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Glossary

6-31G* A Pople-style basis set with Gaussian-type orbitals of polarized double-ζ quality,

for use in quantum mechanics calculations.

β µ Referred to as a “chemical potential”, temperature (T) and chemical potential (µ) vari-

ables cannot be separated in our athermal grand canonical ensemble. Hence, they

appear together inβ µ.

AAEM-CT Alavi, Alvarez, Elliot and McDonald Charge-Transfer model. This empirical

model uses the local environment of atoms to determine charges and charge-transfer

forces at each timestep. Calculation of its charges, energies, and forces for use in

molecular dynamics or Monte Carlo simulations is relatively inexpensive.

AM1 Austin Model 1. A semi-empirical electronic structure method which uses the mod-

ified neglect of differential diatomic overlap approximation.

AMBER Assisted Model Building with Energy Refinement. An empirical, non-reactive

force field and software package which is commonly used in biochemical simula-

tions. This model contains point charges, dispersion, bond, angular, and torsional

terms.
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BG-AAEM-CT Barnes-Gelb modification of the AAEM-CT Model. In this work we

introduce new potential terms which are active between atoms that are transfer-

ring charge. These modifications to the AAEM-CT model are useful in isobaric-

isothermal ensemble simulations. The AAEM-CT model is alsoreparametrized, its

empirical two-body form changed, and a three-body term introduced.

BKS van Beest, Kramer and van Santen model. A popular empirical potential for silica

simulations, with fixed, fractional point charges. It does not rely upon harmonic bond

expressions and may simulate phase transitions.

cc-pVTZ A Dunning-style basis set with Gaussian-type orbitals of polarized triple-ζ qual-

ity, for use in quantum mechanics calculations.

CPMD Car-Parrinello Molecular Dynamics. This acronym may referto the simulation

technique which allows for relatively inexpensive “ab initio” molecular dynamics

using DFT energies, or the software package which implements the CPMD technique

and several other DFT methods.

CPU Central Processing Unit. The part of a computer which executes instructions of a

program. Modern CPUs typically have multiple cores, each capable of carrying out

instructions independently. Sometimes, casual usage of “CPU” may actually refer to

a specific core executing instructions.

DFT Density Functional Theory. A high level quantum mechanicalelectronic structure

theory which is often used to calculate the energies of many-body systems, such as

molecules in the gas phase or condensed matter systems. While modern DFT cal-

culations are not technicallyab initio (relying on parametrized exchange-correlation

functionals), it is often referred to as anab initio technique. DFT formalism has

O(N3) scaling, making it quite popular.
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EA Evolutionary Algorithm. A class of iterative global optimization techniques which

typically use ideas drawn from biological evolution and natural selection. Evolution-

ary Strategies and Genetic Algorithms are both types of Evolutionary Algorithm.

ES Evolutionary Strategy. An Evolutionary Algorithm which operates on phenotypic rep-

resentations of its trial solutions, which in our case are sets of real numbers (as op-

posed to bitwise representations). Its iterative steps include recombination, mutation,

evaluation, and selection.

FG Feuston-Garofalini model. A reactive empirical potentialfor vitreous silica and aque-

ous silicate systems with formal point charges on atoms and both two-body and three-

body terms. Our group has used this model for simulation of silica sol-gel reactions.

GA Genetic Algorithm. An Evolutionary Algorithm which operates on genotypic (bit-

wise) representations of its trial solutions. GAs are quitesimilar in spirit to Evolu-

tionary Strategies, but the technical details of the recombination and mutation steps

are not at all similar to an ES, which leads to different behavior during global opti-

mizations.

GCC/gfortran GNU Compiler Collection, gfortran compiler. This is one of the most

commonly used compilers for the Fortran 77 and Fortran 90/95languages, and is

freely available with any Linux distribution.

L2 cache Level 2 cache for a CPU. This storage unit provides access to aprogram’s data

and instructions at speeds significantly faster than a computer’s main memory. This

is a matter of hardware: static RAM for L2 cache versus dynamic RAM for main

memory. It is quite advantageous to be able to fit time-sensitive parts of a program

in L2 cache.

xvii



MC Monte Carlo. The statistical mechanical technique – this often refers to Metropolis

Monte Carlo simulations.

MM3 Molecular Mechanics 3 force field. A non-reactive empiricalmodel with point

charges, dispersion, bond, angular and torsion terms. MM3 was designed for simu-

lations of hydrocarbons and biochemical systems.

MPI Message Passing Interface. This is an Application Programming Interface (API)

specification for communication between computers. It is language-independent, but

most frequently used with C, C++, Fortran, and Python languages. MPI is commonly

used in High Performance Computing (HPC) due to the need for parallel programs

to communicate between nodes on computer clusters.

PBE Perdew, Burke, Ernzerhof exchange-correlation functional. Also referred to as PBE96.

This functional operates on the electronic density and density gradient of a system in

order to calculate the many-particle contribution to a DFT energy calculation.

Polyomino Connected shape on a two-dimensional square lattice. A tetromino is a poly-

omino which occupies four lattice sites, and a pentomino is apolyomino which oc-

cupies five lattice sites.

PM3 Parameterized Model number 3. A semi-empirical electronicstructure method which

uses the neglect of differential diatomic overlap approximation, similar to AM1.

QEq Charge Equilibration technique. A method for calculating the distribution of charges

within a molecule, where charges are allowed to change over time depending upon

the local environment. Developed by the Goddard group, thismethod significantly

differs from the AAEM-CT approach.

QM Quantum Mechanical or Quantum Mechanics.
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ReaxFF The “ReaxFF” force field. A reactive empirical potential which has been parametrized

for both hydrocarbons and some silicate species. This method has point charges,

dispersion, bond order (instead of harmonic bonds), angular, and torsional terms.

Charges on atoms are determined by a QEq technique.

RDF Radial Distribution Function [g(r)]. A description of variation in atomic density as

a function of distance for a particular pair of atom types. For an atom at the originO

and an average number densityn = N/V, the local density at a distancer from O is

n ·g(r). A commonly referenced function in statistical mechanics.

RSL Rahman, Stillinger, Lemberg model, or potential terms. Stillinger and co-workers

originally developed an atom-based, dissociable model forliquid water using only

two-body terms in the 1970s. RSL may refer to the model studied by them, or to

the two-body terms which were used to control hydrogen bond distances in liquid

water. These RSL terms are a part of the FG model, which was used in our meta-

optimization work.

SA Simulated Annealing. A stochastic global optimization technique inspired by anneal-

ing in metallurgy. The method is based upon the Metropolis Monte Carlo algorithm,

and features a fictitious “temperature” which is gradually lowered and acts as a con-

trol on the optimization’s search.
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Chapter 1

Overview

This thesis is composed of two parts. The first is a study of evolutionary strategies for

parametrization of empirical potentials, and their application in development of a charge-

transfer potential for silica. The second is a study of thermodynamics and self-assembly in

a particular class of athermal two-dimensional lattice models. In both parts, computational

efficiency and performance were important goals, and this was reflected in method and

program development.

1.1 Development and Application of Evolutionary

Strategies for Potential Parametrization

Empirical potentials are commonly used in molecular dynamics and Monte Carlo simula-

tions, especially in studies of systems containing large numbers of particles. Our group

had previously used the Feuston-Garofalini (FG) model [1] for aqueous silicate systems in

large-scale simulations of silica sol-gel formation [2]. It was our intent to perform simula-

tions with more accurate electrostatics and possibly additional elements, not present in the
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FG model. This would first require improvement and reparametrization of the model, itself

not a trivial task.

Therefore, we first investigated available methods for efficient reparametrization of em-

pirical potentials. In particular, we focused on two globaloptimization techniques: evo-

lutionary strategies (ES) [3–5] and simulated annealing [6]. Evolutionary strategies are

potentially well-suited for parametrization of empiricalpotentials, as they are easily par-

allelizable across hundreds of processor cores. However, the performance of evolutionary

strategies depends on the values of parameters and details used. There are many such items

to specify, and they have domain specific effects. In Chapter2, we address this through

the “meta-optimization” of an evolutionary strategy for empirical potential fitting. This

was the first comprehensive investigation of the performance of evolutionary strategies for

empirical potential fitting, and several interesting results were found that may be useful to

future researchers. This chapter includes figures and portions of text which the author has

previously published: reprinted (adapted or in part) with permission [7]. Copyright 2007

American Chemical Society.

Chapter 3 describes our subsequent attempts to improve uponexisting potentials for sili-

cate systems. Elements in the FG model have fixed formal charges. During simulations of

chemical reactions this leads to inaccuracy in the local electrostatic environments. We iden-

tified a promising and inexpensive charge-transfer model byAlavi and coworkers (AAEM-

CT model) which we believed could be easily adapted for our needs, as it had previously

been used on an amorphous silica system [8]. Combining the charge-transfer terms from

the AAEM-CT model with empirical two-body and three-body forms from other popu-

lar potentials, we believed we could develop a new model for silica and aqueous silicate

species. Initial attempts at parametrization of such a potential using evolutionary strate-

gies, however, led to systems with physically unrealistic properties. Closer investigation
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of the AAEM-CT model led to discovery of a fundamental flaw notnoticed in prior work.

We partially corrected this flaw, leading to a model with a much improved description of

crystalline and amorphous phases of silica. We decided not to pursue this charge-transfer

form for studies involving additional elements. In particular, despite many attempts, we

were unable to find a parameter set (by ES or otherwise) that displayed an accurate melting

point for β -cristobalite silica, which we took to be a reasonable test criterion.

1.2 Thermodynamics and Self-Assembly of Polyominoes

In a separate project, we conducted extensive studies of a simple lattice model in order to

better understand the self-assembly of small molecules andnanoparticles adsorbed at inter-

faces. Specifically, we studied hard polyominoes on a squarelattice [9–11]. Polyominoes

are two-dimensional objects of varying size and shape; the polyominoes in our simulations

only interact through a non-overlap condition. As a result,all of the behavior observed is

entropically driven.

We first considered the tetrominoes, which are discussed in Chapter 4. These are all the

same size, covering four lattice sites. A highly efficient Monte Carlo code was devel-

oped for these simulations, which were conducted in the grand ensemble. We determined

the equations of state for the pure fluids and all binary mixtures, and also studied many

other multicomponent systems. The one-component fluids alldisplayed self-ordering at

higher densities. This clustering is discussed, and in the case of multicomponent systems,

quantified. Analysis of second virial coefficients was useful in explaining the frequent

species-specific clustering and orientations seen within clusters and mixtures. Using mul-

ticomponent simulations, we were able to calculate Henry’slaw solubility constants for

species within a solvent of a different species. We were alsoable to calculate the volumes
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of mixing for binary mixtures, many of which displayed unexpected and complex non-ideal

behavior. This chapter includes figures and portions of textwhich the author has previously

published: reprinted (adapted or in part) with permission [12]. Copyright 2009 American

Chemical Society.

We then went on to study larger polyominoes, which are discussed in Chapter 5. None

of the tetrominoes underwent any kind of phase transition, but we did observe first-order

phase transitions in species as small as the pentominoes. The family of pentominoes con-

tained shapes with no transitions, transitions to a disordered phase, and with transitions to

a crystalline phase. Some polyominoes exhibited polymorphism, undergoing phase tran-

sitions to many possible crystal domains. The frequency andproperties of these different

crystals are examined. Columnar phases (ordered phases that have translational freedom in

one direction) were observed in many systems. We were also able to design a polyomino

with a diagonally oriented columnar phase. Finally, preliminary studies of a binary mix-

ture were also performed, including simulation and analysis of a large two-dimensional

equation of state.
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Chapter 2

Meta-Optimization of Evolutionary

Strategies for Empirical Potential

Development: Application to Aqueous

Silicate Systems

2.1 Introduction

Empirical potentials (force fields) are widely used in molecular modeling and simulation,

and usually consist of analytic functions which have been parametrized to reproduce se-

lected reference data. The functional forms are chosen to model specific intermolecular

and intramolecular interactions thought to be important for a given application. For in-

stance, in the potentials commonly used for studying the phase behavior of fluids one gen-

erally includes terms describing atomic-core repulsions,dispersion forces, bond angles,

and torsions; if dipolar or charged species are present, these may be described using point
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dipoles or distributions of point charges. By inclusion of higher multipoles and/or polariz-

abilities, such potentials can become quite complex. The design of effective potentials has

been discussed extensively in the simulation literature and the functional forms used vary

considerably from problem to problem [13–17].

Over the course of a molecular dynamics or Monte Carlo simulation, millions of sequential

energy and calculations may have to be performed. In the caseof a molecular dynamics

simulation, forces will also have to be calculated for each of those configurations. It is

almost always impractial to do these calculations using quantum mechanical calculations,

as any given energy calculation may take up to several hours,or longer, depending upon

size of the system and accuracy of the methods used. Prior to roughly 25 years ago, ab ini-

tio molecular dynamics calculations were not possible for any system size or method due

to their computational expense. Empirical “force fields” or“potentials” are the solution

to this problem. Accuracy is sacrificed for speed, although acarefully parametrized force

field may often be capable of quite accurately reproducing several experimental quanti-

ties. Empirical force field equations generally involve classical mechanics instead of quan-

tum mechanics. Further, they usually simplify the electrostatics of a system, using point

charges and possibly dipoles instead of multipole expansions to describe charge distribu-

tions. Molecular orbitals from quantum mechanics which provide the framework for a

molecule’s bonds are replaced, most commonly, by harmonic bond oscillators or rigid rods

between atoms. The energy levels of these harmonic bonds or rigid rod rotations are not

quantized. Many-body interactions are uncommon. A typicalbiochemical force field de-

scribing an amino acid will have two-body bond terms, three-body angle terms, and four-

body dihedral terms. Further, since those two-body bonds are usually harmonic bonds,

they are non-dissociating and therefore non-reactive bonds. All of this framework results
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in greatly increased computational speed compared to atomic orbital, quantum mechani-

cal based methods. The largest part of the computational expense is usually calculation

of Coulomb interactions for the system, as those are long ranged and cannot be truncated

at a cut-off distance where they become negligible. The formal scaling of the Coulomb

interaction isO(N2), although advanced algorithms such as the Ewald summation may re-

duce this cost toO(N
3
2), or O(N lnN) for the case of particle mesh Ewald or fast multipole

methods. These empirical potentials attempt to reproduce the full N-dimensional potential

energy surface of a system, hence their common name of “potentials”.

Parameters may be fit to a wide range of data, including both experimental results and

quantities calculated using first-principles or semi-empirical electronic-structure methods.

Experimental data often used for this purpose include, among others, crystal structures,

thermophysical properties such as melting points and critical parameters, partial radial dis-

tribution functions, angular distributions, and diffusion constants. Parametrization against

thermophysical quantities requires the use of simulationsto determine the corresponding

properties of trial parameter sets, which can be computationally expensive.

With first-principles methods one may calculate the energies and associated gradients for

selected molecular configurations, as well as charge distributions, multipole moments, and

structural quantities. Such data may be obtained either forisolated molecules or in the con-

densed phase. The parametrization of empirical potentialsagainst first-principles reference

data is now a popular and widely-used approach [18–28], building on both the broad avail-

ability of software for high-quality electronic structurecalculations and general interest in

multi-scale simulation methods.

In all cases, systematic parametrization of the chosen functional form presents a challeng-

ing numerical problem. This may be cast as the optimization of an objective function that

7



measures the ability of the empirical potential to reproduce selected reference data, and

therefore as a minimization in some high-dimensional spacewhere the dimensionality is

equal to the number of parameters to be assigned. The values being optimized when fit-

ting potentials are usually point charges, Lennard-Jones or exponential interactions, bond

angles, and similar quantities. This is a non-linear optimization: the quantities being op-

timized are often not linear coefficients of equation terms,and this places restrictions on

the mathematical methods which may be used to find solutions.For example, it cannot be

treated as an eigenvalue problem and solved with matrix inversion.

In general, the properties of the objective function will depend on the physical system un-

der consideration, reference data, potential form, and metric used to compare model results

with reference data. For a given parametrization problem there may well exist a multi-

plicity of possible solutions, as pointed out in the early literature in development of the

central force model for liquid water [29–31]. This model relied upon physical reason-

ing for selection of a set of two-body forms to describe hydrogen and oxygen atoms, for

which parameters were determined to select forms for their two body potential, and then

parameters were calculated which gave proper values for thedipole moment and harmonic

force constants of an isolated water molecule. The authors chose a set of two-body func-

tions, and then calculated parameters for those forms whichwould reproduce the dipole

and force constants. They noted that their final set of functions was “one of an infinity of

such sets which satisfy the criteria outlined above”.

Many strategies for parametrization of empirical potentials are available, varying in both

computational complexity and “philosophy” [13–17]. One significant classification of

these strategies is whether all parameters are considered simultaneously or if a sequen-

tial, one-parameter-at-a-time (or one-term-at-a-time) approach is used; the latter cases may

also be iterated.
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Iterated parameter-by-parameter optimizations correspond roughly to direction-set opti-

mization methods [32], and therefore deterministically produce local minima of the ob-

jective function. Term-by-term optimizations (which may consider a few parameters at a

time) are popular because they reflect the additivity of different interactions explicitly built

into many potentials. For instance, one may parametrize a torsional motion independently

of the associated angular terms by using an electronic structure program to scan over the

torsional degree of freedom, and then fit that data with some appropriately chosen function.

The disadvantage of this approach is that the resulting torsion is then fit at particular values

of the associated angles, and any dependence of the torsion on the associated angles will

not be described well. To capture such interactions one musthave both reference data that

explores appropriate deformations of the molecule and additional terms in the potential that

depend on both torsions and angles. In such a case, one may choose either to individually

fit the torsion-only and angle-only terms and then fit the “cross” term, or to fit all three parts

simultaneously. The term-by-term approach allows for a better description of the isolated

motions with inaccuracies concentrated in the cross-term,whereas the simultaneous fitting

will spread inaccuracies more evenly among the three terms.Such issues become particu-

larly important when extending previously developed potentials to include new atomic or

molecular species. If the existing potential is not re-parametrized to some degree, then the

inaccuracies associated with the (necessarily imperfect)description of interaction with the

new species will be concentrated in the added terms. Conversely, when all parameters are

fit simultaneously this will not be the case, but parts of the potential may not be as accurate

as the functional form allows. The global optimization may use the large parameter search

space to compensate for some deficiency elsewhere in the functional form. For example,

a term describing van der Waals attractions may be optimizedto an unphysically strong

value in order to compensate for unrealistic point charge Coulombic interactions.
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The ReaxFF family of reactive potentials [18–23], for instance, is parametrized against

small molecule calculations for bond distances and angles and experimental data for heats

of formation. A local optimization technique of successiveone-parameter optimization

(line search) was used [33]. In an alternative approach, Voth et al. have used first-principles

simulations of condensed phases to create potentials for water and hydrogen fluoride [24,

25]. Their “force matching” technique uses a short-ranged cubic spline and a long-ranged

Coulomb form to model site-site interactions. Splines are mathematically convenient as

they are polynomials with well-behaved derivatives and which may be summed using linear

coefficients to describe arbitrary curves. The linearly independence of splines enable the

use of singular value decomposition to exactly find parameters for a given configuration,

and a final set of parameters is then determined by averaging over the results of many

configurations.

For potentials describing a small number of degrees of freedom (and therefore either very

small systems or species of low structural complexity) electronic structure calculations can

be used to “scan” over the complete potential energy surface. These results can then be

numerically interpolated, fit to analytical functions, or some combination of both, in order

to obtain highly accurate potentials. Recent examples of such parametrizations include the

water potential of Bukowskiet al. [26] and the nine-dimensional potential for collisions of

hydrogen gas and water monomers developed by Faureet al. [27]; there is a considerable

literature on the development of such surfaces for use in reaction dynamics calculations

[34–37].

In the 1960s and 1970s, three groups developed independently numerical optimization

methods which mimicked the process of evolution [4, 38]. Rechenberg and Schwefel cre-

ated a family of “evolutionary strategies” to solve real-valued problems [39–43]. Fogel
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researched artificial intelligence problems through an “evolutionary programming” tech-

nique [44]. Lastly, Holland developed “genetic algorithms” as a general optimization

method [45]. Interestingly, the development of these similar but distinct types of algorithms

seems to have been furthered by the geographical separationof the groups performing the

work; there were essentially no instances of authors publishing with both the American

and German groups. De Jong discusses all these methods undera unified framework of

“evolutionary computation”, and generalizes them as “evolutionary algorithms” [46].

A brief outline of an evolutionary strategy is as follows. First, a population of trial solutions,

called parents, is created. Second, arecombinationprocess creates a group of children

by averaging or otherwise combining parts of the parents. Third, the children undergo

mutation, consisting of small random changes. Fourth, those children areevaluated. Fifth,

aselectionprocess is used to select a new group of parent from the current population. The

cycle is then repeated, starting with the recombination step.

One important difference between evolutionary strategiesand genetic algorithms is in the

representation of trial solutions: evolutionary strategies are phenotypic, and genetic algo-

rithms are genotypic [47]. That is, in an evolutionary strategy the individuals are manip-

ulated “as-is”, whereas genetic algorithms operate on bitwise representations. This differ-

ence in representation requires different operators for recombination and mutation steps. In

genetic algorithms, recombination operators exchange strings of bits between two parents

in order to generate children, and the basic mutation operator is a random bit flip. For a

continuous-valued problem represented phenotypically, the recombination step would in-

volve choosing or averaging values from the parents to create a child, and the simplest

mutation would be the random displacement of selected childparameters. In general, this

is a difference in “data structures” for the trial solutionsand it has a significant effect on
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how an program is written. Converting a program from operating as an evolutionary strat-

egy to operating as a genetic algorithm or vice-versa is possible but may take significant

effort to properly and efficiently implement.

Genetic algorithms (GAs) have been used in potential development in a number of stud-

ies, mostly to extend semi-empirical methods or to refine popular force fields. Cundari,

Deng and Fu used a GA to parametrize technetium interactionsin the semi-empirical PM3

method. Semi-empirical QM methods use pre-parametrized overlap integral calculations

to speed up the evaluation of molecular energies. Therefore, reparametrization of the inte-

grals for specific problems may lead to increased accuracy. Their results were fit against

crystal structure geometries, and they found that their GA provided significantly better pa-

rameters than those obtained by interpolating parameters of the metals to the left and right

of technetium in the periodic table [48]. Rossi and Truhlar used a GA to re-parametrize the

AM1 semi-empirical method against quantum mechanical datain order to perform semi-

quantitative direct dynamics on the Cl + CH4 potential energy surface [49]. Parameters for

organic systems containing sodium and transition metals inthe AM1 and PM3 methods

have also been refit using GAs [50,51]. These targeted re-parametrizations can allow semi-

empirical methods give substantially improved structuresfor biochemically relevant sys-

tems. Ge and Head used dual genetic algorithms in a study of SixHy clusters, with one GA

tasked to iteratively re-parametrize the AM1 method, and the other GA to search cluster ge-

ometries for a global minimum [52]. GAs have also been used incomputer-aided molecular

design [53]. As reviewed by Lameijeret al. [54], in the area of drug design evolutionary

algorithms have been applied to the design of molecule libraries, conformational analy-

sis, molecule superposition and pharmacophore detection,quantitative structure–activity

relationships (QSAR), ligand docking,de novodesign, and “drug-likeness” evaluation. In
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particular, Thomsen investigated the effects of variationoperators and local-search hybrid

methods on EA/GA performance for ligand docking [55].

Strassneret al. performed one of the few studies of the influence of GA parameters in

the context of developing empirical potentials. They examined the interaction of crossover

rates, mutation rates, and selection methods on the overallGA performance for refitting of

the MM3 force field for a rhenium complex [28, 56]. In this study, different GA parame-

ter sets were compared via the root-mean-squared deviation(rmsd) between experimental

(or high-level theoretical) crystal structures and those obtained using the GA-parametrized

force field; GAs which produced MM3 parameters with smaller rmsd’s were judged to be

more effective. Results were averaged over only three different independent optimizations

for each set of GA parameters, and definite trends in GA performance with different param-

eters were observed. The most efficient algorithm tested wasa simple GA with a tourna-

ment selector, 90% crossover rate and 20% mutation rate. Wolohanet al. re-parametrized

the MM3 force field for copper complexes [57] using the GA parameters recommended by

Strassneret al. [28, 56]. Other efforts at re-parametrizing force fields using GAs include

partial re-parametrization of the AMBER force field [58], refitting of the BKS and TTAM

potential forms [59], and refitting of the Stillinger-Weberpotential for silicon [60].

With the exception of the work of Strassneret al. [28, 56], the actual performance of the

GAs used in potential parametrization work has rarely been considered in any depth. Many

previous studies of the efficiency of evolutionary strategies have considered only the op-

timization of relatively simple and low-dimensional mathematical functions [4, 38]. The

behavior of an ES for much more complex problems may be distinctly different.

In this chapter we evaluate the performance of a reasonable selection of evolutionary strat-

egy algorithms applied to the problem of optimizing an empirical potential for molecular
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simulation applications. The process of finding the best algorithm for an optimization is

termed a “meta-optimization”. The empirical potential we consider is the all-atom, reactive

potential for aqueous solutions of silicate oligomers developed by Feuston and Garofalini

(FG) [1,61]. Reparametrization of the FG potential is a useful test application because the

short-ranged nature of the potential makes it inexpensive to evaluate and optimization of

the large number of parameters used poses a difficult numerical problem. The purposes

of this chapter are to provide effective guidelines for future applications of evolutionary

strategies in similar parametrization studies, and to provide benchmarks for the behavior

that can be expected of these algorithms.

2.2 Methodology

2.2.1 Evolutionary Strategy Optimizations

A complete evolutionary strategy implementation requiresspecification of initialization,

recombination, mutation, evaluation, selection, and termination algorithms. In this chapter

we evaluate the performance and behavior of a variety of recombination, mutation, and

selection methods in the parametrization of an empirical potential against various reference

data.

Individuals (parents and children) will be represented as vectors of real numbersx =

{xi ,σi}, i = 1, ...,N, whereN is the number of parameters. The{xi} are the quantities

to be optimized (in this case, parameters of an empirical potential), and the{σi} are associ-

ated quantities that control the size of mutations applied to each parameter. The{σi} may

themselves be subject to evolution. While they do not affectthe evaluation of the potential,
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they affect the optimization process and its ability to bothescape and pinpoint local minima

in parameter space. The parts of the evolutionary strategy are presented below.

1. Initialization. In this step an initial population ofm parents is created. Each parameter

xi of each parent is selected from a continuous uniform distribution within a constrained

range,xmin
i to xmax

i , which are part of the initial input. Selecting random seedsis not a

necessity – values may be picked by hand – but a random approach was used so the pro-

cess was unbiased. The initial values of the{σi} are defined through scaling of an input

parameterσ0: σi = σ0 · (xmax
i −xmin

i ). This reflects the fact that the absolute values of thexi

can vary by many orders of magnitude, depending on the units and functional forms used.

2. Recombination.Recombination is the process of combining parents to produce children.

Following Schwefel, recombination operators are classified aslocal or global, and also as

discreteor intermediate[3]. Local operators generate a child entirely from two randomly

selected parents. Global operators randomly select a new pair of parentsfor each parame-

ter of every child. Discrete operators assign each(xi ,σi) pair for the child by setting them

equal to the value of the corresponding(xi ,σi) pair in one of the randomly chosen parents.

Intermediate operators instead assign the average value ofthe corresponding parent param-

eters to the child. Selections are made “without replacement”, so that it is not possible to

create a child from two “copies” of a single parent.

3. Mutation.Each parameterxi in each childx is displaced with probabilityp by a random

number chosen from a normal distribution of zero mean and andstandard deviationσi ,

G(0,σi). This change is represented as:

xi = xi +G(0,σi) (2.1)
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The σi control the size of mutations. As discussed in greater detail below, different mu-

tation algorithms may independently evolve the{σi} over the course of the optimiza-

tion. Alternatively, the{σi} may be controlled through a common referenceσ , with

σi = σ · (xmax
i −xmin

i ); various algorithms for evolvingσ may then be applied.

4. Evaluation.The fitness of each new child is evaluated, as described in thenext section.

5. Selection.In the selection step, the parents of the next generation areselected from the

current population. Selection methods may be categorized according to (a) whether or not

they allow overlapping generations and (b) their degree ofelitism.

Evolutionary strategies are commonly labeled either(m,n)-ES or(m+n)-ES, wherem is

the number of parents andn is the number of children per generation [62]. An(m,n)-ES is

non-overlapping: them parents of the next generation are chosen only from among then

children of the current generation. An(m+n)-ES is overlapping: themparents of the next

generation are chosen from the entire current population ofn+m individuals. This allows

for the survival of individuals for more than one generation, and potentially indefinitely [3].

Elitism describes the importance placed on fitness when selecting the next generation’s

parents.Truncationmethods are the most elitist, and simply choose the bestm individu-

als from the available population (n or m+n). A less elitist method isbinary tournament

selection, in whichm random pairs are chosen from the available population, and the “win-

ner” of each pair is made one of the parents for the next generation [63]. With tournament

methods, it is possible that the individual with the highestfitness is not selected. The tour-

nament method may be extended to have competitions between an arbitrary number of

children when creating a child, e.g. a three-way tournamentinstead of a binary (two-way)

tournament. The truncation selection method is deterministic, while the tournament method

is stochastic. We use the termsemi-overlappingto refer to selection methods which, when
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choosing new parents (from either the children or from the full population), always include

either the best current parent or the best current individual.

After selection, one generation is complete. Them selected individuals now become the

parents, and the algorithm returns to the recombination step.

6. Termination. Common termination options include exiting after a certainfitness has

been achieved, exiting when the fitness of the fittest individual becomes constant to within

a specified tolerance, or exiting after a fixed number of generations. In the studies below,

which compare various algorithms, termination criteria are chosen to ensure that the com-

putational costs of the different methods are comparable. For algorithms with the samem

andn, this corresponds to termination after a fixed number of generations, but for com-

parisons of algorithms with differentm andn, optimizations are terminated after a fixed

number of child evaluations, or “births.”

2.2.2 Fitness Function

Our goal in potential parametrization is to have the empirical potential accurately repro-

duce some reference data, which we will call thetraining set. It is called this because the

empirical potential is being “trained” to reproduce the data in the training set. Here the

training set will consist of the total energies of a series ofNcon f ig atomic configurations.

Thefitness functionis defined as

χ2(x) =
1

Ncon f ig

Ncon f ig

∑
i

[{

Eemp(Ri ,x)−Eemp(Rre f ,x)
}

−{ETS(Ri)−ETS(Rre f)}
]2

(2.2)

whereEemp(Ri,x) is the energy of configurationRi determined using the empirical poten-

tial with parametersx. ETS(Ri) is the energy of configurationRi determined using some
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high quality method, for instance Density Functional Theory (DFT). χ2(x) is a measure of

the mean-squared difference between the potential energy surfaces sampled by the training

set and defined by the chosen empirical functional form and parametrizationx.

Rre f denotes a reference configuration, which is included in the definition ofχ2 because the

empirical potential and reference method may differ in wayswhich make absolute compar-

isons of their energies impossible. For instance, the energies obtained from typical all-atom

empirical potentials cannot be directly compared with the “raw” output of electronic struc-

ture calculations. This is because in electronic structuremethods even isolated atoms have

non-zero total energy due to their internal structure, which is generally not the case for

empirical potentials. One possible solution to this problem is to use the energy at the dis-

sociation limit (all atomic separations increased to infinity) to define the energy “zero” in

each case, which corresponds to a particular choice ofRre f . However, for many empir-

ical potentials, including non-dissociable molecular potentials and potentials that include

non-integral charges, this is an awkward choice. In this study, we chose the lowest-energy

configuration in the training set as the reference stateRre f . This choice is applicable re-

gardless of the form of empirical potential used, and requires no additional “reference”

calculations. Furthermore, it has the appeal of directly including the differences in energy

between “relevant” configurations of the reference system,which appear in the Boltzmann

factors determining the thermodynamic properties of the system.

2.2.3 Application

Our test problem for meta-optimization of evolutionary strategies is a re-parametrization of

the Feuston and Garofalini (FG) potential for aqueous solutions of silicate oligomers [1,61].

The FG potential includes a modified Born-Mayer-Huggins [64, 65] functional form and
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Rahman-Stillinger-Lemberg [30] (RSL) terms for two-body interactions, and three-body

terms as introduced by Stillinger and Weber [66]:

V2(r i , r j) = Ai j exp

(−r i j

ρi j

)

+
ZiZ j

r i j
erfc

(

r i j

βi j

)

+
Di j

∑
m=1

ai j ,m

1+exp(bi j ,m(r i j −ci j ,m))
(2.3)

V3(r i j , r jk,θ jik) = λ jik exp

[

γi j

r i j − ro
i j

+
γik

r ik − ro
ik

]

× (cosθ jik −cosθo
jik)2 (2.4)

The two-body part has a damped Coulomb potential (in fact, this is the real space part of

the Ewald summation for calculating Coulomb interactions), an exponential repulsion, and

a soft (and short-ranged) attraction. Note that a differentnumberDi j of RSL terms are

used for each type of two-body interaction involving hydrogen (Si-H, O-H, and H-H). The

three-body term penalizes deviation from a specified angleθ◦
jik , controlled by parameters

for cutoff distance, magnitude, and rate of decay. This is anall-atom, dissociable poten-

tial and can be used to study chemical reactions in solution,including the hydrolysis and

condensation of siloxane bonds and the early stages of sol-gel processing [1,2,61].

The FG potential was fit to thermophysical quantities including the radial distribution func-

tions and angular distribution functions of melt-quenchedsilica. The short-ranged repulsive

term was parametrized using a formula based upon ionic radiiand charges. The other pa-

rameters were chosen based on hydrogen-bond energies, cluster geometries and liquid state

properties extracted from molecular dynamics simulations, although how trial parameter

sets were chosen for these simulations was not described.
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The FG potential has two-body parameters for all combinations of the elements Si, O, and

H, and parameters describing four different three-body combinations (Si-O-Si, H-O-H, O-

Si-O, and Si-O-H), for a total of 55 adjustable parameters. In this investigation, 45 were

optimized, and 10 were kept at fixed values because of physical arguments. The fixed

parameters include the charges on each atom type, five three-body cutoff distancesro
i j , and

the four preferred anglesθo
jik . The atomic charges were kept at their formal values (+1

for hydrogen, +4 for silicon, -2 for oxygen) so that dissociation produced ions with the

correct integer charges. The three-body cutoff distances and angles ensure that all silicon

and oxygen atoms prefer tetrahedral geometries, except forthose oxygens in a water-like

environment, which prefer the experimental angle of 104.5◦ found in liquid water.

2.2.4 Training Sets

Two types of training set were used in this study, both consisting of configurations sam-

pled from molecular dynamics simulations of an aqueous solution of three silicate species.

Each configuration in both sets contained one of each of silicic acid, disilicic acid, and

cyclotrisilicic acid molecules and 64 water molecules, in acubic box of 1.4014 nm edge

length for a total density of 1.0 g/cc. These species were chosen because they are the ini-

tial components of silica oligomerization and gel formation in aqueous systems, a topic of

interest to our group.

The first type of reference data, used below in the meta-optimization of the evolutionary

strategy, consisted of configurations sampled according tothe FG potential and the associ-

ated FG energies. These data were generated using a molecular dynamics trajectory ther-

mostatted (via the Gaussian isokinetic method [14]) at 300 K, with configurations sampled
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at intervals of 2 ps. As in previous studies using this potential, interactions were truncated

at 7Å.

The second training set was generated using Car-ParrinelloMolecular Dynamics (CPMD)

simulations [67], also in the canonical ensemble. In these calculations the Perdew-Burke-

Ernzerhof (PBE) functional [68] was used with a plane-wave basis with 30 Rydberg cutoff

for the wavefunction and 150 Rydberg cutoff for the density.Vanderbilt ultrasoft pseudopo-

tentials were used for all atoms [69]. The silicon pseudopotential featured a non-linear core

correction. This level of theory was checked by comparing optimized bond distances, bond

angles, and hydrogen bond strengths with similar data obtained with the same PBE func-

tional, and the 6-31G* and cc-pVTZ basis sets in Gaussian03 [70]. The plane-wave results

were closer to the 6-31G* basis results, giving bond lengthswithin 0.005Å and similar

hydrogen bond strengths.

Four visibly and temporally distinct configurations were selected from the first training set.

These were used as the starting points for the CPMD simulations. For each configuration,

the following procedure was followed. First, each configuration was optimized to a root-

mean-square force of 0.005 a.u. Next, the configuration was relaxed through a series of

eleven 200-step CPMD simulations using a 3.0 a.u. timestep and a 400.0 a.u. fictitious

mass for the electrons. A velocity rescaling thermostat wasused, with a target temperature

of 300 K and rescaling whenever the temperature of the ions was more than 37.5 K away

from the target value. After the first six 200-step simulations, the convergence criterion for

the gradient of the wavefunction was tightened from 10−5 to 10−6 a.u. Between each 200-

step simulation the electrons were quenched back to the Born-Oppenheimer surface. This

ensures the nuclear and electronic wavefunctions are simultaneously minimized. After the

relaxation procedure was finished, the production CPMD run was started. The production

run used a Nosé-Hoover thermostat for each degree of freedom [71]. The temperature was
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300 K with a thermostat frequency of 2500.0 cm−1 for the ions and 10000.0 cm−1 for

the electrons. These simulations ran for 10000 steps, giving a total of 242 fs of data in

each of the four CPMD simulations, or nearly 1 ps total data. From these trajectories, 370

evenly-spaced configurations were selected. Single point energies were then calculated

for each configuration; these differ slightly from the CPMD energies because during the

dynamics run the electrons are not quenched to the Born-Oppenheimer surface at each

timestep. These configurations and single-point energies make up the second training set.

The program “CPMD version 3.9.2”, was used for these calculations [72].

2.2.5 Implementation

We have developed a computer code to optimize empirical potentials against training sets

of the type described above. Our program implements severaloptimization techniques, in-

cluding evolutionary strategies, a simple direct search minimizer, an unconstrained Powell

line search algorithm, simplex simulated annealing [73] and Metropolis simulated anneal-

ing [6]. The direct search minimizer and Powell algorithm are deterministic, local opti-

mization methods. The simplex and Metropolis simulated annealing methods are global

search techniques similar in strategy, of which the Metropolis simulated annealing will be

described in detail later. Several potentials are implemented, including the the Lennard-

Jones model, central force water model, FG model, and a charge-transfer model [8]. Addi-

tional potentials may be easily added.

The program is parallelized using the Message Passing Interface (MPI) library for For-

tran in two ways. In evolutionary strategy optimizations, evaluation of the fitness of the

n children in each generation is divided over many processorsby assigning some number

of children to each processor. In other optimization techniques, which do not involve the
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simultaneous evaluation of many trial solutions, the evaluation of a singleχ2 may be paral-

lelized by the distribution of training-set configurationsamong multiple processors and the

simultaneous evaluation of many of theEemp(Ri) terms. Evolutionary strategy speedups

were found to be nearly ideal using up to 16 processors, whilethe training-set decomposi-

tion approach is slightly less efficient due to the increasedquantity of communication re-

quired. The parallel scalability is also different for the two approaches. For algorithms that

only evaluate one trial solution at a time, the theoretical maximum number of processors

that can be used is equal to the number of configurations in thetraining set. Evolutionary

strategies, on the other hand, evaluate many individuals inparallel, with each processor

handling an equal number of individuals. Therefore, if a very large number of processors

is available (as is increasingly the case with modern multi-core processors), cases where

n > Ncpu > Ncon f ig allow evolutionary strategies to scale higher than other methods. Fi-

nally, evolutionary strategies can be further parallelized by distributing the evaluation of

eachχ2 among several processors (as in the single-evaluation methods), which could then

be used even forNcpu> n, and for all methods, even the evaluation of the energy of a single

configuration could be spread across several processors using either domain-decomposition

or replicated-data strategies.

2.3 Meta-optimization of evolutionary strategies

The evolutionary strategy may itself be optimized for a particular class of problems by

selection of appropriate population sizes, recombinationmethods, mutation size control

schemes, and selection methods. In this study this will be accomplished by optimizing the

FG functional form against reference data (training sets) generated using the FG potential

itself. Since the functional form is unchanged, it is in principle possible for an optimization
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algorithm to reduceχ2 to zero (within some numerical tolerance), which would occur at

the exact FG parameters;χ2(xFG) = 0. Different ES algorithms will approach this limit

more or less quickly, and with different “profiles” ofχ2 vs. generation.

Testing different evolutionary strategies is accomplished here by first selecting a “default”

combination of population size, recombination method, selection method, etc., and then

considering and comparing several alternatives for each ofthese components. Note that

this approach does not consider all possible combinations of methods, but does allow for

controlled comparisons of different variants of the same operator (for instance, mutation

size control schemes).

The default options were selected based on a large number of preliminary trials and recom-

mendations from the literature discussed above. They consist of populations ofm= 8 and

n = 96, local discrete recombination, mutation size control using evolving independentσi

and an initialσ0 = 0.03, and non-overlapping truncation selection.

Unless otherwise stated, all individual optimizations were truncated after 192000 func-

tion evaluations, which took roughly 27 wall-clock hours running on two Opteron 250

(2.4 GHz) CPUs. Near-linear scaling of parallel performance was observed in additional

tests on up to 16 CPUs; all calculations were performed on a cluster of dual-processor

nodes each with 2-4 GB of RAM, networked using Infiniband interconnects.

2.3.1 Preliminary studies

In equation (2), each configuration provides only one energydatum. Therefore, the number

of configurations in the training set must exceed the number of parameters to be optimized.

Training set size may affect the reliability, speed and smoothness of optimizations. These
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effects are shown in Figure 2.1, which compares training sets of varying sizes. Each opti-

mization profile in Figure 2.1 consists of the lowest parentχ2 at each generation, averaged

over ten independent optimizations (see below). Two of the profiles, using 4 and 16 config-

urations, are for optimizations against too few independent data to be meaningful. These

optimizations have considerably different profiles than the others, rapidly finding parame-

ter sets with very lowχ2, which is perhaps not surprising given that in these cases this can

be satisfied in a large fraction of parameter space.

All the other traces are quite similar, both in the shape of the profile and the lowestχ2

reached after the allotted simulation time. In Figure 2.1 all optimizations were run to

between 1500 and 2000 generations. Based on the similarity of these data, a training set

size of 128 configurations was chosen for use in all the calculations that follow. This is

significantly greater than the number of free variables (45), and requires less CPU time

than the larger sets of 192, 256 or 320 configurations while clearly retaining the same

general properties.

Data are plotted in log-log form in this and subsequent figures. It is therefore important

to note that the absolute decrease inχ2 is much larger in the early generations than in

later ones. The units ofχ2 are [(kJ/mol) per configuration]2. The initial values ofχ2 >

105 (kJ/mol)2 correspond to the randomly generated parent populations described above,

which are clearly of poor quality. The final values ofχ2 (for meaningfully large training

sets) do not converge to zero in the allotted number of generations, but instead tend to

reach values near 100 (kJ/mol)2. The meaning of this value can be assessed by performing

simple perturbations of various parameters from their original FG values, and measuring

the resulting change inχ2. This measure can then be averaged over perturbations of allthe

parameters. Single-parameter perturbations of±0.1% increaseχ2 to 0.392 (kJ/mol)2, on

average. Deviations of±1% increaseχ2 to 39.17 (kJ/mol)2, on average, and deviations of
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Figure 2.1: Variation of optimization profile with number ofconfigurations in the training
set. Training set sizes used ranged from 4 to 320 configurations. The quantity plotted is the
fitness of the fittest (lowestχ2) member of the current parent population at each generation
averaged over ten independent runs.

±10% increase it to 3812.5 (kJ/mol)2, on average. Thus, final values near 100 (kJ/mol)2

correspond roughly to parameters that have converged to within 1% of their optimal values.

However, the sensitivity ofχ2 to such deviations varies considerably from parameter to

parameter. Sensitive parameters include theρi j parameters for the Buckingham exponential

repulsions between oxygen and hydrogen atoms and between oxygen and silicon atoms,

and the positionci j of the second RSL oxygen-hydrogen term (which is important for

modeling hydrogen bonding).
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In any single optimization run,χ2 fluctuated strongly because the recombination and mu-

tation steps are stochastic. In order to make meaningful comparisons of different ES al-

gorithms, we therefore presentχ2 profiles averaged over over multiple independent runs.

“Independent” in this case means differently re-seeding the random number generator for

each run after generation of the initial population. The different runs therefore have the

same “starting point”. We determined that ten independent runs were sufficient to reliably

profile different evolutionary strategy variants. This wasdone by performing twenty runs

and then comparing the averaged profiles of two different sets of ten runs with the average

profile of all twenty runs. As shown in Figure 2.2, the averageof either set of ten runs is

quite similar to the average of all twenty runs. Note that this is not the case for averages

over only three independent runs, as used by Strassneret al. [28, 56]. Each of the twenty

individual runs is also plotted in order to illustrate the magnitude of variation between runs.

It is clear that the shape of the optimization profile can varyconsiderably from run to run,

and also that the final fitness values can vary by approximately one order of magnitude be-

tween runs started from the same initial population. As in Figure 2.1, all subsequent figures

will show theχ2 for the best parent in each generation averaged over 10 runs,unless noted

otherwise. Further analysis of the variations between individual runs will be presented in

section 2.5.

Genetic diversity is a measure of the difference between members of a population. If mem-

bers of the population differ only slightly, then a population has low genetic diversity. We

measure this through a radius of gyrationRg, defined as:

xave
i =

1
m

m

∑
j=1

xi, j (2.5)
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Figure 2.2: Variation of optimization profile with random number sequence. 20 indepen-
dent runs (starting from the same initial population) are shown, along with averages over
the full set of 20, the first 10, and the last 10. Run conditionsare the “default” algorithm,
corresponding to the 128-configuration data shown in Figure1.
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R2
g =

1
m

m

∑
j=1

N

∑
i=1

(

xi, j

xave
i

−1

)2

(2.6)

wherexi, j is the value of parameteri in parentj. Genetic diversity is an important quantity

in ES optimizations. If there is too little genetic diversity then the entire population will

become trapped in a single minimum. While this is generally the end result of an evolu-

tionary optimization, it is important that it not happen tooearly in the calculation, before

a large part of parameter space has been explored.Rg data for the default ES strategy are

shown in Figure 2.3. This is a strongly fluctuating quantity,but shows clear structure. The

initial Rg is large. After approximately 10 generations (corresponding to a reduction of

χ2 from approximately 5×105 to around 104, see Figure 2.2)Rg drops to a plateau near

0.3, where it remains for approximately 250 generations. Overthis periodχ2 decreases by

another two orders of magnitude. After this,Rg begins to diminish quickly, becoming very

small by the late generations.

2.3.2 Population

For an(m,n)-ES, a parent:child (m:n) ratio of 1:4 has been recommended [38], although

many studies use larger ratios [74]. Having a very high ratioof children to parents is

considered inefficient, since the vast majority of computational time is spent evaluating

individuals which do not survive to the next generation. However, in preliminary work we

found that am:n ratio of 1:12 seemed more effective. The effects of changingthe numbers

of children and parents, and the ratiom:n, are therefore of interest in further optimizing the

ES approach.
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Figure 2.3: Radius of gyration for 10 individual runs and their average. This calculation
corresponds to the 128-configuration data shown in Figure 1.

30



1 10 100 1000 10000
Generation

10
1

10
2

10
3

10
4

10
5

10
6

χ2

P-1 (default)
P-2
P-3
P-4
P-5
P-6

(a)

10
2

10
3

10
4

10
5

Birth

10
1

10
2

10
3

10
4

10
5

10
6

χ2

P-1 (default)
P-2
P-3
P-4
P-5
P-6

(b)

Figure 2.4: Variation of optimization profile with numbers of parents and children. Tested
are: (P-1) 8 parents and 96 children, (P-2) 8 parents and 16 children, (P-3) 1 parent and
8 children, (P-4) 48 parents and 96 children, (P-5) 8 parentsand 384 children, (P-6) 8
parents and 48 children. Top: optimization profiles vs. number of generations. Bottom:
optimization profiles vs. number of births.
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In Figure 2.4,(m,n)-ES choices of (8,96), (8,16), (1,8), (48,96), (8,384), and(8,48) are

compared, labeled P-1 through P-6, respectively. As explained above, each variant was ter-

minated after a total of 192000 fitness function evaluations, corresponding here to different

numbers of generations. The best initial fitness value amongthe parents for any(m,n)-ES

with same number of parents is the same. The profile of P-3 (1,8) has a slightly worse

initial best fitness than anym= 8 ES, while P-4 (48,96) has an initial best fitness over five

times smaller than anym= 8 ES. This is not surprising: a initial population withm= 48

instead ofm= 8 has a much larger probability of containing a parent with low χ2.

Comparing the P-1 (8,96) and P-4 (48,96) data shows the benefit of having a smaller par-

ent:child ratio. In P-4,χ2 actually increases over the first few generations. This can occur

when the fittest parents are either not chosen in the recombination step or chosen so infre-

quently that a child more fit than those parents is not produced. As the selection method in

the default strategy does not allow parents to survive to thenext generation, the fitness of

the best individual may increase from generation to generation.

P-3 is less effective than the other strategies throughout,but especially at early times. With

only one parent, there cannot be recombination. Therefore,fitness can only be improved by

random mutation of the single initial parent. Distinct jumps can be seen near generations

200, 600 and 1100, when especially productive mutations occurred. These data are again

averaged over ten independent runs, and each of these jumps actually corresponds to a very

large drop inχ2 in an individual run.

Comparing strategies withm= 8 shows that an increase in the number of children leads

to larger decreases inχ2 per generation during the early stages of the optimization.P-5

(8,384) has the largest initial decreases inχ2 per generation, followed by P-1 (8,96), P-

6 (8,48) and P-2 (8,16), in that order. However, the use of large numbers of children is

32



generally avoided because it is both computationally more expensive (per generation) and

it tends to more quickly reduce genetic diversity. This can be understood as follows. In the

(8,384) optimization, there are only 36 unique pairs of parents, each of which will produce,

on average, 10.67 children per generation. If the children of a single pair of parents are

particularly fit and truncation selection is used (as is the default here), then theentirenext

generation of parents may consist of the offspring of that pair of parents, and will have

very low genetic diversity. As the ratio ofm to n is increased, more of the current group of

parents will likely contribute to the next generation, and genetic diversity will be preserved.

Of the populations tested in Figure 2.4, P-1 (8,96) achievesthe lowestχ2 after the allotted

time and appears to make the most effective compromise between genetic diversity andχ2

reduction per generation. This finding has implications forthe use of evolutionary methods

on massively parallel computers. Increasing the number of children,n, may appear to be

an efficient way to utilize many processors in an optimization, but thenm must likewise

be increased to prevent loss of diversity. Furthermore, increasing bothm andn does not

necessarily improve the rate of convergence of the algorithm in a cost-effective way; this

is easily seen in Figure 4b, wherein the performance of method P-6 measured against the

number of births is clearly superior to the other algorithmsat nearly all times, with only

P-1 pulling very slightly ahead after 105 births.

2.3.3 Recombination

Our default algorithm was local, discrete recombination. This is the most commonly used

recombination operator and is procedurally similar to the method used in genetic algo-

rithms. Various recombination operators are compared in Figure 2.5. The two intermediate

operators (local, R-3, and global, R-5) are seen to provide the most efficient recombination.
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Figure 2.5: Variation of optimization profile with choice ofrecombination operator. Oper-
ators tested include: (R-1) local discrete, (R-2) none, (R-3) local intermediate, (R-4) global
discrete, (R-5) global intermediate, (R-6) local discretefor parameters and intermediate for
σ , (R-7) global discrete for parameters and intermediate forσ , (R-8) local discrete for the
first 250 generations, none for the subsequent 1750.
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After approximately 250 generations, using no recombination at all (R-2) gave results

equivalent to local discrete recombination (R-1). This wasan unexpected result, and sug-

gests that recombination is most effective in the early generations of an optimization. After

the first 250 generations, all the optimization profiles havesimilar slopes, suggesting that

after this time the optimization is controlled by mutation instead of recombination. If re-

combination was still important in the later generations, we would expect the profiles in

Figure 2.5 to differ significantly at late times. Intermediate operators (R-3 and R-5) pro-

duce better results overall due to their clear superiority during the early generations; these

recombination operators eventually located parameter sets with χ2 (again, averaged over

ten independent runs) only 1/5 that of the typical result of the other operators.

These findings are consistent with the genetic diversity data of Figure 2.3, where a substan-

tial drop-off in genetic diversity is observed after approximately 250 generations. Once a

population is sufficiently inbred, it is unlikely that recombination can lead to substantial im-

provements in fitness, since the parents are already all verysimilar. This is investigated by

performing an optimization using the default ES parameters(as in R-1), but then disabling

all recombination after 250 generations. These results (R-8) overlap with those obtained

with the default (R-1) until roughly 1000 generations, after which the default improves very

slightly over the modified version, as shown in Figure 2.5. This behavior is consistent with

the hypothesis that recombination is not a substantial contributor to further improvement in

fitness after the drop-off in genetic diversity.

It has been suggested that using a discrete operator for the parametersxi and an intermediate

operator for theσi is more effective than using either fully discrete or fully intermediate

operators [3]. Our results show that this is not the case in this application, and that the use of

an intermediate operator for the parametersxi is the key factor. Fully intermediate operators

R-3 and R-5 are clearly much more efficient than operators R-6and R-7, which apply
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discrete recombination to thexi and intermediate recombination to theσi . The similarity

between R-3 and R-5 after the first 50 generations suggests that there is no substantial

difference between local and global recombination operators in this application.

2.3.4 Mutation Size Control

Mutation operators must be included in ES optimizations because recombination operators

alone cannot fully search the available parameter space. For instance, when using inter-

mediate operators, the averaging of parameters would mean that children withxi values

outside of the largest and smallestxi in the current group of parents would never be gener-

ated. Likewise, when using discrete recombination operators, the only children that could

be created would be combinations of parameters already in the population.

While all mutations involve Gaussian perturbations, the size of these perturbations may be

controlled in various ways. It is considered advantageous to have large mutations at the

beginning of the optimization, which helps to search quickly across the range of allowed

values. However, at later times smaller mutations may be desirable as they can allow near-

optimal parents to produce children that are “refinements” of themselves; this is analogous

to the very small steps taken by conventional optimization techniques as they approach an

extrema. Therefore, the absolute size of mutations should be gradually reduced [38]. The

method used for this may also attempt to promote genetic diversity.

The default method used here, labeled M-1, has an independent σi for each parameterxi .

Following Beyer and Schwefel [38], theσi are generated through a recombination process

(as above), and then mutated via

σchild
i := σchild

i ·Sg ·Si (2.7)
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where the two mutation operatorsSg andSi are:

Sg = exp(τg ·G(0,1)) τg =
1√
2N

(2.8)

Si = exp(τl ·G(0,1)) τl =
1

√

2
√

N
(2.9)

Sg is calculated independently for each child and used for all theσi ; this acts as a global

scaling of mutation size, while theSi are calculated independently for eachi for each child,

allowing for variations in mutation size between parameters.

The simplest mutation size control operator is to fixσ for the entire length of the optimiza-

tion. Method M-2 demonstrates such a constant globalσ .

Method M-3 is referred to as “simple annealing.” Here, a global σ is reduced by a constant

factor every generation:σ := σ · cσ where 0< cσ < 1. For the profile in Figure 2.6,

cσ = 0.995. Note that M-2 may be considered a special case of M-3.

Method M-4 introduces history dependence. It setsσ by scalingσ0 by the square root

of the current average value of the parents’ fitness divided by the average value of the

parents’ fitness after an initial equilibration period. This equilibration period is determined

as the end of the initial rapid decrease inχ2. Specifically, for generationg > 100, once

〈χ2〉(g) ≥ 0.9〈χ2〉(g−100), we set〈χ2〉re f = 〈χ2〉(g) and proceed according to:

σ = σ0×
(〈χ2〉parents

〈χ2〉re f

)

1
2

(2.10)

whereσ0 is the initial value forσ . This directs the mutation size to decrease at a slower rate

than fitness itself for the majority of the simulation, allowing search for a global minimum.
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The mutation size decreases rapidly when the fitness is a small fraction of the fitness found

at the end of the equilibration period, enhancing local search.

Method M-5 is also history-dependent, and attempts to promote genetic diversity while still

allowing only small mutations near the end of a run. To do this, M-5 comparesχ2
min (the

lowestχ2 of the current population) with theχ2 averaged over the last 100 generations. It

uses the following quantities:

χ2
scale= (

10
g

+1) ·χ2
min(g) (2.11)

〈〈χ2〉〉100(g) =
1

100

i−100

∑
i

〈χ2〉(g) (2.12)

Every tenth generation, if〈〈χ2〉〉100(g) > χ2
scalethenσ is reduced by a multiplicative factor

cσ , elseσ is increased by the inverse of the factorcσ . In this workcσ = 0.95. Furthermore,

if χ2
min(g) = χ2

min(g− 100) then we assume that the minimum has been approximately

located and reduceσ by c2
σ . Note that this condition can only be satisfied using overlapping

or semi-overlapping selection methods.

Lastly, mutation size control method M-6 uses a history-dependent adjustment ofσ which

is similar in motivation to M-5, but with a different criterion for changingσ . M-6 tracks

the average of the last 10 changes inχ2
min by defining a quantity

〈

∆χ2
min

〉

10(g), which is the

average over the 10 most recent non-zero changes inχ2
min. This measures the “step size”

of progress towards an optimum solution. Then, if
〈〈

χ2
〉〉

10(g) > 4 ·
〈

∆χ2
min

〉

10(g), σ is

reduced by a multiplicative factorcσ ; elseσ is increased by the inverse ofcσ . As in M-5,

cσ = 0.95, and ifχ2
min(g−100) = χ2

min(g) thenσ is reduced by a factorc2
σ .

The performance of these different mutation operators is shown in Figure 2.6. There is no

significant impact of mutation size control until roughly 250 generations. It was argued
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Figure 2.6: Variation of optimization profile with mutationsize control algorithm. Algo-
rithms tested include: (M-1) independent{σi}, (M-2) constantσ , (M-3) annealingσ by
a constant factor, (M-4) adjustment ofσ relative to earlyχ2, (M-5) history-dependent,
diversity-preserving algorithm, (M-6) alternative history-dependent, diversity-preserving
algorithm.
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above that recombination methods only had a significant effect in the first 250 generations.

It appears that after 250 generations the populations are sufficiently homogeneous that

mutation becomes the dominant method of search.

Keeping a constant mutation size prevents parameters from being optimized to values any

more precise than the size of Gaussian mutations being applied. This is shown by the

fluctuating yet flat fitness of the constant-σ method M-2 from generation 300 onward. The

flat fitness profile occurs because the default selection method is non-overlapping and the

best parent is not carried forward to the next generation. Method M-4 gives results similar

to keepingσ constant in the later generations, which is surprising. Thescaling factor

in M-4 should allow for drops inχ2 to produce relatively greater drops inσ when the

optimization is in its later generations. However, this is not observed, andσ never became

small enough to reach theχ2 values achieved in other methods.

History-dependent, diversity-promoting methods M-5 and M-6 produce results similar to

simple annealing, algorithm M-3. Methods M-5 and M-6 did have the desired impact on

the genetic diversity of the parent population, but the effect only became noticeable after

roughly 1300 generations. At that point, the population hadalready converged on a single

minima and the diversity was quite low. The likely explanation for the observed behavior

is that the diversity-enhancing mutations tended to be for parameters on whichχ2 did not

depend sensitively, so that the mutations would increase the radius of gyration but not lower

the fitness. These mutations, therefore, would not contribute strongly to the location of new,

lower-χ2 minima. For such methods to have a significant effect on the optimization, they

would have to be tuned to become active closer to the point when mutation takes over from

recombination as the dominant form of search, near 250 generations. The default algorithm

M-1 performed well but has a somewhat “wavier” profile than the other variants, possibly

caused by sporadic large reductions inχ2 in one of the independent runs. This algorithm
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ends up very slightly outperforming the other mutation sizecontrol algorithms tested. It

may be that the large amount of local search towards the end ofoptimizations does not

provide an opportunity for more complex mutation size control mechanisms to outperform

the basic M-1 algorithm.

2.3.5 Selection

Selection methods are compared in Figure 2.7. The default selection method used, S-1, was

the(m,n) non-overlapping truncation method, S-1 is deterministic,choosing the bestmout

of n children to be the parents for the next generation. This is compared against overlapping

(S-2) and semi-overlapping (S-3 and S-4) truncations, and all combinations of overlapping

and non-overlapping two-way and eight-way tournament methods (S-5 through S-8). S-

1, S-3 and S-4 clearly outperformed all other options in the selection tests. S-1 and S-2

performed similarly until roughly 350 generations into theoptimization. S-1 provided a

final result with aχ2 almost 50% better than S-2. Tournament methods are less elitist than

truncation methods, and also less effective. The two-way tournament methods S-5 and S-6,

also called binary tournaments, do not approach theχ2 value of other methods. Increasing

the number of participants in a tournament increases the method’s elitism, which makes

this method more flexible than truncation methods. However,even eight-way tournament

selection methods S-7 and S-8 still lag behind truncation methods.
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Figure 2.7: Variation of optimization profile with choice ofselection operator. Operators
tested include: (S-1) non-overlapping truncation, (S-2) overlapping truncation, (S-3) non-
overlapping truncation plus best parent, (S-4) non-overlapping truncation plus best-ever
individual, (S-5) non-overlapping 2-way tournament, (S-6) overlapping 2-way tournament,
(S-7) non-overlapping 8-way tournament, (S-8) overlapping 8-way tournament.
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2.3.6 Simulated Annealing

For comparison with the evolutionary strategies, we also considered an efficient simulated

annealing (SA) algorithm [6]. Simulated annealing is similar to (1+1)-ES, though with

different selection and mutation size control operators.

In our SA implementation, a new trial solution (child) is generated by applying Gaussian

mutations to parameters of the parent. As this is only done for one child per cycle, we

refer to births instead of generations. With probability 0.2 we mutate each parameterxi

by addition of a Gaussian random numberG(0,σi), whereσi is a globalσ scaled by the

allowed range of parameteri, as in most of the ES mutation size control variants. An-

other change made beyond a typical simulated annealing algorithm is that acceptance and

rejection of trial solutions are tracked over the past 512 births. If fewer than 20 percent

of children are accepted, thenσ is decreased by a factor ofcσ = 0.995. If more than 20

percent are accepted, thenσ is increased by a factor of 1/cσ . This is a simple version

of the “1/5 rule” sometimes used in (1,1) evolutionary strategies and Monte Carlo simu-

lations [3]. The algorithm has a “temperature”T (with initial value 175.0585 (kJ/mol)2)

which is annealed by a factorcT = 0.99994 after each birth. The child replaces the parent

if U(0,1) ≤ exp(−(χ2
child − χ2

parent)/T) where U(0,1) is a uniform random number on the

interval[0,1].

As shown in Figure 2.8 the shape of the convergence profile in simulated annealing is sub-

stantially different from that displayed by the evolutionary strategies tested. After an initial

rapid improvement, a period of slow searching occurs. The rapid feedback of simulated

annealing – only considering one child per generation before choosing a new parent – may

explain the advantage of SA in the first thousand births or so.The advantage of SA towards

the end of the simulation is probably related to the “1/5 rule” which allows mutation size
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to be adjusted on-the-fly. The historical success of this heuristic is in part what inspired

attempts to use mutation size control heuristics in evolutionary algorithms. Interestingly,

the profile of SA optimizations at very late times is still different in shape than that of any

of the ES mutation size control variants, even though they are designed to have similar

effects.

As the simulated temperature is lowered, the algorithm becomes trapped in a single mini-

mum. Different annealing runs produce fitness values varying over about one order of mag-

nitude, much as do the independent ES optimizations of Figure 2.2. The cooling schedule

used here was chosen to allow the optimization to reach low temperatures, characterized by

fluctuations inχ2 much smaller thanO(1), within the same number of function evaluations

that the evolutionary strategies were allowed. There may beless variation between final fit-

ness values when using a slower cooling schedule. Nevertheless, simulated annealing is

very effective in finding a good solution.

2.4 Parametrization against CPMD reference data

Using combinations of ES options that were found to be effective in the meta-optimization

study, we then ran many optimizations of the FG potential against the second training set,

composed of DFT data. These calculations fit the FG functional form against data which

it cannot perfectly reproduce, and so the minimum possibleχ2 will no longer be equal to

zero. These optimizations were initialized with the original FG potential parameters as one

of the parents.
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Figure 2.8: Simulated annealing optimizations. As in Figure 2, ten independent runs (start-
ing from the same point) are shown, as well as their average.
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Figure 2.9: Fitting the FG functional form to the CPMD training set. FD-1 is the de-
fault method in the meta-optimization tests. FD-2 uses local, intermediate recombination,
and other options as in FD-1. FD-3 uses local, intermediate recombination and simple
annealing mutation size control, and other options as in FD-1. FD-4 uses local, intermedi-
ate recombination and non-overlapping truncation plus best-ever individual selection, and
other options as in FD-1. FD-5 uses local, intermediate recombination and non-overlapping
8-way tournament selection, and other options as in FD-1.
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These results are shown in Figure 2.9. FD-1 was the default method used in the meta-

optimization study. FD-2 used local, intermediate recombination. FD-3 used local, inter-

mediate recombination and simple annealing for mutation size control. FD-4 used local,

intermediate recombination and semi-overlapping truncation selection from the population

m+n. FD-5 used local, intermediate recombination and 8-way tournament selection.

The FG parameters are better than almost any random guess. The use of non-overlapping

selection then creates a “spike” at the second generation infour of the five methods tested,

since recombination and mutation create children with a largerχ2 than the FG parameters

while the FG potential is not carried over to the second generation.

FD-2 and FD-4 performed the best, and have extremely similarprofiles for the last 1000

generations of the optimization. Against this training set, the effects of recombination are

observed much further into the optimization than the 250 generations usually seen during

the meta-optimization study. The effects of recombinationmay be observed for a longer

number of generations because an exact solution is not available for this case, and because

the initial guess may be much further from a good solution. FD-1 and FD-2 develop similar

slopes after generation 1000. FD-3, using simple annealing, performs strongly until just

after generation 1000, whenσ became too small to make further significant improvements

in fitness. Lastly, FD-5 lagged consistently behind the other options, showing that for this

problem and the population size used, even large tournamentsizes may not be sufficiently

elitist. Excepting FD-3, all of these methods displayed optimization profiles similar to those

seen in the meta-optimization study, suggesting that the approach of fitting an empirical

potential to itself is a reasonable choice of test problem for investigation of ES behavior.

The parameter sets obtained from these calculations are shown in Table 1; these are the

fittest individual results from the ten independent runs using each evolutionary strategy
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Parameter FD-1 FD-2 FD-3 FD-4 FD-5 FG
A(H-H), ×10−9 ergs 0.03103 0.02106 0.03571 0.02257 0.021513 0.0340
ρ(H-H), Å 0.2827 0.1784 0.2573 0.1786 0.2206 0.35
β (H-H), Å 1.319 1.3790 1.3526 1.3496 1.3727 2.10
a1(H-H), ×10−12 ergs -5.335 -6.3800 -5.3370 -5.7848 -5.3192 -5.2973
b1(H-H), Å−1 5.117 4.7664 4.7996 5.2802 5.4553 6.0
c1(H-H), Å 1.2663 1.2006 1.2770 1.2207 1.2542 1.51
a2(H-H), ×10−12 ergs 0.2009 0.2632 0.4197 0.2993 0.3546 0.3473
b2(H-H), Å−1 1.8539 2.0173 1.3476 2.1513 2.2582 2.0
c2(H-H), Å 3.2085 3.1084 2.5569 3.0789 3.0109 2.42
A(O-H),×10−9 ergs 0.3360 0.3838 0.4018 0.3882 0.3848 0.3984
ρ(O-H), Å 0.2992 0.2773 0.2695 0.2757 0.2787 0.29
β (O-H), Å 1.7270 1.7978 1.7405 1.9038 1.9026 2.26
a1(O-H),×10−12 ergs -2.2366 -1.2288 -1.8019 -1.7787 -1.4016 -2.0840
b1(O-H), Å−1 10.2427 21.4197 19.0815 20.9755 17.0696 15.0
c1(O-H), Å 1.1064 1.1605 1.1855 1.1760 1.1541 1.05
a2(O-H),×10−12 ergs 6.8043 7.1150 7.1936 8.4660 7.8496 7.6412
b2(O-H), Å−1 2.8448 3.2279 3.2265 2.7840 3.0235 3.2
c2(O-H), Å 1.4358 1.6233 1.5092 1.5852 1.5941 1.50
a3(O-H),×10−12 ergs -0.8008 -1.1142 -0.8619 -0.8341 -1.0400 -0.8336
b3(O-H), Å−1 3.8372 5.3733 4.9270 5.1868 5.1650 5.0
c3(O-H), Å 1.7244 1.9072 1.8161 1.9928 1.8755 2.00
A(O-O),×10−9 ergs 0.6204 0.9318 0.7086 1.0126 0.6314 0.7250
ρ(O-O), Å 0.1536 0.2258 0.2316 0.1685 0.1815 0.29
β (O-O), Å 1.6597 1.7056 1.7057 1.7451 1.7893 2.34
A(Si-H),×10−9 ergs 0.03488 0.04092 0.05571 0.05767 0.05520 0.0690
ρ(Si-H), Å 0.3333 0.1732 0.2241 0.1868 0.2076 0.29
β (Si-H), Å 1.7574 1.8393 1.8692 1.8520 1.9144 2.31
a1(Si-H),×10−12 ergs -5.9716 -5.9754 -6.2415 -6.0339 -6.3399 -4.6542
b1(Si-H), Å−1 3.6173 3.7601 3.7488 3.7710 3.7888 6.0
c1(Si-H), Å 2.1270 2.1799 2.2019 2.1767 2.1761 2.20
A(Si-O),×10−9 ergs 4.3049 2.0904 2.3021 2.1387 2.3477 2.9620
ρ(Si-O), Å 0.2320 0.3052 0.3041 0.3058 0.3070 0.29
β (Si-O), Å 1.2277 1.5972 1.6715 1.6305 1.7657 2.34
A(Si-Si),×10−9 ergs 2.0641 2.0021 2.2312 1.7762 2.1179 1.8770
ρ(Si-Si), Å 0.3035 0.1890 0.2862 0.2197 0.1855 0.29
β (Si-Si), Å 1.1892 1.4321 1.4610 1.4137 1.5670 2.29
λ (O-Si-O),×10−11 ergs 11.3068 10.1754 19.44 9.6978 19.1985 19.0
γ(O-Si-O),Å 4.1957 3.8445 3.1944 4.1697 3.9531 2.8
λ (Si-O-Si),×10−11 ergs 0.4496 0.4483 0.3136 0.4447 0.4439 0.3
γ(Si-O-Si),Å 1.0005 1.0052 2.0065 1.0021 1.0067 2.0
λ (Si-O-H),×10−11 ergs 4.8690 3.1015 5.1819 2.7365 3.9802 5.0
γ(Si-O-H: Si-O),Å 1.6022 1.0161 1.9427 1.0495 1.7518 2.0
γ(Si-O-H: O-H),Å 1.5203 1.7038 1.3923 1.7058 1.5326 1.2
λ (H-O-H),×10−11 ergs 31.9566 25.3210 32.1643 38.3666 32.3834 35.0
γ(H-O-H), Å 1.4741 1.3718 1.4345 1.4649 1.4264 1.3

χ2, (kJ/mol)2 352.4 430.7 501.3 459.8 560.7 52963.0

Table 2.1: Feuston-Garofalini re-parametrizations by evolutionary strategies. The fittest
parameter sets from Figure 9 are shown, as well as the original FG parametrization. Pa-
rameter names and units are as given in [61]. Only “fitted” parameters are given in the
table; other parameters (cutoffs, reference angles, and formal charges) are kept fixed at
their literature values [61].
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variant. All five parametrizations are dramatically fitter (closer to the CPMD reference

data) than the original FG parameters, though we should notethat this does nota priori

indicate that they will be more suitable for modeling a particular system or property. The

obtainedχ2 values of∼ 500 (kJ/mol)2 correspond to an rms deviation of 0.1 kJ/mol per

atom in the energy of any given configuration relative to the reference configuration. The

average hydrogen bond strength in liquid water is about 20 kJ/mol. Since hydrogen bond-

ing is expected to dominate the energy differences between configurations, we expect that

these important interactions should be described well by these parameter sets, at least to

within the accuracy of the density functional theory used. The different sets vary consid-

erably in the actual values of particular parameters, with some, such as theλs, varying

over a fairly large range, while others, such asβ (O-O), are very similar from one set to

the next. In a few cases (γ(Si-O-Si), for example) parameters have converged to one side

of their “allowed range,” which suggests that better fits could be obtained by expanding

these ranges. Additionally, training set coverage could beextended to include more con-

figurations which contain geometries at extreme bond anglesor distances. As the training

set was generated using a CPMD simulation, physically infrequent configurations were not

necessarily sampled.

2.5 Discussion

All of the optimization profiles shown above are averaged over ten independent runs. In a

typical run, for instance as shown in Figure 2.3, the radius of gyrationRg of the population

at the endpoint had a value near to 0.03, indicating that the members of the population

were all very similar to each other and that the algorithm hadconverged into a single min-

imum of the fitness function. However, theRg value measured for the ten best solutions
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obtained from the ten independent runs is 1.49, approximately two orders of magnitude

larger. Comparing the two values suggests that independentoptimization runs are finding

different minima of the fitness function; inspection of the actual parameter sets given in

Table 1 (which is a different calculation, but with similar convergence properties) supports

this. While evolutionary methods are often touted as globally convergent, it appears that

for “reasonable” run conditions, performing multiple independent runs is probably a good

strategy. In practice, for a sufficiently complex problem any method which is globally con-

vergent in infinite time will only be locally optimal in finitetime. The stochastic nature of

the method leads to different locally optimal solutions being found through independently

seeded runs. However, global methods are still quite valuable as their solutions will usually

be better than those found by purely local optimizations.

The number of minima, and the “shape” of the fitness functionχ2, are of interest in this

regard. Given the high dimensionality of the parameter space, one might suppose that

the many different solutions found in these optimizations arise from the relatively small

number (128) of configurations used in the training set: the fewer conditions there are to

satisfy, the more ways there should be to do so. However, thisappears to not be the case.

TheRg values for the ten independent optimal solutions for each ofthe different training

set sizes of Figure 1 are all between 1.33 and 1.68, with no correlation with training set

size. That is, adding additional data beyond 128 configuration energies does not bring the

many locally-optimal parameter sets any closer to each other. Likewise, the corresponding

Rg values for the runs of Figure 4, which vary inm andn, are all between 1.49 and 1.73,

and likewise do not exhibit any trend with population parameters. It therefore appears

that the many local minima in this objective function resultfrom the potential itself and

the particular definition ofχ2 used, rather than the size of the training set or other, more

arbitrary parameters.
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A significant feature observed in many of the optimization profiles in this study was an

apparent crossover, at about 250 generations, from behavior dominated by recombination

to behavior dominated by mutation. This crossover was remarkably robust to changes in

the various operators involved and therefore its appearance may be anticipated in related

problems. Manipulating the number of generations in which recombination is the dominant

mode of search may be an important tactic for future evolutionary algorithm work, as it is

believed that recombination is almost entirely global, notlocal, search.

Since most of the computational effort is expended after thecrossover, in order to more

quickly locate optimized parameter sets one should make themutation operator as efficient

as possible. However, of the considerable number of mutation operators tested in this work

there were no clearly superior ones, and significant furtherimprovements may be difficult.

One possible alternative could be a composite (or “memetic”[75]) optimization strategy,

in which, once the ES algorithm “slows down”, one switches over to a different, locally-

convergent, method which is good at “refining” an approximately-located solution. The

radius of gyrationRg introduced above is an effective signature for the ES crossover and

could be monitored to trigger the change to another method. We note, in this regard, that

rapidly-converging methods such as conjugate-gradient optimization or Newton-Raphson

root-finding are not very well suited to parameter optimization problems, since it is prefer-

able to not have to implement derivatives of the energy with respect to the potential pa-

rameters. However, such derivatives could be efficiently estimated by using parallelized

one-way finite or centered difference methods, which could provide a cost-effective route

to the precise location ofχ2 minima; the effectiveness of this approach would depend on

the roughness of theχ2 function and the stability of the optimizer with respect to numerical

precision. It should be noted that when applied to ligand docking, a prior study did not find

local optimization to be beneficial [55].
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Based on the results of the meta-optimization study, we recommend the use of intermediate

recombination operators for both the parameters{xi} and mutation size control variables

{σi}. No substantial difference is observed between global intermediate and local interme-

diate recombination at long times, though at short times theglobal variant appears prefer-

able. Of the mutation operators considered, the self-adaptive, independent-σ method M-1

is at least as effective as any of the others considered and lacks any “adjustable” parame-

ters. We note that “simple annealing” is nearly as effectivewith one adjustable parameter

(here chosen arbitrarily) and considerably simpler to implement. Finally, non-overlapping

or semi-overlapping truncation methods are clearly preferred for selection, as the tourna-

ment methods appeared to not have enough selection pressure, and overlapping methods

exhibited slowdowns in the later stages of optimization.

Simultaneous parametrization of all parts of a potential has the advantage of providing

more uniform “quality” between different terms, but greatly increases the complexity of

the numerical problem to be solved. Even in fully automated parametrizations one must

still provide initial estimates of the magnitude (and, likely, the allowed range) of each

parameter, which requires at least some physical insight into the problem. In applications

where an existing potential is to be extended, such estimates are straightforward, but for

the parametrization of a new functional form or previously unstudied chemical species they

may be more difficult to obtain. For very large problems, preliminary parametrization of

groups of related parameters against subsets of the available reference data may also be a

viable strategy.

ES methods are inherently parallelizable. While evolutionof the objective (fitness) function

used here can also be parallelized over a reasonable number of processors, the ES approach

has a considerable advantage in this regard, and therefore should be of particular interest

when wall-clock time is a limiting factor. This suggests that ES is particularly suitable for
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work involving a large number of parametrizations, for instance comparisons of different

functional forms, comparisons of potentials based on different reference data, or even the

(common) extension of an existing potential to treat some new chemical species.

This type of design is implemented in a “data parallel” program. Each CPU is performing

the same type of work, but on different data sets. The advantage of ES methods over

simulated annealing methods is the multiple level structure of its data parallelism, which

is useful on cluster computers with many independent nodes.Rapid communication is

needed when calculating the fitness of a specific individual parameter set, which is confined

to a single node. The evaluation of the entire set of individuals may be distributed over

many nodes, and communication between nodes will be less frequent than communication

between CPUs on the same node. This is important because the latency on inter-node

communication is orders of magnitude higher than intra-node communication. In other

fields, parallel programs are often “task parallel” in whichone CPU will perform work of

one type (such as graphical rendering) and another CPU perform an entirely different task

(such as sound processing). This type of parallelism is rarefor optimization applications.

When increasing the size of the training set or the number of individuals being evaluated

as part of an ES, this optimization method provides a good example of Gustafon’s law for

parallel computing, where the possible speedup from additional processors is essentially

unbounded.

S= f (n)+ p× (1− f (n)) (2.13)

In this equation, the speedup is S, f(n) is the fraction (ranging from zero to one) of work

that must be done sequentially, and p is the number of processors. As the parallelizable

part of the work increases (training set size and number of individuals, represented as “n”),

f(n) decreases, and therefore speedup increases as more processors are used. For a fixed
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problem size, Amdahl’s law applies, with high scaling.

S= 1(1−F)+F p (2.14)

In this case, S is the speedup, F is the fraction of work that isparallelizable (and is a fixed

value), and p is once again the number of processors that may be used.

As shown in Figure 2.8, the efficient simulated annealing method used in this study gen-

erally outperformed the evolutionary strategies when fitting the FG potential to the FG

training set. Simulated annealing can be parallelized either through distribution of configu-

rations in the training set or by performing multiple independent runs. As discussed earlier,

evolutionary strategies may spread the evaluation of groups of children across available

processors. This is a significant advantage: the number of CPU cores available in modern

supercomputers or clusters is increasing at a greater rate than the performance per core.

We also note that the adaptive mutation algorithm in the simulated annealing optimizations

may have been superior to the mutation algorithms used in theevolutionary strategy, as no

equivalent to the “1/5 rule” was available for ES runs.

Finally, we note that the type of reference data used (configurational energies) and defini-

tion of the fitness function as a least-squares–like criterion are themselves arbitrary choices

and there are certainly other possibilities. Force (gradient) data could also be used in the

fitness function (as in the “force-matching” studies described above [24,25]), for instance,

and a “minimax” criteria could be used to define the fitness function, so that the final opti-

mized value would limit the maximum deviation in selected quantities between the model

system and the reference data.
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In this chapter, we have presented guidelines for the selection of ES operators and training

set sizes suitable for the parametrization of empirical potentials against reference data gen-

erated using electronic-structure methods. Such parametrizations are considerably higher

in dimension and complexity than the typical problems used in development of evolu-

tionary strategies, and algorithms optimized for these different problem classes differ in

non-obvious ways. The ES approach is highly parallelizableand may therefore be suited

to “large” optimization problems. However, ES exhibits relatively slow convergence at

later generations that may warrant changeover at late timesto an alternate method which

converges rapidly once a solution has been approximately located.
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Chapter 3

Towards an Improved Charge-Transfer

Potential for Silica

3.1 Introduction

Our research group has a long-standing interest in simulating properties and formation of

silica sol-gels [76–78]. This has included development of coarse-grained models of gel

networks and atomistic simulation using existing models and extremely large simulation

cells to directly simulate the early stages of gelation [2, 79]. As part of this effort, we

sought to create a better atom-based potential for silica.

Incorporating changes in charge distribution among atoms in molecules during chemical

reactions is a challenge for empirical potentials [33]. As discussed in the previous chapter,

most commonly used potentials use fixed partial charges on atomic sites, possibly aug-

mented with dipoles or higher multipoles centered near atomic sites or geometric centers

of small molecules. These empirical potentials are often unable to undergo bond-breaking

and bond-forming reactions. The Feuston and Garofalini (FG) potential does undergo

bond-breaking and bond-forming reactions, but its electrostatics are relatively primitive,
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consisting only of hard-core electronic repulsion and a damped Coulomb interaction [1].

Further, full formal charges are used (+1 for hydrogen,−2 for oxygen,+4 for silicon),

which may be appropriate for ionized, isolated atoms but which do not accurately describe

the electrostatic field around a molecule.

There has been significant work on empirical models which allow atom charges to change

over the course of a simulation. One widely cited model incorporates a charge equilibration

technique (the “ReaxFF” model, which uses the “QEq” technique developed by the same

group) [18,19]. This approach has been successful in modeling some molecular reactions.

However, we judged that it is too costly to use for systems consisting of millions of atoms,

due to the complex algorithms used to calculate new charges at each timestep. In particular,

the QEq algorithm formally hasO(N2) scaling (N is the number of atoms in the system),

which would be prohibitively expensive at large system sizes. The Kieffer group has also

created a charge-transfer model for silica species which isunder active development [80,

81], but will not be considered in detail here.

Alavi, Alvarez, Elliot and McDonald developed a charge-transfer model (henceforth, the

“AAEM-CT” model) which is inexpensive, using only the localenvironment of atoms to

determine charges and charge-transfer forces at each timestep [8]. As this model had al-

ready been applied to liquid silica, we decided to combine the charge-transfer features

of the AAEM-CT model and some of the empirical features of theFG model to create a

new charge-transfer model of silica which could eventuallybe extended to aqueous silicate

species. The AAEM-CT energies and charge-transfer forces are given in Equations 3.1

through 3.5. They include a Coulombic interaction (EC) and empirical covalent terms

(Eemp) of a generalized Morse (also known as a Hulbert-Hirschfelder) form, plus a steric

repulsion between oxygen atoms. Note that only atoms of opposite sign and within a cutoff
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distance (Ri j < RCT) are allowed to transfer charge (for all other atoms normal Coulomb

interactions still apply).

EC = ∑
i

∑
j>i

qiq j

4πε0Ri j
(3.1)

qA
i = qA−∆q∑

j
f (rA

i , rB
j ) (3.2)

qB
j = qB +∆q∑

i
f (rA

i , rB
j ) (3.3)

f (Ri j ) =
1
2
{1− tanh[(Ri j −RAB)/ζ ]} (3.4)

Eemp = ε[(1−exp(−x))2+cx3(1+bx)exp(−2x)−1]

+
e2

36πε0σ

(

σ
Ri j

)9

(3.5)

In these equations,qA
i is the charge on an individual cation (A), andqB

i would be the charge

on an anion (B), andx = (Ri j −Re)/a in Equation 3.5. The amount of charge which may

be transferred between them is determined by the parameter∆q which is specific to a given

A−B pair, and the charge transfer functionalf which depends on the distance between

atomsi and j and their specific types (its shape is shown in Figure 3.1).

We planned to parametrize our new model, the Barnes-Gelb modification of the AAEM-CT

model (the “BG-AAEM-CT” model) using an evolutionary strategy (ES), with ES tech-

niques optimized in the previous chapter. The model would befit againstab initio training

sets. Simulations of different phases of silica would be used to validate the empirical poten-

tial form and parameters. In this chapter we describe those efforts, problems encountered
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Figure 3.1: The charge-transfer function (f (Ri j )) for the AAEM-CT model shown in graph-
ical form. At small separation, the full amountδq is transferred, while the amount trans-
ferred goes smoothly to zero outside a certain range.

and overcome, and some simulation results obtained using a preliminary version of the new

model.

3.2 Potential Development

While working with the AAEM-CT model, we noticed problems with simulations at con-

stant pressure. Specifically, the simulation cells would tend to expand rapidly and soon

after that the numerical integrator would become unstable.At first, this was quite puzzling.

No mention of such problems had been mentioned in the literature; prior work was mostly

performed in the canonical and microcanonical ensembles. First, we verified our program’s

implementation of the analytical equations for force and pressure calculations. This was
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Figure 3.2: AAEM-CT model energies for aβ -cristobalite cell. In this crystal, the silicon
atoms occupy lattice sites of a diamond structure, with oxygen atoms bridging between
them. The lattice constant on they axis is that of the Si-O bond distance.

done through comparison with numerical differentiation ofthe energy with respect to parti-

cle displacement (for forces) and simulation cell size changes (for pressure). We eventually

discovered the root cause of the problem by examining theβ -cristobalite crystal phase of

AAEM-CT silica.

In Figure 3.2 we show the AAEM-CT potential energy versus silicon-oxygen distance for

a uniformly expandedβ -cristobalite crystal. The minimum energy lattice constant is near

2.35Å instead of the experimental 1.61̊A. This occurs because the total energy of the sys-

tem is minimized at silicon-oxygen distancesoutsidecharge-transfer range, due to the in-

creased magnitude of attractive Coulomb interactions. That is, the charge-transfer between

neighboring atoms lowers the magnitude of (opposite) neighboring charges, and therefore

the total cohesive energy of the crystal. As a result, atoms prefer not to be bonded when

the system is allowed to expand freely. At 4000 K and 1 bar, theequilibrium density of
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AAEM-CT silica is only 0.24 g/cc, roughly 1/10 of experimental density. A correction for

this rather fundamental problem had to be part of our improvement plan.

3.2.1 Functional Form

Our proposed functional form is most easily understood by examining the Coulombic and

non-Coulombic parts separately. We will discuss the Coulombic part of the potential first,

as it is the most complicated. We include a short-ranged, many-body modification to the

AAEM-CT form when atoms are transferring charge. As with theAAEM-CT model, for

two atomsi and j to transfer charge, they must be within range (Ri j < RCT) and of typesA

andB which form bonds with each other. The following equations then apply:

qA
i = qA−∆q∑

j
f (rA

i , rB
j ) (3.6)

qB
j = qB +∆q∑

i
f (rA

i , rB
j ) (3.7)

f (Ri j ) =
1
2
{1− tanh[(Ri j −RAB)/ζ ]} (3.8)

ECT(rA
i , rB

j ) =
1

Ri j
[qA

i +∆q · f (Ri j )][q
B
j −∆q · f (Ri j )] (3.9)

EC(rA
i , rB

j ) =

(

PI +(1−PI)
Ri j

RCT

)

ECT(i, j)+(1−PI)(1−
Ri j

RCT
)
qAqB

Ri j
(3.10)

During the normal evaluation of the Coulomb sum for the system, Equation 3.10 is used to

evaluate the pair energy for two atoms transferring charge.This would be identical to the

handling of the Coulomb sum in the AAEM-CT model except for the terms in green and

red. The changes in Equation 3.9 modify the short-range energy terms so that some energy

from charge transferred between a pair of atoms is “given back” in the energy evaluation
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of that pair. The motivation behind this change was to mimic the conversion of energy

from an ionic interaction into a covalent bond. The changes in Equation 3.10 include an

interpolation parameter (PI , with a range of 0 to 1) between charge-transfer Coulomb and

formal-charge Coulomb energies, which restores additional short-ranged bonding energy.

The second term (the “bare” Coulomb interaction) is larger in magnitude at short distances

than the first term, which usesECT (the charge-transfer Coulombic energy). A value of

PI = 1 indicates that the interpolation is turned off (“pureECT”), and PI = 0 indicates the

interpolation is fully active. This interpolation may sometimes be useful for adjusting bond

lengths during parametrization, as its value may complement the shape and magnitude of

the hard repulsive wall in a potential. The constantRCT is the cutoff distance for charge-

transfer and used in the interpolation scheme. Importantly, long-range Coulomb interac-

tions are unaffected by our changes. This allows the evaluation of short-range many-body

charge transfer and the resulting forces to remain inexpensive.

The forces that result from charge transfer are complicated. First, it is important to note that

the change in charge on an atom with respect to the change in coordinates of a nearby atom

is a derivative through the charge transfer functionf (Ri j ), which is given in Equation 3.11.

This expression is used in the Coulombic force on atomk, Fk, which is given in both an

expanded and a simplified form (Equations 3.12 and 3.13). Thefactorsi j is a “sign” factor

and always equal to plus or minus one. It is positive if the atom of typei is a cation, and

negative if the atom of typei is an anion. The usage of this sign factor allows for a more

compact expression of the forces and computationally less expensive implementation in a

simulation program as some of the work is moved outside the inner loop.

∂qCT
i

∂ rk
=

∆q
2ζ

sech2[Rik −RAB]/ζ · r ik (3.11)
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Fk =
−∂ECT

∂ r k

=

[

1
2∑

i
∑
j 6=i

∆q
RCT

f (Ri j ) ·
∂qCT

i

∂ rk
− ∆q

RCT
f (Ri j ) ·

∂qCT
j

∂ rk

]

(3.12)

Fk =
∆q
RCT

[

∑
i

∂qCT
i

∂ rk

(

∑
j 6=i

si j f (Ri j )

)]

(3.13)

The augmented functional form also has non-Coulombic termswhich may be divided into

two-body and three-body interactions:

E2b(r i j ) = Ai j exp(−ρi j Ri j )−
βi j

R6
i j

(

1
2

+
1
2

tanh((Ri j −d1(i j ))/d2(i j )

)

(3.14)

E3b(r i j , r jk,θ jik) = λ jik exp

[

γi j

Ri j −Ro
i j

+
γik

Rik −Ro
ik

]

× (cosθ jik −cosθo
jik)

2 (3.15)

The two-body form includes an exponential repulsion and an attractive dispersion inter-

action, which is damped to zero at short distances to preserve a hard repulsive core. The

three-body term is of the Stillinger-Weber form (as previously used in the FG model),

which acts as a penalty function for deviation from a preferred angle for specified types

of triplets. All of the constants represented by symbols in Equations 3.14 and 3.15 are

“fittable” parameters (onlyRi j , Rik and cosθ jik are variables).
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3.2.2 Training Sets and Parametrization

Our approach to parametrization was based upon that described in Chapter 2: least-squares

optimization againstab initio “training set” data. Two systems were used to create the

training set. The first was a box of fluid SiO2 containing 192 atoms at a density of 2.20

g/cc. The second was anα-quartz box containing 576 atoms at a density of 2.64 g/cc.

The procedure used to create the configurations and evaluatetheir energies was as follows.

First, molecular dynamics simulation using the Beest-Kramer-Santen (BKS) silica poten-

tial [82] to equilibrate the system, at 600 K for theα-quartz and at 4000 K for the fluid

phase. This was done using a Gaussian isokinetic thermostat. One hundred configura-

tions from the equilibration runs (widely separated in simulation time) were then selected.

Each of those configurations was then used as the input geometry for a separate plane-

wave DFT single-point energy calculation using the CPMD package [72]. These DFT

calculations used a 30 Rydberg cutoff, a Vanderbilt ultrasoft pseudopotential [69] for oxy-

gen, a Troullier-Martins pseudopotential [83] for silicon, and the Perdew-Burke-Ernzerhof

(PBE96) exchange-correlation functional [68]. Therefore, the training set contained one

hundred configurations, representative of systems with different phases, temperatures, and

densities. We believed that the range of energies and atomicdistances represented would

provide enough data to parametrize a transferable empirical potential effectively.

Initial attempts to optimize the BG-AAEM-CT parameter set using evolutionary strategies

were almost totally unrestricted, allowing all parametersto vary within physically possible

plausible ranges (for example, repulsive wall pre-factorswere constrained only to be non-

negative). When tested in short simulations of amorphous silica, for models obtained this

way often resulted in physically unrealistic behavior, often forming small, dense clusters

with hexa-coordinated silicon atoms. To address this, someparameters were often held

fixed during optimization. These include the amount of charge transferred (to replicate
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BKS charges, which are known to be effective in atomistic models), the interpolation pa-

rameter, and three-body terms. Other terms, such as the charge-transfer curvatureζ , were

set to values near best-fit ES optimization results. A wide variety of parameter sets were

tested in preliminary simulations; one such table of valuesis given in Table 3.1. In this

parameter set, isolated atoms have fully ionic charges, like the FG model, but can transfer

charge so that at full coordination they would have the same partial charges as the BKS

model. The two-body parameters are similar to those of the BKS model, but with repulsive

walls which are larger in magnitude. The three-body parameters have the same value as

those in the FG model.

3.3 Preliminary Simulations using the BG-AAEM-CT Model

In this section, we describe results obtained using the BG-AAEM-CT model with the

parameters in Table 3.1. This includes both analytical calculations of lattice energies

and molecular dynamics simulations. Our isobaric-isothermal ensemble simulations were

performed at temperatures from 3000 to 10000 K and a pressureof 1 bar, for bothβ -

cristobalite and amorphous phases.

3.3.1 Lattice Constant Investigation

BG-AAEM-CT silica has more realistic constant pressure properties than the original AAEM-

CT model. The minimum-energy lattice constant is near the experimental 1.61̊A. This is

shown in Figure 3.3, which displays energy versusβ -cristobalite lattice constant for both

the BG-AAEM-CT model and the previously examined AAEM-CT model. In our model,

the energy change with respect to system size is much smoother, and the minimum is at the
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qA(proportion of formal charge) 1.0
qB 1.0
∆q(Si-O) 0.4
RAB(Si-O), Å 1.75
ζ , Å−1 0.2
A(Si-O),×10−9 ergs 21604.50864
ρ(Si-O), Å 4.87318
β (Si-O), Å 133.5381
d1(Si-O), Å 1.25
d2(Si-O), Å−1 0.2
A(O-O),×10−9 ergs 1666.5276
ρ(O-O),Å 2.76
β (O-O),Å 175.0
d1(O-O),Å 1.25
d2(O-O),Å−1 0.2
A(Si-Si),×10−9 ergs 36000.0
ρ(Si-Si), Å 3.0
β (Si-Si), Å 200.0
d1(Si-Si), Å 2.0
d2(Si-Si), Å−1 0.2
λ (O-Si-O),×10−11 ergs 19.0
γ(O-Si-O),Å 2.8
Ro(O-Si-O) 3.0
θ (O-Si-O), degrees 109.471
λ (Si-O-Si),×10−11 ergs 0.3
γ(Si-O-Si),Å 2.0
Ro(Si-O-Si) 2.6
θ (Si-O-Si), degrees 109.471
PI 0.0

Table 3.1: Parameter set for the BG-AAEM-CT model. This is one of many parameter sets
tested. For many of the parameters not related to charge-transfer, values used are similar to
those in the BKS or FG models.
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Figure 3.3:β -cristobalite energy versus lattice constant for BG-AAEM-CT and AAEM-
CT models. The dashed line indicates the experimental value, which is near the minimum
for the BG-AAEM-CT curve in this Figure.

right position. The BG-AAEM-CT repulsive wall also has a steeper slope, and resembles

that of more well-behaved potentials such as the BKS model.

3.3.2 Structure and Charge Distribution

Oxygen-oxygen and silicon-oxygen radial distribution functions (RDF) for these models

are given in Figure 3.4. Theβ -cristobalite simulation was performed at 3000 K and 1

bar. The amorphous phase results are from a simulation started with an amorphous initial

configuration and run at 5000 K and 1 bar. They show that theβ -cristobalite crystal re-

mains intact, with the crystalline structure signified by sharp peaks. The silicon-oxygen

and oxygen-oxygen RDFs for the amorphous phase of the BG-AAEM-CT model are quite
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similar to that of the BKS model simulated under the same conditions, with the nearest-

neighbor and next-nearest-neighbor peaks occurring at roughly the same distances.

The structural differences between the crystalline and amorphous phase are also reflected

in charge distributions from simulations using the BG-AAEM-CT model, which are given

in Figure 3.5. In each figure, the broader distribution of charges in the higher temperature

amorphous phase reflects the wider distribution of interatomic distances. In the amorphous

phase atoms are sometimes not fully coordinated, as they occasionally experience rear-

rangements in their local environment.

3.3.3 Melting

A short investigation into the melting point of this model was also conducted. The original

problem with the AAEM-CT model was that the crystal was unstable, but the BG-AAEM-

CT model as parametrized here appears to overcorrect for this problem and tended not to

melt at any physically realistic temperatures in our simulations.

For example, Figure 3.6 contains density results from a series of isobaric-isothermal simu-

lations for the BG-AAEM-CT and BKS models. Each simulation was performed indepen-

dently, in parallel: the beginning of one simulation was notdependent on the result of the

prior state point in the series. For the BKS amorphous phase data, the simulations were

seeded using an amorphous system previously equilibrated at 4000 K. The initial configu-

ration for the crystal simulations was a perfect crystal. The data shown are density versus

temperature; when a phase transition occurs, the density ofthe cell undergoes a signifi-

cant change. At 4000 K and above, the BKS crystal melts, and simulations seeded from

the crystal phase have the same density as those seeded from the amorphous phase. For

BG-AAEM-CT β -cristobalite silica, the equilibrium density at 4000 K and1 bar is near
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Figure 3.4: Oxygen-oxygen and silicon-oxygen radial distributions functions for BG-
AAEM-CT and BKS models. Crystals simulated at 3000 K, 1 bar and the amorphous
phase at 5000 K, 1 bar, with a duration of 1 ns.

69



-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2
q

O

0

2

4

6

8

10

12

p
(q

O
)

Amorphous
Crystal

2.4 2.5 2.6 2.7 2.8 2.9
q

Si

0

1

2

3

4

5

6

7

p
(q

S
i)

Amorphous
Crystal

Figure 3.5: Oxygen and silicon charge distributions for amorphous and crystal phases of
the BG-AAEM-CT model. Systems simulated at 3000 K, 1 bar for crystals and 5000 K, 1
bar for the amorphous phase, with a duration of 1 ns.
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Figure 3.6: Density versus temperature from isobaric-isothermal simulations of the BG-
AAEM-CT and BKS models. The amorphous phase is more dense than β -cristobalite,
hence the BKS model density rises upon melting of the crystal. All simulations performed
at 1 bar, with a duration of 1 ns.

2.12 g/cc. However, the BG-AAEM-CT model does not have a sharp density change in the

range of temperatures shown, and inspection of snapshots verifies that the crystal is still

intact, even at the highest temperatures.

3.4 Discussion

Developing a new charge-transfer model proved to be a challenging endeavor. Our original

aspiration was to include terms for hydrogen-oxygen and hydrogen-silicon interactions,

and we chose a functional form similar to the BKS or FG potential, which had previously

been augmented with three-body potential terms. After encountering multiple difficulties

in getting a good “fit” with evolutionary strategy optimizations, our close investigation

71



of the AAEM-CT model discovered the flaw in how its charge-transfer form behaved in

constant pressure simulations. We focused first on silica and solving the problem of low

density at normal pressure, but ultimately could not obtaina well-behaved charge-transfer

silica model. The sources of problems in our new model could lie in many different places.

The AAEM-CT charge-transfer form could be flawed beyond repair, with our attempts to

“fix” it simply revealing new problems after solving an old one. Our choice of charge-

transfer parameters may not have been appropriate for both amorphous and crystalline

phases. Ultimately, while some progress was made in improving the AAEM-CT form and

we obtained a new model which was usable in constant pressuresimulations, we decided

not to extend the model further for simulation of aqueous silica systems.
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Chapter 4

Structure, Thermodynamics, and

Solubility in Tetromino Fluids

4.1 Introduction

The reversible self-assembly of objects of controlled sizeand shape is of great interest for

construction of nanoscale devices and nanostructured materials without laborious manip-

ulation of individual particles. Self-assembly–based methods have been proposed, and in

many cases demonstrated, for applications in areas from data storage [84] to medicine [85]

to energy generation [86]. Self-assembly occurs both at themolecular scale, most famously

in self-assembled monolayers [87,88], and in nanoparticulate systems, polymers, and com-

binations of the two [89, 90]. Apart from its potential applications, self-assembly is also

fascinating in its own right, with complex structures formed through an interplay of ener-

getic and entropic forces. Studies of self-assembly relatenaturally to work on the appear-

ance and stabilization of structure in other systems, ranging from ordered crystals through

partially-ordered liquid crystals to disordered liquids.
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Much insight into the structure and behavior of self-assembled systems, liquid crystals and

normal liquids has come from theoretical and simulation studies of idealized models. The

simplest models are “hard”, or “athermal”, in that particles do not interact except to com-

pletely avoid overlap, behaving like idealized billiard balls. In such systems the behavior

is entropically controlled: the structure adopted by a system of rigid hard objects is that

which maximizes the total entropy, a sum of translational and rotational contributions. Flu-

ids of rigid hard objects studied to date have included disks[91], spheres [92,93], confined

spheres [94], hard dumbbells in two [95] and three [96] dimensions, squares [97] rect-

angles [98–101], pentagons [102], rods, spherocylinders and ellipsoids [103–105], cubes

[106], and others.

Lattice models, in which objects are positioned only at discrete sites, are appealing because

of their simplicity, analytical tractability, and low computational cost. Hard sphere lattice

systems have been studied with both analytical and numerical methods for more than 40

years [107, 108]. Hard hexagons on a lattice were solved analytically by Baxter [109].

Freed and co-workers have studied the behavior of a variety of lattice objects, with and

without energetic interactions, in the context of their Lattice Cluster Theory (LCT) [110–

112]. Columnar phase transitions were also investigated aspart of their LCT, which we will

revisit in studies on larger polyominoes. Panagiotopouloset al. have obtained the phase

behavior of a variety of on-lattice shapes in three dimensions, both with nearest-neighbor

attractive interactions and in the athermal limit. First-order crystallization transitions were

recovered for on-lattice spheres and capped cylinders, while other rigid hard objects were

found to display continuous order-disorder transitions [113].

Dill et al. have used both analytical methods [114] and simulation [115] to study solvation

in fluids of hard lattice objects. Exact expressions for the partition functions of very small

numbers of objects in a bounded domain were obtained using recursive methods. From
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these were obtained the equations of state (density versus chemical potential) of objects

of several shapes, which were then analyzed in terms of Flory-Huggins theory and virial-

like expansions [114]. In the subsequent study [115], attractive interactions were added

to the model and large-scale Monte Carlo simulations in the canonical ensemble used to

extract relations between the chemical potential of the fluid and its contact free energy per

unit area, the latter being unambiguously definable in a lattice model. Analysis of fluid

structure or the phase diagram of the model was not attempted.

Connected shapes on a two-dimensional lattice, as simulated above, are referred to in the

mathematical literature as “polyominoes”, and have been ofinterest for a considerable time

[11]. They have received attention in the popular press, as the foundation for series of puz-

zles in Scientific American [9]. Shapes which occupy one square are monominoes, those

which occupy two are dominoes, etc. The mathematics of polyominoes has focused on

two questions, the first being enumeration of the possible polyominoes occupying a given

number of squares, and the second being the number of ways of arranging polyominoes

in a bounded region, generalizing the question originally proposed as the number of possi-

ble placements of dominoes on a chessboard, also known as the“dimer model” [116,117].

Other properties of lattice animals which are commonly investigated include more complex

tiling theorems, percolation thresholds and perimeter distributions [118].

Here we consider self-assembly, liquid structure, and solvation in the multicomponent

“tetromino” fluid using Monte Carlo simulations. There are seven different one-sided tetro-

minoes, corresponding to the shapes from the well-known computer game TetrisTM [119].

While some of the tetrominoes (and various other polyominoes) have been simulated in the

studies mentioned above [98,114,115], no comprehensive survey of the statistical mechan-

ics or self-assembly of these objects seems to have been madeto date. We note that related

models have also been used in studies of compaction in granular matter [120, 121], and
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that the problem of arranging “falling polyominoes,” familiar from the computer game,

is of practical interest as it is related to algorithms for the optimal packing of crates in

trucks [122]. Another packing problem more specific to tetrominoes that has been studied

recently was the critical behavior of rigid rods on two-dimensional lattices, in which cu-

mulants were used to quantify nematic transitions [123]. Finally, Cicoira and Rosei have

drawn an analogy between the arrangement of pieces in Tetrisand the self-assembly of

molecules on surfaces [124], and a version of tetrominoes augmented with energetic inter-

actions has been studied in the context of self-organization by Troisiet al. [125].

We performed these simulations in the grand canonical ensemble, corresponding to an open

system. Since the model is two-dimensional, this is similarin spirit to experimental work

on adsorption [124] and self-assembled monolayers [87, 88]. In such studies a surface is

placed in contact with a solution or gas, from which particles (the solute, in the former case,

and molecules of the gas, in the latter) reversibly adsorb tothe surface. The surface layer

is therefore in mass equilibrium with a reservoir of additional material; the concentration

of the solution (or pressure, in the case of a gas) determinesthe coverage or density at

the surface. Adsorption of molecules on surfaces also offers interesting possibilities for

introducing and controlling chirality not present in three-dimensional systems [126,127].

The details of the model and simulations are discussed in section 4.2, followed by dis-

cussion of the structure of pure fluids (section 4.3.1), binary mixtures (section 4.3.2) and

multicomponent mixtures (section 4.3.3). The interactions between different shapes are

analyzed in terms of virial coefficients in section 4.3.4, followed by further analysis of

solubility thermodynamics in both pure and multicomponentfluids in section 4.3.5, and a

general discussion of these findings in section 4.4.
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The one-component fluids all exhibit marked self-ordering tendencies at higher densities,

with quite complex structures formed in some cases. Significant clustering of objects with

the same rotational state (orientation) is also observed insome of the pure fluids. In all

the binary mixtures, the two species are fully miscible at large scales, but exhibit strong

species-specific clustering (segregation) at small scales. This behavior persists in mul-

ticomponent mixtures; even in seven-component mixtures ofall the shapes there is sig-

nificant association between objects of the same shape. In order to better understand these

phenomena, we calculate the second virial coefficients of the tetrominoes and related quan-

tities, extract thermodynamic volume of mixing data from the simulations of binary mix-

tures, and determine Henry’s Law solubilities for each shape in a variety of fluids. The

overall picture obtained is one in which complementarity ofboth the shapes of individual

objects and of the characteristic structures of different fluids are important in determining

the overall behavior of a fluid of given composition, with sometimes counter-intuitive re-

sults. Finally, we note that no sharp phase transitions are observed, but that this appears to

be due to the small size of the objects considered. It is likely that complex phase behavior

may be found in systems of larger polyominoes.

4.2 Methodology

4.2.1 The Model

The objects (“pieces”) simulated are the seven possible “tetrominoes,” orthogonally con-

nected objects which occupy four lattice sites. These shapes and their common names are

given in Figure 4.1. The pieces only interact through avoidance of overlap; there is no

attractive potential. There are two enantiomeric pairs: the S andZ shapes, and theJ and
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L shapes. These shapes are not chiral in three dimensions, butrestriction to two dimen-

sions eliminates some symmetry operations such that they are no longer superimposable.

This is the complete set of “one-sided” tetrominoes, as opposed to the complete set of five

“free” tetrominoes which would exclude one of the enantiomers from each pair [11]. One

could also consider simulations of larger polyomino sets, such as the eighteen one-sided

pentominoes or sixty one-sided hexominoes.

S Z

TLJ

(square)O I (rod)

Figure 4.1: The seven one-sided tetrominoes, with corresponding names and symbols, and
rotation centers/anchor points marked by “+” symbols. Orientations are labelled numer-
ically, starting at 1. Squares have one orientation, rod,S andZ shapes have two, andJ,
L andT shapes have four. The shapes shown above are all in orientation 1; subsequent
orientations correspond to 90◦ or 180◦ clockwise rotations around the marked points.

Further specifications are required for purposes of statistical mechanics. Only distinguish-

able rotations will be considered as available “states” foreach piece, by analogy with the

symmetry of molecules. Therefore, a square (O) has one rotational state, the rod (I ), Sand

Z pieces two states, and theJ, L andT pieces four states. As shown in Figure 4.1, each
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shape is given an “anchor point”, which will be used in the Monte Carlo simulations to

define rotational and piece-insertion moves.

4.2.2 Simulation details

In the grand canonical ensemble, the number of pieces of a given shape is not fixed but is

controlled by an applied chemical potential. Simulations may include any number or com-

bination of the seven shapes. Typically, grand canonical simulations of anN-component

system sample an ensemble at constant temperature, volume and theN chemical potentials

{µi}, or equivalently,β , V and theN {β µi}, with β = 1/kT. Since this is an athermal

model the temperature is an arbitrary parameter with no effect on the distribution of states,

and so the thermodynamic variables are reduced to the volumeand theN {β µi}; we shall

refer to these latter quantities as chemical potentials. Atβ µ = 0 for a system of ideal gas

particles, the equilibrium state would have unit density. This may be considered a refer-

ence state, and observed deviations atβ µ = 0 are the direct result of the size, shape, and

non-overlap requirement of the pieces in a simulation.

The classical grand partition function for a one-componentsystem with discrete states is:

Ξ(V,T,µ) =
states

∑
i

e−βεi eβ µNi (4.1)

βPV = lnΞ (4.2)
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After excluding states with infinite energy (where pieces overlap), only states with zero

energy remain, and Equation 4.1 reduces to:

Ξ = ∑
i

eβ µNi (4.3)

Which may be expressed using a sum over the number of particles in a configuration,

instead of a sum over states:

Ξ = ∑
N

W(N)eβ µN (4.4)

Where theW(N) are degeneracy coefficients (microcanonical density-of-states). Deriva-

tives of this equation may be taken in order to recover thermodynamic quantities:

(

∂ lnΞ
∂β µ

)

V,β
= ∑

N
W(N)Neβ µN/Ξ = 〈N〉 (4.5)

Integrating:

∆ lnΞ
∣

∣

∣

β µ2

β µ1

=
∫ β µ2

β µ1

〈N〉(β µ)dβ µ (4.6)

This result is related toβPV through Equation 4.2, and is useful for calculating thermody-

namic quantities.

Our simulations include the following trial moves: insertions, deletions, translations, rota-

tions, identity changes, and piece switches. With the exception of insertions, deletions and

identity changes, all of these are normal (that is, unbiased) Monte Carlo moves, such that

the Boltzmann weight–based acceptance/rejection criteria are simply that moves which in-

troduce an overlap are always rejected, and moves which do not are always accepted. For

insertion and deletion moves, we use a bias to improve sampling at high densities, similar
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to cavity bias insertion [128]. In this approach, a list of empty lattice sites is stored, and

insertion attempts place a trial piece’s anchor point on oneof those empty sites. The bias al-

gorithm works by selecting a lattice site known to be empty for the anchor point’s insertion

attempt. This means that the acceptance criteria for insertion and deletion must be altered

in order to maintain detailed balance. This bias greatly increases efficiency at high densi-

ties by avoidance of trivially-rejected insertion moves, while maintaining microscopic re-

versibility. The probability of accepting a piece insertion is then exp(β µi)×Pf ree/(Ni +1),

and the probability of accepting a deletion isNi/(exp(β µi)× (Pf ree+4)), whereNi is the

number of pieces of typei andPf ree refers to the number of currently empty lattice points.

The other trial moves are straightforward. Translations consist of displacements of an entire

piece by one lattice site, in one of the four Cartesian directions. Rotational moves consist

of attempts to rotate a piece to a different distinguishablestate, chosen randomly and uni-

formly from the other available states for the piece. Clearly, the location of the anchor point

may affect the probability of a rotation attempt being accepted in dense configurations. The

anchor points shown in Figure 4.1 were chosen near to the center of each piece in order

to provide more compact rotations that will likely result infewer overlaps. The choice of

anchor point only affects the efficiency in simulating a given state point, not the equilib-

rium results. Identity change moves attempt to both change the shape of a piece and its

orientation. A piece of shapei is chosen at random and changed to a uniformly randomly

selected different shapej and rotational state. Provided that no overlaps result, themove

is accepted with probability exp(β µ j −β µi)×Ni/(Nj +1). Note that the available shapes

j are determined by those present in the simulation; that is, which have defined chemical

potentials. “Piece switch” moves preserve both shape and rotational state. The locations of

two pieces are switched, again using the anchor points to define the location of each piece.
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If there are no overlaps, the move is accepted. The identity change and piece switch moves

are potentially useful in multi-component simulations where demixing may occur.

In any multi-component simulation, we attempt moves with relative frequencies of 3:3:9:2:2:1

(insertion:deletion:translation:rotation:identity change:piece switch). These weights were

chosen as a compromise between efficiency at low and and high densities. In simulations

of one-component fluids identity-change and piece-switch moves were not used, and the

relative frequencies of the remaining moves were unchanged. For simulations with at least

one species at high chemical potential, insertion and deletion events tend to be infrequently

accepted, and identity changes or piece switches become more important.

A simulation at a given state point consists of an equilibration phase followed by a data

collection phase. For scans of many state points over a variety of conditions, the use of

constant numbers of trial moves in the equilibration and data collection phases proved

inefficient. We use automation and heuristics to determine when data collection can be

begun at each state point and when sufficient statistical quality has been achieved that a

simulation can be terminated. All quantities to be evaluated, such as density and mole

fraction, are tracked via the block-average method described by Flyvbjerg and Petersen

[129, 130]. Each block contains 3000 samples, and each sample is separated by 1000 trial

moves. The block-average method is useful as it allows not only for the expectation value

of interest to be calculated, but the variance of that quantity and an estimate of the error of

that variance. The last part is most valuable, and with a certain minimal number of blocks

(independent groups of samples), a complete set of results and estimate of their quality may

be obtained.

The separation between samples was chosen to be on the order of the maximum number

of pieces present in simulations at very high densities. Theblock length is chosen based
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on preliminary runs and appears to provide reliable and uncorrelated block averages at

all densities simulated. Data collection is not started until at least three blocks have been

completed and the density and other quantities have converged according to an exponential

criterion, viz. ln(ρn/ρn−1) ≤ 10−3, whereρn represents the average density of the system

sampled during blockn.

Simulation of an individual state point is terminated in oneof two ways. Standard termina-

tion occurs when at least 500 million trials have been performed. Early termination occurs

when the relative standard error of the density is below 0.001 (0.1%), the relative standard

errors in the mole fractions of all components in a mixture are less than 0.2 (20%), and at

least 10 blocks (30 million trial moves) of data collection have been completed. In practice,

convergence of the density is the more stringent criterion.Under nearly all conditions mole

fractions have converged to well within 0.01 (1%) by the timethe density has converged;

the only exceptions are in high-density mixtures where one component is of exceedingly

low ( < 0.01) mole fraction, for which quantity uncertainties of up to0.15 (15%) are seen.

For these simulations, in our computer implementation the occupancies of all lattice sites

are stored in a 512 byte integer vector, and bitwise operations are used to detect overlaps

when evaluating trial moves. This approach provides for very high efficiency and low mem-

ory footprint. On a modern processor (Intel Q9400, at 2.66 GHz), our code performs 2.36

million Monte Carlo trials per second (estimate obtained byaveraging over simulations at

low, medium and high densities), and requires an average of 28 seconds to complete a simu-

lation at a single state point to the satisfaction of our convergence criteria. It is thus possible

to survey large portions of the multicomponent phase space in reasonable time. We also

used Python and shell scripting tools to parallelize some phase space surveys across hun-

dreds of processors simultaneously. This allowed rapid turnaround of results and remote

creation and submission of jobs.
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We have simulated systems ranging from pure species to seven-component mixtures. All

single-component fluids were simulated over at least the chemical potential range -4.0 to

+8.0 in increments of 0.2, for 61 total values per fluid. All 21two-component (binary)

mixtures were also simulated, with the chemical potential of each component scanned over

the same range for a total of 3721 state points per two-component mixture. Mirror symme-

try of enantiomers was not used to reduce the number of simulations required, partly for

convenience and partly to illustrate the quality of the dataobtained. All possible ternary

(three-), quaternary (four-), quinary (five-), senary (six-) and septenary (seven-component)

mixtures were simulated, but only along the phase space “diagonals” where all species have

equal chemical potentials,β µi = β µ j = β µk = . . ., again scanned from -4.0 to +8.0. There

are 35 each of ternary and quaternary mixtures, 21 each of binary and quinary mixtures, 7

senary mixtures, and a single septenary mixture.

Simulations were performed on a 64× 64 square lattice, under toroidal boundary condi-

tions (periodic boundaries on both thex axis andy axis). A maximum of 1024 pieces can

be present in a simulation cell of this size. To be confident this lattice was large enough that

finite size effects were not significant, lattice sizes of 8× 8, 16× 16, 32× 32, and 48×

48 were also tested. Properties such as the density and mole fractions were well-converged

at the 64× 64 lattice limit.
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4.3 Results

4.3.1 Single-component (pure) fluids

The packing fraction as a function of chemical potential,η(β µ), for all seven single-

component fluids is given in Figure 4.2a, and the pressure plotted as a function of packing

fraction,β p(η), is given in Figure 4.2b; calculation of the pressure is described in the Ap-

pendix. The packing fraction is the fraction of lattice sites covered; each shape occupies

four lattice sites, so the actual density (pieces per unit area) is 1/4 of this quantity. These

data may be considered analogous to isotherms ofρ(µ) or p(ρ) in a real system. The first

form of the equation of state corresponds to the “raw” results of simulations in the grand

ensemble, while the second corresponds to the way data is usually presented in studies us-

ing isothermal-isobaric and canonical ensemble simulations [95]. Again, simulations are

performed fromβ µ = −4.0 to β µ = 8.0, corresponding to occupancies ranging from be-

low 0.10 to nearly 1.0 (complete filling). The isotherms for all shapes collapse onto a single

curve at low chemical potentials. This is as expected; theseare essentially gaseous systems

with repulsive interactions and identical particle sizes,so should have very similar (though

non-ideal) gas-like behavior at low densities. This point will be revisited in section 4.3.4,

below. At higher chemical potentials, the differences between the shapes become more

apparent. At all chemical potentials squares (O shapes) exhibit higher density (or packing

fraction) than all other shapes. Rods (I shapes) are the second-densest, and have density

similar to that of the remaining shapes untilβ µ ≃ −1.0, after which they exhibitη(β µ)

behavior rather more like that of the squares. The curves forSandZ shapes are identical

because they are enantiomers, as are the curves for theJ andL shapes. At the same chemi-

cal potential,SandZ fluids are slightly denser thanJ andL fluids, and the fluid ofT shapes

85



is the least dense at every chemical potential. In all cases,packing fractions smoothly ap-

proach the complete-filling limit at high chemical potential. The critical packing fraction

for randomly-placed small rectangles on a lattice is near 0.67 [98], suggesting that these

fluids must exhibit significant structure in order to achievehigh densities. We have also

obtained the isothermal compressibilities of all the pure fluids, which are entirely smooth

and do not exhibit any significant features over this range ofchemical potentials.

The smoothness of the density plots belies significant complexity in the structure of the

fluids. Snapshots taken from simulations of the pure fluids are shown in Figure 4.4 and 4.5.

In each case three snapshots are given, at chemical potentials corresponding to low, medium

and high densities. In the fluid of squares, there is little structure apparent in the snapshot

at low density, other than that which might be expected from the non-overlap condition. In

the medium-density snapshot, at a packing fraction of approximately 0.8, significant short-

ranged structure is visible, with the pieces arranged in small, well-aligned groups. These

tend to be three to six squares across at this density. The appearance and growth of these

groups appears to correspond to the feature in theβ p(η) curves where the squares “break

off” from the rods (Figure 4.2b). In the highest-density snapshot, near 95% coverage, the

squares form larger domains, some of which extend over the entire length of the simulation

cell. We note that these structures break up and re-form during the simulation. At these

high densities a sort of one-dimensional ordering is observed in which the great majority of

the pieces in the system are anchored on a lattice site with (in this case) an even-numbered

y-coordinate; in the snapshot shown, only a few odd-anchoredpieces are visible in the

lower left. This behavior occurs because alignment in one direction increases translational

mobility in the other, providing an overall entropic stabilization. As the packing fraction

increases from 95% through 99.5%, this behavior becomes more prevalent and pronounced.

While this is suggestive of the appearance of a true crystal phase, high-resolution scans in
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Figure 4.2: (a) Packing fractionη versus chemical potentialβ µ for one-component fluids.
(b) Pressureβ p vs. packing fraction for one-component fluids. The color scheme in these
plots is the same as for the shapes themselves (Figure 4.1).
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Figure 4.3: Isothermal compressibilityχT versus chemical potentialβ µ for one-component
fluids.

the chemical potential range 4.0 to 6.0 do not show any signature of an abrupt transition

and there is the likelihood that these structures are artificially stabilized by the periodic

boundary conditions used. Similar “columnar” behavior haspreviously been observed in

constant-pressure simulations of off-lattice hard squares These also do not exhibit a true

crystallization transition, and the columnar behavior is thought to be due to the influence

of the periodic boundary conditions [97]. As it turns out, this is not strictly a periodic

boundary effect and is quite noticeable for larger polyominoes.

The structure of the fluid of rods (I shapes) is rather different. In the snapshots shown in

Figure 4.4, rods of vertical orientation are shown in a lighter color than rods of horizontal

orientation, to highlight the orientational structuring present in this fluid. Even at low

density, significant orientational correlation is presentin the rod fluid, with neighboring

rods tending to orient parallel to each other. This behaviorsuggests a possible transition to

a nematic phase at higher densities, but in fact this does notoccur. As the density increases

the local orientational correlation becomes stronger, butthrough a clustering mechanism

88



Figure 4.4: Configurations of pure fluids of squares and rods,at low (-1.0), medium (+3.0)
and high (+7.0) chemical potentials. These are 38×38 sections cut from 64×64 simulation
cells; as a result, pieces may extend over the boundary of thesection shown. For the rods,
which have two possible orientations, each orientation is shown in a slightly different color.
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Figure 4.5: Configurations of pure fluids at low (-1.0), medium (+3.0) and high (+7.0)
chemical potentials, for each of theS, L andT shapes. These are 38×38 sections cut from
64×64 simulation cells; as a result, pieces may extend over the boundary of the section
shown. As in Figure 4.4, each orientation is shown in a slightly different color.
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that destroys any long-ranged correlation. In particular,at the middle density one observes

clusters of approximately four parallel rods which are thenoriented more-or-less randomly

to each other. This behavior is similar to the “tetratic” ordering (which has elements of both

horizontal and vertical order) observed in both off-lattice simulations of hard rectangles

[99] and in experimental work on a quasi–two-dimensional system of a monolayer of disk-

shaped colloidal particles standing on edge [131]. However, particles in these systems can

take any orientation, while the on-lattice nature of our simulations allows for only two

orientations of the rod clusters (reinforcing tetratic-like behavior), so the comparison is not

wholly appropriate. At high density the clusters tend to grow somewhat larger, and a sort

of layering is observed as they pack against like-oriented clusters. The apparent lack of an

isotropic-to-nematic transition in this system is consistent with previous work. Ghosh and

Dhar found that for packing fractions up to 0.85, only rods oflength 7 or greater display an

orienting transition on the square lattice [132]; we have performed additional calculations

on rods of up to and greater than length 7, reaching packing fractions of 0.99, and also

found no transition.

A related kind of ordering is observed in the fluids ofSandZ shapes, of which theSfluid

is shown in Figure 4.5. Again, even at low densities, there isclearly short-range orien-

tational order visible in the fluid, with pieces preferring to align parallel with each other.

At the medium density, two kinds of local structure are observed. In the first, and most

common, neighboring pieces are offset in the diagonal(±1,±1) directions, which gives

a “herringbone”-like structure. In the second, pieces are offset in the Cartesian directions

(0,±1) or (±1,0), depending on whether they are in the vertical or horizontalorientations,

respectively. Interestingly, at higher densities, the Cartesian offset structure is largely sup-

pressed in favor of the herringbone structure. As in the caseof the rods, large domains of

uniform alignment and greater positional regularity appear at high densities, but no sharp
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Figure 4.6: An example herringbone packing motif for an orientational interface of S-
shapes, commonly observed in high density snapshots.

transition to a crystalline phase (ordered or not) is observed in the chemical potential range

studied, and these domains remain much smaller than the system size.

The remaining shapes, the enantiomersJ andL and theT shape, also display interesting

orientational and positional ordering but of qualitatively different types, as shown in Fig-

ure 4.5. These shapes all have four distinguishable orientations, and unlike rod,S andZ

shapes, preferentially associate with pieces of orientation different to their own. We first

consider theL fluid. At low density,L pieces are frequently found in a “stacked” config-

uration, with neighbors of the same orientation displaced by a single diagonal step on the

lattice, much as in theSandZ fluids. However, at higher densities,L pieces begin to ori-

ent antiparallel with each other to form compact 2×4 site objects, which themselves pack

efficiently along the Cartesian directions, much as in the fluids of squares and rods. The

T fluid is also quite complex. At low densities,T shapes tend to be rotated 90◦ or 180◦

from their nearest neighbors. At higher densities, a prevalent packing motif appears to be a
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stack of several like-oriented pieces offset by the latticevectors(0,2) or (2,0), with other

pieces “fit” into the structure thus created in a less-regular way. Recall that theT fluid is the

least dense of all the single-component fluids at a given chemical potential. This appears

to be because theT shapes are the most compact of the pieces with four orientations. Void

spaces in theT fluid allow for much more orientational freedom than in, say,theL fluid,

and the associated entropy drives theT fluid towards lower density.

4.3.2 Two-Component Systems

We have also scanned the phase space of all 21 binary mixtures, simulating a total of 78141

state points. In all cases, the two shapes were fully miscible over the chemical potential

range simulated, but substantial non-ideality was frequently observed, which we attribute

to complex micro-scale fluid structure. Due to the large number of binary mixtures, only a

selection of these systems will be discussed.

We first consider the two-dimensional equation of stateη(β µi ,β µ j), analogous to the

isotherms of Figure 4.2 for one-component mixtures. Two of these are shown in Figure 4.7,

as contour plots. In these plots, the low density state is found in the lower left corner, at

low chemical potential of both species, and the highest density is found in the upper right

corner, at high chemical potentials of both species. For species with similar properties, the

plot should be approximately symmetric across the phase space diagonalβ µi = β µ j . In the

square/rod mixture, substantial deviations from idealityare clearly evident. For example,

the contour beginning atβ µO = +6.5 andβ µI = −4.0 gradually moves to higherβ µO

and asβ µI is increased. Equivalently, increasingβ µO at constantβ µI decreases the total

system density. That increasing the pressure in one of the two mass reservoirs to which

93



the system is connected would lead to a decrease in total system density was quite unex-

pected! This result is due to the rods disrupting the structure of the pure square fluid, and

corresponds to a positive volume of mixing (technically, area of mixing, since the system

is two-dimensional). Of course, at sufficiently highβ µI the total density again increases;

this occurs here forβ µI > 4.0. A similar effect might be expected on the other side of

plot, where squares are introduced into a dense fluid of rods,but following the contour

beginning nearβ µI = 6.0 we see a much weaker effect. The difference between the effect

of rods on the structure of the fluid of squares and the effect of squares on the structure

of the fluid of rods can be seen in representative snapshots, shown in Figure 4.8. In the

former case, at high rod density and low square density, the squares seem to fit well into

the rod fluid, the structure of which is generally similar to that seen in Figure 4.4. In the

latter case, at low rod density and high square density, thisis not the case. The rods, which

span two or more rows of squares, induce alignment between the one-dimensional rows of

squares described earlier. This reduces the entropy of the system and hence destabilizes

it; the equilibrium density is thus lowered in compensation. Additional vacancies created

by lowering the density help the system regain some of the entropy lost via the induced

alignment. Finally, the middle snapshot in Figure 4.4 in a mixture of squares and rods at

the same chemical potentials (and nearly the same densities; the mole fraction of squares

is 0.509 in the snapshot shown). Here the overall structure is dramatically perturbed, with

both species still forming clusters, but of much smaller characteristic length scale.

The equation of state of the mixture ofSandZ shapes (an enantiomeric pair), also shown

in Figure 4.7, is necessarily symmetric about theβ µS = β µZ axis. The contours at high

β µS and lowβ µZ are very nearly vertical, indicating thatZ shapes are almost perfectly

solvated by theS fluid; they simply replaceS pieces and the density does not change. A

configuration from a near-equimolar mixture ofSandZ shapes is shown in Figure 4.9, in
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Figure 4.7: Contour plots of packing fraction versus chemical potentials for (top) mixtures
of squares and rods, and (bottom) mixtures ofSandZ shapes.
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Figure 4.8: Snapshots taken from simulations of mixtures ofsquares and rods at (top)
β µO = 0.0, β µI = 6.0, (middle)β µO = β µI = 4.0, (bottom)β µO = 6.0, β µI = 0.0. These
are 38×38 sections cut from 64×64 simulation cells; as a result, pieces may extend over
the boundary of the section shown. Rods are all shown in the same color regardless of
orientation.
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Figure 4.9: Snapshots taken from simulations of a mixture ofS andZ shapes, atβ µS =
β µZ = 4.0, (top) without orientation-specific coloration, and (bottom) with orientation-
specific coloration.

two different representations. As in the square/rod mixture, we see a dramatic tendency

of the two species to segregate into “micro-clusters” (top image). This mixture displays

herringbone-like structures as seen in the pure fluids, and the same sort of stacking motifs

are also present. Interestingly, the bottom image in Figure4.9 clearly indicates that the ten-

dency of pieces of the same orientation to aggregate (as observed in Figure 4.5) is preserved

in the mixture; individualSandZ pieces strongly prefer to associate with other pieces of

both the same species and orientation. This behavior is further discussed in section 4.3.4.

The virial analysis may be extended to five-site and larger polyominoes, as discussed in the

next chapter.

Returning to the square/rod binary system, the structure ofthe fluid along theβ µ0 = β µI

phase space diagonal (pictured in Figure 4.8) may be furtheranalyzed in terms of average
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cluster size, shown in Figure 4.10. For these purposes we take two pieces of like species to

belong to the same cluster if they touch along any face; pieces with only “corner contacts”

are not considered part of the same cluster. We see in this figure that the average sizes of

clusters of both shapes remain small even up to very high densities, consistent with a picture

of a globally well-mixed but locally clustered or phase-separated fluid. Interestingly, the

rods form clusters that are over twice as large on average as those formed by squares. In

the middle snapshot in Figure 4.8 we see, however, that the average size of the rod clusters

is in fact misleading; the rods form a very large percolatingcluster along with a number of

very small isolated clusters. The clusters of squares, on the other hand, are distinct and well

separated. The tendency of rod shapes to form large clusterswas observed in all rod/shape

binary pairs. However, a transferable hierarchy of clustersize is not otherwise present.

For instance, while clusters of squares were largest in a square/S shape mixture, clusters

of T shapes were largest in high density square/T mixtures. However, in theS/T mixture,

clusters ofSshapes were consistently larger than clusters ofT shapes.

To more deeply probe the non-ideality of the binary mixtures, we have extracted the volume

of mixing in each over the entire range of conditions simulated. These data, for selected

binary systems, are shown in Figure 4.11. The conventional definition of the volume of

mixing is:

∆Vmix(N,β p) = V (N,β p)−∑
i

V̂i (β p)Ni (4.7)

whereN is the vector quantity of theNi , the number of particles of each species, andV̂i (β p)

is the molar volume of pure speciesi at pressureβ p. The data in Figure 4.11 are normalized

by system volume and given as percentages,(∆Vmix/V)×100%, plotted against pressure

and mole fraction. The complete procedure for calculating the pressures and volumes of

mixing is given in the Appendix to this chapter. For an ideal solution, the volume of mixing

is zero.
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Figure 4.11: Contour plots of volume of mixing versus pressure β p and mole fractionx
for various binary mixtures: (a) squares and rods, (b) squares andSshapes, (c) rods andZ
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all cases the mole fraction shown is that of the first shape of the pair. All figures are plotted
on the same vertical scale, in relative percentage units,(∆Vmix/V)×100%.
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All of the binary systems in this model are non-ideal, thoughto varying degrees. The

mixture of squares and rods is strongly asymmetrical and peculiarly dependent on pressure,

with a modest positive peak centered nearxO = 0.7 andβ p = 1.2. This corresponds to the

substantial deviation from ideality already seen in Figure4.7 and 4.8 — that introduction

of rods into the square fluid at high density substantially perturbs the structure of that fluid,

lowering the density (see Figure 4.7) until it is completelyrestructured nearxO = 0.5. At

low pressure, however, the most positive volume of mixing occurs to the left of thexO = 0.5

line, on the plateau located atxO = 0.4 andβ p= 0.6. The fluid density is much lower here,

and this effect appears to be due to the presence of the squares interrupting the low-density

orientational ordering behavior displayed in the pure rod fluid.

The square/Smixture is the most strongly non-ideal of all the binary systems, with a dra-

matic peak in the volume of mixing observed atxO = 0.7 andβ p = 1.2. This peak is more

than twice the height of that observed in the square/rod mixture. The reason for this is

that the structures of the dense square fluid and the denseS fluid are fundamentally in-

compatible. The squares prefer to align along the Cartesianlattice directions with regular

displacements of two lattice spacings, and clusters of squares have facets indexed along

these lattice vectors. TheSpieces prefer to align along the lattice diagonals, as discussed

previously, and have facets indexed by the diagonal latticevectors. In an aperiodic sys-

tem, it is impossible to create a fully rectilinear cluster of Sshapes without vacancies. In

our simulations using a periodic boundary, a strip may be created which tiles a rectilinear

domain. When not phase separated, the two structures are therefore incompatible: one

cannot pack clusters of squares and clusters ofSshapes together without either introduc-

ing vacancies at the interface or perturbing the structure of the clusters. This leads to a

very significant positive volume of mixing of these fluids. Again, this effect is asymmetric
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across thexO = 0.5 line, with squares clearly more compatible with (less perturbing to) the

structure of theSfluid than vice versa, much as in the square/rod mixture.

Rods andZ shapes display the second largest positive volume of mixingof the systems

shown, though at somewhat lower pressures and near to equimolarity. Rods are somewhat

more compatible with theZ (or S) fluid than are squares, because rod clusters are better

able to distort and accommodate the characteristic diagonal facets of clusters ofZ shapes.

Nonetheless, this disrupts the rods’ tendency to form smallclusters aligned in both direc-

tions. This incurs a free energy cost, which the system alleviates by increasing the total

volume, corresponding to∆Vmix > 0.

Of the remaining binary systems shown, rods andT shapes are most strongly non-ideal

at pressures near 0.5, suggesting that the structures of these two fluids at even modest

packing fractions (near 0.7) are particularly incompatible. At higher pressures, the peak in

volume of mixing shifts toxI > 0.5, suggesting thatT shapes are less soluble in the rod

fluid than are rods in theT fluid. The mixture ofZ andL shapes is closer to ideal than any

of those discussed so far, with a broad but low peak shifted slightly to theZ-rich side of

the diagram. Finally, the mixture ofSandZ shapes, already considered in Figures 4.7 and

4.9, is of course symmetric aboutxS= 0.5 and shows only very slightly positive volume of

mixing at very high pressures, even while displaying significant microscopic segregation

(Figure 4.9).

Mixtures containing rods exhibit∆Vmix maxima at generally lower pressures than other

mixtures. In Figure 4.11 this is particularly evident for the rod/T mixture and the rod/Z

mixture, but it is also true for rods and squares and the rod/L mixture not shown. This is

another consequence of the pronounced local ordering that occurs in the rod fluid at lower

densities (Figure 4.4). Finally, we note that at very low pressures and/or at mole fractions
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very close to 1 or 0, many mixtures appear to display negativevolumes of mixing. We are

confident that this is a numerical artifact. Under these conditions the molar volume in one

or both pure fluids becomes extremely large, and the correspondingly large statistical error

in these quantities leads to large uncertainty in the (near-zero) volume of mixing. Note that

it is possible for binary mixtures such as these to display a negative volume of mixing, as

discussed below in section 4.3.4.

4.3.3 Many-Component Systems

We have simulated all multicomponent systems at many state points along the phase space

diagonal, and find that the tendency of shapes to self-associate persists even when many

components are present. To illustrate this behavior, snapshots from simulations of selected

three-, four-, five-, six- and seven-component mixtures at high densities (β µ = 7.0) are

shown in Figure 4.12. In all cases, clusters of each species are readily apparent, which is

true in every multicomponent mixture that we have visualized. As in the binary mixtures,

pieces are well-mixed at large length scales, and we have no evidence for any sort of first-

order fluid-fluid transition in these systems. Furthermore,even when many different shapes

are present, there is no tendency to form clusters or characteristic structures composed of

more than one shape.

We have obtained the average sizes of the clusters of each shape in each of these simu-

lations, shown in Table 4.1. As the number of components increases, the average size of

clusters of a given species decreases. Most of this effect issimply due to dilution; the

tendency to form clusters must be significantly reduced as asthe number of particles of a

given shape decreases. For instance, in theS/Z/T ternary mixture, the average size ofS

(or Z) clusters at high pressure reaches as high as 3.364, while inthe O/I /S/Z/J/L senary
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S/Z/T S/Z/J/T

I/S/Z/J/L O/I/S/Z/J/L O/I/S/Z/J/L/T

Figure 4.12: Representative snapshots of selected three-,four-, five-, six- and seven-
component mixtures, with all species atβ µ = 7.0. These are 38×38 sections cut from
64×64 simulation cells; as a result, pieces may extend over the boundary of the section
shown. All pieces of a given shape are shown in the same color,regardless of orientation.
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Mixture Average size of clusters of species:
O I S Z J L T

O/I 11.407 24.041
S/Z/T 3.354 3.364 2.962
S/Z/J/T 2.284 2.248 2.415 2.181
I /S/Z/J/L 2.450 1.826 1.828 1.932 1.933
O/I /S/Z/J/L 1.769 2.051 1.628 1.628 1.703 1.698
O/I /S/Z/J/L/T 1.608 1.836 1.517 1.518 1.568 1.570 1.550

Table 4.1: Average size of clusters of each shape, from simulations atβ µi = 7.0 for all
i, for the mixtures shown in Figures 4.8 and 4.12. Statisticaluncertainty in these data is
±0.005 at 95% confidence.

mixture, it is reduced to very nearly half that value, 1.628.There is nonetheless significant

information contained in the cluster size data. In the two systems containing rods, the clus-

ters of rods are substantially larger than those of other shapes. One might suspect that this

is simply due to the ability of rods to make contacts at largerseparation than other pieces.

However, upon inspection of the snapshots in Figure 4.12, wesee that rod clusters tend to

be closely packed rather than extended, which suggests thatin fact the rods aggregate more

strongly than the other pieces. In theS/Z/J/T quaternary mixture, theSandZ cluster sizes

differ by a statistically significant 0.036, while in theS/Z/T ternary mixture they are the

same to within the uncertainty of the measurement. This is a result of the two enantiomers

interacting differently with the (also chiral)J shape in the quaternary mixture. In the senary

and septenary mixtures shown, both members of each chiral pair are present, and there is

no enantiomeric resolution. Finally, in the two systems containing squares, squares form

larger clusters than any other shape besides rods, despite the compactness of the squares

reducing their ability to make contacts at large distance. Squares also only have eight sites

of contact, tied for the lowest among tetrominoes. Yet, the squares form large clusters.

An approximate combinatorial argument can provide furtherinsight regarding the mean

cluster sizes. In the dense fluids shown in Figure 4.12, nearly all pieces have 4, 5 or 6
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neighbors. We can make an approximate prediction of the average cluster size in a “well-

mixed” equimolar fluid by using combinatorics to predict theprobability that a randomly

chosen particle will have a certain number of neighbors of the same shape as itself, and then

using these values as estimates of the probability distribution of different cluster sizes. For

an exactly equimolar seven-component mixture, assuming that each piece has six neigh-

bors, the probability that a chosen piece has zero “like” neighbors is approximately 0.396,

the probability of one “like” neighbor is also 0.396, and theprobability of two “like” neigh-

bors is 0.165. Assuming that this is also the distribution ofclusters of one, two and three

pieces, respectively, we obtain an average cluster size of 1.50. If each piece has only five

neighbors, then the average cluster size predicted in this way is 1.39; for pieces with four

neighbors, 1.32. Such a simple argument will under-predictthe average cluster size, but not

by a large amount; a “well-mixed” fluid should therefore be expected to have average clus-

ter sizes near to 1.4. Significantly, in the simulated seven-component mixture, all shapes

have average cluster sizes larger than this, with squares and rods in particular forming much

larger clusters than would be expected from random placement. In the seven-component

mixture, then, all of these shapes prefer to self-associate.

4.3.4 Analysis of Virial Coefficients

In order to better understand the interactions between different shapes, we have calculated

all of the second virial coefficientsBi j , as defined by the expansion of the pressure of a

binary i, j mixture in powers of the densities of both species:

β p = ρi +ρ j +Bii ρ2
i +2Bi j ρiρ j +B j j ρ2

j + . . . (4.8)
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Bi j O I S Z J L T

O 4.50 5.00 5.00 5.00 5.00 5.00 5.00
I 5.00 5.75 5.75 5.75 5.75 5.75 5.75
S 5.00 5.75 5.25 5.25 5.50 5.50 5.25
Z 5.00 5.75 5.25 5.25 5.50 5.50 5.25
J 5.00 5.75 5.50 5.50 5.50 5.625 5.50
L 5.00 5.75 5.50 5.50 5.625 5.50 5.50
T 5.00 5.75 5.25 5.25 5.50 5.50 5.25

Table 4.2: Matrix of second virial coefficientsBi j . Note that these coefficients are exact.

These are obtained from the lattice analog of a cluster integral [133,134]:

Bi j = −1
2 ∑

k

fi j (k) (4.9)

wherefi j (k) = 0 if pieces of typesi and j do not overlap if placed in a configuration indexed

by k, and fi j (k) =−1 if they do overlap. In the summationk runs over all possible configu-

rations (that is, orientations and relative displacements) of two pieces. Because the number

of such configurations is enumerable this sum can be evaluated exactly; the resultingBi j

values are shown in Table 4.2. Likewise, an “orientation-specific virial coefficient”B′
i j is

defined by taking the two pieces in specific orientations and only summing over relative

displacements. These “orientation-specific coefficients”are shown in Table 4.3.

TheBi j are clearly measures of how “strongly” two pieces overlap. They are all necessarily

positive, and contribute to increasing the pressure of a fluid over its ideal value. Low values

may be interpreted as indicating a more “favorable” interaction than high values, though

of course there is no direct attraction between any of the shapes. These values may also

be compared to the virial equation of state for the hard disk model. For that model it is

well known that the magnitude of the second virial coefficient is exactly twice the area of

the disk (B2 = π
2(2r)2 = 2ao). If our virial coefficient results were divided by the area of

a tetromino, the resulting scaled virial would provide an approximate comparison of the
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B′
i j O1 I1 I2 S1 S2 Z1 Z2 J1 J2 J3 J4 L1 L2 L3 L4 T1 T2 T3 T4

O1 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

I1 5.0 3.5 8.0 6.5 5.0 6.5 5.0 5.0 6.5 5.0 6.5 5.0 6.5 5.0 6.5 6.5 5.0 6.5 5.0

I2 5.0 8.0 3.5 5.0 6.5 5.0 6.5 6.5 5.0 6.5 5.0 6.5 5.0 6.5 5.0 5.0 6.5 5.0 6.5

S1 5.0 6.5 5.0 4.5 6.0 5.5 5.0 5.5 5.5 5.5 5.5 6.0 5.0 6.0 5.0 5.0 5.5 5.0 5.5

S2 5.0 5.0 6.5 6.0 4.5 5.0 5.5 5.5 5.5 5.5 5.5 5.0 6.0 5.0 6.0 5.5 5.0 5.5 5.0

Z1 5.0 6.5 5.0 5.5 5.0 4.5 6.0 6.0 5.0 6.0 5.0 5.5 5.5 5.5 5.5 5.0 5.5 5.0 5.5

Z2 5.0 5.0 6.5 5.0 5.5 6.0 4.5 5.0 6.0 5.0 6.0 5.5 5.5 5.5 5.5 5.5 5.0 5.5 5.0

J1 5.0 5.0 6.5 5.5 5.5 6.0 5.0 5.5 6.0 4.5 6.0 5.5 5.5 5.5 6.0 6.0 5.0 5.5 5.5

J2 5.0 6.5 5.0 5.5 5.5 5.0 6.0 6.0 5.5 6.0 4.5 6.0 5.5 5.5 5.5 5.5 6.0 5.0 5.5

J3 5.0 5.0 6.5 5.5 5.5 6.0 5.0 4.5 6.0 5.5 6.0 5.5 6.0 5.5 5.5 5.5 5.5 6.0 5.0

J4 5.0 6.5 5.0 5.5 5.5 5.0 6.0 6.0 4.5 6.0 5.5 5.5 5.5 6.0 5.5 5.0 5.5 5.5 6.0

L1 5.0 5.0 6.5 6.0 5.0 5.5 5.5 5.5 6.0 5.5 5.5 5.5 6.0 4.5 6.0 6.0 5.5 5.5 5.0

L2 5.0 6.5 5.0 5.0 6.0 5.5 5.5 5.5 5.5 6.0 5.5 6.0 5.5 6.0 4.5 5.0 6.0 5.5 5.5

L3 5.0 5.0 6.5 6.0 5.0 5.5 5.5 5.5 5.5 5.5 6.0 4.5 6.0 5.5 6.0 5.5 5.0 6.0 5.5

L4 5.0 6.5 5.0 5.0 6.0 5.5 5.5 6.0 5.5 5.5 5.5 6.0 4.5 6.0 5.5 5.5 5.5 5.0 6.0

T1 5.0 5.0 6.5 5.0 5.5 5.0 5.5 6.0 5.5 5.5 5.0 6.0 5.0 5.5 5.5 5.5 5.5 4.5 5.5

T2 5.0 6.5 5.0 5.5 5.0 5.5 5.0 5.0 6.0 5.5 5.5 5.5 6.0 5.0 5.5 5.5 5.5 5.5 4.5

T3 5.0 5.0 6.5 5.0 5.5 5.0 5.5 5.5 5.0 6.0 5.5 5.5 5.5 6.0 5.0 4.5 5.5 5.5 5.5

T4 5.0 6.5 5.0 5.5 5.0 5.5 5.0 5.5 5.5 5.0 6.0 5.0 5.5 5.5 6.0 5.5 4.5 5.5 5.5

Table 4.3: Matrix of “orientation-specific second virial coefficients”B′
i j . The orientations

of each piece are numbered according to the scheme describedin Figure 4.1. These coeffi-
cients are exact.
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excluded volume between that shape (or specific orientation) and hard disks. In general,

the scaled virials of tetrominoes would be smaller than the second virial coefficient of

hard disks (indicating lower excluded volume). Scaling of virial coefficients thus makes

comparison of different size objects possible. In theBi j matrix of Table 4.2, a variety

of interesting features are seen. Consider first the diagonal values, corresponding to the

second virial coefficients of the seven pure fluids. These areall of the same magnitude,

because the shapes all occupy the same number of sites and have similar lateral extent.

Nonetheless, the variation is significant. The value for squares,BOO = 4.5 is the lowest,

while the value for rods,BII = 5.75, is the highest. Of the remaining, theS, Z andT values

of 5.25 are slightly lower than theJ andL values of 5.5. One would expect based on these

data that the squares would have the highest density at a given pressure, followed in turn

by S, Z andT, J andL, and finally the rods. While the squares do in fact have the highest

density at a given pressure, this argument fails to predict the high density of the rods, and

does not distinguish between theS (or Z) andT shapes at all. Another feature of these

data is that theBOX all have the same value forX 6= O, which is due to the squares having

higher symmetry than any other shape. Interestingly, all theBIX are the same forX 6= I and

X 6= O, and rods have the second-highest symmetry.

Likewise, theBi j clearly do not tell the whole story in regards the behavior ofbinary mix-

tures. For example, while theBIZ value of 5.75 is certainly larger thanBZZ = 5.25, it is the

same as the coefficient for pure rods, and does not seem to correlate with the significant

positive volume of mixing seen in Figure 4.11. The coefficient for squares andSshapes,

BOS = 5.0, is smaller even thanBSS= 5.25, which does not correlate at all with the ex-

tremely large positive volume of mixing in this system. To better understand these effects

we turn to the “orientation-specific coefficients”B′
i j in Table 4.3.
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Firstly, the two values forB′
II explain the discrepancy of the density of the rod fluid and

the high value ofBII . Like-aligned rods haveB′ = 3.5, the lowest value on the table,

while unlike-aligned rods haveB′ = 8.0, the highest. The average of these two gives the

high BII = 5.75, but since there is significant orientational clusteringin the rod fluid, the

“effective” value should be much lower (closer to 3.5), accounting for the very high density

of this fluid. For the pureS(andZ) fluids, we see that again the diagonal values ofB′ = 4.5

are lower than the off-diagonal values ofB′ = 6.0, in accord with the earlier observation

that these pieces tend to form clusters with all pieces in thesame orientation. In the pure

J and L fluids, different behavior is observed. Of the four orientations, each prefers to

associate with (that is, has the lowestB′ value for) the 180◦ rotation of itself. That is,J1

andJ3 are a preferentially associating pair, withB′ = 4.5, as areJ2 andJ4. This again,

is consistent with the behavior seen in the snapshots of Figure 4.5. TheJi–Ji association,

corresponding to the diagonal-offset “stacking” seen at low densities, hasB′ = 5.5, the

second lowest value. The 90◦ associations (J1–J2, etc.) are the least favorable, and are less

common in the snapshots. Finally, somewhat similar behavior is observed in the pureT

fluid, with a strong preference for theT1–T3 andT2–T4 associations, withB′ = 4.5, over

all others, withB′ = 5.5.

Considering theBi j andB′
i j values fori 6= j, we see that, while theBi j suggest possibly

favorable associations between pieces of different shape,taking orientation into account

shows a substantially different picture. The lowestB′ for any binary mixture is 5.0, while

for every pure species there is at least one value of 4.5 or below. This suggests that every

shape packs better with its own kind than with any other, provided they are allowed to adopt

favorable orientations.

Although the strongest associations are between pieces of the same shape (though not nec-

essarily in the same orientation), in binary mixtures thereare still preferred orientations
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for associations between pieces of different shape. For example, for neighboringSandZ

pieces, the preferred orientations are between the pairsS0–Z1 andS1–Z0, that is, with one

piece turned 90◦ to the other. In fact, looking at the snapshot in Figure 4.9 this motif is

often, though not always, adopted at the interface between clusters ofSshapes and clusters

of Z shapes. We also see a significant difference in the interactions of the members of the

enantiomers; theS–J coefficients (equal to those of theZ–L pair, of course) are substan-

tially different from theS–L (Z–J) ones. TheS–J coefficients are all the same,B′ = 5.5,

in fact, while in theS–L case there is orientational preference, withS1 pieces preferring

association withL2 andL4 (B′ = 5.0) over association withL1 andL3 (B′ = 6.0.) This

reflects the enantiomeric resolution discussed earlier.

Finally, we note that it is possible in this system to obtain anegative volume of mixing

at pressures sufficiently low that the virial equation of state truncated at second order is

accurate. We have verified numerically that this occurs in the rod/square mixture. The

requirement of accuracy at second order means that the effect is seen only at extremely

low pressures and densities and is therefore very small; nonetheless is is curious to see a

negative volume of mixing between two dilute gases with purely repulsive interactions.

4.3.5 Solubility and solvation

To further probe the interaction between different shapes we turn to Henry’s Law co-

efficients, which measure the solubility of one species in a fluid composed of others.

The Henry’s Law constantKi for solutei in a given solvent is defined byf ∞
i (T, p,xi) =

xiKi (T, p), wherexi is the mole fraction of speciesi and f ∞
i is the fugacity of speciesi

at infinite dilution, which in a real liquid is similar to its partial pressure in the coexisting

vapor. In our athermal model, this becomesβ f ∞
i (β p,xi) = xiβKi (β p). βKi measures the
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ratio of fugacity to mole fraction for the solute at infinite dilution; when its value is very

small, speciesi is very soluble, and when its value is large, speciesi is very insoluble. The

inverse quantity 1/βKi, therefore, is a measure of solubility: it reports the mole fraction of

solute that would be attained at unit solute fugacity (partial pressure), if the Henry’s Law

region extended to such high mole fraction1.

In fact, simulations indicate that these systems display Henry’s Law behavior only for mole

fractions significantly belowx = 0.001, indicating strong non-ideality. We have measured

these constants for each shape dissolved in each pure fluid and in a large number of mul-

ticomponent solvents, all at several pressures. The details of this calculation are given in

the Appendix. A selection of these data atβ p = 0.5 are shown in Table 4.4. This pressure

corresponds to packing fractions near 0.65 for all the solvents considered. We first consider

the various shapes dissolved in pure fluids. Overall, squares are always the most soluble,

and rods are usually the least soluble. There is significant variation from solvent to solvent,

however. Squares are themselves most soluble in theJ andL fluids, and least soluble in the

S andZ fluids. The latter is consistent with the large volume of mixing of squares andS

shapes seen in Figure 4.11, which indicates poor compatibility between those two shapes.

However, such behavior would not have been predicted from the virial coefficients; the

cross-coefficients for squares andS, Z, J andL shapes are all the same. Rods, on the other

hand, are most soluble in the fluid of squares, followed by thefluids ofJ andL shapes and

T shapes, and are least soluble in theSandZ fluids. TheS, Z andT shapes are all mutually

quite soluble, withS andZ being slightly more soluble in theT fluid than in each other,

andT being more soluble in theSandZ fluids than in any other. This appears due to the

strong similarity in shape of these three pieces, which share a “stepped” motif. We also see

1A common, though less rigorous, formulation of Henry’s Law is writtenci = kH pi , reflecting its original
discovery [135]. Here large values of the constantkH indicate high molar concentrationci at given partial
pressurepi ; kH is thus analogous to our 1/βKi.
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Solute Species
Solvent ηs O I S Z J L T

O 0.696 0.218 0.168 0.168 0.196 0.196 0.167
I 0.694 0.232 0.146 0.146 0.159 0.159 0.149
S 0.660 0.227 0.147 0.210 0.168 0.174 0.205
Z 0.660 0.226 0.146 0.210 0.174 0.168 0.205
J 0.653 0.267 0.185 0.185 0.191 0.178 0.183
L 0.653 0.267 0.185 0.191 0.184 0.178 0.183
T 0.650 0.243 0.167 0.212 0.212 0.182 0.182

O/T 0.664 0.193 0.202 0.202 0.195 0.195
S/J 0.647 0.256 0.174 0.206 0.185 0.201
L/T 0.646 0.256 0.179 0.207 0.202 0.183

Senary 0.649-56 0.253 0.176 0.192 0.192 0.185 0.184 0.191
Average 0.244 0.175 0.185 0.185 0.176 0.176 0.182

Table 4.4: Solubility (1/βKi) of each shape in various solvents atβ p = 0.5. Values given
are certain to within±0.002. The first column contains the packing fraction of the solvent,
ηs. The first seven rows of the table show the solubility of each shape in the pure fluids
of each other shape. The diagonal values are missing becauseHenry’s law does not apply
to components of the solvent. The next three rows show the solubility of various shapes
in each of three binary mixtures, with both mixture components at the same chemical po-
tential. The row labeled “Senary” shows the solubility of each shape in a 6-component
mixture composed of all the other shapes, again all at the same chemical potential and
β p = 0.5; these solvents do not all have the same packing fraction, but they vary over only
a small range, given in theηs column. The final row gives the average of the solubility of
each shape in the six other pure solvents; note that this quantity does not have a rigorous
thermodynamic interpretation, and is only given for the sake of comparison.

evidence of chiral interactions in the solubilities ofJ andL in theSandZ fluids and vice

versa. The solubility ofS in L is the same as that ofZ in J, and theJ–Z (or L–S) pair is

more mutually soluble than theJ–S(or L–Z).

In the near-equimolar binary mixtures, the solubility of other shapes is generally intermedi-

ate between the solubilities in the corresponding pure fluids. For instance, squares are less

soluble in theS/J mixture than in the pureJ fluid, but more soluble than in the pureSfluid.

This is consistent with the clustering behavior seen earlier, which suggests that, to a solute,

the mixture looks like small regions of pure fluids. In a few cases, such asJ dissolved in the
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O/T mixture, shapes are as soluble in the mixture as in one of its components. In this case,

the poor structural compatibility of theO andT fluids and their relatively large volume of

mixing provides many voids into which the solute may fit. In one particularly interesting

case, theL shape is noticeably more soluble in theS/J mixture than in either of the pureS

or J fluids. There is a large positive volume of mixing in theS/J system, which is the likely

cause.

In the “senary” row of Table 4.4 are shown the solubilities ofeach shape in the six-

component mixture of the remaining shapes, again all at equal chemical potentials such

that β p = 0.5. For comparison, the averages of the solubilities of each shape in the six

other pure solvents are given in the last row. In all cases, the six-component mixture is a

better solvent than one might expect from averaging over itscomponents, though the differ-

ence is relatively small. Also, the trend established in thepure fluids remains, with squares

being the most soluble of the shapes and rods being the least soluble.

Finally, we note that the ratio of the 1/βKi values for a speciesi in two different solvents

is a partition coefficient which describes the distributionof a solute between them. At

this pressure, the largest partition coefficient is for rodsdissolved in square andZ (or S)

solvents, withKI(O/Z) = 1.49, a relatively modest preference for the fluid of squares. As

the pressure is increased, the total solubilities decrease, but the partition coefficients can be

greater; atβ p= 1.00,KI (O/Z) = 2.14, but the solubilities are reduced to 0.015 in the fluid

of squares and 0.007 in theZ fluid.
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4.4 Discussion

The simulations described above provide a detailed pictureof the structure and thermody-

namics of both the single-component fluids and binary mixtures, as well as some insight

into the behavior of many-component mixtures. The tetromino fluids do not display sharp

(first-order) phase transitions in the density range studied, though there remains the possi-

bility of continuous phase transitions without divergences in the compressibility or other

signatures. However, they do display intriguing local structure, including clustering of

like-oriented pieces in the pure fluids and localized strongspecies segregation in binary

and multicomponent mixtures. That is, although only purelyentropic forces are present

in these systems, pieces appear to preferentially associate with other pieces of the same

shape and complementary (though not necessarily identical) orientation. The qualitative

picture of these interactions obtained through inspectionof representative configurations is

supported by analysis of several quantitative measures, including second virial coefficients,

volumes of mixing, cluster size statistics, and solubilities in the form of Henry’s Law con-

stants. While related models have been used in a number of other simulation studies, the

structure of the fluids and the associated thermodynamics have not been considered in any

detail, and multicomponent mixtures have not been treated in any previous study of which

we are aware.

While the structures adopted in the fluids of squares and rodsis reasonably intuitive, the

behavior of the remaining pieces is rather less so. All of thetetrominoes can be used

to completely tile the lattice (100% packing) in a combinatorially large number of ways,

including via well-ordered periodic structures. The structures of theJ, L andT fluids, while

successfully rationalized in terms of piece-piece interactions, are not easily predicted, and

one can easily imagine other structural motifs for packing these shapes at high densities. It
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thus appears that using shape alone to direct self-assemblyis perhaps more difficult than in

might appear, since rather surprising behavior is observedeven among such simple shapes.

The preference for association of pieces of like shape and complementary orientation, the

solubilities of each species in the other fluids, and the volume of mixing data can all be

interpreted via the usual chemical rule of thumb that “like dissolves like”, provided that

one has an expansive interpretation of “like.” Consider, for instance, that squares and rods

are the most and least compact of the shapes studied, yet are quite mutually soluble, while

rods andJ shapes are much less soluble in each other. Solubility is controlled by the

compatibility of the solute with the characteristic structures formed in the solvent, rather

than with the solvent pieces themselves. Squares are very soluble in the denseJ fluid

because theJ pieces tend to pair, forming compact 2×4 site structures, and a fluid of such

structures is amenable to forming 2× 2 site vacancies, which exactly fit a square. Rods

are much less soluble in theJ fluid than are squares, despite “looking” more likeJ pieces

than squares do, because the 1×4 vacancy required to accommodate a rod requires a larger

perturbation of the structure of theJ fluid. Another type of compatibility occurs in fluid

mixtures, between the characteristic structures formed byboth shapes. Squares and rods

have only modestly positive volume of mixing even at high densities, because both pieces

form structures faceted along the Cartesian lattice vectors. SandZ shapes have nearly zero

volume of mixing while displaying significant microscopic segregation, because they both

form structures faceted along the lattice diagonals. Squares andSshapes, however, exhibit

the most positive volume of mixing of any two species, due to the extreme incompatibility

of their characteristic structures; rods andSshapes are nearly as incompatible.

It remains curious that in all the mixtures considered each shape prefers to associate with its

own type rather than with any combination of others. The orientational virial coefficients

provide some evidence that this should be the case: a shape’slowest orientational virial is

116



always with itself. Another possible explanation for this behavior, or one possible reason

for the virial results, is that the tetrominoes are quite thin (either one or two lattice spac-

ings), and so their “face” on one side tends to be the same as that on the other; this is true

for all the shapes except theT. This would lead to a natural tendency for shapes to pack

efficiently in the same orientation, which is observed for the rods,SandZ shapes.J andL

shapes also pack this way, but only at low densities; at high densities they rotate to make

contact with the same face on another piece.T shapes form the most complex structures at

high density, perhaps because they are unlike the other pieces in not having opposing faces

of similar shape. Self-association is likely not a general feature of polyomino fluids; one

can easily imagine larger shapes which exhibit “lock and key” shape complementarity, or

frustrated structures that cannot pack efficiently with themselves2.

Much of this behavior can be predicted qualitatively by examination of second virial coef-

ficients. The orientationally-averaged “thermodynamic” coefficients defined in eq 4.8 do

not provide much insight into the fluid structure, but the orientationally-resolved coeffi-

cients correlate extremely well with behavior observed in the simulations. In nearly all

cases, the relative orientation adopted by pieces in the dense fluids are those with the low-

est orientationally-resolved coefficients. This suggeststhat these quantities may be useful

in designing shapes that will exhibit a particular structure or packing motif; this should be

equally true in systems which exhibit attractive interactions.

Increasing the number of components in a mixture decreases the tendency of each species

to self-associate. This appears to be principally due to dilution, rather than any tendency

for shapes to form characteristic multicomponent structures. Analysis of Henry’s Law data

indicates that some many-component mixtures are generallybetter solvents (for shapes not

present in the mixture) than were pure species or binary mixtures. Much of this behavior

2Many may consider the tetrominoes already sufficiently frustrating in this regard.

117



can be correlated with the volume of mixing in the solvent; when the solvent components

do not mix well, the density of the fluid is lower (at a given pressure) than otherwise, and

it becomes a better solvent for other species because it has more empty space available.

Such a correlation is likely to be present for other polyominoes and perhaps real colloidal

and nanoparticulate systems, and may suggest routes towards the systematic control of

solvation behavior in such systems.

All of the fluids studied are fully miscible; no macroscopic phase separation was ever

observed in these simulations. In off-lattice hard models,even in two dimensions, this is not

always the case. For instance, demixing can be observed in mixtures of hard rectangles and

disks or discorectangles [100]. Again, we expect that such phenomena may be observed

in other (on-lattice) multicomponent polyomino fluids, especially when components are

of substantially different size. Since an isotropic-to-nematic transition has already been

identified for on-lattice rods of lengths greater than considered here [132], we believe that

many single-component and multicomponent fluids of larger polyominoes are likely to

exhibit true phase transitions. Extension of the model to three dimensions would increase

the number of rotational states available and thus increasethe likelihood of observing first-

order transitions.

The off-lattice counterparts of some of the shapes considered here have been studied by

other groups [98–101,132]. The behavior of the on- and off-lattice models is quite different,

but this should not be surprising. In the off-lattice model,especially at high densities, the

free energy of the fluid is principally determined by free volume considerations, and the

structure adopted is one which maximizes the ability of individual objects to move about

within the confinement of their neighbors. In the lattice model studied here, there is very

little opportunity for such small-amplitude motions at high densities. Most importantly,

the orientational degree of freedom in the lattice model is discrete, with very few states
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available, so that the total entropy is dominated by translational terms; this is not the case

in the off-lattice systems.

In conclusion, we have observed a number of interesting and previously unexplored phe-

nomena in simulations of an idealized model with relevance to molecular adsorption and

self-assembly in two dimensions. The extreme simplicity ofthe shapes studied and their in-

teractions belies considerable complexity and non-ideality in the structure of the simulated

fluids and mixtures. Quantities such as second virial coefficients, familiar from the anal-

ysis of simple liquids, and rigorous solution thermodynamics can nonetheless be used to

correlate and understand most of this behavior. Larger polyominoes may exhibit true phase

transitions, long-range ordering and even more complex behavior, and these results will be

examined in the next chapter. We note in this regard that, even with an inexpensive model

such as this and an efficient computer implementation, an exhaustive search of a seven-(or

more)-dimensional phase space is likely beyond current computational capabilities. We

believe statistical approaches for locating phase transitions in such a space based on ideas

from quantitative stereology may prove useful [136]. Tetrominoes confined in small spaces

may be induced to exhibit regular structure. If the confinement reinforces the characteristic

structure of a fluid it will be enhanced, perhaps leading to pseudo-crystallization; on the

other hand, an incompatible confinement geometry may be usedto enhance fluid mixing.

Confinement might also be used to effect a chromatographic separation based on liquid

structure, rather than particle size; this will also be considered in future work. Finally, the

results obtained to date may have some relevance to to successful strategies for playing the

Tetris computer game, but this has not been considered in detail.
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Appendices

Calculation of pressure in multicomponent mixtures

In the athermal thermodynamics appropriate to this model, the Gibbs-Duhem equation is:

dβ p = ∑
i

ρidβ µi (4.10)

β p(β µ) = β p(β µ0)+∑
i

∫ β µ

β µ0

ρi
(

β µ ′)dβ µ ′
i (4.11)

(For a system with a real temperature, these expressions arestill valid at constantβ .) In

principle, the integration in eq 4.11 is path independent (one can integrate through any set

of β µi state points). For a pure fluid the path selection is trivial and the quality of the

result depends only on the spacing inβ µ between simulations. For each binary mixture of

species A and B we have chosen to use rectilinear paths to reach each state point:

p(β µA,β µB) = p
(

β µA,0,β µB,0
)

+

∫ β µA

β µA,0

ρA
(

β µ ′
A,β µB,0

)

dβ µ ′
A

+
∫ β µB

β µB,0

ρB
(

β µA,β µ ′
B

)

dβ µ ′
B (4.12)

β µA,0 and β µB,0 are chosen such that the density is very low, so thatp
(

β µA,0,β µB,0
)

can be accurately computed using the virial equation of state truncated at second order,

Equation 4.8. The integration is a two step process:β µB,0 is held fixed while integrating

up to the desiredβ µA, after whichβ µA is held fixed whileβ µB is varied. Integrations were

performed using Simpson’s 1/3 integration. We examined different integration paths and

found that the variation inβ pdue to choice of integration path was insignificant, confirming

that the simulations are spaced closely enough inβ µ to provide reliable thermodynamics.
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Calculation of volume of mixing

The change in volume upon mixing is defined as:

∆Vmix(N,β p) = V (N,β p)−∑
i

V̂i (β p)Ni (4.13)

whereV̂i (β p) is the molar volume of pure speciesi at pressureβ p. Our simulations of bi-

nary mixtures were performed in the grand ensemble, which necessitates several additional

manipulations in order to obtain∆Vmix as it is conventionally used, as follows:

1. Obtain the equation of state,β p as a function ofβ µ for each single-component (pure)

fluid by thermodynamic integration, as described above.

2. For each speciesi, fit V̂i (β µi) vs. β p(β µi) via a cubic-spline function to provide

V̂i (β p).

3. Computeβ p as a function of the chemical potentialsβ µ for the desired mixture,

again by thermodynamic integration. Combine this with the numbers of each shape

N(β µ), obtained in the simulation, to yieldV (N,β p).

4. For each state pointβ µ , compute∆Vmix via eq 4.13 .

5. Plot∆Vmix (or ∆Vmix/V) as a function ofβ p and mole fractionsx.

Calculation of Henry’s Law constants

In an athermal system, in the Henry’s Law regime:

β f ∞
i (β p,xi) = xiβKi (β p) (4.14)
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that is, the fugacity of speciesi at infinite dilution in a particular solvent is equal to its mole

fraction in the solution multiplied by a constantβKi , which depends on both the solvent

and solute and varies with pressure.βKi is related to the excess chemical potential of the

solutei at infinite dilution by [137,138]:

βKi(β p) = ρsexp
[

β µ∞
i,ex(β p)

]

(4.15)

whereρs is the solvent density. We measureβ µ∞
i,ex via Widom test-particle insertion [139].

In the grand canonical ensemble

β µ∞
i,ex= − ln〈exp(−β∆Ui)〉β µ,V (4.16)

where∆Ui is the energy associated with the insertion of a test particle of speciesi in the

solvent, and the ensemble average is taken over both possible insertion positions (and ori-

entations) and the positions and number of particles of other species present. Note that in

the grand ensemble this expression applies only to the solute and not to the components of

the solvent. In the hard model studied here, the term in〈· · · 〉 brackets reduces to the en-

semble average probability of successfully inserting a test particle of speciesi in the system

when there are no other particles of speciesi present.
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Chapter 5

Polyomino Fluids and Crystals

After our extensive study of the tetrominoes, the next logical step was examining the pen-

tominoes, searching for more complicated behavior. In addition, a selection of larger poly-

ominoes were studied. These included enlarged (size 16) versions of the tetrominoes, a

series of high-symmetry shapes, and a family of shapes we refer to as “fish”. Tetrominoes

displayed non-ideal mixing, “microscale phase separation”, and short-range geometric or-

dering. Pentominoes display much of the same microscale phase separation and clustering.

The pentominoes also display fluid-to-solid phase transitions. Polymorphism (multiple

solid phases) is observed in some pentominoes, and many larger polyominoes. In some

larger polyominoes, we observe columnar behavior. Statistical mechanical models are used

to assist in explaining the isotherms and stability of some polyomino solids.

5.1 Mathematical Research on Polyominoes

Most prior literature on polyominoes is found in mathematical journals, and mathematical

challenges involving polyominoes were first popularized inthe 1960s [9]. Mathematical

researchers are generally concerned with different topicsthan we are in this dissertation,
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but some of their work is useful when considering how to generate polyomino families or

how to systematically categorize crystalline packings [10].

5.1.1 Enumeration

“Fixed” polyominoes cannot be rotated, and are the most commonly enumerated type of

polyomino. “One-sided” and “free” polyominoes are subsetsof the set of “fixed” poly-

ominoes [140]. “One-sided” polyominoes considered equivalent if superimposable after

rotation, while “free” polyominoes are allowed to both rotate and flip. There are 18 “one-

sided” pentominoes. In Chapter 4 we considered the set of allpossible “one-sided” tetro-

minoes, and continue to examine only “one-sided” polyominoes here. This is in keeping

with an interest in molecular adsorption on surfaces, wheremolecules may preferentially

adsorb in one configuration. Also, real molecules adsorbed on surfaces are generally able

to change orientation, which is consistent with examining one-sided as opposed to “fixed”

polyominoes.

Enumeration of polyominoes has been a longstanding research problem in their mathe-

matical literature, as the size of the families (polyominoes of a given areaN; tetrominoes

haveN = 4) grows exponentially, as quantified by Klarner’s constant[141]. A simple brute

force approach is to enumerate a family of sizeN by generating them from the family of

sizeN−1. First, take a polyomino of sizeN−1, add an additional lattice site at one edge

site, and store the result. Repeat this process over all edgesites of every polyomino of size

N−1, and then eliminate duplicates to complete the set. The first efficient algorithm for

enumeration of all possible fixed polyominoes is due to Redelmeier [140]. Redelmeier’s

algorithm avoids generation of duplicates. Redelmeier wasable to enumerate up to all
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possible 24-site polyominoes using ten months of computer time, which was a more than

tenfold increase in rate of enumeration over other algorithms available at that time.

More recent work by Conway has focused not on actual construction of every single poly-

omino of a given size, but instead on calculation of the properties (including number) of

those families of polyominoes using transfer-matrix methods. This has resulted in calcu-

lation of polyomino properties such as perimeter, percolation thresholds, area, and number

up to size 30 and beyond [118]. However, his algorithm is not useful if the properties of in-

dividual shapes are to be studied, since it does not actuallygenerate the shapes. Conway’s

algorithm also applies only to fixed (not one-sided or free) polyominoes.

5.1.2 Tiling

Golomb was the original author of much of the mathematical literature on polyominoes, in-

cluding an early study of different packings (“tiling”) of small polyominoes [10]. Golomb’s

book [11],Polyominoes, encapsulates much of the original discussion of polyominoes and

challenging or classic problems regarding their tiling. For instance, how can one tile domi-

noes so that a “fault line” does not run through the structure? This has a direct applica-

tion to masonry, as brick walls with continuous fault lines are weaker for bearing loads or

shock resistance. We would also hope that a thorough understanding of polyominoes may

eventually lead to a better understanding of assembly in modern chemical problems. For

example, TEM micrographs of some binary nanoparticle superlattices [142] bear a strong

resemblance to polyomino crystals.

Conway created a sufficient, but not necessary, set of requirements for a polyomino to be

able to tile the plane. By this we mean a regular structure which covers every lattice site on

an infinite plane. This rule is dubbed “Conway’s criterion”,and no better rule has yet been
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discovered [143]. The generalized version of the rule is fora “Conway Hexagon”, which is

defined as follows:A,B,C,D,E,F are points in order on the boundary of some region. Let

b(A,B) refer to the part of the boundary curve connecting pointsA andB without passing

through any other point, andb(C,D) refer to the same curve forC andD, and similar for

the rest of the adjacent points. IfA = B, b(A,B) is just a point: this may be useful for

shapes without much curvature, or shapes such as pentominoes or tetrominoes. A shape

satisfies “Conway’s criterion” if there is a translation that simultaneously takesA to E and

B to D, and each of the four sidesb(B,C), b(C,D), b(E,F), b(F,A) has 180 degree rotation

symmetry. In practice, polygons that satisfy this criterion will have opposite sides that are

congruent and parallel. This allows them to pack by stacking“top to bottom” along the

congruent edges, and also “end to end” through 180 degree rotations.

5.2 Simulation details

5.2.1 Change from binary to integer representation

For this work our simulation code was modified such that occupation of the lattice was

no longer stored bit-by-bit in a 512 byte integer vector (8 bytes per element). Instead, a

two-dimensional integer array of two byes per element was used to record the state of the

lattice. Initially, possible reduced speed was a concern. On modern CPUs, the storage

array appears to still fit within the L2 cache (up to roughly 6 megabytes in size) provided

that the dimension of the array is kept to a reasonable size. Code and data stored within

the L2 cache of a processor can be accessed much faster than data which has to be fetched

from main memory. We typically use 256 as a maximum lattice dimension, which equates

to only 128 kilobytes of cache (2562 array values at 16 bits per value), and most modern
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CPUs have at least one megabyte of L2 cache. Allocatable arrays were also tested, but the

resulting performance was slower by at least an order of magnitude when compiled with

the GCC/gfortran, version 4.3.

5.2.2 Expanded lattice

As some of the polyominoes to be studied are much larger than tetrominoes, the simulation

cell size was increased. Larger lattices were needed to minimize any finite size effects.

Preliminary runs included many different sizes, up to a 512× 512 lattice, but typically a

120× 120 or 144× 144 lattice is used for these simulations. An edge length of 120 has

the advantage of being evenly divisible by 2,3,4,5,6 and 8, which is useful for simulations

of shapes with many solid phases, or unknown crystal structure. If the simulation cell edge

length is not a multiple of the unit cell edge length, grain boundaries or line defects may

appear in the simulation.

5.2.3 Modified convergence heuristics and block averaging

In general, simulations of larger polyominoes take much longer to equilibrate than those of

smaller ones. This was expected for a few reasons. Our biasedinsertion method becomes

less efficient as the polyominoes become larger. Translation moves, still limited to a dis-

placement of one lattice site in any direction, are smaller relative to the size of the piece.

Since the shapes are larger, there is a lower acceptance ratefor all moves at high densities

– with more lattice sites being affected by a move, there is simply a greater chance of a

move resulting in overlap with another piece. The number of Monte Carlo moves between

samples, and the number of samples per block, were thereforeincreased to 4000 and 16000
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respectively, to reflect the increased lattice size. To equilibrate a system in the vicinity of

a phase transition, several billion Monte Carlo moves, or more, were often needed. The

nucleation and growth of a crystalline phase is a slow process. At aβ µ just barely above

a transition and starting from an empty lattice or fluid, the simulation may proceed for bil-

lions of MC moves in the fluid phase before the solid phase fully occupies the cell. Atβ µ

below the transition point, the fluid phase does not need as many MC moves to equilibrate.

5.3 Vacancy Thermodynamics

For crystalline phases, we should be able to accurately and precisely model isotherms in the

high density regime by determining the average number of vacancies present. One model

used for this will be described in this section. Specific examples will be discussed in a later

section.

In the grand canonical ensemble, for an athermal system:

βPV = lnΞ =
S
k

+β µ〈N〉 (5.1)

where〈N〉 is the average number of pieces in a system. During the courseof a simulation

βPV is maximized. Therefore, when examining crystalline solidphases or interfaces be-

tween different cluster domains, packings which have greater entropy at a given density are

the more favorable.

The thermodynamic properties of crystalline phases of thismodel can be accurately mod-

eled as follows. Crystalline phases are characterized by both high density and translational

order. For a lattice of sizeL×L and polyominoes of sizeM, we defineN as the number
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of polyominoes andV = L2/M as the maximum number of polyominoes. The partition

function can be presented as a sum over configurations, whichmay then be restated as a

sum over occupancies by introduction of degeneracy coefficientsW(N) (which are micro-

canonical density-of-states):

Ξ =
states

∑
i

eβ µNi (5.2)

=
∞

∑
N=0

W(N)eβ µN (5.3)

Instead of summing over the number of pieces, we may sum over the number of voids

(NV = V −N):

Ξ = eβ µV
∞

∑
N=0

W(N)eβ µ(N−V) (5.4)

= eβ µV
∞

∑
NV

W(Nv)e
−β µNV (5.5)

The “complete occupancy” termeβ µV is factored off, which shows that−β µ is the quantity

conjugate to the number of vacancies. Then, for largeβ µ, only the first few terms of the

sum are important, and we write

Ξ/eβ µV = 1+W(1)eβ µ +W(2)e−2β µ + . . . (5.6)
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The specific degeneracy expressions are as follows, withW1 representing the “local” states

at anyV sites, andW2 being an interaction term which is defined in its expression,similar

to the definition of a virial coefficient.

In this equation,W(NV) is the total number of ways to arrange all the pieces in the system

whenNV of them is missing. Because of the translational symmetry, we can factor off a

volume term, giving

W(1) = V ·W1 (5.7)

whereW1 is a “local” degeneracy – the number of states associated with a single vacancy

at a specific position.W(2) is the total number of states for a system missing two shapes.

These can be divided into two groups: those where the two missing pieces are far enough

from each other that they can be considered independent, andthose where they interact:

W(2) =
V(V −1)

2
·W2

1 +V ·W2 (5.8)

The first term covers the “non-interacting” situation, by treating the vacancies as a non-

interacting “ideal gas”:V(V −1)/2 is the number of ways of placing two vacancies on the

lattice, and they each give rise toW1 local states. The other term covers the “interaction” of

the two vacancies. This equation may be regarded as adefinitionof theW2 quantity, which

should be thought of as a second virial coefficient of the vacancies.

For two different crystal structures,A andB, a largerW1 should lead to a largerβPV and

therefore determine the thermodynamically stable phase. If W1(A) = W1(B), a comparison

would have to be made betweenW2(A) andW2(B) , and so on. This second order effect on

130



the partition function (and hence, packing fraction as commonly compared in isotherms) is

small compared to first order effects. The average vacancy density for a given crystal can

be determined by examining the derivative of the log of the partition function with respect

to−β µ:

〈NV〉 =
∂ lnΞ

∂ (−β µ)
=

∂
∂ (−β µ)

ln[1+V ·W1expβ µ + . . .] (5.9)

≈ ∂
∂ (−β µ)

V ·W1eβ µ (5.10)

≈ V ·W1eβ µ (5.11)

Finally, we note that this theory may also be applied to crystals with multiple “kinds” of

sites, sayX andY. To first order,

W(1) = VX ·W1X +VY ·W1Y (5.12)

whereVx is the number of sites of typeX, W1X is their associated local degeneracy, and

similarly for site typeY.
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5.4 Pentomino results

5.4.1 Overview

The phase behavior of each of the 18 one-sided pentominoes was studied in detail. The

shapes themselves are shown in Figure 5.1. There are five pairs of enantiomers, and sev-

eral of the shapes can be seen as larger versions of tetrominoes. While there is a rod in

this set, there is not a square. TheX shape has the same symmetry as the square, but its

different shape may result in different packing. As each pentomino may be constructed by

adding a single site to one or more tetrominoes, the other shapes also contain features of

the tetrominoes, such as the pentominoT shape resembling both the tetrominoT shape and

J/L shapes. Like the tetrominoes, all of the pentominoes can tile the plane.

F’ / FP / QX

UL / JV

W

IY’ / Y

Z / SN / N’

T

Figure 5.1: The 18 one-sided pentominoes. Some enantiomeric pairs are labeled with a
single letter, “primed” and “unprimed”. Colors indicate the presence, absence, and type
of phase transition. Yellow indicates no phase transition,blue indicates transition to a
disordered phase, and red indicates transition to a crystalline phase or phases.
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For each pentomino, five independent isotherm simulations were performed in the range

β µ = 1 toβ µ = 11. A spacing of 0.05β µ between state points was used. While the initial

simulations began from an empty lattice, simulations at other state points were seeded from

the prior state point. This “sequential” simulation protocol greatly accelerates equilibration

at high densities. It also allows us to obtain forward and reverse branches of isotherms. The

sequential simulation protocol restricts us from parallelizing a single isotherm calculation.

To make full use of computing resources, we performed multiple isotherm calculations in

parallel using different random number generator seeds, oron entirely different species.

5.4.2 Pentominoes without a phase transition

The rods,T, N/N′, W, L/J, V, F /F ′ andU pentominoes did not undergo a phase transition

in theβ µ range studied. The isotherms for these shapes are shown in Figure 5.2. As in the

isotherms shown in the previous chapter, our unified temperature and chemical potential,

β µ, is on the horizontal axis. The packing fraction (η, as defined in the previous chapter),

is on the vertical axis.

While not displaying phase transitions, these systems nonetheless have many interesting

features. Snapshots of these fluids at high densities are shown in Figures 5.3 and 5.4. In the

T fluid, the predominant structure involves two pieces placed“back to back”. An example

of T shape packing is shown in Figure 5.3. The “back to back” dimerforms a vacancy-

free interface (there are no unoccupied lattice sites) withitself when rotated 90 degrees.

In the snapshot, we see that vacancies are often associated with pieces not being part of

“back to back” dimers. The capability of differently oriented clusters to accommodate each

other through vacancy-free interfaces is observed in many pentomino fluids, and especially

those which do not undergo phase transitions. This ability to display orientational disorder
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Figure 5.2: Isotherms of pentominoes without a phase transition. Data for each isotherm
was gathered via “sequentially” seeded simulations. Each state point in an isotherm is
separated by 0.05β µ.
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T

W

N

L

Figure 5.3: Pentominoes that do not display phase transitions, each atβ µ = 11. In this
and other snapshots, pieces are shaded differently according to orientation. The blue and
purple shades differ in rotation by 180 degrees, as do the yellow and orange shades. Each
snapshot shows a section of the full simulation cell. From top left to bottom right (reading
order):T, N, W, L.
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F U

V

Figure 5.4: Additional pentominoes that do not display phase transitions, all atβ µ = 11.
Each snapshot shows a section of the full simulation cell. From top left to bottom right
(reading order):V, F, U .
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without loss of packing fraction appears to inhibit crystallization. That is, the large number

of non-crystalline high density states this orientationalfreedom provides make it less likely

that a crystalline state will be the final result at any givenβ µ.

Diagonal stacking, as seen in theS andZ tetrominoes in Figures 4.5, is also observed in

many pentominoes. TheN shape shown in Figure 5.3 is one example. This is not surprising

as theN shape resembles theSshape tetromino. Similar to theS/Z tetrominoes, theN can

form a herringbone interface between clusters of perpendicular orientation. We see large

“stacked” domains, but no phase transition to an orientationally ordered crystal.

TheW shape also displays strong orientational clustering, and features vacancy-free inter-

faces between clusters of different orientation. Due to thediagonal edges of theW shape,

a perpendicular piece will always fit flush against a stack ofW pieces. Interestingly, the

packing and clustering observed in theW simulations is similar to that of the tetromino and

pentomino rods, but rotated by 45 degrees. TheW shape also has quite high density over

most of the chemical potential range scanned, second only tothat of the rod shape.

In theL fluid, pairs of pieces aggregate to form 2× 5 rectangular dimers, analogous to the

dimers seen in the tetrominoL fluid. When aL piece is not part of a dimer, quite often there

are multiple vacancies next to it. Asβ µ is increased and more dimers form, the density of

L fluids approaches that ofW fluids, which have nearly equal packing fraction atβ µ = 11.

TheV fluid, shown in Figure 5.4, displays multiple types of clusters. Ultimately, they pack

only poorly and atβ µ = 11,V fluids have an average density lower than any system butT

fluids. The two main clusters observed are either “head-to-tail” dimers, or diagonal stacks

of pieces of the same orientation. However, these two types of clusters cannot form defect-

free interfaces. Four pieces, each with a different orientation, may form a cluster shaped
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like a “cross” or “plus sign”, which will feature prominently in discussion of theZ shape.

However, this cluster does not frequently occur in theV fluid.

TheF shape displays orientational clustering at highβ µ. Two types of dimers are observed

and large orientationally oriented domains are formed. At high β µ, the density of this fluid

increases faster than that of other pentominoes which do notundergo transitions, except

for theU shape. The interlocking diagonal dimer tiling with a 2× 1 edge, easily visible in

the upper right of the snapshot, is the dominant structure observed. Clusters of head-to-tail

dimers are seen in the lower middle region.

This strong orientational clustering was also seen in shapes which had phase transitions to

a disordered state (and will be discussed in those cases shortly). It is not entirely clear why

theF shape has domains which look largely analogous to theY shape, but has an anomalous

isotherm instead of its own phase transition. No cell-sizedgrain boundaries were found and

testing of various system sizes did not show significantly different packing. It is possible

that a larger variety of domain interfaces simply leads to more possible defect states, and

the rotational and translational entropy gained through these states is enough such that a

transition never occurs.

The U shape can only form high-density configurations through “interlocked” dimers.

These dimers may form diagonally stacked clusters with either 2× 1 or 2× 2 interfaces,

either of which may form a vacancy-free interface with a perpendicularly oriented cluster.

A snapshot is shown in Figure 5.4. Where there are vacancies in this snapshot, there is

usually aU piece nearby that is not part of a dimer. The anomalous high density behavior

for F andU shapes may be because they act as “larger” dimerized shapes more strongly

than, for example, theJ/L shapes.
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Figure 5.5: Pentomino rods atβ µ = 11. Orientation-specific clustering of groups of rods
into larger rectangular (often square-like) shapes is the dominant form of packing.

Lastly, the previously studied system of rods on a square lattice with an aspect ratio of

5:1 [132] is reproduced here. The rods cluster strongly and have the highest density at any

givenβ µ of the species which do not have a phase transition. A snapshot of this system is

shown in Figure 5.5, and is very similar to the tetromino rodsin the previous chapter.

5.4.3 Isotherms of pentominoes with phase transitions

The X, S/Z, Y/Y′, andP/Q pentominoes undergo phase transitions, as indicated by sharp

discontinuities in their isotherms, which are shown in Figure 5.6. As already mentioned,

the data in this figure are averages of five independent runs, using different random seeds.

In some cases, the transitions were not always observed at the sameβ µ (that is, there was

hysteresis). This results in jagged steps in the average isotherm; the individual isotherms
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Figure 5.6: Isotherms of pentominoes that display phase transitions (data averaged over 5
runs). State points in each isotherm are separated by 0.05β µ; individual points are shown
only for theX data. Differences between enantiomers appear due to small sample size.

each display a single steep step (not shown). TheS, Y′, andQ shapes are mirror images of

theZ, Y, andP pentominoes, so need not be discussed.

Briefly, the X shape freezes to a single crystal structure. TheZ andY shapes undergo

transitions to disordered structures; in the case of theY shape the density of this phase

approaches nearlyη = 1, while the denseP phase has rather more vacancies. TheZ shape

also crystallizes, but to many different polymorphs.

5.4.4 Y and P shapes: transition to a disordered phase

Both just below and above the phase transition theY fluid consists of “back to back” dimers.

This is shown in Figure 5.7. The high density phase has a packing fraction very near to
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Figure 5.7:Y pentomino snapshots atβ µ = 9.50 andβ µ = 11.00 (pre- and post-transition).

1.00, comparable with that of a perfect crystalline structure. We speculate that orientational

disorder as observed in Figure 5.7 is the source of some additional entropy which inhibits

true crystallization.

The phase transitions observed for theP shape did not result in systems with unit density

or ordered, crystalline domains. An example result is shownin Figure 5.8. Pre-transition,

P pieces often dimerize “face to face” and form 5× 2 rectangles, but post-transition this

dimer form is not observed. A diagonally “stacked” dimerization or clustering is seen both

pre- and post-transition. To test whether this disordered,irregular packing was a function of

periodic boundaries, lattice sizes of 1202, 1802 and 2102 were tested, all of which produced

similar results.
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Figure 5.8:P fluid, atβ µ = 10.15 andβ µ = 11.00 (pre- and post-transition).

Figure 5.9:X pentomino snapshots: before transition atβ µ = 3.650 and after transition at
β µ = 3.70.
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5.4.5 X shape: transition to an ordered crystal

The X shape undergoes a first-order phase transition to a crystalline state, and was the

first shape studied to do so. Inspection of snapshots from state points before and after this

transition show that the system has gone from a disordered, liquid-like state to a highly

ordered, largely crystalline state. In Figure 5.9 we see thethe system before and after

the transition. Notably, the crystal has two possible stereoisomers: a left-handed packing

and a right-handed packing. Atβ µ just above the transition point, the resulting solid has

many vacancies and several defects. It is also a pure stereoisomer instead of some kind of

racemic mixture with interfaces. If it were a mixture, that would indicate either problems

with equilibration or periodic boundaries and the dimensions of the crystal unit cell.

Additional isotherms in both increasing and decreasingβ µ for the X shape are given in

Figure 5.10. These display hysteresis. Hysteresis may occur when a system has two states

of distinctly different structure and a barrier to interconversion. The phenomenon is com-

monly observed in experiment, for example, with melting or freezing. For these calcula-

tions we slightly altered the simulation methodology. Eachbranch (forward and reverse)

was simulated using “sequential” seeding as described previously. We also re-ran the cal-

culations in a smaller system withL = 60. Here, no hysteresis loop is observed, but the

transition does occur at near the same chemical potential.

5.4.6 Z shape: phase transitions and polymorphism

There are six known periodic tilings of theZ shape [144], shown in Figure 5.11. In the type

1 and type 4 crystals, each piece has the same orientation. They differ by being stacked

“body-to-body” versus “head-to-tail”. The type 2 and type 5crystals also have common

143



3.5 3.6 3.7 3.8 3.9
βµ

0.75

0.8

0.85

0.9

0.95

1

η 
(p

a
ck

in
g

 f
ra

ct
io

n
)

Forward Branch
Reverse Branch

Figure 5.10:X pentomino isotherms, including both the forward and reverse branches.
Significant hysteresis occurs in this system.
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Figure 5.11: The six periodic tilings of theZ pentomino. These are found through back-
tracking (a form of exhaustive enumeration for tilings), not simulation. These unit cell size
on the underlying square lattice widely varies for these tilings.
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features. Each may be viewed as inter-meshed rows of pieces,or as an assembly of “cross”

subunits composed of four pieces. When viewed as inter-meshed rows, the repeat units

differ in being composed of rows single units (type 5) versusrows of dimers (type 2).

When viewed as assemblies of “cross” subunits, they differ in handedness. In the type 6

tiling, vertical columns of pieces in one orientation are separated by a columns of dimers in

the perpendicular orientation. Lastly, in the type 3 tiling, groups of four pieces form cross-

shaped subunits which are separated by additional pieces ofvarying orientations, colored

red. This is the most complex tiling.

When initial simulations were performed on theZ shape, we observed that post-transition

configurations at highβ µ often had multiple domains, and that different simulation runs

could also result in different crystal structures. A seriesof representative configurations

are shown in Figures 5.13 through 5.16. Figure 5.13 shows a pre-transition configuration,

displaying nuclei of type 1 and type 3, and a small number of type 2 nuclei. Its post-

transition counterpart, Figure 5.14, is composed of two large domains, one of type 2 and one

of type 3, with the type 2 domain occupying roughly 80% of the simulation cell. Figure 5.15

is an example of a cell with type 1 and type 2 domains, where thetype 1 domain occupies

about 40% of the box. The “band” feature is observed in many simulations, and apparently

presents a difficult obstacle to equilibration. Lastly, Figure 5.16 displays a mixture of three

similarly sized domains of type 1 and type 3 crystal, with twoof the type 1 domains being

of different orientation. There is also a small type 2 domain. The system in Figure 5.16 was

grown from an empty lattice in a procedure described below; the systems in Figures 5.13

to 5.15 were selected from preliminary “sequentially seeded” isotherm calculations.

To better understandZ shape polymorphism, the following protocol was used: 160 inde-

pendently seeded simulations were run atβ µ = 8.0, each starting from an empty lattice

and a different random number generator seed, were run for over 1.1 trillion Monte Carlo

145



Crystalline domain occurrence:
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Pure crystal 4 67 3 0 0 0
Complete coverage, multiple domains0 17 1 0 0 0
Majority component 13 48 8 0 0 0
Equal part in 2-component system 5 9 8 0 0 0
Minority in 2-component system 15 10 11 0 0 0
Equal part in 3-component system 11 15 15 0 0 0
Minority part in 3-component system 7 7 14 2 0 0

Table 5.1: Distribution of dense phase compositions forZ pentominoes atβ µ = 8.0, past
the phase transition point. This data was gathered through simulations lasting over 1.1
trillion Monte Carlo moves for each system, beginning from an empty lattice in each case.

moves with occasional checkpointing to observe the state ofthe system. The final state in

each run was characterized “by eye”, as either a single crystal, or a multi-domain structure,

and the various phases present determined. These results are collected in Table 5.1. The

majority of simulations resulted in a multi-domain configuration, indicating that even after

one trillion MC moves the system is not fully equilibrated. The type 2 structure was the

most commonly observed. It occurred as a pure crystal – a single domain filling the entire

simulation cell – 67 times, and additional 17 times as the only type of crystal in the system

(but in multiple domains). This means it is the only observedstructure in over half the

simulations, and in 48 of the remaining 76 simulations it is the majority component. The

type 1 and type 3 crystals occur with similar frequency, but the type 3 is less likely to be the

majority component. The type 4 crystal was rarely observed,and then typically only at the

interface of two different crystal domains. Type 5 and type 6structures of domains at least

several repeat units in size were not observed, although clusters can sometimes be found at

interfaces between domains of other types, and small nucleiare seen in configurations in

lowerβ µ simulations.

The frequency of occurrence of the different crystal structures does not correspond to the

predicted order based upon single-defect vacancy models. Of the six tilings in Figure 5.11,
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Figure 5.12: Doubly-degenerate vacancies in type 3 and type1Z polyomino crystals. These
are the onlyZ polymorphs with multiply-degenerate states created upon formation of a
single vacancy.
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four have only singly-degenerate single-vacancy states; that is,W1 = 1 at all lattice sites (see

Equation 5.7). In the types 1 and 3 crystals, there is a particular “double-rotation” possible

which givesW1 = 2 at certain sites, raising the entropy of the crystals. If the polymorph ap-

pearance frequencies were controlled by thermodynamics, then the type 3 crystal would be

most frequently observed. It has multiple doubly degenerate single vacancy states, shown

in Figure 5.12. Instead, the type 2 crystal is clearly favored. In the type 2 crystal, single

vacancies result in no additional states. Interestingly, of the two crystals which only contain

pieces in a single orientation, just one is observed regularly. In that case, the polymorph

with greater entropy does predominate. Overall, it appearsthat the frequency of appearance

of the different polymorphs depends more on kinetic effects(nucleation and growth rates)

than on thermodynamic stability.
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components and chem. pot 0 7.750

Figure 5.13: Pre-transition snapshot ofZ fluid at β µ = 7.75. Note the presence of many
different crystalline nuclei of varying shape, structure and orientation.
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components and chem. pot 0 8.750

Figure 5.14: Post-transition snapshot ofZ at β µ = 8.75. This configuration is dominated
by a large domain of type 2 crystal, and a smaller domain of type 3 crystal.
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components and chem. pot 0 9.300

Figure 5.15: Post-transition snapshot ofZ atβ µ = 9.30 with domains of type 2 crystal and
type 1 crystal.
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components and chem. pot 0 8.000

Figure 5.16: A system atβ µ = 8.0 with two type 1 crystal domains of different orientation
and a domain of type 3 crystal.
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5.5 Columnar behavior

In the square tetromino fluid, configurations were often ordered into columns in which

translations were only possible in one direction. In this section we describe further studies

of this and larger shapes, in which this type of behavior is accentuated, giving rise to true

phase transitions.

5.5.1 Theory

At very high densities the number of vacancies is very small,and a crystal can be modeled

as an “ideal gas of vacancies.” The entropy, according to this approach, is:

−S/kBL2 = (1−η) ln(1−η)+η lnη

Note that this is the same form for the entropy as for generalized particles which follow

Fermi-Dirac statistics.

A truly columnar phase should be exactly equivalent to a one-dimensional system, and

therefore should be exactly solvable. For instance, forn blocks of lengthm placed on an

L-site 1D lattice, Lee and Yang have shown the number of statesto be [145]:

W(n) =







L−mn+n

n







which leads to the entropy of the system (in the thermodynamic limit, L → ∞):

S/kB = lnW(n)
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−S/kBL2 = (1−η +η/m) ln(1−η +η/m)

−(1−η) ln(1−η)+(η/m) ln(η/m)

In the case of a system with periodic boundaries, additionalstates are available as pieces

may occupy sites near the boundary which may be excluded for asystem that has hard

walls. This leads to:

W(n) =
L
n







L−mn+n−1

n−1







Work presented below involving squares will show that some polyomino systems display

true columnar behavior, as they are accurately modeled by using the exact enumeration

model with periodic boundary conditions.

5.5.2 Squares

In addition to the tetrominoO (2 × 2 squares), we also obtained isotherms of the 3× 3

and 4× 4 square square polyominoes. Both shapes displayed columnar behavior at high

density. In addition, the 4× 4 system displayed hysteresis.

The 3× 3 square does not exhibit a first-order phase transition. Thecorresponding isotherm

is shown in Figure 5.17. In the rangeβ µ = 5.3 to 5.5 a smooth transition from an isotropic

liquid to a columnar state occurs. The columnar ordering is not perfect: atβ µ = 5.95, the

system has multiple small defects in the columnar ordering.This is shown in Figure 5.18.

However, the change from lower chemical potentials is marked enough to be given as the

cause for the increase in packing fraction. Before this change in curvature of the isotherm,

there was essentially no ordering in the system. The snapshot taken atβ µ = 5.95 shows
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Figure 5.17: Isotherm of 3× 3 squares. This data was collected using the same protocol as
the isotherm data forX shapes, with the reverse branch seeded from a perfect crystal.

columnar ordering with only occasional defects. The entropy versus packing fraction for

this system is plotted in Figure 5.19. At lowβ µ, there is large disagreement between

varying theories and simulation. This is because the systemis in a disordered, low density

fluid phase. At higherβ µ, simulation and the exact enumeration match nearly exactly,

supporting identification of this as a true columnar phase.

The isotherms for 4× 4 squares are shown in Figure 5.20. The discontinuous jump inpack-

ing fraction and presence of hysteresis (betweenβ µ = 6.4 and 6.5) supports identification

of the transition as first-order. A snapshot of this system above the transition is shown in

Figure 5.21 – almost no out-of-column defects are observed.When a vacancy occurs in the

4 × 4 system, more entropy is gained in comparison to a vacancy ina 3× 3 system. A

single vacancy allows translational freedom for up to 4 additional pieces. This may explain

why the 4× 4 system has a true first-order transition, but smaller square systems do not.
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Figure 5.18: Snapshot of 3×3 squares atβ µ = 5.950. Columnar behavior is evident.

5.6 Shapes that exhibit “diagonal” columns

After observing phase transitions and columnar ordering insquare shapes, we decided to

investigate shapes which might display columnar behavior along diagonal directions. One

such polyomino was the size 6 “sort tail” fish shown in Figure 5.22, which can pack in a

head-to-tail fashion. At first glance its shape resembles that of a goldfish cracker, hence the

name.

The size 6 fish was essentially a negative result in that it remained disordered at highβ µ,

with no phase transition observed. Its isotherm and a snapshot are shown in Figure 5.23.

The availability of disordered very high density states seems to remove any driving force

for formation of a diagonal columnar phase.

The size 11 “long tail” fish (isotherm shown in Figure 5.24) displays a sharp transition with

hysteresis. This fish does not have a columnar phase, insteadcrystallizing into one of two
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Figure 5.19: Entropy versus packing fraction for 3× 3 squares. This data was gathered
through thermodynamic integration, using the virial equation of state for zero-density ex-
trapolation and then continuing the integration from low-density states to near unit packing
fraction states.
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Figure 5.20: Isotherms of 4× 4 squares, with forward and reverse branches. This system
displays a first-order phase transition.

Figure 5.21: Snapshot of 4× 4 squares atβ µ = 6.950. Columnar order dominates in this
system.
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Size:
1515116

Figure 5.22: The four fish-like shapes examined in this study. From left to right: the “short
tail” gold fish, “long tail” goldfish, “enlarged” fish, and “fat” fish.

crystal polymorphs (we observe both) in which there is no translational freedom. These

are shown in Figure 5.25. Also interesting to note is that thedimer phase has a pair of

enantiomeric tilings much like the pentominoX shape, except in this case dimers form the

“base” of the tiling, rather than monomers.

The two structures have different entropies, which means that at large system sizes the

polymorph with diagonal columns of varying orientation should be entropically favored.

Each column of “head to tail” fish may also be oriented in two different directions, adding

a factor of ln2 to the entropy.

The “enlarged long tail”, a size 15 fish, was chosen because itcannot pack in a perpen-

dicularly striped polymorph like the size 6 fish. Its isotherm and snapshot are shown in

Figures 5.26 and 5.27, in which we observe a strong first-order transition and the result-

ing crystal phase. The crystal is composed of diagonal stripes of fish packed head-to-tail,

with the stripes randomly oriented in one of two directions.A vacancy would not create

translational entropy within a stripe, but the crystal as a whole gains entropy through the

directional degree of freedom.

Lastly, the “fat fish”, another size 15 fish, does not have a protruding “tail”. The isotherm

in Figure 5.28 shows a first-order transition with no hysteresis, and the corresponding snap-

shots in Figures 5.29 provide a picture of the fluid state and the mobility within the diagonal
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Figure 5.23: (A) Size 6 fish shape isotherm. No phase transition is observed. (B) Snapshot
of this system atβ µ = 15.
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Figure 5.24: Isotherms for the size 11 “long tail” fish, whichmay undergo a phase transition
to one of two crystal phases.

columnar phase. The transition occurs at aβ µ near 9, with a jump in packing fraction of

from near 0.825 to above 0.925. The snapshots show that the system goes from a fluid with

many small clusters to a system with stripes of two complementary directions. Voids which

are the result of translation within a diagonal stripe containing a vacancy are also visible,

as are occasional non-columnar out-of-column defects.

5.7 “Square-like” shapes

Motivated by the known phase transitions in off-lattice systems such as 2-D hard disks and

the interesting columnar behavior of squares discussed previously, we decided to investi-

gate a series of shapes of high symmetry. We refer to these as “square-like” shapes. They

follow a logical progression from theX pentomino to selected larger shapes. In order, we
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Figure 5.25: The liquid phase of size 11 fish atβ µ = 8.2, shortly below a phase transition,
and in two crystal polymorphs post-transition.
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Figure 5.26: Isotherms for the “enlarged long tail” size 15 fish. This system undergoes a
phase transition to a single crystal without translationalfreedom.

Figure 5.27: Solid phase of “enlarged long tail” size 15 fish,with stripes of opposite direc-
tions.
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Figure 5.28: The “fat fish” isotherm, displaying a columnar transition. This diagonal
columnar transition was “by design”.

Figure 5.29: The “fat fish” just below (left) and above (right) the chemical potential for the
phase transition.
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studied 5-site, 9-site, 12-site, 13-site and 16-site shapes. The 5-site shape is the previ-

ously discussedX pentomino, while the 9-site and 16-site shapes are the 3× 3 and 4×

4 squares which were discussed in the section on columnar behavior. This leaves the size

12 “big cross” and size 13 “diamond” shapes to be discussed. These shapes are shown in

Figure 5.30.

1312

Figure 5.30: The size 12 “big cross” (or,X) and size 13 “diamond” shapes.

The 12-site polyomino has a sharp first-order phase transition, shown in Figure 5.31 (A).

The phase transition itself is abrupt, and a hysteresis loopis observed. Although this species

has a shape manifestly similar to theX pentomino, it does not form a crystal with stereoiso-

mers (snapshot in Figure 5.31) (B). There are orientations of the crystal which are degen-

erate via a 90 degree rotation. The density change through the transition is also significant,

with δη > 0.1. After the transition, the system has a packing fraction ofover 0.975 with

only a few vacancy defects present. The hysteresis loop is roughly 0.4β µ in width.

The isotherm of the 13-site “diamond” polyomino is shown in Figure 5.32, along with a

snapshot of the crystal. It exhibits a strong first-order phase transition and hysteresis loop

in the 4.8 to 5.3β µ range. The crystalline phase has two enantiomers, similar to theX

pentomino. As expected, after the phase transition, only one of the two is present in the

simulation cell.
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Figure 5.31: (A) Isotherms for a size 12 “X” polyomino. Hysteresis is observed with the
phase transition. (B) Snapshot of the size 12 “X” polyomino crystal atβ µ = 5.0. The
“interlocking” columns remove translational freedom for single vacancies.
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Figure 5.32: (A) Isotherms for the size 13 “diamond” polyomino. Hysteresis is observed
in this system as well. (B) Snapshot of the size 13 “diamond” polyomino atβ µ = 5.5.

167



5.7.1 Two-component systems

We ran a single preliminary scan of a two-component system toobserve phase transitions

in a mixture. The components chosen were the 12-site “big cross” and 13-site “diamond”

shapes discussed above. As these species are of similar sizeand each has a phase transition,

we speculated that there would be phase separation or sharp phase transitions in the binary

system. This is indeed the case. Figure 5.33 shows packing fraction (colored according to a

temperature scale) versus chemical potentials of both species. The plot contains the results

of a binary scan of 6400 individual state points. Species “i”is the 13-site polyomino, and

species “j” is the 12-site polyomino. The lower left hand corner, colored dark blue, repre-

sents a total system packing fraction of 0.708. The dark red areas correspond to packing

fractions near 0.98, which are nearly pure crystalline regions.

One feature that immediately stands out is the presence of two distinct ledges on either

side of the phase space diagonal. These correspond to first-order phase transitions. One

example of this is the transition fromβ µ j = 6.1 to 6.2 at constantβ µi = 2 (this is located

along the central left edge of the plot). As that phase transition is followed inβ µ phase

space to near (β µi = 6, β µ j = 7), it gradually becomes less distinct. Configurations near

that point, but before the transition, resemble a well mixed, dense, two-phase system with

occasional clusters of pure species. When the chemical potential of both species is high, the

system may be difficult to equilibrate. As a result, it is difficult to mark the ends of these

transition lines. Sharp “ends” may not even exist; the transition may change to second

order or something else.

The asymmetry in the plot corresponds to what would be expected from the packing and

phase transitions observed with the pure species in each polyomino. Species “i”, the 13-

site polyomino, must overcome the disorder of the liquid phase to form a solid with two
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Figure 5.33: A 2D isotherm of the size 12 “big cross” (label j)and size 13 “diamond” (label
i) shapes fromβ µ = 2 to 10 on each axis. The isotherm uses a “color temperature” scale
to indicate density, with blue locations indicating low density and red locations indicating
high density.
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possible stereoisomers. It is also bigger than the 12-site polyomino. These factors explain

why the phase transition for a binary system composed mostlyof 13-site polyominoes

occurs at a higher chemical potential than when the system ismostly 12-site polyominoes.

5.7.2 Future Work

The rich behavior displayed in the tetrominoes, pentominoes, and selected larger polyomi-

noes suggests many avenues for continued work. We have developed the computational

tools to simulate isotherms for subsequent polyomino families (such as hexominoes) in a

nearly automated fashion. As the size of polyomino familiesgrows exponentially, examin-

ing the hexominoes through octominoes could result in interesting discoveries. One such

discovery could be that of a polyomino with over 10 polymorphs, the existence of which

is still an open question [146]. While binary and multi-component mixtures of tetrominoes

were studied in detail, only very limited work has been performed on mixtures of pentomi-

noes or larger species. As larger polyominoes (some of whichmay have quite complicated

shapes) are studied, their mixtures may display a strikingly wide range of behavior. For

example, formation of co-crystals may occur.

To date, we have only studied phase transitions in pure component and binary systems.

Phase transitions in mixtures containing many components may be discovered using a

form of stereological analysis which is computationally inexpensive compared to exhaus-

tive mapping. Or, rather than increasing the number of components, we could increase the

number of dimensions and examine polycubes, of which only a small selection have been

simulated [108]. Our simulations have also always used toroidal boundary conditions and

cells of equal width and height. Pore-like conditions, previously studied for off-lattice rect-

angles [101], could be created by using “hard wall” boundaries for edges of the cell, and
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pore size (and shape) could be tailored by varying the cell dimensions. Another alteration

of the underlying lattice could be to use an equilateral triangular lattice in order to simulate

polyiamonds, or a hexagonal lattice for polyhex species. Finally, our simulations have fo-

cused on an athermal model. Inclusion of attractive interactions between polyominoes – a

drastic change to the model that would affect many parts of the simulation and analysis –

would almost certainly provide many interesting results. Many opportunities for research

await investigation.
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