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Two different signal processing algorithms are described for detection and classification of acoustic
signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm
of the signal energy. The second is a joint entropy. The current study indicates that a system using
both signal energy and joint entropy would be able to both detect weapon discharges and classify
weapon type, in small spaces, with high statistical certainty. [http://dx.doi.org/10.1121/1.4948994]

[MRB]

I. INTRODUCTION

We report on methods to both detect and classify fire-
arm discharges in small, enclosed, environments with high
statistical certainty. Some algorithms reported on here are
capable of running on an embedded microcontroller system
(Texas Instruments FRAM micro-controller unit number
MSP430FR5989) that, with an associated microphone
(InvenSense INMP404ACEZ-R7 microphone), is capable
of signal acquisition and analysis. Moreover, such a system
and software are suitable for wide-scale deployment in
classrooms, movie theaters, and other public gathering
places.

Implementation on a microcontroller limits the sophistica-
tion of algorithms that may be employed. In addition, we have
found that the governing dynamics of acoustic propagation
and signal acquisition are highly nonlinear. Consequently, we
have focused on approaches that reduce a waveform, or a sub-
segment of a waveform f{¢), to a single number. This number,
or receiver value, is then intended to be used as the basis for
signal identification. Signal energy, or its logarithm, denoted
log[E¢], combined with careful signal filtering has been shown
to provide a good balance between computational complexity
and statistical sensitivity. Our results show that signal energy
analysis is able to clearly discriminate between firearm dis-
charges and other acoustic background events, but not neces-
sarily between firearm types.

This information is a critical factor in determining first
responder tactics and strategy. To address the need to iden-
tify weapon types from their acoustic signatures, we have
investigated various entropies as previous studies have dem-
onstrated their utility for analysis of ultrasonic signals in
both materials characterization and medical ultrasonics.'™"?
The current study demonstrates the utility of entropies for
analysis of acoustic signals in the audio range as well. When
used in conjunction with energy analysis it appears that
acoustic discrimination of weapon type is also possible.
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There is an extensive literature on firearm discharge
detection and source identification. Previous investigations
of firearm discharge have focused on outdoor source loca-
tion,'*'® and identification of firearm and ammunition type
using shockwave analysis.'”"'® Other investigators have stud-
ied correlation and linear predictive coding for firearm detec-
tion and source recognition.'” Threshold detection schemes
using six different waveform characteristics, e.g., magnitude
of signal absolute value, median filter, Teager energy opera-
tor, correlation against a template, among others mainly for
outdoor gunshot detection and source classification have
been described by Chacén-Rodriguez er al.>® More gener-
ally, extraction of acoustic cues for forensic purposes has
been investigated by Hong and colleagues.”'

The current study is different from prior work in that it
considers signals acquired indoors, in relatively small enclo-
sures. Moreover, shockwave analysis or linear analysis tech-
niques for source identification are not used at all.

Il. DATA ACQUISITION

Two different groups of acoustic data were collected for
this study. This first group consisted of “threat-type” signals,
which were acquired by discharging several different fire-
arms into a ballistic trap: 223 caliber automatic rifle [M-16
assault rifle (Colt’s Manufacturing Company, LLC,
Hartford, CT); Fiocchi 45 grain frangible (Fiocchi of
America, Inc., Ozark, MO)]. 40 caliber semi-automatic pis-
tol [Compact Smith & Wesson (Smith & Wesson,
Springfield, MA); S&W 125 grain frangible], 45 caliber
automatic pistol [Taurus PT 145 PRO (Taurus Inc, Miami
Lakes, FL); Fiocchi 155 grain frangible], 9mm semi-
automatic pistol [Springfield Armory (Springfield Armory®
Geneseo, IL) XD9; Fiocchi 100 grain luger], 22 rifle [Marlin
model 60 (Marlin Firearms, subsidiary of Freedom Group
Madison, North Carolina); Remington 22LR 40 grain], 22
pistol [Intratec TEC-22 (Intratec Firearms, Miami, FL);
Remington (Remington Arms Company, LLC, Madison,
NC) 22LR 40 grain], 357 magnum (S&W Magnum; PMC

0001-4966/2016/139(5)/2723/9/$30.00 2723
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158 grain), 380 caliber pistol [Taurus (Taurus International
Manufacturing, Miami Lakes, FL) PT 738; Fiocchi 380
auto], 38 special (S&W.38 Special AirLite; American Eagle
158 grain), and AK 47 [SAIGA 7.62x39 Legion
(Kalashnikov Concern, Izhevsk, Russia); Tula 7.62 x 39R
124 HP]. All firearms but the M16 where provided by the
Kennewick, WA police department from their evidence
locker, the M16 was provided by their special weapons and
tactics team. This was done in order to sample an ensemble
of acoustic sources that captures the variability found in non
military/police arms, i.e., in “street” weapons. A second
group of control data was also acquired. These consisted of
“false” alarms: a book slapped on a table, an air-filled paper
bag “popping,” and a wrench striking a metal ladder.

Signals were collected in three different rooms of differ-
ent dimensions: a large auditorium (12.8 x 8.4m; height
2.7m), a medium sized meeting room (4.6 x 6.1 m; height
2.7m), and a small office (3.7 x3.7m; height 2.7m).
Acquisition of all data were completed during one 10 h inter-
val. Firearm discharge data were obtained with the assistance
of the Kennewick, WA special weapons and tactics team,
whose members volunteered to operate all firearms used in
this study. We will report on results collected in the small
room shown in Fig. 1 since this constitutes the most chal-
lenging environment in which to distinguish between threat
and nonthreat acoustic events and to discriminate between
different types of threats. The figure shows the dimensions
of the room, the placement of the microphones, location of
trap, and firearms operator. During acquisition of data, the
door to the room was closed.

Acoustic signals were converted to electrical signals
using a InvenSense INMP404ACEZ-R7 microphone con-
nected to custom built amplifier circuitry. These signals were
digitized, single-shot fashion, by a Teledyne LeCroy MSO
104MX; B digital sampling oscilloscope to obtain raw data
consisting of one million point waveforms (12-bit numbers;
1.0 MHz sampling rate). At least five waveforms for each type
of acoustic source were acquired and stored for later analysis.

lll. ANALYSIS
A. Experimental nonlinearities

Several observations indicate that the experiment is gov-
erned, at least partially, by nonlinear dynamics occurring
during the propagation of sound as well in the microphone
during data capture. During acquisition of firearms signals,
the marksman reported the ceiling tile immediately above
the trap was being visibly displaced by the weapon dis-
charge. Subsequent inspection of the digital waveforms on a
fine time scale (not shown) reveals evidence of shock-like
features. Moreover, the amplitude of firearm discharges in
typically in over 100 dB and this is close to the rated limit of
the microphone used in our study.

As an initial test of this hypothesis, we acquired wave-
forms for a single- and five-round discharge from the 223 cali-
ber assault rifle. Figure 2 shows, in its top panel, the
waveform recorded from the discharge of one round, fi(¢).
The waveform, f5(z), for five automatic discharges is shown
in the middle panel. Both waveforms were Fourier
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FIG. 1. Geometry used for acoustic signal acquisition.

transformed to obtain, respectively, F(w) and Fs(w). If the
propagation was linear, or even weakly linear, then the inverse
Fourier transform of Fs(w)/F(w) should produce a time se-
ries having five delta function spikes. To avoid division by
zero we actually divide by a modified version of F;(w),
specifically

Fs(w)

5\9) 1
Fo(o) ey
where
R R 2
F = 2
) {p it |7y ()] < p. @

and p = 107° is a regularizing term. The inverse Fourier trans-
form of this function was computed and is shown in the bottom
panel of the Fig. 2. It is evident that there is no pulse train.

The strong nonlinearities exhibited by the acoustics pre-
clude identification of signal source using signal processing
techniques based on linear systems theory such as matched fil-
ters. Instead, we will focus on techniques that take subseg-
ments of the acoustic waveform and produce a single number
or receiver value. Moreover, repeated monitoring of micro-
phone performance was undertaken during and after the ac-
quisition of firearm discharge waveforms to detect signs of
damage resulting from exposure to large amplitude sound
waves. These are reported on more fully in the Appendix.

Luzi et al.
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FIG. 2. (Color online) Top panel: Acoustic signature of one discharge of 223
caliber assault rifle. Middle panel: acoustic signature of automatic discharge
of five rounds. Bottom panel: The deconvolution, as discussed in connection
with Egs. (1) and (2) below, of the five discharge by the single discharge sig-
nature. In a linear system such a deconvolution should produce a series of five
delta functions. The fact that these are not evident supports the conclusion that
acoustic wave propagation is not linear in the current study.

B. Energy and entropy analysis of waveforms

We will denote the acoustic waveforms acquired for our
study by f(r). We will also employ the convention that the
domain of f{(¢) is [0, 1].

For f(f), the signal energy is

1
Ef = J f(0)dr. )

0

We may also compute a joint entropy of acoustic wave-
forms, f{r), using a reference function g(¢). In the case where
f(t) and g(¢) are differentiable functions this entropy is given
by®

_ 1t min[[f(0)] [€()]]
e J W [ O]

2
- Jo drlog {max[|f'(1)], |g'()I] }- @)

The strategy for choosing the reference waveform, g(¢), in
the case where subtle changes in f(f) must be detected has
been described elsewhere.” Although these techniques are
not technically applicable for the present investigation, we
will take them as an operational starting point. The justifica-
tion for this approach is twofold. In previous studies,®? it
has been observed that the joint entropy calculation has
many of the attributes of a matched filter. In particular, Hy ,
is often extremized for waveforms “close” to f(r), when g'(7)
is a step-like function, with transitions located at the critical
values of f(#). In addition, Theorem 1 of a previous study of
the variational properties of joint entropy’ also suggests that
this strategy would be successful. Consequently, we will use
this approach, described in greater detail below (Fig. 4) to
discriminate between different classes of firearms.

C. Signal preprocessing

The goal of this study was to discover a suite of signal
receivers that are suitable for two different tasks: discharge

J. Acoust. Soc. Am. 139 (5), May 2016

detection vs firearm identification. Consequently, after an
initial “gating” operation to remove the noise-only pre-trig-
ger portion of the digital waveform, two different prepro-
cessing schemes were applied to the raw data, prior to
computation of either signal energy or entropy.

For signal energy computations the data were decimated
(i.e., only every tenth point was kept) and then bandpass fil-
tered to exclude frequencies outside of the range extending
from 1 to 26 kHz. This was accomplished in the frequency
domain by multiplying the Fourier transform of the raw data
by the conjugate symmetric form of

() f252)

4 )

®)

where f;, = 103, fup. =26 % 103, and the sharpness param-
eter for the filter was set to @ = 10. All computations are per-
formed using units of Hertz.

The logarithm of the signal energy was computed,
according to Eq. (3) using 2.56 ms segments of the acoustic
waveforms. The analysis was performed using a “moving
window” analysis where the 2.56 ms window was placed
initially at a point coincident with the signal arrival and the
logarithm of the signal energy was computed. Subsequently,
the window was moved in 2.56 ms steps, until the end of the
data were reached. In this way, an array of signal energy
log values was produced. In this study it was observed that
analysis with the window placed at zero time was adequate
for source classification.

For entropy calculations only 32 us segments of the
acoustic waveforms were analyzed in moving window fashion,
with a moving window shift of 1 us. The rationale for the
shorter window length was that its structure would be primar-
ily determined by the attributes of the firearm and not those of
the environment. As in the signal energy case, it was found
that analysis with the window placed at zero time was
adequate for source classification. This observation and sensi-
tivity to placement and length of the moving window will be
more fully explained below in connection with Fig. 6.

IV. RESULTS
A. “Threat” vs “nonthreat”

Each of the waveforms acquired for each source type
were analyzed as described above to obtain either log
energy, log[Ef|, or joint entropy, Hy,. The mean and stand-
ard deviations of the ensemble for each source were then
computed.

Figure 3 shows the results obtained for the log[Ey]
analysis. The error bars in the plot are equal to one standard
deviation. There is wide separation between the threat-type
and nonthreat-type bars. However, there appears to be little
separation between either the 223 caliber (M16) and AK47
(“long rifles”) and any pistols. This would be useful informa-
tion in certain circumstances.

In order to quantify this separation, the pair-wise differ-
ences between each acoustic source were computed
along with associated standard deviation using the standard

Luzi et al. 2725
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FIG. 3. (Color online) Separation of “threat-type” vs “nonthreat-type” by
the logarithm of signal energy, log|[Es].

methods for error propagation.”” From these, the mean dif-
ference, which can be either positive or negative, divided by
the associated standard deviation was computed in order to
obtain a noise-normalized measure of change between re-
ceiver values for different acoustic sources. This ratio, which
we will use to quantify the sensitivity of analysis techniques,
is often defined as the statistical conﬁdence,23 and is the re-
ciprocal of the coefficient of variation of a random variable.
Larger values are better as they imply greater statistical sep-
aration between random variables, in our case signal
receivers. Small values suggest that the sources are statisti-
cally indistinguishable to the signal receiver.

The confidence values characterizing the relation
between threat-type and nonthreat-type-signals are summar-
ized in Table I. We observe that all confidences are larger
than one, suggesting that these types of signals should be
easily distinguished using only log[Ef]. Moreover, energy
calculation is simple and well suited to our goal of reduc-
tion-to-practice on low cost hardware.

B. Threat-type discrimination

As mentioned previously, discrimination between
threat-type waveforms would be useful information. Table II
summarizes the absolute values of all confidence ratios

TABLE I. Confidence ratios of “threat-type” vs “nonthreat-type” sources
using log[Ey|.

Book Paper bag Wrench
223 cal. semiauto rifle 22.60 17.68 11.03
40 cal. semiauto pistol 17.50 14.43 9.57
45 cal. semiauto pistol 18.10 14.5 9.28
9 mm semiauto pistol 19.22 15.26 9.59
22 cal. semiauto rifle 15.81 10.63 5.11
22 cal. semiauto pistol 22.07 16.05 9.09
357 cal. revolver pistol 28.66 20.69 12.00
380 cal. semi auto pistol 19.41 15.57 9.95
38 special revolver pistol 15.19 13.00 9.13
AK47 semiauto rifle 55.76 28.77 14.28

2726  J. Acoust. Soc. Am. 139 (5), May 2016

obtained in pair-wise comparison of log[E;| values for
threat-type sources. Only the values below the diagonal are
shown since the table is symmetric about this line. We
observe that many entries are greater than one, suggesting
that in many cases highly reliable discrimination between
sources is possible. However, there are also many entries
that are less than one. Particularly troubling is the fact that
several of these entries appear in the first column indicating
that log[E] provides poor discrimination between several
pistols and the assault rifle.

Consequently, we have investigated the use of different
joint entropies, Hy o, as an additional tool for weapons iden-
tification. Each reference function, g;(), was generated using
one of the threat-type waveforms according to the methods
described previously,’ for instance g, () was computed using
one of the 223 rile waveforms, g,(¢) was computed using
one of the 40 caliber waveforms and so forth with g1o(7)
being computed using one of the AK47 rifle waveforms. For
completeness, we illustrate this computation in Fig. 4. The
line with long and short dashes shows the a portion of the
bandpass filtered version of the underlying waveform coinci-
dent with the onset of the acoustic pulse generated by dis-
charge of the 223 assault rifle. Zero time indicates the point
at which the LeCroy MSO 104MX; B digital sampling oscil-
loscope triggered during data acquisition when the incoming
voltage crossed the threshold level of roughly 125 mV. The
32 us segment of this waveform, which has been selected for
Hp 4, analysis is shown by the solid line. Solid black circles
indicate the locations of the start of this segment and its
extrema. The dashed step-like function shows a scaled ver-
sion of the resulting g} (¢), which had high values of 10000
and low values of 0.001.

An example plot of the entropies Hy 4, along with asso-
ciated standard deviation bars, obtained using the reference
function generated using a 223 caliber waveform is shown in
Fig. 5. The figure shows a clear separation between the “long
rifle” 223 data and the “pistol” 40 caliber, 45 caliber, and to
a lesser extent, 9 mm data. For this plot, the confidence ratios
quantifying the separation between the 223 (a “long rifle”)
and the 357 caliber and 380 caliber pistols data improves
from the Table II values of 0.16 and 0.80 to 5.58 and 5.69,
respectively. However, for the 22 caliber rifle to confidence
is decreased from its Table II value of 9.09 to 5.64.

To be thorough, we have calculated confidence tables
for joint entropy analogous to the Table II using a represen-
tative of each type of “threat” waveform, i.e., for all
gi(t),i=1,...,10. To assess the sensitivities obtainable
using this suite of signal receivers, the maximum absolute
values for each entry in these over all 10 tables have been
collected and are shown in Table III. We observe that where
the entries of this table are low, the corresponding entries of
Table II are high and vice versa. Moreover, the maximum
always exceeds one.

C. Effect of changing analysis parameters, particularly
moving window placement

We have explored other values for bandpass filter lower
and upper bound, moving window length, moving window

Luzi et al.



TABLE 1II. Confidence ratios for different “threat-type” sources obtained using log[Ey] analysis.

223 40 Cal. 45 Cal. 9mm 22 Cal (R) 22 Cal (P) 357 Cal 380 Cal 38 Spc. AK 47
223 cal. semiauto rifle (M16) - - - - - - - - - -
40 cal. semiauto pistol 0.59 - - - - - - - - -
45 cal. semiauto pistol 1.48 0.76 - - - - - - - -
9 mm semiauto pistol 1.40 0.66 0.12 - - - - - - -
22 cal. semiauto rifle 9.09 6.98 6.57 7.00 - - - - - -
22 cal. semiauto pistol 3.37 2.23 1.47 1.67 6.32 - - - - -
357 cal. revolver pistol 0.16 0.78 1.78 1.71 10.92 4.10 - - - -
380 cal. semiauto pistol 0.80 0.14 0.66 0.55 7.49 2.26 1.03 - - -
38 special revolver pistol 0.04 0.44 1.13 1.05 6.50 243 0.16 0.58 - -
AKA47 semiauto rifle 1.55 1.96 3.28 3.29 16.96 7.07 1.77 243 1.06 -

step in the course of our investigations. The choice of band-
pass filter parameters is largely governed by the response
characteristics of microphone and where chosen primarily to
eliminate electronic noise outside of the spectral response of
that device. However, the choice of moving window parame-
ters appears to be less constrained and during the course of
our investigations the impact of varying these over a range
of values was explored. For signal energy analysis it was
found that windows containing at least half of the waveforms
were suitable for classification. However, entropy analysis
appears to be more tightly constrained, particularly in con-
nection with the, more difficult, problem of classification of
weapon type. Consequently, we now present additional
information of the choice of values reported.

Our primary criterion for utility was that these parame-
ters cover a continuous range of values. We have found that
for window length the values reported above may be more
than doubled before entropy analysis is unable to distinguish
weapon types. While moving window position, which was
computed for an array of values, and should be chosen to
capture physical events is not sensibly characterized this
way, we have found that it may be chosen in an interval that
is long enough to be easily captured by current digital acqui-
sition devices. We focus on the comparison of 223 assault
rifle and 40 caliber pistol in the discussion that follows as it

400
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FIG. 4. (Color online) An illustration of the steps used to calculate a refer-
ence waveform for the 223 caliber assault rifle. The dashed step-like func-
tion is the derivative of the calculated reference function g/ (¢), which is
shown instead of the reference g (), since its relation to the extrema of
32 us segment is more easily visualized.
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is a typical result. The sensitivity of Hy, analysis to this
parameter is illustrated in three panels shown in Fig. 6,
where the analysis of a waveform captured from discharge
of the 223 caliber assault rifle is compared with a discharge
from a 40 caliber pistol. In the top panel are shown 110 us
segments that capture the arrival of the acoustic waveforms
at the sensor. We observe that the shape of the pulses at first
arrival is noticeably different. This observation motivated
the entropy analysis investigation, which previous reports
have shown is more sensitive to changes in shape of wave-
forms than is signal energy analysis.>* The middle panel
shows the curves for processed raw data (as described in
Sec. ITI C) overlain with circular symbols placed at the loca-
tions of the 32 time domain points used to compute Hy,
incorporated into Fig. 5). Also shown in the middle panel is
a gray region containing twenty points that were also used
as the starting points for 32 y windows over which Hy , was
computed as part of the moving window analysis as
described in Sec. III C. The bottom panel shows the resulting
Hp , for both firearms. Only the first four and the last three
points, where the error bars of the firearms overlap, fail to
distinguish the two weapon types. These results, which are
also typical of signal energy, show that the reported Hy,
results summarized in Fig. 5 are, at least to the order of a

+104.2

0.6

Acoustic Source

FIG. 5. (Color online) Separation of the acoustic signatures of different fire-
arms by joint entropy, Hy,. The reference was computed using a step-like
function with transitions at the extrema of one of the 223 assault rifle wave-
forms. Note vertical axis constant offset of 104.2.
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TABLE III. Maximum confidence ratios for different “threat-type” sources obtained using Hy, analysis for g;(r) derived from different acoustic sources as

described in Sec. IV B.

223 40 Cal. 45 Cal. 9mm 22 Cal. (R) 22 Cal. (P) 357 Cal 380 Cal 38 Spc. AK 47
223 cal. rifle semiauto rifle(M16) - - - - - - - - - -
40 cal. semiauto pistol 8.61 - - - - - - - - -
45 cal. semiauto pistol 8.63 1.42 - - - - - - - -
9 mm semiauto pistol 1.48 1.00 0.65 - - - - - - -
22 cal. semiauto rifle 5.64 53.46 29.92 7.40 - - - - - -
22 cal. semiauto pistol 4.30 38.33 18.00 9.33 1.16 - - - - -
357 cal. revolver pistol 5.58 40.44 27.67 9.71 0.91 1.74 - - - -
380 cal. semiauto pistol 5.69 59.04 31.65 9.80 1.24 1.94 0.58 - - -
38 special revolver pistol 4.06 16.59 17.75 6.01 1.37 0.48 1.37 1.42 - -
AKA47 semiauto rifle 5.67 37.20 26.57 9.79 0.95 1.96 0.49 0.51 1.55 -

few microseconds, insensitive to analysis window placement
as long as it primarily encompasses the arrival of the wave-
form. Given the capabilities of modern data acquisition
equipment in relation to the length of this window of stabil-
ity, it seems reasonable to conclude that H;, can provide a
robust metric for classifying acoustic signatures into differ-
ent weapon-type categories.
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FIG. 6. (Color online) Effect of changing analysis parameters. Top panel: raw
data for 223 caliber assault rifle and 40 caliber pistol. Middle panel: curves for
bandpass filtered data with circular symbols indicating first set of points used
for Hy; analysis results in Fig. 3. The gray region indicates the range of start-
ing times used to prepare the bottom panel. Bottom panel: Effect of changing
the starting time for the set of points used to compute Hy o.
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V. DISCUSSION

The results summarized in Tables II and III suggest that
a statistical detection and identification system based on the
complementary use of the logarithm of signal energy and the
joint entropies [one for each reference function g;(z)] could
be developed that would simultaneously detect discharge of
firearms and classify their type. This system could be based
on a hierarchical analysis beginning with log[E;] analysis
to discriminate between threat and nonthreat events. If the
former were indicated by the energy analysis then subse-
quent firearm identification would be executed using Hy g,
signal receivers.

While the use of confidence ratios is a useful starting point
for quantifying the statistical separation between random varia-
bles, the hierarchical analysis indicated above would require
explicit knowledge of their distributions. Unfortunately, time
and resource limitations precluded acquisition of a large num-
ber of firearm discharges of even a single weapon type.

Nevertheless, two conclusions seem warranted. First,
and most important, is that for each firearm type there exists
a receiver, either log[Ey] or one of the entropies Hy o, that is
tightly clustered with a large enough difference in mean
values between different weapon types so that even a small
sample of waveforms would be sufficient for statistical
identification. In many cases, those where confidence ratios
are larger than five, it appears that even a single weapon dis-
charge would permit classification of a firearm into either
the category of pistol or long rifle. The case where the stand-
ard deviation (o) is less than five, identification and classifi-
cation would still be possible since, unfortunately, multiple
acoustic emissions from each firearm source would likely be
available. In that case, statistical analysis could be based on
the standard deviation of the mean (¢/+/n), which decreases
like 1/4/n as the number, n of waveforms of each weapon
type increases. For even a few discharges of each weapon
type, a/+/n would rapidly decrease so that the separations
between accumulating mean values would approach five
standard errors of the mean provided that the standard devia-
tion exceeded one. To put these numbers in context suppose
for the moment that the underlying distributions are normal.
Then, taking the number of public elementary, middle, and
high schools in the United States to be 100 OOO,25 and assum-
ing that each school has 1000 rooms and that there is an
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acoustic event in each of these rooms once an hour for 24 h
every day of the year, five sigma implies one false call will
be made per century. While some of the numbers in this esti-
mate may seem high, particularly the number of rooms per
school, they have been chosen in order to provide an overes-
timate of the possible error rate.

Second, the expense of an expanded study to measure
the distributions of log[Ef] and Hy ,, is justified. The value of
such an expanded study would lie in its use for design of an
automated processing algorithm for detection of firearm dis-
charges in public gathering places as well as the identifica-
tion of firearm type.
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APPENDIX

While it appears to be widely accepted that firearm
discharges are capable of producing hearing loss, and thus
exceed 140dB levels required for this to occur, we have
been unable to find refereed sources providing quantitative
sound levels for specific measurement positions relative to
the location of the firearm barrel. Several web sites contain
data and plots, for instance: http://www.freehearingtest.com/
hia_gunfirenoise.shtml or for more detailed description of
actual measurements: Kyttala and Paakonen (1995):
“Suppressors and shooting range structures” (http://
www.guns.connect.fi/rs/suppress.html), which shows 160 dB
maximum levels for a shooter firing a FN FAL L1A1 assault
rifle using. 308 Win standard high velocity ammunition.

This matches the maximum safe operating level for the
InvenSense INMP404ACEZ-R7 microphone used in our
study, which indicates some risk in employing this device.
Nevertheless, as our goal was demonstration of a low-cost,
hence widely deployable, sensor we decided to proceed
using the following precautions. First, rough amplitude com-
parisons of microphone output before and after a subset of
the firearm discharges were performed using acoustic sour-
ces like the “wrench” and “book slap” to check for obvious
changes in microphone output amplitude or shape. Second,
the transducer was located at least 2m from the acoustic
source (firearm) during all testing, and probably experienced
peak sound levels below 160dB. Third, as it true for most
engineering tolerances, the 160 dB safe operating level pub-
lished by the manufacturer has probably been “de-rated” to
provide an extra margin for safe use and is below the actual
noise level at which the microphone suffers permanent
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damage. Fourth, and most important, quantitative compari-
sons of spectral characteristics of the microphone with
unused microphones of the same manufacture could be per-
formed at the conclusion of the study to rule out the possibil-
ity of microphone damage.

These quantitative comparisons were performed using
four InvenSense INMP404ACEZ-R7 microphones that were
not exposed to firearm discharges. The apparatus used to
make these measurements is shown in Fig. 7. The speaker, a
Sontron SPS-29-T00 piezo-ceramic with a 20 mm diameter,
was used to drive the microphone under test. Given the con-
straints imposed by laboratory space and the desire to mini-
mize cable lengths for the electronic components, it was
placed 42.8 cm away from the microphone. This is greater
than the near-to-far field transition point, for 26 kHz, which
occurs at 6.1 cm.

In order to ensure measurement of all microphones
occurred in their linear response regime, calibration curves
were acquired by measuring spectra of received pulses
obtained by driving the broadband-amplifier with a 2 us step
function pulse from the Tektronix AFG 3252C set to a height
of either 1.5, 1.0. 0.5, 0.25, or 0.125 V. These measurements
simultaneously verify the linearity of all components in the
measurement chain: Tektronix AFG 3252C, HP 6327A,
speaker and microphone. Typical curves, in this case the
family obtained using the prototype microphone, are shown
in Fig. 8. The top curve, labelled 1.25V, is 3.5 dB above the
calibration curve corresponding to an amplified 1.00V step
function excitation, as expected. The remaining curves are
all 6dB apart, also as expected. Since the 0.5V labelled
curve appears to be well within the linear range of the mea-
surement apparatus this driving level was used for all
spectral characterizations.

Broadband Amplifier k
I
Signal o Spea €
Output
HP 6327A
Input &4 _

Signal Generator

Signal
Output ]
Tek AFG 3252C

Trigger

Output o1

Digital Sampling Oscilloscope

LeCroy MSO
104MXS-B

CH1 CH2 CH3
(0] q

428 cm

Microphone

FIG. 7. Equipment diagram showing electronics used for measurements of
spectral characteristics of InvenSense INMP404ACEZ-R7 microphones
used in our study.
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FIG. 8. (Color online) Typical calibration curves used to determine the am-
plitude of the square wave used for spectral measurements.

Spectra were obtained using the following protocol.
The prototype used to obtain firearm discharge data was
placed in a clamp and aligned for maximum amplitude and
arrival time of 1.25 ms (corresponding to 42.8 cm assuming
a speed of sound of 343 m/s). The average of 256 pulses
from the speaker were stored for later off-line analysis.
Next, an unused microphone was placed in the clamp, its
position and alignment similarly adjusted and the average
of 256 pulses from the speaker were averaged and stored.
This process was repeated for the remaining three unused
microphones.

This cycle was repeated five times. Subsequently, the
data were analyzed by baseline removal, windowing to elimi-
nate spurious pulses and reduce noise using a 1 ms window.
As the microphones exhibit variations in output amplitude, all
pulses were then scaled to a maximum deviation, from DC, of
one. This permits more precise comparison of the shapes of
the spectra. Next, each of the rescaled pulses were Fourier
transformed and their magnitudes as functions of frequency,
i.e., the spectra, were computed. The five spectra from the
prototype were averaged. Their standard deviations were also
computed. The same processing was performed on each of the
twenty pulses obtained from the unused microphones and
these were averaged and the standard deviation computed.
We point out that the rescaling performed in the time domain
had the effect of reducing the resulting standard deviation of
the ensemble of twenty spectra and thus produces a more
stringent comparison between prototype and unused micro-
phone spectra.

The comparison of average prototype and average
unused microphone spectra over a range extending from 0 to
28.6kHz is shown in Fig. 9. The averaged (N=35) spectra
for the prototype with standard deviation error bars are
represented in the solid curve without plot symbols. The
average (N =20) spectra for the unused microphones are
represented by the curve with circular symbols. The plots are
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FIG. 9. (Color online) Comparison of spectra of prototype microphone after
study completion with the average of five spectra obtained from unused micro-
phone of the same manufacture. Standard deviation bars are also plotted.

essentially the same over the 1 to 26 kHz range used to band-
pass filter all time domain data prior to the analysis that
produced the comparisons shown in Figs. 3 and 5.
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