475E), completely abolishes MPP+ uptake, suggesting it to be obligatory for 

OCT3-mediated transport, potentially by stabilization of positive charges within the putative 
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substrate binding pocket. Mutations at residues which line the putative binding pocket that are not 

conserved in OCT3 to the corresponding residue in OCT1 – L160F (TM2), F222Y (TM4), F447L 

(TM10), and E448Q (TM10) – generally decrease MPP+ uptake, and also partially recapitulate the 

pharmacological selectivity profile of OCT1: Thus, interactions of naturally occurring polyamines, 

putrescine, spermidine, spermine, and potent OCT1 blockers and polyamine analogs, 1,10-

diaminodecane (DA-10), decamethonium (TMA-10), bis-triethylaminodecane (TEA-10), and 1,10 

bis-quinuclidinedecane (Quin-10) with wild-type OCT3 are weak, but are significantly potentiated 

in mutant OCT3. These results suggest that substrate specificity in OCTs is determined, 

structurally, at the level of the substrate-transporter interactions at the putative hydrophobic cleft 

of the protein, and that the particular residues identified above are key contributors in determining 

substrate affinity and/or sensitivity in OCTs. 
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GENERAL INTRODUCTION 

OCT Tissue Distribution and Physiological Significance 

Organic Cation Transporters (OCTs) belong to the SLC22 family of facilitative transporters, and 

are typically localized to the basolateral membrane of polarized barrier epithelia, where they 

mediate the uptake, distribution, and efflux of cationic metabolites and drugs (Nies, Koepsell et 

al. 2011). In humans, OCT1 (SLC22A1) and OCT2 (SLC22A2) are predominantly expressed in the 

hepatocytes and proximal tubular cells of the liver and kidney, respectively (Gorboulev, Ulzheimer 

et al. 1997, Nishimura and Naito 2005), whereas OCT3 (SLC22A3) exhibits a broader tissue 

distribution, and is found in astrocytes (Busch, Karbach et al. 1998, Inazu, Takeda et al. 2003), the 

blood-cerebrospinal fluid barrier in choroid plexus epithelial cells (Hosoya and Tachikawa 2011), 

as well as in placenta, bronchial and intestinal epithelium (Lips, Volk et al. 2005, Muller, Lips et 

al. 2005, Sata, Ohtani et al. 2005). OCTs play major roles in drug clearance for both endogenous 

and xenobiotic compounds. In the liver, secretion of organic cations (OC+) into bile canaliculi is 

performed by OCT1 in the sinusoidal membrane in the biliary membrane. In the kidney, OC+ can 

be reabsorbed in proximal tubule cells by OCT3 (Figure 1A-1B) (Koepsell 2004). 

 

Predicted OCT Topology 

All members of the SLC22 transporter family, including the OCTs, have a similar predicted 

membrane topology which consists of 12 alpha-helical transmembrane (TM) domains with a large 

extracellular loop between TM1 and TM2 which is glycosylated (Keller, Egenberger et al. 2011, 

Brast, Grabner et al. 2012) and a large intracellular loop between TM6 and TM7 which is involved 

in post-transcriptional regulation (Figure 1C) (Koepsell, Lips et al. 2007). 
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Figure 1. Tissue Distribution, Drug Clearance, and Predicted Topology of OCTs. 

A. In the liver, OCT1 secretes organic cations (OC+) into bile canaliculi (red arrows) in the 

sinusoidal membrane coupled with multidrug resistance protein 1 (MDR1) and a H+-cation 

antiporter (1) in the biliary membrane. OCT1 also mediates translocation of OC+ out of 

hepatocytes into sinusoids (blue arrows) B. In the kidney, filtered OC+ drugs could be reabsorbed 

in proximal tubules through OCT2 (blue arrows). C. Predicted topology of human OCT1. 

Predicted glycosylation sites on the large extracellular loop (ψ) and predicted phosphorylation sites 

(green) are indicated. Adapted from (Koepsell, Lips et al. 2007). 

  

A B 
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Proposed OCT Transport Mechanism 

OCT-mediated facilitative diffusion has been demonstrated to be bidirectional in rOCT1 and 

rOCT2 (Koepsell 2011). In particular, electrophysiological experiments from giant patches in 

oocytes expressing rOCT2 have yielded similar apparent affinity constant (K0.5) values for the 

influx and efflux of choline and TEA at 0 mV holding potential, and have demonstrated that both 

inward and outward currents are voltage-dependent and symmetrical around the reversal potential 

(Figure 2A) (Budiman, Bamberg et al. 2000). These results are consistent with an alternating 

access model of transport which predicts electrogenic uptake as a result of substrate binding to the 

outward facing conformation, translocation of the bound substrate to the intracellular face which 

proceeds through an occluded state, dissociation of the substrate, and reorientation of the unbound 

substrate site to the extracellular face (Figure 2B) (Keller, Elfeber et al. 2005, Schmitt and Koepsell 

2005). Additionally, OCTs have been demonstrated to translocate organic cations electrogenically 

in rat transporters OCT1, OCT2, and OCT3, and in the human transporters OCT1 and OCT2 

(Gorboulev, Ulzheimer et al. 1997, Okuda, Urakami et al. 1999, Dresser, Gray et al. 2000). OCT 

mediated transport is independent of both Na+ and proton gradients (Busch, Quester et al. 1996, 

Koepsell, Lips et al. 2007) and is bidirectional, with efflux having been demonstrated for rat and 

human isoforms of OCT1, OCT2, and OCT3 (Nagel, Volk et al. 1997). 

 

OCTs are Highly Polyspecific Cation Transporters 

OCTs interact with many, structurally very diverse monovalent cations (Wright 2005, Hendrickx, 

Johansson et al. 2013), including the model substrates tetraethylammonium (TEA) and the 

neurotoxin methyl 4-phenylpyridinium (MPP+). The relative molecular mass of compounds that 

have been shown to be transported by OCTs is less than around 500 with the smallest diameter of  
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Figure 2. Proposed Transport Mechanism of Mammalian OCTs. 

A. Current-voltage relationship from giant inside-out patches of Xenopus laevis oocytes expressing 

rOCT2 demonstrating symmetric electrogenic transport of choline. B. Alternating access model of 

transport, illustrating individual transition steps involved in electrogenic cation transport. To and 

Ti states represent outward- and inward-facing conformations with the substrate binding site bound 

or unbound to a monovalent cation (cat+) substrate. 

  

A 

B 
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the molecules being below 4 Å (Schmitt and Koepsell 2005). Endogenous substrates include the 

metabolites choline and guanidine, and monoamine neurotransmitters such as the catecholamines 

(Koepsell, Lips et al. 2007). 

Additionally, OCTs have been shown to recognize a broad range of pharmacologically 

active compounds (Nies, Koepsell et al. 2011), and polymorphisms that modify OCT function 

have been found to alter the response of patients to certain drugs, such as metformin (Choi and 

Song 2008, Zolk 2012). Their broad substrate selectivity makes the OCTs good candidates for 

rational drug design, but it can also result in undesired side effects, such as accumulation and 

toxicity in non-target organs, as well as competitive drug interactions (Ciarimboli 2011). 

Pharmacological and computational studies have established that hydrophobicity is a principal 

determinant for substrate recognition by OCTs (Bednarczyk, Ekins et al. 2003, Suhre, Ekins et al. 

2005, Ahlin, Karlsson et al. 2008, Zolk, Solbach et al. 2009). At least one positive charge is 

required for transport (Harlfinger, Fork et al. 2005), but it has been reported that OCTs are also 

capable of transporting dicationic compounds, including the short polyamine putrescine (Winter, 

Elmquist et al. 2011). 

 

Polyamine Transport in Mammalian Systems 

Polyamines are ubiquitous organic cations that are implicated in a broad range of physiological 

processes, including cell-cell interactions, signaling, cell proliferation and differentiation, and ion 

channel modulation (Pegg 2009). In particular, the naturally occurring cytoplasmic polyamines, 

such as spermidine and spermine, for example, are responsible for inward rectification in Kir 

(KCNJ) potassium channels (Nichols and Lopatin 1997, Kurata, Phillips et al. 2004, Loussouarn, 

Marton et al. 2005), and thus play an important role in shaping membrane potential responses. 
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Extracellular polyamines have multiple effects in the central nervous system, including complex 

effects on NMDAR-type of glutamate receptors, enhancing NMDAR currents by channel opening 

and reducing activity by open channel block (Rock and Macdonald 1995). Polyamine levels are 

highly regulated; exchange mechanisms are key to this regulation, and because polyamines are 

positively charged at physiological pH, carrier-mediated transport systems are necessary for 

effective membrane permeation. Polyamine transporters have been characterized in prokaryotic 

cells and in yeast (Aouida, Leduc et al. 2005, Igarashi and Kashiwagi 2010), and connexin hemi-

gap junctions have been shown to translocate polyamines in amphibian oocytes (Sha, Romano et 

al. 1996, Enkvetchakul, Ebihara et al. 2003), but the molecular identity of specific polyamine 

carriers in mammalian cells is still unclear (Poulin, Casero et al. 2012). 
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MATERIALS AND METHODS 

Chemicals 

Methyl [3H] 4-phenylpyridinium ([3H]MPP+) iodide (specific activity, 85 Ci/mmol) was purchased 

from American Radiolabeled Chemicals (St. Louis, MO), and [3H]spermidine trihydrochloride 

(specific activity, 15 Ci/mmol) was purchased from PerkinElmer (Boston, MA). The following 

test compounds were examined: methyl 4-phenylpyridinium (MPP+), tetramethylammonium 

(TMA), tetraethylammonium (TEA), putrescine (Put), spermidine (Spdn), spermine (Spmn), 1,7-

diaminoheptane (DA-7), 1,10-diaminodecane (DA-10), 1,6 bis-trimethylaminohexane (TMA-6), 

decamethonium (TMA-10), decyltrimethylammonium (TMA-10a), 1,6 bis-triethylaminohexane 

(TEA-6), 1,10 bis-triethylaminodecane (TEA-10), bis-quinuclidinehexane (Quin-6), and 1,10 bis-

quinuclidinedecane (Quin-10). Synthesis of novel polyamine analogs TMA-6, TEA-6, TEA-10, 

Quin-6, and Quin-10 was performed by Harley T. Kurata and Gregory R. Dake (University of 

British Columbia, Vancouver, CAN). 

 

OCT Constructs 

Mouse OCT1 and OCT2 were generously provided by Valentin Gorboulev (University of 

Wuerzburg, Germany), and rat and human OCT3 was a gift from Vadivel Ganapathy (Georgia 

Health Sciences University, Augusta, GA). Mouse OCT1 and OCT2 (mOCT1 and mOCT2, in the 

pBluescript II-SK vector) were linearized with XhoI (New England Biolabs, Ipswich, MA) and 

transcribed in vitro using the T3 mMessage mMachine kit (Applied Biosystems, Foster City, CA). 

Rat OCT3 (rOCT3) and human OCT3 (hOCT3), both in the pSPORT vector, were linearized with 

NotI and BamHI (New England Biolabs), respectively, and transcribed using the T7 mMessage 

mMachine kit (Applied Biosystems). 
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Heterologous Expression of OCTs in Oocytes 

Mature female Xenopus laevis frogs were purchased from Xenopus Express (Brooksville, FL). All 

animal protocols followed guidelines approved by the Washington University School of Medicine 

and the National Institutes of Health. Frogs were anaesthetized with 0.1% tricaine buffered with 

0.1% NaHCO3 prior to removal of a portion of the ovary, and were sacrificed by an overdose of 

tricaine. Stage V-VI oocytes were selected and maintained at 18 °C in modified Barth’s solution 

containing 88 mM NaCl, 2.4 NaHCO3, 1 mM KCl, 0.3 mM Ca(NO3)2, 0.4 mM CaCl2, 0.8 mM 

MgSO4 and 10 mM Hepes/Tris (pH 7.4), and supplemented with 50 mg/l gentamicin, 6 mg/l 

ciprofloxacin, and 100 mg/l streptomycin sulphate/100,000 units/l penicillin G sodium (Life 

Technologies, Carlsbad, CA). Oocytes were injected one day after isolation with 25 ng OCT1, 

OCT2, or OCT3 cRNA, and maintained at 18 °C for 4–7 days. Experiments were carried out at 

20–22 °C. In each experiment, non-injected oocytes from the same preparation served as controls. 

 

Polyamine Transport Assay 

For dose-response experiments, oocytes were incubated in the presence of 0.1 µM to 1 mM MPP+ 

(0.1 µM [3H]MPP+) or 0.1 µM to 10 mM spermidine (0.1 µM [3H]spermidine), in a buffer 

containing 100 mM NaCl, 3 mM KCl, 2 mM CaCl2, 1 mM MgCl2, and 10 mM Hepes/Tris (pH 

7.4). After 30 min, oocytes were rinsed thoroughly with ice cold buffer, individually lysed with 

2% sodium dodecyl sulfate, and assayed for radioactivity in a commercial scintillation cocktail 

(Econo-Safe, Research Products International, Mount Prospect, IL). Unless otherwise indicated, 

data are shown as the mean ± S.E. (standard error of the mean) of at least 3 experiments from 

different donor frogs, with 5–8 oocytes per condition. 
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Competition Assay 

The above assay procedure was also performed for competition studies. Oocytes were incubated 

in the presence of 0.1 µM [3H]MPP+ and 100 µM, 1 mM, or 10 mM unlabeled test compound. In 

wild-type mOCT1, mOCT2, and rOCT3 expressing oocytes, [3H]MPP+ uptake was measured 

against block by 1 mM and 10 mM of spermidine and spermine, and against block by 1 mM of 

TMA, TEA, and the polyamine analogs, DA-7, DA-10, TMA-6, TMA-10, TMA-10a, TEA-6, 

TEA-10, Quin-6, and Quin-10. In mutant rOCT3 and hOCT3 expressing oocytes, [3H]MPP+ 

uptake was measured against the compounds, and also 100 µM MPP+. Blocking potency or 

sensitivity were calculated as percentage of [3H]MPP+ uptake in the absence of competing 

substrate. 

 

Site-Directed Mutagenesis 

For generation of rat and human OCT3 mutants, PCR was performed using hOCT3 and rOCT3 

wild-type cDNA as template and was carried out with the QuickChange Site-directed mutagenesis 

kit (Stratagene, Agilent Technologies, La Jolla, CA). A list of oligonucleotide primers used for 

mutagenesis, purchased from Sigma (St. Louis, MO), is shown in Table 1. Mutations were 

confirmed by DNA sequencing at the Protein and Nucleic Acid Chemistry Laboratory (PNACL) 

at Washington University School of Medicine using Models 3130 and 3730 DNA sequencers 

(Applied Biosystems). Primer design and alignments of DNA sequence analysis were performed 

using DNASTAR Lasergene Suite 12.2 (DNASTAR, Madison, WI). 
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 Forward Primer (5’-3’) Reverse Primer (5’-3’) 

rat OCT3 

D473E AGGCCTGTGTGAATTTGGGGGGATCATAG CTATGATCCCCCCAAATTCACACAGGCCT 

D473N AGGCCTGTGTAACTTTGGGGGGATCATAG CTATGATCCCCCCAAAGTTACACAGGCCT 

D473R AGGCCTGTGTCGCTTTGGGGGGATCATAG CTATGATCCCCCCAAAGCGACACAGGCCT 

L161F CTTGGCTTCTTTGCTGGGGCTT AAGCCCCAGCAAAGAAGCCAAG 

F222Y CTGGATGACTTGCTATGTGATTGTGACAG CTGTCACAATCACATAGCAAGTCATCCAG 

F445L CCATGGCCTTGGAAATTGTTT AAACAATTTCCAAGGCCATGG 

E446Q CCATGGCCTTTCAAATTGTTT AAACAATTTGAAAGGCCATGG 

F445L-E446Q CCATGGCCTTGCAAATTGTTT AAACAATTTGCAAGGCCATGG 

human OCT3 

D478E CAGGTCTGTGTGAGTTTGGGGGAATCATAGCC GGCTATGATTCCCCCAAACTCACACAGACCTG 

D478N CAGGTCTGTGTAATTTTGGGGGAATCATAGCC GGCTATGATTCCCCCAAAATTACACAGACCTG 

D478R CAGGTCTGTGTCGTTTTGGGGGAATCATAGCC GGCTATGATTCCCCCAAAACGACACAGACCTG 

L166F TCCTGAACTTTGGCTTCCTGACTGG CCAGTCAGGAAGCCAAAGTTCAGGA 

F226Y CCTGCAAGGTGTATATGGAAAGGGGACGT ACGTCCCCTTTCCATATACACCTTGCAGG 

F450L CCATGGCCTTGGAAATTGTTT AAACAATTTCCAAGGCCATGG 

E451Q CCATGGCCTTTCAAATTGTTT AAACAATTTGAAAGGCCATGG 

F450L-E451Q CCATGGCCTTGCAAATTGTTT AAACAATTTGCAAGGCCATGG 

 

Table 1. Oligonucleotide Primers for Mutagenesis of rOCT3 and hOCT3. 

Forward and reverse primers used for site-directed mutagenesis of rOCT3 and hOCT3. Amino 

acid codes for mutagenized residues are indicated in red. 
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Data Analysis 

SigmaPlot 10.0 (Systat Software, San Jose, CA), Accelrys Draw 4.1 (Accelrys Inc., San Diego, 

CA) and CorelDRAW X3 13.0 (Corel Corporation, Mountain View, CA) were used for curve 

fitting, statistics, and figure preparation. Kinetic parameters of transport were calculated with a 

non-linear regression, using (SigmaPlot 10.0).  In non-injected oocytes, concentration-dependent 

MPP+ and spermidine uptake values were modeled with a linear relationship. Data from OCT-

expressing oocytes were best fitted to a Michaelis-Menten relationship plus a non-mediated 

component (Equation 1): 

J = [Jmax S / (K0.5 + S)] + Kd S (1) 

For which J is the uptake; S is the substrate concentration; Jmax and K0.5 are, respectively, the 

derived maximum rate and the apparent affinity constant of carrier-mediated transport; and Kd is 

the rate of non-saturable, diffusive transport. Where indicated, paired Student's t test was applied 

to evaluate statistical differences between groups. 
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PART I: 

POLYAMINE TRANSPORT BY POLYSPECIFIC OCT1, OCT2, AND OCT3 

(Sala-Rabanal, Li et al. 2013) 

 

INTRODUCTION 

The possibility that polyamines are substrates for organic cation transporters (OCTs) has received 

some attention (Busch, Quester et al. 1996, Winter, Elmquist et al. 2011), but the subject remains 

controversial (Grundemann, Hahne et al. 2003). In this part, Xenopus oocytes expressing 

mammalian OCT1, OCT2 or OCT3 were used to assess whether the natural longer-chain 

spermidine (Spdn, Figure 3) and spermine (Spmn), which carry net physiological charges of +3 or 

+4, respectively, are substrates for OCTs. To gain further insights into the contribution of the 

number and spatial organization of charges to substrate hydrophobicity, recognition and binding, 

the interactions between the transporters and an extended array of polyamine analogs differing in 

hydrophobic character, charge number, and distribution of charged groups were investigated. 

These results may prove useful in the refinement of existing pharmacophore models, towards the 

rational design of OCT-targeted biopharmaceutical compounds. 

 

RESULTS 

OCT-Mediated MPP+ and Spermidine Uptake 

The uptake of 10 µM MPP+ or 10 µM spermidine (0.1 µM [3H]MPP+ or 0.1 µM [3H]spermidine, 

respectively) into non-injected oocytes, and into oocytes injected with mouse OCT1 and OCT2 

(mOCT1 and mOCT2) or rat OCT3 (rOCT3) cRNA, was assessed; results are summarized in 

Figure 4 and Table 2. 
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Figure 3. Compounds Examined in this Study. 

Methyl 4-phenylpyridinium (MPP+) is a transported substrate for OCT1, OCT2, and OCT3. 

Tetramethylammonium (TMA) and tetraethylammonium (TEA) are model cations. Spermidine 

(Spdn) and spermine (Spmn) are naturally occurring polyamines. Polyamine analogs are classified 

according to the hydrophobicity of the end groups; within each class, compounds are ordered 

according to the number of carbons between end groups. Note that decylmethylammonium only 

has one charged group, but has been designated TMA-10a to indicate its structural resemblance to 

decamethonium, TMA-10. 
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Figure 4. Transport of MPP+ and Spermidine into Xenopus laevis Oocytes. 

Results are means ± S.E. for 3 to 8 experiments from different oocyte preparations. A. Uptake of 

10 µM MPP+ (0.1 µM [3H]MPP+) or 10 µM spermidine (0.1 µM [3H]spermidine) in non-injected 

oocytes (Ni, hatched bars) and in oocytes expressing mOCT1 (white bars), mOCT2 (gray bars) or 

rOCT3 (black bars). B-D. Concentration dependence of MPP+ and spermidine uptake into non-

injected oocytes (squares) or into OCT-expressing oocytes (circles). Oocytes were incubated in 

presence of 0.1 µM [3H]MPP+ or 0.1 µM [3H]spermidine and increasing concentrations of 

unlabeled substrate. Dashed lines, MPP+ and spermidine uptake in non-injected oocytes was non-

saturable, and followed a linear relationship (r2 = 0.9994 for both substrates) with estimated slopes 

of 125 ± 2 nl/oocyte/30 min (MPP+) and 30 ± 1 nl/oocyte/30 min (spermidine). Solid lines, uptake 

data from OCT-expressing oocytes were fitted to Equation 1 to estimate the kinetic parameters of 

OCT-mediated transport, plus a non-mediated component. 
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 K0.5 

(µM) 

Jmax 

(pmol/oocyte/30 min) 

Kd 

(nl/oocyte/30 min) 

MPP+ 

  OCT1 50 ± 1 87 ± 1 139 ± 1 

  OCT2 172 ± 19 117 ± 20 95 ± 14 

  OCT3 57 ± 4 183 ± 6 125 ± 5 

Spermidine 

  OCT1 996 ± 21 67 ± 8 34 ± 1 

  OCT2 1036 ± 19 225 ± 2 30 ± 1 

  OCT3 983 ± 36 54 ± 11 34 ± 1 

 

Table 2. Kinetics of MPP+ and Spermidine Transport in OCT-expressing Oocytes. 

Data are from the experiments shown in Figure 4B-D. Dose-response uptake values were fitted to 

Equation 1 to estimate the apparent affinity constants (K0.5) and highest rates (Jmax) of MPP+ and 

spermidine carrier-dependent transport, plus a non-mediated, diffusive component (Kd). The 

standard error of the fits is shown.  
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In non-injected oocytes, MPP+ uptake was 0.5 ± 0.1 pmol/oocyte/30 min, and spermidine 

uptake was 2.0 ± 0.3 pmol/oocyte/30 min. In OCT-expressing oocytes, MPP+ transport rates were 

15– to 35–fold higher than in non-injected oocytes, whereas those for spermidine increased more 

modestly above the background, up to about 3–fold (Figure 4A). To ascertain the kinetic properties 

of OCT-mediated and non-specific transport, the concentration dependence of MPP+ and 

spermidine uptake in the different experimental groups was investigated (Figure 4B-4D, Table 2). 

In non-injected oocytes, MPP+ (Figure 4C) and spermidine (Figure 4D) uptake was non-

saturable, and the dose-response data followed a linear relationship (r2 > 0.999) with estimated 

slopes of 125 ± 2 nl/oocyte/30 min (MPP+) and 30 ± 1 nl/oocyte/30 min (spermidine). MPP+ and 

spermidine uptake data from OCT-injected oocytes (Figure 4C-4D) were best fitted to Equation 1, 

that is, a Michaelis-Menten relationship with apparent affinity constants (K0.5) and maximum rates 

(Jmax) of carrier-mediated transport, plus a non-mediated component (Kd). Spermidine was 

transported by the OCTs with approximately 6 to 20 fold lower affinity than MPP+; thus, K0.5 for 

MPP+ was approximately 50 µM in OCT1, 170 µM in OCT2, and 60 µM in OCT3, whereas for 

spermidine, K0.5 was 1 mM in OCT1, OCT2, and OCT3 (Table 2, Figure 4B). On the other hand, 

Jmax values for MPP+ and spermidine were within the same range (Table 2), indicating that the 

turnover rate of transport is similar for both compounds. Kd was estimated at roughly 100–140 

nl/oocyte/30 min for MPP+ and roughly 30–34 nl/oocyte/30 min for spermidine (Table 2), and this 

is consistent with the linear rate of MPP+ and spermidine uptake in non-injected oocytes. 

This suggests that, in Xenopus oocytes, MPP+ and spermidine are taken up by endogenous 

mechanisms; because these uptake experiments were conducted in presence of 2 mM extracellular 

Ca2+, it is likely that these mechanisms are distinct from the Ca2+-sensitive connexin hemichannels 

described previously (Enkvetchakul, Ebihara et al. 2003).  Interestingly, it has been observed that 
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secondary and tertiary amines are transported across the oocyte membrane by a passive, Ca2+-

insensitive carrier (Burckhardt and Thelen 1995), but the molecular identity of this transport 

system remains elusive (Sobczak, Bangel-Ruland et al. 2010). 

 

Inhibition of MPP+ Uptake by Polyamines and Polyamine Analogs 

To gain further insights into OCT substrate specificity, natural polyamines and a selection of 

structurally analogous chemicals (Figure 3) were screened for effect on the uptake of 0.1 µM 

[3H]MPP+ into oocytes expressing OCT1, OCT2 or OCT3. Spermidine and spermine were used at 

1 and 10 mM, and the other compounds were tested at 1 mM (Figure 5). First, spermidine and 

spermine were compared with alkylamines that are equivalent in overall length but possessing only 

the two terminal charges, namely 1,7-diaminoheptane (DA-7) and 1,10-diaminodecane (DA-10). 

At 1 mM, spermidine had no effect on MPP+ uptake into OCT1 (Figure 5A), or OCT2 (Figure 5B) 

oocytes, but at 10 mM it blocked approximately 60 and 55%. 1 mM spermine blocked only roughly 

40% of the uptake in OCT1- (Figure 5A), and failed to inhibit uptake in OCT2-expressing oocytes 

(Figure 5B); at 10 mM, spermine blocked approximately 50% of the uptake in OCT1 and OCT2 

oocytes. DA-7 and DA-10 inhibited around 50 and 70% of MPP+ uptake in OCT1 (Figure 5A), 

and about 80% in OCT2 oocytes (Figure 5B). Spermidine, spermine, DA-7, and DA-10 did not 

have a significant blocking effect on MPP+ uptake into OCT3-expressing oocytes. 

Next, it was observed that increasing the hydrophobicity of the end charged group, and 

when more than one charge is present, the relative distance between them, improves recognition 

by the transporters. For example, in OCT1- and OCT2-expressing oocytes, MPP+ uptake dropped 

roughly 40% and 60% in the presence of the monovalent cation TMA, but was unaffected in the 

presence of TMA-6 (Figure 5A-5B), in which two terminal trimethylamine groups are separated  
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Figure 5. Effect of Model Cations, Polyamines, and Polyamine Analogs on MPP+ Transport.  

Uptake of 0.1 µM [3H]MPP+ in oocytes expressing A. OCT1 B. OCT2 or C. OCT3 was measured 

in the absence or in the presence of TMA, TEA, natural polyamines (spermidine and spermine), 

and selected polyamine analogs. Spermidine and spermine were used at 1 and 10 mM, and the rest 

were tested at 1 mM. Uptake in non-injected oocytes was not affected by any test compound. 

*p<0.05 as compared to uptake in absence of external inhibitors (paired Student's t test). 
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by only a hexyl chain. In the presence of TMA-10, in which the same terminal groups are separated 

by a decyl chain, uptake decreased 60% in OCT1 (Figure 5A) and 70% in OCT2 (Figure 5B); 

TMA-10a, structurally analogous to TMA-10 but with only one charged group, was a more potent 

blocker in both isoforms than its divalent counterpart (Figure 5A-5B). TEA, which is a more 

hydrophobic compound than TMA, inhibited roughly 90% of the OCT1- and OCT2-mediated 

MPP+ uptake; blocking potency was reduced, but still significant, for TEA-6, in which two end 

triethylamine groups are separated by a hexyl chain, and restored in TEA-10 (Figure 5A-5B), in 

which the two charges are more distant. In OCT1 and OCT2 oocytes, MPP+ uptake was blocked 

over 90% in presence of quinuclidine analog Quin-6, and almost abolished in presence of the decyl 

species Quin-10 (Figure 5A-5B). 

OCT3 appeared to be less tolerant than the other two isoforms: only monovalent TMA-

10a, and highly hydrophobic divalents TEA-6, TEA-10, Quin-6 and Quin-10 inhibited the uptake 

of MPP+ into OCT3-expressing oocytes (Figure 5C). 

 

DISCUSSION 

Polyamines Are Substrates for the Organic Cation Transporters 

The naturally occurring polyamines putrescine (1,4-diaminobutane), spermidine, and spermine are 

present in all cells, where they play prominent roles in cell growth, proliferation and differentiation 

(Pegg 2009). Control of the cytosolic polyamine pool is critical for normal physiology, and 

alterations in polyamine homeostasis have been linked to stroke, renal failure and cancer (Casero 

and Pegg 2009). Specific exchangers, transporters and multimeric uptake systems critical to the 

regulation of polyamine content have been described in bacteria and yeast (Aouida, Leduc et al. 

2005, Igarashi and Kashiwagi 2010). In higher organisms, connexin hemi-gap junctions mediate 
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Ca2+-sensitive exchange of spermidine in Xenopus oocytes (Enkvetchakul, Ebihara et al. 2003), 

and the diamine exporter complex SLC3-y+LAT has been shown to translocate putrescine and 

acetylpolyamine intermediaries in colon epithelial cells (Uemura, Yerushalmi et al. 2008); 

otherwise, specific polyamine carrier proteins have yet to be identified. 

Here, the hypothesis that polyamines are substrates for the organic cation transporters, 

namely OCT1 (SLC22A1), OCT2 (SLC22A2) and OCT3 (SLC22A3) has been examined. 

Previously, it has been shown that putrescine and the polyamine precursor agmatine, both divalent 

at physiological pH, can be transported by human and rodent OCTs (Grundemann, Hahne et al. 

2003, Winter, Elmquist et al. 2011). This observation has been extended to demonstrate that 

spermidine, which is longer and carries an additional positive charge, is also a transported substrate 

of OCT1, OCT2 and OCT3 (Figure 4, Table 2). Modest inward currents were induced in presence 

of 1 mM spermine in Xenopus oocytes expressing rOCT1 (Busch, Quester et al. 1996), suggesting 

that the longer, tetravalent polyamine is also transported, albeit at a low rate. Though mouse or rat 

isoforms were used in this study, and interspecies differences in transport efficiency have been 

reported for certain compounds (Dresser, Gray et al. 2000, Suhre, Ekins et al. 2005), it seems likely 

that spermidine will also be transported by human OCTs: residues that are essential for substrate 

specificity and binding in rodent OCTs are conserved in the respective human homologs 

(Gorboulev, Shatskaya et al. 2005, Popp, Gorboulev et al. 2005, Koepsell 2011). 

 

Physiological and Pharmacological Significance of OCT-Mediated Polyamine Transport 

The identification of OCTs as relevant polyamine exchange systems may contribute to further the 

understanding of the physiological roles of polyamines, and the mechanisms involved in 

intracellular polyamine regulation. In general, circulating polyamine levels are low; for example, 
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the concentration of spermidine in blood is in the range of 300 nM (Van Dobbenburgh, Houwen 

et al. 1983). Here it has been shown that the K0.5 for OCT-mediated spermidine uptake is 

approximately 1 mM (Table 2), and thus the OCTs may not play a significant role in cellular 

polyamine uptake under physiological conditions. However, intracellular polyamine 

concentrations in certain tissues, such as the glia, are in the mM range (Benedikt, Inyushin et al. 

2012), and in these cells the OCTs could be implicated in polyamine efflux. 

Voltage-dependent block by cytosolic polyamines is the major process underlying inward 

rectification in Kir channels (Nichols and Lopatin 1997), which control membrane potential and 

potassium homeostasis in many tissues and organs, including the central nervous system. Human 

and rodent OCT2 and OCT3 are expressed in neurons of various areas of the brain (Busch, Karbach 

et al. 1998) and in glial cells (Inazu, Takeda et al. 2003, Cui, Aras et al. 2009), respectively, where 

they may participate in polyamine-mediated and Kir channel modulation and cell-to-cell 

communication (Kucheryavykh, Shuba et al. 2008, Benedikt, Inyushin et al. 2012). On the other 

hand, loss-of-function, overactive, or deregulated Kir channels result in disorders ranging from 

deafness, epilepsy and autism, to the systemic Andersen-Tawil, Barter and EAST/SeSAME 

syndromes (Bockenhauer, Feather et al. 2009, Scholl, Choi et al. 2009, Hibino, Inanobe et al. 2010, 

Inyushin, Kucheryavykh et al. 2010, Sala-Rabanal, Kucheryavykh et al. 2010). Use of OCTs as a 

vehicle to deliver high-affinity polyamine-like compounds to help alleviate some of these 

conditions is a potentially powerful pharmacological tool. 

Conversely, since OCTs are expressed in organs of drug absorption, disposition and 

excretion, such as the intestinal, liver, and kidney epithelia (Nies, Koepsell et al. 2011), they might 

be exploited to enhance the bioavailability of pharmaceuticals aimed to diagnose or treat diseases 

caused by polyamine imbalance. Carcinogenesis and tumor growth have been associated with 
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increased intracellular polyamine levels (Casero and Marton 2007), and thus OCTs might be 

targeted for the delivery of cytotoxic polyamine analogs or polyamine-conjugated imaging probes. 

This may aid particularly in the management of neuropathies and brain tumors: OCT1 and OCT2 

have been shown to express in rodent and human brain microvascular epithelium (Lin, Tai et al. 

2010), and have been hypothesized to mediate the blood-to-brain influx of agmatine (Winter, 

Elmquist et al. 2011), a neuromodulator which also has potent antiproliferative properties (Wang, 

Su et al. 2005, Isome, Lortie et al. 2007). OCT3 is found in the apical membrane of choroid plexus 

epithelial cells where it has been shown to participate in the cerebrospinal fluid-to-blood clearance 

of neurotoxic metabolites (Hosoya and Tachikawa 2011), and might thus be considered as a 

pathway for the elimination of polyamine drug byproducts. 

 

Spermidine is a Low-Affinity Substrate for OCTs: Insights into OCT Substrate Specificity 

These results are consistent with, and complementary to, current understanding of OCT substrate 

selectivity. OCTs are known to interact with virtually all natural or xenobiotic primary, secondary, 

tertiary or quaternary amines, with K0.5, Ki or IC50 values in the µM (high affinity) to mM (low 

affinity) range (Koepsell, Lips et al. 2007). It has been established that the presence of one positive 

charge is essential for substrate translocation by OCTs (Harlfinger, Fork et al. 2005), and one 

absolutely conserved residue within the substrate binding site (D475) is implicated in the ion-pair 

interaction that purportedly initiates substrate binding (Gorboulev, Volk et al. 1999, Gorboulev, 

Shatskaya et al. 2005, Popp, Gorboulev et al. 2005). Though the vast majority of known OCT 

substrates or blockers are monovalent cations, OCTs can also transport compounds that carry a net 

physiological charge of +2, as putrescine (Winter, Elmquist et al. 2011); +3, as seen here for 

spermidine; and perhaps even +4, as has been suggested for spermine (Busch, Quester et al. 1996). 
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Here, it has been shown that spermidine is a substrate for OCT1, OCT2 and OCT3, but it 

is transported with low efficiency, i.e. at a similar turnover rate than the model substrate MPP+, 

but with up to 20-fold lower apparent affinity (Figure 4 and Table 2). While the K0.5 for OCT-

mediated spermidine transport was estimated at approximately 1 mM (Table 2), 50% inhibition of 

MPP+ uptake was observed in OCT1 and OCT2-expressing oocytes only in presence of 10 mM 

spermidine (Figure 5B), and neither 1 mM nor 10 mM spermidine had any blocking effect in 

OCT3-expressing oocytes (Figure 5C). Based on mutagenesis, pharmacology and homology 

modeling data, it has been hypothesized that OCTs contain distinct, but partially overlapping, 

binding sites for different substrates (Gorboulev, Volk et al. 1999, Gorboulev, Shatskaya et al. 

2005, Koepsell 2011). When administered together, cations bound to high-affinity sites can 

partially or totally compete away cations bound to low-affinity sites (Gorbunov, Gorboulev et al. 

2008), and this may help explain the apparent discrepancy between the above dose-response data 

and competition assay results. 

On the other hand, the low apparent affinity of OCTs for the polyamines may result from 

the relative hydrophilic nature of those charges, which in effect reduce the overall hydrophobicity 

of the compound, rather than the multiple charges carried by spermidine or spermine. Unlike 

spermidine or spermine, the diamines DA-7 and DA-10, which are significantly more hydrophobic 

than the polyamines (Weiger, Langer et al. 1998), effectively inhibited MPP+ uptake in OCT1- 

and OCT2-expressing oocytes. Among the different dicationic analogs tested, the presence of more 

hydrophobic terminal groups generally resulted in a stronger block; within each class, elongating 

the aliphatic chain between charges seemed to improve recognition. For example, TMAs were 

overall weaker blockers than TEAs or quinuclidines, and among TMAs, TMA-10 and TMA-10a 

were stronger than TMA-6.  
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Several previous studies have shown that there is a direct correlation between the 

hydrophobic character of a given compound and the strength of its interaction with the OCTs 

(Bednarczyk, Ekins et al. 2003, Suhre, Ekins et al. 2005, Ahlin, Karlsson et al. 2008, Zolk, Solbach 

et al. 2009). In particular, it has been described that increasing the length of the alkyl chain in n-

tetraalkylammonium compounds, which effectively increases their hydrophobicity, translates into 

a proportional increase in the IC50 values for inhibition of hOCT1-mediated radiolabelled TEA 

uptake in mammalian cells (Zhang, Gorset et al. 1999, Bednarczyk, Ekins et al. 2003), and 

observed that TEA was a more effective blocker of MPP+ uptake than TMA in OCT1- and OCT2-

expressing oocytes (Figure 5A and 5B). Whereas very hydrophobic, cyclic dicationic chemicals 

such as the broad-range herbicide paraquat (Chen, Zhang et al. 2007), and the antiparasitic drugs 

pentamidine and furamidine (Ming, Ju et al. 2009), are high-affinity substrates or inhibitors of 

OCTs, the more hydrophilic diamines putrescine and agmatine are transported with very low 

efficiency (Winter, Elmquist et al. 2011). 

Though the relationship between hydrophobicity and binding affinity of OCT substrates 

and inhibitors with multiple charges requires further investigation, these data suggest that, as with 

their monovalent counterparts, recognition and binding of divalent substrates depend largely on 

their overall hydrophobic character.  
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PART II: 

MOLECULAR DETERMINANTS OF OCT3 SUBSTRATE SELECTIVITY 

(Li, Nichols et al. 2015) 

 

INTRODUCTION 

Part I demonstrated that OCT substrates interact less efficiently with OCT3 than with OCT1 or 

OCT2, with only the most hydrophobic compounds inhibiting MPP+ uptake (Sala-Rabanal, Li et 

al. 2013), indicating that OCT3 has more stringent binding requirements than OCT1 or OCT2 

which may respond to differences in sequence and structural organization. No three-dimensional 

structure of OCTs has yet been solved, but homology models of OCT1 and OCT2, based on 

biochemical data and high-resolution crystal structures of E. coli LacY and GlpT (Abramson, 

Smirnova et al. 2003, Huang, Lemieux et al. 2003, Higashi, Imamura et al. 2014), suggest that 

seven of the predicted twelve transmembrane helices (TM) of OCTs, namely TMs 1, 2, 4, 5, 7, 10 

and 11, fold in a large hydrophobic cleft capable of accommodating a wide variety of chemical 

species (Popp, Gorboulev et al. 2005, Zhang, Shirahatti et al. 2005). OCT1 and OCT2 share 70% 

sequence identity and have similar substrate selectivity profiles  (see Figure 5 for example), 

reflected in the relatively similar makeup of their predicted binding pockets (Wright and Dantzler 

2004, Koepsell, Lips et al. 2007, Koepsell 2011). OCT3 orthologs share only 50% sequence 

identity with OCT1 or OCT2, which may translate into architectural differences substantial enough 

to impact transport or inhibition kinetics and may account for their apparently tighter binding 

constraints. In this part, residues implicated as being crucial for affinity and/or selectivity in the 

rOCT1 homology model based on LacY (Figure 6) and which are not conserved in either rat or 

human OCT3 (Figure 7), are mutagenized to their corresponding rOCT1 residues to investigate  
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Figure 6. Inward- and Outward- Facing Homology Models of rOCT1 Tertiary Structure. 

Structural models of rOCT1 with highlighted amino acids that are crucial for substrate affinity as 

identified by mutagenesis experiments for uptake of TEA and MPP+. A. Predicted membrane 

topology of rOCT1. B. Inward-facing conformation was accomplished by using the crystal 

structures of inward-facing conformations of lactose permease LacY from E. coli (Abramson, 

Smirnova et al. 2003, Popp, Gorboulev et al. 2005). C. Outward-facing conformation was modeled 

by employing a putative rearrangement mechanism for lactose transport by LacY using 

biochemical data (Schmitt and Koepsell 2005). 

  

A 

C B 
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              140   ______________TM2______________  

rOCT1       ...VCGDAWKVDL FQSCVNLGFF LGSLVVGYIA DRFGRKLCLL... 

mOCT1       ...VCGDAWKVDL FQSCVNLGFF LGSLVVGYIA DRFGRKLCLL... 

mOCT2       ...VCAHSWMLDL FQSLVNVGFF IGAVGIGYLA DRFGRKFCLL... 

rOCT3       ...VCGNAWMLDL TQAILNLGFL AGAFTLGYAA DRYGRLIVYL... 

hOCT3       ...VCVNAWMLDL TQAILNLGFL TGAFTLGYAA DRYGRIVIYL...  

 

              200        ___________TM4___________ 

rOCT1       ...TSMLLFRLLQ GMVSKGSWVS GYTLITEFVG SGYRRTTAIL... 

mOCT1       ...TSMLLFRLLQ GMVSKGSWVS GYTLITEFVG SGYRRTTAIL... 

mOCT2       ...AWMLVFRFLQ GLVSKAGWLI GYILITEFVG LGYRRTVGIC... 

rOCT3       ...SVFVIFRFLQ GVFGKGAWMT CFVIVTEIVG SKQRRIVGIV... 

hOCT3       ...PVFVIFRFLQ GVFGKGTWMT CFVIVTEIVG SKQRRIVGIV... 

 

              420     ____________TM10____________ 

rOCT1       ...MIFIPHELHW LNVTLACLGR MGATIVLQMV CLVNAELYPT... 

mOCT1       ...MIFIPHELHW LNVTLACLGR MGATIVLQMV CLVNAELYPT... 

mOCT2       ...SVFIPDDLQW LKITVACLGR MGATIAYEMV CLVNAELYPT... 

rOCT3       ...TAFLPEGIPW LRTTVATLGR LGITMAFEIV YLVNSELYPT... 

hOCT3       ...TAFLPEGIAW LRTTVATLGR LGITMAFEIV YLVNSELYPT... 

 

              460 ________________TM11_______________ 

rOCT1       ...FIRNLGMMVC SALCDLGGIF TPFMVFRLME VWQALPLILF... 

mOCT1       ...FIRNLGMMVC SALCDLGGIF TPFMVFRLME VWQALPLILF... 

mOCT2       ...YIRNLAVLVC SSMCDIGGIV TPFLVYRLTD IWLEFPLVVF... 

rOCT3       ...TLRNFGVSLC SGLCDFGGII APFLLFRLAA IWLELPLIIF... 

hOCT3       ...TLRNFGVSLC SGLCDFGGII APFLLFRLAA VWLELPLIIF... 

 

Figure 7. Sequence Alignment of OCT1, OCT2, and OCT3. 

Highlighted residues are those which have been identified by mutagenesis and rOCT1 homology 

modelling as potentially important for determining substrate affinity and/or sensitivity. Blue 

highlighting indicates hydrophobic pocket residues at these positions conserved compared to 

rOCT1. Yellow highlighting indicates hydrophobic pocket residues at these positions which are 

not conserved compared to rOCT1. Pink highlighting indicates an absolutely conserved aspartate 

residue which has been proposed as the cationic binding site in the transporter binding pocket. 
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the role of these residues in the differential substrate selectivity profiles of OCT3 and either OCT1 

or OCT2 (Table 3). Additionally, an aspartate residue in rOCT1 (D475) has been proposed as the 

cationic binding site in OCT1 and OCT2 and is conserved in OCT3. Here, the role of this residue 

in rOCT3 (D473) and hOCT3 (D478) is also investigated (Table 3). 

 

RESULTS 

MPP+ Uptake by OCT3 Substrate Binding Site Mutants 

The uptake of 0.1 µM [3H]MPP+ into non-injected oocytes and into oocytes injected with rat and 

human isoforms of both wild-type and mutant OCT3 cRNA, was assessed (Figure 8). In non-

injected oocytes, MPP+ uptake was 6.9 ± 0.2 pmol/oocyte/30 min. 

In oocytes expressing wild-type rOCT3, MPP+ transport rates were 240.3 ± 3.5 

pmol/oocyte/30 min, approximately 35-fold higher than in non-injected oocytes (Figure 8A, left 

panel). In contrast, mutations in D473 drastically reduced rOCT3-mediated uptake of MPP+: not 

only charge neutralization (D473N; 9.8 ± 2.0) or charge reversal (D473R; 8.7 ± 2.5), but also 

charge exchange (D473E; 9.8 ± 1.1) (Figure 8A, middle panel). In oocytes expressing the wild-

type hOCT3, MPP+ transport rates were 156.8 ± 8.8 pmol/oocyte/30 min, approximately 21-fold 

higher than in non-injection oocytes (Figure 8B, left panel). The same mutations were made for 

the corresponding aspartate residue in hOCT3 (D478). D478E, D478N, and D478R similarly 

abolished hOCT3-mediated transport, reducing MPP+ uptake to 8.7 ± 1.3, 6.0 ± 0.2, and 7.9 ± 0.8 

pmol/oocyte/30 min, respectively (Figure 8B, middle panel). 
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Residue in rOCT1 Residue in OCT3 

(rOCT3/hOCT3) 

Mutations Mutation Character 

Hydrophobic Pocket Mutations (OCT3  OCT1) 

F160 L161/L166 Leu  Phe Neutral  Aromatic 

F222 Y218/Y226 Tyr  Phe Aromatic  Aromatic 

L447 F445/F4450 Phe  Leu Aromatic  Neutral 

Q448 E446/E451 Glu  Gln Acidic  Polar 

Proposed Cation Binding Site Mutations 

D475 D473/D478 Asp  Glu Acidic  Acidic 

Asp  Gln Acidic  Polar 

Asp  Arg Acidic  Basic 

 

Table 3. Mutations in rOCT3 and hOCT3 Examined in this Study. 

Hydrophobic pocket mutations are at residues which have been identified by mutagenesis and 

rOCT1 homology modelling to be potential determinants of substrate affinity and/or sensitivity. 

Mutations in these residues in OCT3 are to the homologous residue in rOCT1. An aspartate residue 

is absolutely conserved in all OCT isoforms and has been proposed as the cationic binding site in 

rOCT1. Charge exchange, charge neutralization, and charge reversal mutations at this residue in 

OCT3 was examined. 
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Figure 8. Transport of MPP+ by rOCT3 and hOCT3 Mutants. 

Results are means ± S.E. for 3 to 10 experiments from different oocyte preparations. Both A. and 

B. represent uptake of 0.1 µM [3H]MPP+ in non-injected oocytes (Ni, white bars), in oocytes 

expressing wild-type rOCT3 and hOCT3 (light grey bars), and in rOCT3 or hOCT3 mutants at the 

proposed  cationic substrate binding residue (black bars) or residues lining the putative 

hydrophobic substrate binding pocket (dark grey bars). 
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These results suggest that this aspartate residue (D473 in rOCT and D478 in hOCT3) is an 

absolute requirement for OCT3-mediated transport and may participate in the stabilization of the 

positively-charged cationic component of MPP+ in particular, and of OCT substrates in general. It 

has been observed previously that, in OCT1 and OCT2, D475 is critical for affinity and substrate 

selectivity (Gorboulev, Volk et al. 1999, Popp, Gorboulev et al. 2005, Higashi, Imamura et al. 

2014). The observed reduction of MPP+ uptake in the charge replacement mutation (Asp to Glu) 

implies that this aspartate residue not only may contribute to an electrostatic stabilization of 

positively-charged substrates, but also that the steric and spatial orientation of this interaction is 

critically important for the transport mechanism of both the rat and human isoforms of OCT3. 

 

MPP+ Uptake by OCT3 Hydrophobic Binding Pocket Mutants 

Next, the uptake of 0.1 µM [3H]MPP+ into oocytes expressing mutations in rOCT3 and hOCT3 at 

residues lining the putative substrate binding pocket of the transporter was assessed (Figure 8A-

8B). Mutation of these residues in rOCT3 and hOCT3 to their corresponding positions in rOCT1 

(Table 3) decreased MPP+ uptake rate (Figure 8A-8B, right panels). These results may reflect a 

shift in MPP+ uptake rate toward that of OCT1 and OCT2, both of which have lower intrinsic 

MPP+ uptake rates compared to OCT3, as was demonstrated in Part I (Figure 4A). Oocytes 

expressing mutant transporters displayed MPP+ uptake rates at least five-fold above that of non-

injected oocytes (Figure 8A-8B, right panels). Although the MPP+ uptake rate decreased, thereby 

recapitulating the intrinsically lower transport rate of OCT1 and OCT2 (Figure 4A), the remaining 

OCT3-mediated activity in mutant transporters was sufficiently above the background as to allow 

for the same assessment of MPP+ uptake inhibition as in Part I (Figure 5). 
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Inhibition of MPP+ Uptake by Polyamines and Polyamine Analogs in OCT3 Mutants 

For further insight into changes in substrate specificity as a result of mutations of residues in the 

putative substrate binding pocket of OCT3, blocking potency of MPP+ uptake was assessed for the 

same selection of structural analogs of the natural polyamines (putrescine, spermidine, and 

spermine) as in Part I (Figure 3). Each of these substrates was screened for effect on the uptake of 

0.1 µM [3H]MPP+ into oocytes expressing wild-type and mutant rat and human OCT3 (Figure 9, 

Figure 10). Putrescine, spemidine, and spermine were added to the incubation buffer at 1 mM and 

10 mM and unlabelled MPP+ was added at its K0.5 value (0.1 mM). All other compounds were 

tested at 1 mM. 

Uptake of [3H]MPP+ in oocytes expressing wild-type and mutant rOCT3 or hOCT3 was 

inhibited about 50% by unlabeled MPP+ (Figure 9A, Figure 10A). Consistent with the results of 

Part I (Figure 5), there was no measurable inhibition of MPP+ uptake by natural polyamines (in 

particular, spermidine and spermine) for either rat or human wild-type OCT3. However, all 

mutations increased sensitivity to putrescine, spermidine and spermine in rOCT3 and hOCT3 with 

no discernible differences in blocking potency between any of the individual mutants or between 

polyamine species (Figure 9B, Figure 10B). 

In Part I, it was observed that, for polyamine analogs, increasing hydrophobic character of 

the charged end groups and increasing degrees of acylation between them strengthens interaction 

with OCT1 and OCT2 (Figure 5A-5B), and that these requirements are accentuated in OCT3 

(Figure 5C, Figure 9, Figure 10). In general, hydrophobic pocket-lining mutations resulted in 

increased sensitivity for the polyamine analogs, in particular for the decyl-compounds DA-10, 

TMA-10, TEA-10, and Quin-10, but also for the less hydrophobic hexyl-compounds TEA-6 and 

Quin-6 (Figure 9C-9F, Figure 10C-10F), which did not compete with MPP+ in wild-type OCT3,  
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Figure 9. Effect of Mutations in Rat OCT3 on Sensitivity to Model Cations, Polyamines, and 

Polyamine Analogs. 

Uptake of 0.1 µM [3H]MPP+ in oocytes expressing wild-type (black bars) and mutant rat OCT3 

(L161F, F218Y, F445L, E446Q, and F445L-E446Q). Uptake was measured in the presence of A. 

MPP+ (grey bars), B. the natural polyamines (putrescine, spermidine, and spermine; blue-green 

bars), C. diamine derivatives (DA-7 and DA-10; yellow bars), D. TMA and TMA derivatives 

(TMA-6 and TMA-10; green bars), E. TEA and TEA derivatives (TEA-6 and TEA-10; blue bars), 

or F. Quinuclidine derivatives (Quin-6 and Quin-10; purple bars). Uptake in non-injected oocytes 

was not affected by any of the test compounds. *p< 0.05 as compared to maximal uptake in absence 

of external inhibitors (paired Student's t test). 
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Figure 10. Effect of Mutations in Human OCT3 on Sensitivity to Model Cations, Polyamines, 

and Polyamine Analogs. 

Uptake of 0.1 µM [3H]MPP+ in oocytes expressing wild-type (black bars) and mutant human 

OCT3 (L166F, F222Y, F450L, E451Q, and F450L-E451Q). Uptake was measured in the presence 

of A. MPP+ (grey bars), B. the natural polyamines (putrescine, spermidine, and spermine; blue-

green bars), C. diamine derivatives (DA-7 and DA-10; yellow bars), D. TMA and TMA 

derivatives (TMA-6 and TMA-10; green bars), E. TEA and TEA derivatives (TEA-6 and TEA-

10; blue bars), or F. quinuclidine derivatives (Quin-6 and Quin-10; purple bars). Uptake in non-

injected oocytes was not affected by any of the test compounds. *p<0.05 as compared to maximal 

uptake in absence of external inhibitors (paired Student's t test). 
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but did significantly block MPP+ uptake in OCT1 and OCT2 (Figure 5). Finally, the isolated head 

group cations, TMA and TEA, did not have any effect on MPP+ uptake in wild-type or mutant 

rOCT3 or hOCT3, implying that these mutations have not conferred any discernible change in the 

transporter’s affinity and/or sensitivity for these small cationic compounds. 

 

DISCUSSION 

A Conserved Aspartate is Essential for Transport by OCT3 

OCT1 and OCT2 have been biochemically well-characterized by previous mutagenesis studies 

which have identified an aspartate residue (D475 in rOCT1) on the predicted transmembrane (TM) 

helix 11 to be critically important for affinity and selectivity of substrates in OCT1 and OCT2 

(Gorboulev, Volk et al. 1999, Popp, Gorboulev et al. 2005, Higashi, Imamura et al. 2014). The 

mechanism of substrate recognition and transport in OCT3, on the other hand, is comparatively 

more obscure as the set of biochemical data collected in systems expressing OCT3 is, at present, 

extremely limited. In this part, the hypothesis was tested that the aspartate residue identified in 

rOCT1 as critical to substrate transport, and which is absolutely conserved across OCT isoforms 

(Figure 7), performs a similar function in OCT3. 

Here, it is shown that this conserved aspartate residue is indeed essential for transport in 

OCT3. Thus, mutation of this residue in rOCT3 (D473) and in hOCT3 (D478) resulted in complete 

abolition of carrier-mediated activity (Figure 8, middle panels). This drastic reduction in MPP+ 

uptake is in support of the hypothesis that this TM11 Asp functions in all OCT isoforms as the 

singular binding site for the cationic region of transported substrates (Koepsell 2011). Although 

some models of substrate binding have been generated, in particular of spermidine binding to 

hOCT2 (Higashi, Imamura et al. 2014), questions regarding the exact role of this conserved residue 
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in substrate recognition persist. In particular, the present study suggests that simply the presence 

of a negative charge in that position is not sufficient to accomplish substrate binding and 

translocation, since the substitution of Glu for Asp results in a complete loss of function (Figure 

8, middle panels). Rather, the unique spatial arrangements provided by the specific side chain of 

Asp in this position may be required for substrate coordination and further stabilization of the 

substrate’s positive charge. 

 

Hydrophobic Pocket-Lining Residues Account for Differences in Substrate Selectivity between 

OCT1 and OCT3 

Homology modeling of rOCT1 has suggested the existence of a large hydrophobic cleft within 

which certain amino acids underlie substrate-transporter interactions (Figure 6) (Popp, Gorboulev 

et al. 2005, Volk, Gorboulev et al. 2009). However, key residues within this pocket are not 

conserved in other isoforms, in particular OCT3 (Figure 7). The present study addresses two 

outstanding questions: first, what the effect of mutagenesis at these residues is on the transport 

affinity or selectivity in OCT3; and second, whether changes at these residues may contribute to 

the observed differences in substrate selectivity (Sala-Rabanal, Li et al. 2013). 

In general, replacing putative pocket-lining residues in rat or human OCT3 with their 

OCT1 counterparts – for example, L166F, F226Y, F450L, and E451Q in hOCT3 – had the effect 

of increasing the sensitivity of OCT3s to polyamines and polyamine analogs, which interacted 

poorly with the wild-type but were able to block MPP+ uptake in mutant transporters (Figure 9, 

Figure 10), as they did in OCT1 and OCT2 (Figure 5). 

For the natural polyamines – spermidine and spermine, in particular – it was observed in 

Part I that they did not inhibit MPP+ transport in either OCT1, OCT2, or OCT3 at 1 mM (Figure 
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5). However it was also observed that at 10 mM, MPP+ uptake was significantly blocked by OCT1 

and OCT2, but not OCT3 (Figure 5). In this part, it is shown that mutations at any of the four 

putative binding pocket residues in rOCT3 or hOCT3 to their corresponding residues in rOCT1 

result in inhibition of MPP+ uptake by putrescine, spermidine, and spermine at 10 mM (Figure 9B, 

Figure 10B). This gain of polyamine sensitivity in the putative binding pocket mutants at 10 mM 

thus at least partially recapitulates the substrate specificity profile of OCT1 and OCT2 with respect 

to natural polyamine sensitivity. 

Additionally, nearly all binding pocket mutants in OCT3 showed significant inhibition of 

MPP+ uptake in the presence of the decyl-polyamine analog compounds (DA-10, TMA-10, TEA-

10, and Quin-10) (Figure 9C-9F, Figure 10C-10F) with block by decyl-polyamine analogs being 

observed to be as high as 90% for the decyl-quinuclidine compounds in both rOCT3 and hOCT3 

(Figure 9F, Figure 10F). Although wild-type OCT3 was observed to have about 50-60% block of 

MPP+ uptake by the highly hydrophobic Quin-10, the degree of that block was significantly weaker 

than that of OCT1 and OCT2, whose MPP+ uptake was 90% blocked by Quin-10 (Figure 5). In 

mutant OCT3, however, inhibition of MPP+ uptake by Quin-10 in both rat and human isoforms 

was in the 80-90% range (Figure 9F, Figure 10F), similar to the range of MPP+ block values 

observed in OCT1 and OCT2 by Quin-10 (Figure 5). A similar trend is also observed in the decyl 

TEA compound, TEA-10 (Figure 9E, Figure 10E), indicating a robust phenotypic shift toward the 

substrate sensitivity profiles of OCT1 and OCT2 in mutant rOCT3 and hOCT3. 

Although a good deal of overlap exists between the range of blocking potencies of shorter 

chain polyamine analogs (DA-7, TMA-6, TEA-6, and Quin-10) and their decyl counterparts (DA-

10, TMA-10, TEA-10, and Quin-10), a general trend of increasing blocking potency can be 

observed when moving from the shorter chain compounds to more acylated analogs within groups 
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(Figure 9C-9F, Figure 10C-10F). Notably, this trend is also observed in the substrate selectivity 

profiles of OCT1 and OCT2 where significant inhibition of MPP+ uptake can be observed in the 

shorter chain polyamine analogs (DA-7, TMA-6, TEA-6, and Quin-6), but for which there is 

generally little observable MPP+ block in wild-type OCT3 (Figure 5). In the putative binding 

pocket mutants of rat and human OCT3, significant inhibition of MPP+ uptake is consistently 

observed in the short-chained TEA-6 and Quin-6, and is observed for most of the mutations in 

TMA-6 (Figure 9D-9F, Figure 10D-10F). 

It is important to note that each of these single residue mutations in rat or human OCT3 

represent one of many residues which purportedly contribute to determining substrate selectivity 

in OCTs (Gorboulev, Volk et al. 1999, Bednarczyk, Ekins et al. 2003, Popp, Gorboulev et al. 2005, 

Ahlin, Karlsson et al. 2008, Gorbunov, Gorboulev et al. 2008, Volk, Gorboulev et al. 2009, 

Koepsell 2011, Higashi, Imamura et al. 2014). Therefore, it is unlikely that any one mutant can 

completely reproduce the substrate selectivity profile of OCT1 or OCT2. However, in this part, it 

has been demonstrated that mutations at putative hydrophobic cleft-lining residues (L161F, 

F222Y, F445L, and E446Q in rOCT3 and L166F, F226Y, F450L, and E451Q in hOCT3) shift the 

substrate selectivity profile of rat and human OCT3 toward the higher sensitivity phenotypes 

observed in OCT1 and OCT2. The results of the present study have therefore shown that the set 

of putative binding pocket-lining residues examined here are at least in part responsible for the 

observed differences in substrate selectivity between OCT isoforms, which may also provide 

important insights into the mechanism and structural determinants of substrate recognition and 

translocation in OCTs in general. 
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