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Glossary

6-31G* A Pople-style basis set with Gaussian-type orbitals of jixda doubled quality,

for use in quantum mechanics calculations.

Bu Referred to as a “chemical potential”, temperatdrggnd chemical potentialy) vari-
ables cannot be separated in our athermal grand canonsaindéhe. Hence, they

appear together i u.

AAEM-CT Alavi, Alvarez, Elliot and McDonald Charge-Transfer mad€his empirical
model uses the local environment of atoms to determine ekagd charge-transfer
forces at each timestep. Calculation of its charges, eegrgind forces for use in

molecular dynamics or Monte Carlo simulations is relagnakexpensive.

AM1 Austin Model 1. A semi-empirical electronic structure nedlwhich uses the mod-

ified neglect of differential diatomic overlap approxinaati

AMBER Assisted Model Building with Energy Refinement. An empikiceon-reactive
force field and software package which is commonly used icH@mical simula-
tions. This model contains point charges, dispersion, bandular, and torsional

terms.
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BG-AAEM-CT Barnes-Gelb modification of the AAEM-CT Model. In this workew
introduce new potential terms which are active between sttmt are transfer-
ring charge. These modifications to the AAEM-CT model arefulse isobaric-
isothermal ensemble simulations. The AAEM-CT model is atgmarametrized, its

empirical two-body form changed, and a three-body ternothiced.

BKS van Beest, Kramer and van Santen model. A popular empirmi@npial for silica
simulations, with fixed, fractional point charges. It doesmely upon harmonic bond

expressions and may simulate phase transitions.

cc-pVTZ A Dunning-style basis set with Gaussian-type orbitals ddpoped triple{ qual-

ity, for use in quantum mechanics calculations.

CPMD Car-Parrinello Molecular Dynamics. This acronym may retethe simulation
technique which allows for relatively inexpensivab®initio” molecular dynamics
using DFT energies, or the software package which implestaetCPMD technique

and several other DFT methods.

CPU Central Processing Unit. The part of a computer which execurtstructions of a
program. Modern CPUs typically have multiple cores, eagiab& of carrying out
instructions independently. Sometimes, casual usagePf)*Gnay actually refer to

a specific core executing instructions.

DFT Density Functional Theory. A high level quantum mechanalakttronic structure
theory which is often used to calculate the energies of nimdy systems, such as
molecules in the gas phase or condensed matter systemse Wodern DFT cal-
culations are not technicalbb initio (relying on parametrized exchange-correlation
functionals), it is often referred to as af initio technique. DFT formalism has
O(N3®) scaling, making it quite popular.
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EA Evolutionary Algorithm. A class of iterative global optirgtion techniques which
typically use ideas drawn from biological evolution andumat selection. Evolution-

ary Strategies and Genetic Algorithms are both types of @ianary Algorithm.

ES Evolutionary Strategy. An Evolutionary Algorithm which eates on phenotypic rep-
resentations of its trial solutions, which in our case ate séreal numbers (as op-

posed to bitwise representations). Its iterative stedsdlecrecombination, mutation,
evaluation, and selection.
FG Feuston-Garofalini model. A reactive empirical potentoalvitreous silica and aque-

ous silicate systems with formal point charges on atoms attutivo-body and three-

body terms. Our group has used this model for simulationliafssol-gel reactions.

GA Genetic Algorithm. An Evolutionary Algorithm which opeest on genotypic (bit-
wise) representations of its trial solutions. GAs are qgsikailar in spirit to Evolu-
tionary Strategies, but the technical details of the redoatton and mutation steps

are not at all similar to an ES, which leads to different bébragturing global opti-
mizations.

GCClgfortran GNU Compiler Collection, gfortran compiler. This is one bietmost

commonly used compilers for the Fortran 77 and Fortran 9Gi@§uages, and is
freely available with any Linux distribution.

L2 cache Level 2 cache for a CPU. This storage unit provides accesptogram’s data
and instructions at speeds significantly faster than a ceanpumain memory. This

is a matter of hardware: static RAM for L2 cache versus dyegaRAM for main

memory. It is quite advantageous to be able to fit time-sepgiarts of a program

in L2 cache.
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MC Monte Carlo. The statistical mechanical technique — thisrofefers to Metropolis

Monte Carlo simulations.

MMS3 Molecular Mechanics 3 force field. A non-reactive empirioabdel with point
charges, dispersion, bond, angular and torsion terms. MEBdesigned for simu-

lations of hydrocarbons and biochemical systems.

MPI Message Passing Interface. This is an Application Progiagrimterface (API)
specification for communication between computers. Itngiege-independent, but
most frequently used with C, C++, Fortran, and Python laggeaMPI is commonly
used in High Performance Computing (HPC) due to the needdrllel programs

to communicate between nodes on computer clusters.

PBE Perdew, Burke, Ernzerhof exchange-correlation functiohlao referred to as PBE96.
This functional operates on the electronic density anditdegsadient of a system in

order to calculate the many-particle contribution to a DR€rgy calculation.

Polyomino Connected shape on a two-dimensional square lattice. dn@to is a poly-
omino which occupies four lattice sites, and a pentominopslgomino which oc-

cupies five lattice sites.

PM3 Parameterized Model number 3. A semi-empirical electrstrieccture method which

uses the neglect of differential diatomic overlap appration, similar to AM1.

QEq Charge Equilibration technique. A method for calculating tlistribution of charges
within a molecule, where charges are allowed to change awer depending upon
the local environment. Developed by the Goddard group,rttathod significantly

differs from the AAEM-CT approach.

QM Quantum Mechanical or Quantum Mechanics.
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ReaxFF The “ReaxFF” force field. A reactive empirical potential whihas been parametrized
for both hydrocarbons and some silicate species. This rddtlas point charges,
dispersion, bond order (instead of harmonic bonds), angatal torsional terms.

Charges on atoms are determined by a QEq technique.

RDF Radial Distribution Functiond(r)]. A description of variation in atomic density as
a function of distance for a particular pair of atom types: &oatom at the origi®
and an average number density- N/V, the local density at a distancdrom O is

n-g(r). A commonly referenced function in statistical mechanics.

RSL Rahman, Stillinger, Lemberg model, or potential termslligger and co-workers
originally developed an atom-based, dissociable modelidord water using only
two-body terms in the 1970s. RSL may refer to the model stubiethem, or to
the two-body terms which were used to control hydrogen basthuces in liquid
water. These RSL terms are a part of the FG model, which wa$inseur meta-

optimization work.

SA Simulated Annealing. A stochastic global optimizatiorhi@que inspired by anneal-
ing in metallurgy. The method is based upon the Metropolistdc&arlo algorithm,
and features a fictitious “temperature” which is graduashyéred and acts as a con-

trol on the optimization’s search.
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Chapter 1

Overview

This thesis is composed of two parts. The first is a study ofutmary strategies for

parametrization of empirical potentials, and their amgdlmn in development of a charge-
transfer potential for silica. The second is a study of tredymamics and self-assembly in
a particular class of athermal two-dimensional lattice eiedin both parts, computational
efficiency and performance were important goals, and this reflected in method and

program development.

1.1 Development and Application of Evolutionary

Strategies for Potential Parametrization

Empirical potentials are commonly used in molecular dyreanaind Monte Carlo simula-
tions, especially in studies of systems containing largalmers of particles. Our group
had previously used the Feuston-Garofalini (FG) model¢t pqueous silicate systems in
large-scale simulations of silica sol-gel formation [2]wias our intent to perform simula-

tions with more accurate electrostatics and possibly emfdit elements, not present in the



FG model. This would first require improvement and reparaaedton of the model, itself

not a trivial task.

Therefore, we first investigated available methods for iefficreparametrization of em-
pirical potentials. In particular, we focused on two globatimization techniques: evo-
lutionary strategies (ES) [3-5] and simulated annealirjg [Bvolutionary strategies are
potentially well-suited for parametrization of empirigadtentials, as they are easily par-
allelizable across hundreds of processor cores. Howéwepédrformance of evolutionary
strategies depends on the values of parameters and desedsThere are many such items
to specify, and they have domain specific effects. In Chapteve address this through
the “meta-optimization” of an evolutionary strategy for @ncal potential fitting. This
was the first comprehensive investigation of the perforrearie@volutionary strategies for
empirical potential fitting, and several interesting réesulere found that may be useful to
future researchers. This chapter includes figures andopsrof text which the author has
previously published: reprinted (adapted or in part) wignrpission [7]. Copyright 2007

American Chemical Society.

Chapter 3 describes our subsequent attempts to improveaxistimg potentials for sili-
cate systems. Elements in the FG model have fixed formal ekaf@uring simulations of
chemical reactions this leads to inaccuracy in the locatedstatic environments. We iden-
tified a promising and inexpensive charge-transfer modéllayi and coworkers (AAEM-
CT model) which we believed could be easily adapted for oedseas it had previously
been used on an amorphous silica system [8]. Combining theyeftransfer terms from
the AAEM-CT model with empirical two-body and three-bodyrfes from other popu-
lar potentials, we believed we could develop a new model ifarasand aqueous silicate
species. Initial attempts at parametrization of such antiateusing evolutionary strate-

gies, however, led to systems with physically unrealistmperties. Closer investigation
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of the AAEM-CT model led to discovery of a fundamental flaw noticed in prior work.
We partially corrected this flaw, leading to a model with a muaproved description of
crystalline and amorphous phases of silica. We decidedonptitsue this charge-transfer
form for studies involving additional elements. In partan despite many attempts, we
were unable to find a parameter set (by ES or otherwise) thplagied an accurate melting

point for B-cristobalite silica, which we took to be a reasonable testron.

1.2 Thermodynamics and Self-Assembly of Polyominoes

In a separate project, we conducted extensive studies afifgesiattice model in order to
better understand the self-assembly of small moleculesandparticles adsorbed at inter-
faces. Specifically, we studied hard polyominoes on a sdagtiee [9-11]. Polyominoes
are two-dimensional objects of varying size and shape;theminoes in our simulations
only interact through a non-overlap condition. As a resalltpf the behavior observed is

entropically driven.

We first considered the tetrominoes, which are discussedapter 4. These are all the
same size, covering four lattice sites. A highly efficienti¢e Carlo code was devel-
oped for these simulations, which were conducted in thedgesrsemble. We determined
the equations of state for the pure fluids and all binary meduand also studied many
other multicomponent systems. The one-component fluiddigplayed self-ordering at
higher densities. This clustering is discussed, and in éise of multicomponent systems,
quantified. Analysis of second virial coefficients was uké@ifuexplaining the frequent

species-specific clustering and orientations seen witlhisters and mixtures. Using mul-
ticomponent simulations, we were able to calculate Hengyis solubility constants for

species within a solvent of a different species. We were @ie to calculate the volumes
3



of mixing for binary mixtures, many of which displayed unexged and complex non-ideal
behavior. This chapter includes figures and portions ofiéxth the author has previously
published: reprinted (adapted or in part) with permissit?].] Copyright 2009 American

Chemical Society.

We then went on to study larger polyominoes, which are dssdisn Chapter 5. None
of the tetrominoes underwent any kind of phase transitiohwe did observe first-order
phase transitions in species as small as the pentominoedaiitily of pentominoes con-
tained shapes with no transitions, transitions to a digediphase, and with transitions to
a crystalline phase. Some polyominoes exhibited polymermhundergoing phase tran-
sitions to many possible crystal domains. The frequencyprogerties of these different
crystals are examined. Columnar phases (ordered phaséstieetranslational freedom in
one direction) were observed in many systems. We were alsd@lesign a polyomino
with a diagonally oriented columnar phase. Finally, prahiany studies of a binary mix-
ture were also performed, including simulation and analgdia large two-dimensional

equation of state.



Chapter 2

Meta-Optimization of Evolutionary
Strategies for Empirical Potential
Development: Application to Aqueous

Silicate Systems

2.1 Introduction

Empirical potentials (force fields) are widely used in malac modeling and simulation,
and usually consist of analytic functions which have beeapatrized to reproduce se-
lected reference data. The functional forms are chosen tiehgpecific intermolecular
and intramolecular interactions thought to be importantaf@iven application. For in-
stance, in the potentials commonly used for studying the@hahavior of fluids one gen-
erally includes terms describing atomic-core repulsiatispersion forces, bond angles,

and torsions; if dipolar or charged species are presergetimay be described using point



dipoles or distributions of point charges. By inclusion ajhrer multipoles and/or polariz-
abilities, such potentials can become quite complex. Tisggdeof effective potentials has
been discussed extensively in the simulation literatucktha functional forms used vary

considerably from problem to problem [13-17].

Over the course of a molecular dynamics or Monte Carlo sitimriamillions of sequential
energy and calculations may have to be performed. In theaaaenolecular dynamics
simulation, forces will also have to be calculated for eatithose configurations. It is
almost always impractial to do these calculations usinghtjura mechanical calculations,
as any given energy calculation may take up to several houtsnger, depending upon
size of the system and accuracy of the methods used. Priouginly 25 years ago, ab ini-
tio molecular dynamics calculations were not possible for system size or method due
to their computational expense. Empirical “force fields™potentials” are the solution
to this problem. Accuracy is sacrificed for speed, althoughrafully parametrized force
field may often be capable of quite accurately reproducivgrse experimental quanti-
ties. Empirical force field equations generally involvessli@al mechanics instead of quan-
tum mechanics. Further, they usually simplify the eledtatbss of a system, using point
charges and possibly dipoles instead of multipole expassio describe charge distribu-
tions. Molecular orbitals from quantum mechanics whichvpte the framework for a
molecule’s bonds are replaced, most commonly, by harmamd lbscillators or rigid rods
between atoms. The energy levels of these harmonic bondgidrod rotations are not
guantized. Many-body interactions are uncommon. A typgidathemical force field de-
scribing an amino acid will have two-body bond terms, thbeey angle terms, and four-
body dihedral terms. Further, since those two-body bondsuaually harmonic bonds,

they are non-dissociating and therefore non-reactive ©0Adl of this framework results



in greatly increased computational speed compared to atorbital, quantum mechani-
cal based methods. The largest part of the computation&nmepis usually calculation
of Coulomb interactions for the system, as those are longadand cannot be truncated
at a cut-off distance where they become negligible. The &roaling of the Coulomb
interaction isO(N?), although advanced algorithms such as the Ewald summatigrren
duce this cost t@(N%), or O(NInN) for the case of particle mesh Ewald or fast multipole
methods. These empirical potentials attempt to reprocheéull N-dimensional potential

energy surface of a system, hence their common name of “paien

Parameters may be fit to a wide range of data, including boperaxental results and
guantities calculated using first-principles or semi-aimpl electronic-structure methods.
Experimental data often used for this purpose include, graihers, crystal structures,
thermophysical properties such as melting points anctatiparameters, partial radial dis-
tribution functions, angular distributions, and diffusioonstants. Parametrization against
thermophysical quantities requires the use of simulatiordetermine the corresponding

properties of trial parameter sets, which can be computalipexpensive.

With first-principles methods one may calculate the ensrgied associated gradients for
selected molecular configurations, as well as charge loligions, multipole moments, and
structural quantities. Such data may be obtained eithesdtated molecules or in the con-
densed phase. The parametrization of empirical potemtigsst first-principles reference
data is now a popular and widely-used approach [18-28]dimglon both the broad avail-

ability of software for high-quality electronic structucalculations and general interest in

multi-scale simulation methods.

In all cases, systematic parametrization of the chosertiturad form presents a challeng-

ing numerical problem. This may be cast as the optimizatianabjective function that



measures the ability of the empirical potential to repr@&dselected reference data, and
therefore as a minimization in some high-dimensional spevere the dimensionality is
equal to the number of parameters to be assigned. The vadums dptimized when fit-
ting potentials are usually point charges, Lennard-Jonexgonential interactions, bond
angles, and similar quantities. This is a non-linear oation: the quantities being op-
timized are often not linear coefficients of equation terarg] this places restrictions on
the mathematical methods which may be used to find solutlemsexample, it cannot be

treated as an eigenvalue problem and solved with matrixsiwe.

In general, the properties of the objective function wilpdad on the physical system un-
der consideration, reference data, potential form, andicngted to compare model results
with reference data. For a given parametrization probleenetimay well exist a multi-
plicity of possible solutions, as pointed out in the eartgrature in development of the
central force model for liquid water [29-31]. This modeliedl upon physical reason-
ing for selection of a set of two-body forms to describe hgdm and oxygen atoms, for
which parameters were determined to select forms for tharliody potential, and then
parameters were calculated which gave proper values fatiptode moment and harmonic
force constants of an isolated water molecule. The authwseca set of two-body func-
tions, and then calculated parameters for those forms wihazkid reproduce the dipole
and force constants. They noted that their final set of fonstwas “one of an infinity of

such sets which satisfy the criteria outlined above”.

Many strategies for parametrization of empirical potdatae available, varying in both
computational complexity and “philosophy” [13-17]. Ongrsficant classification of
these strategies is whether all parameters are considenedtameously or if a sequen-
tial, one-parameter-at-a-time (or one-term-at-a-tinpgraach is used; the latter cases may

also be iterated.



Iterated parameter-by-parameter optimizations cormdpoughly to direction-set opti-
mization methods [32], and therefore deterministicallgdarce local minima of the ob-
jective function. Term-by-term optimizations (which magnsider a few parameters at a
time) are popular because they reflect the additivity oedéht interactions explicitly built
into many potentials. For instance, one may parametrizesegottal motion independently
of the associated angular terms by using an electronictateiprogram to scan over the
torsional degree of freedom, and then fit that data with squpecgriately chosen function.
The disadvantage of this approach is that the resultingotors then fit at particular values
of the associated angles, and any dependence of the tomsithre @ssociated angles will
not be described well. To capture such interactions one haw& both reference data that
explores appropriate deformations of the molecule andiaddi terms in the potential that
depend on both torsions and angles. In such a case, one maseckibher to individually
fit the torsion-only and angle-only terms and then fit the Ssfderm, or to fit all three parts
simultaneously. The term-by-term approach allows for éelbetescription of the isolated
motions with inaccuracies concentrated in the cross-temereas the simultaneous fitting
will spread inaccuracies more evenly among the three teBush issues become particu-
larly important when extending previously developed pb&s to include new atomic or
molecular species. If the existing potential is not re-petrized to some degree, then the
inaccuracies associated with the (necessarily imperfiesgription of interaction with the
new species will be concentrated in the added terms. Caglyerghen all parameters are
fit simultaneously this will not be the case, but parts of theptial may not be as accurate
as the functional form allows. The global optimization mag the large parameter search
space to compensate for some deficiency elsewhere in thedoakform. For example,
a term describing van der Waals attractions may be optimiaexh unphysically strong

value in order to compensate for unrealistic point chargel@ubic interactions.



The ReaxFF family of reactive potentials [18—-23], for im&te, is parametrized against
small molecule calculations for bond distances and angldseaperimental data for heats
of formation. A local optimization technique of successoree-parameter optimization
(line search) was used [33]. In an alternative approach &al. have used first-principles
simulations of condensed phases to create potentials fierwad hydrogen fluoride [24,
25]. Their “force matching” technique uses a short-ranggal@spline and a long-ranged
Coulomb form to model site-site interactions. Splines asghmmatically convenient as
they are polynomials with well-behaved derivatives andolimhay be summed using linear
coefficients to describe arbitrary curves. The linearlyejpehdence of splines enable the
use of singular value decomposition to exactly find pararsdta a given configuration,
and a final set of parameters is then determined by averagiagtbe results of many

configurations.

For potentials describing a small number of degrees of &eethnd therefore either very
small systems or species of low structural complexity)teteic structure calculations can
be used to “scan” over the complete potential energy surfatese results can then be
numerically interpolated, fit to analytical functions, @nse combination of both, in order
to obtain highly accurate potentials. Recent examplesdf parametrizations include the
water potential of Bukowslet al.[26] and the nine-dimensional potential for collisions of
hydrogen gas and water monomers developed by Fetuak[27]; there is a considerable
literature on the development of such surfaces for use ictimadynamics calculations

[34-37].

In the 1960s and 1970s, three groups developed independentierical optimization
methods which mimicked the process of evolution [4, 38]. iReberg and Schwefel cre-

ated a family of “evolutionary strategies” to solve realue problems [39-43]. Fogel
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researched artificial intelligence problems through aroli@wnary programming” tech-
nique [44]. Lastly, Holland developed “genetic algoritinas a general optimization
method [45]. Interestingly, the development of these sinfilit distinct types of algorithms
seems to have been furthered by the geographical sepagdtiloa groups performing the
work; there were essentially no instances of authors publiswith both the American
and German groups. De Jong discusses all these methodsaindéred framework of

“evolutionary computation”, and generalizes them as “etiohary algorithms” [46].

A brief outline of an evolutionary strategy is as followsrdtj a population of trial solutions,
called parents, is created. Secondgeombinationprocess creates a group of children
by averaging or otherwise combining parts of the parentsirdTlthe children undergo
mutation consisting of small random changes. Fourth, those childreevaluated Fifth,
aselectiormprocess is used to select a new group of parent from the ¢ynopalation. The

cycle is then repeated, starting with the recombinatiop.ste

One important difference between evolutionary strategresgenetic algorithms is in the
representation of trial solutions: evolutionary stragsgare phenotypic, and genetic algo-
rithms are genotypic [47]. That is, in an evolutionary sggt the individuals are manip-
ulated “as-is”, whereas genetic algorithms operate oniggwepresentations. This differ-
ence in representation requires different operators fmmdination and mutation steps. In
genetic algorithms, recombination operators exchangagstof bits between two parents
in order to generate children, and the basic mutation operata random bit flip. For a
continuous-valued problem represented phenotypicélé/récombination step would in-
volve choosing or averaging values from the parents to eraathild, and the simplest
mutation would be the random displacement of selected glaitdmeters. In general, this

is a difference in “data structures” for the trial soluticarsd it has a significant effect on

11



how an program is written. Converting a program from opataéis an evolutionary strat-
egy to operating as a genetic algorithm or vice-versa isiplesbut may take significant

effort to properly and efficiently implement.

Genetic algorithms (GAs) have been used in potential devedmt in a number of stud-
ies, mostly to extend semi-empirical methods or to refineupppforce fields. Cundari,
Deng and Fu used a GA to parametrize technetium interadtichg semi-empirical PM3
method. Semi-empirical QM methods use pre-parametrizedayy integral calculations
to speed up the evaluation of molecular energies. Therefgparametrization of the inte-
grals for specific problems may lead to increased accurabgir Tesults were fit against
crystal structure geometries, and they found that their G&ided significantly better pa-
rameters than those obtained by interpolating parametéing anetals to the left and right
of technetium in the periodic table [48]. Rossi and Truhkedia GA to re-parametrize the
AM1 semi-empirical method against quantum mechanical olatader to perform semi-
guantitative direct dynamics on the Cl + ¢Hotential energy surface [49]. Parameters for
organic systems containing sodium and transition metatkenAM1 and PM3 methods
have also been refit using GAs [50,51]. These targeted @apetrizations can allow semi-
empirical methods give substantially improved structdogsbiochemically relevant sys-
tems. Ge and Head used dual genetic algorithms in a studyld§ Siusters, with one GA
tasked to iteratively re-parametrize the AM1 method, aedditiher GA to search cluster ge-
ometries for a global minimum [52]. GAs have also been usedmputer-aided molecular
design [53]. As reviewed by Lameijet al. [54], in the area of drug design evolutionary
algorithms have been applied to the design of moleculeriggaconformational analy-
sis, molecule superposition and pharmacophore detedioemtitative structure—activity

relationships (QSAR), ligand dockinde novodesign, and “drug-likeness” evaluation. In
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particular, Thomsen investigated the effects of variatiparators and local-search hybrid

methods on EA/GA performance for ligand docking [55].

Strassneet al. performed one of the few studies of the influence of GA paramen
the context of developing empirical potentials. They exsedithe interaction of crossover
rates, mutation rates, and selection methods on the ow@talierformance for refitting of
the MM3 force field for a rhenium complex [28, 56]. In this syudifferent GA parame-
ter sets were compared via the root-mean-squared deviatmu) between experimental
(or high-level theoretical) crystal structures and thdsemed using the GA-parametrized
force field; GAs which produced MM3 parameters with smaliesd’s were judged to be
more effective. Results were averaged over only threerdiftandependent optimizations
for each set of GA parameters, and definite trends in GA padiace with different param-
eters were observed. The most efficient algorithm testedavesiple GA with a tourna-
ment selector, 90% crossover rate and 20% mutation rateoN&kt al. re-parametrized
the MM3 force field for copper complexes [57] using the GA paeters recommended by
Strassneet al. [28, 56]. Other efforts at re-parametrizing force fieldsngsGAs include
partial re-parametrization of the AMBER force field [58]fiténg of the BKS and TTAM

potential forms [59], and refitting of the Stillinger-Welmstential for silicon [60].

With the exception of the work of Strassretral. [28, 56], the actual performance of the
GAs used in potential parametrization work has rarely beasidered in any depth. Many
previous studies of the efficiency of evolutionary straésghave considered only the op-
timization of relatively simple and low-dimensional mattegical functions [4, 38]. The

behavior of an ES for much more complex problems may be dityidifferent.

In this chapter we evaluate the performance of a reasonaldet®n of evolutionary strat-

egy algorithms applied to the problem of optimizing an emspirpotential for molecular
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simulation applications. The process of finding the besbralgm for an optimization is

termed a “meta-optimization”. The empirical potential vamsider is the all-atom, reactive
potential for aqueous solutions of silicate oligomers ttgyed by Feuston and Garofalini
(FG) [1,61]. Reparametrization of the FG potential is a uktefst application because the
short-ranged nature of the potential makes it inexpensiavaluate and optimization of
the large number of parameters used poses a difficult nuahgnioblem. The purposes
of this chapter are to provide effective guidelines for fatapplications of evolutionary
strategies in similar parametrization studies, and to idebenchmarks for the behavior

that can be expected of these algorithms.

2.2 Methodology

2.2.1 Evolutionary Strategy Optimizations

A complete evolutionary strategy implementation requspscification of initialization,
recombination, mutation, evaluation, selection, and teation algorithms. In this chapter
we evaluate the performance and behavior of a variety ofméaaation, mutation, and
selection methods in the parametrization of an empiriceqtal against various reference

data.

Individuals (parents and children) will be represented astars of real numbers =
{x%,0i},i =1,...,N, whereN is the number of parameters. THKg} are the quantities
to be optimized (in this case, parameters of an empiricargatl), and thd g; } are associ-
ated quantities that control the size of mutations applieekich parameter. THe; } may

themselves be subject to evolution. While they do not atfeeevaluation of the potential,
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they affect the optimization process and its ability to beghape and pinpoint local minima

in parameter space. The parts of the evolutionary strateggrasented below.

1. Initialization. In this step an initial population ah parents is created. Each parameter
x; of each parent is selected from a continuous uniform digioh within a constrained
range,x™" to X" which are part of the initial input. Selecting random seisdsot a
necessity — values may be picked by hand — but a random appveesused so the pro-
cess was unbiased. The initial values of {leg} are defined through scaling of an input
parametepy: 0; = 0y (X" — ximi”). This reflects the fact that the absolute values ofkthe

can vary by many orders of magnitude, depending on the umit$umctional forms used.

2. RecombinationRecombination is the process of combining parents to p@dhbidren.
Following Schwefel, recombination operators are clagbéiglocal or global, and also as
discreteor intermediatg3]. Local operators generate a child entirely from two ramdly
selected parents. Global operators randomly select a newfgaarentsfor each parame-
ter of every child. Discrete operators assign eégho;) pair for the child by setting them
equal to the value of the correspondipg ;) pair in one of the randomly chosen parents.
Intermediate operators instead assign the average vathe obrresponding parent param-
eters to the child. Selections are made “without replacéimsa that it is not possible to

create a child from two “copies” of a single parent.

3. Mutation. Each parameteg in each childx is displaced with probabilityp by a random
number chosen from a normal distribution of zero mean andséaadard deviatiow;,

G(0, ). This change is represented as:

X =X +G(0, i) (2.1)
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The g; control the size of mutations. As discussed in greater ldetdow, different mu-
tation algorithms may independently evolve the } over the course of the optimiza-
tion. Alternatively, the{c;} may be controlled through a common referermewith

g = 0 - (X" X" various algorithms for evolving may then be applied.
4. Evaluation.The fitness of each new child is evaluated, as described inekiesection.

5. Selection.In the selection step, the parents of the next generatiosedeeted from the
current population. Selection methods may be categorieeording to (a) whether or not

they allow overlapping generations and (b) their degreglibém

Evolutionary strategies are commonly labeled eitfmm)-ES or(m-+ n)-ES, wheremis

the number of parents amds the number of children per generation [62]. An n)-ES is
non-overlapping: then parents of the next generation are chosen only from among the
children of the current generation. Am-+n)-ES is overlapping: then parents of the next
generation are chosen from the entire current populatiortain individuals. This allows

for the survival of individuals for more than one generatiamd potentially indefinitely [3].

Elitism describes the importance placed on fithess wherctsglethe next generation’s
parents.Truncationmethods are the most elitist, and simply choose the finestlividu-
als from the available populationm br m-+n). A less elitist method ibinary tournament
selection, in whichm random pairs are chosen from the available population, feentinin-
ner” of each pair is made one of the parents for the next ggarr®3]. With tournament
methods, it is possible that the individual with the highf@ésess is not selected. The tour-
nament method may be extended to have competitions betwearbdrary number of
children when creating a child, e.g. a three-way tournarnmetéad of a binary (two-way)
tournament. The truncation selection method is determngnishile the tournament method

is stochastic. We use the tesami-overlappingo refer to selection methods which, when
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choosing new parents (from either the children or from thieofapulation), always include

either the best current parent or the best current individua

After selection, one generation is complete. Theelected individuals now become the

parents, and the algorithm returns to the recombinatign ste

6. Termination. Common termination options include exiting after a cert#imess has
been achieved, exiting when the fithess of the fittest indeitbecomes constant to within
a specified tolerance, or exiting after a fixed number of gaiwars. In the studies below,
which compare various algorithms, termination criteria einosen to ensure that the com-
putational costs of the different methods are comparalde al§orithms with the samme
andn, this corresponds to termination after a fixed number of geimns, but for com-
parisons of algorithms with differemh andn, optimizations are terminated after a fixed

number of child evaluations, or “births.”

2.2.2 Fitness Function

Our goal in potential parametrization is to have the emainmotential accurately repro-
duce some reference data, which we will call thening set It is called this because the
empirical potential is being “trained” to reproduce theadat the training set. Here the
training set will consist of the total energies of a seriedgj,tig atomic configurations.

Thefitness functiors defined as

Nconfig
2 1

X (X) = Nconfig Z [{Eemp(Riyx) - Eemp(Rrefax)} - {ETS(Ri) - ETS(Rref)}]z (2.2)

whereEemRi, X) is the energy of configuratioR; determined using the empirical poten-

tial with parameters. Erg(R;) is the energy of configuratioR; determined using some
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high quality method, for instance Density Functional Tye@FT). x2(x) is a measure of
the mean-squared difference between the potential enartaces sampled by the training

set and defined by the chosen empirical functional form amnampetrizatiorx.

Rref denotes a reference configuration, which is included in ¢fimition of x2 because the
empirical potential and reference method may differ in waligch make absolute compar-
isons of their energies impossible. For instance, the ésealptained from typical all-atom
empirical potentials cannot be directly compared with ttaav” output of electronic struc-
ture calculations. This is because in electronic struatueehods even isolated atoms have
non-zero total energy due to their internal structure, Whgcgenerally not the case for
empirical potentials. One possible solution to this praoble to use the energy at the dis-
sociation limit (all atomic separations increased to itfinio define the energy “zero” in
each case, which corresponds to a particular choide,gf. However, for many empir-
ical potentials, including non-dissociable moleculargmials and potentials that include
non-integral charges, this is an awkward choice. In thidystwe chose the lowest-energy
configuration in the training set as the reference dtate. This choice is applicable re-
gardless of the form of empirical potential used, and rexguivo additional “reference”
calculations. Furthermore, it has the appeal of directtyuding the differences in energy
between “relevant” configurations of the reference systehich appear in the Boltzmann

factors determining the thermodynamic properties of trstesy.

2.2.3 Application

Our test problem for meta-optimization of evolutionanastgies is a re-parametrization of
the Feuston and Garofalini (FG) potential for aqueous gnistof silicate oligomers [1,61].

The FG potential includes a modified Born-Mayer-Huggins, &} functional form and
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Rahman-Stillinger-Lemberg [30] (RSL) terms for two-bodyeractions, and three-body

terms as introduced by Stillinger and Weber [66]:

Vo(ri,rj) = Ajjex ( )+Zerfc( >+ S %j.m (2.3)
AURY j EXPp o Bi Z L 1+expbij m(rij —Gijm)

V3(rij, " jk, Bjik) = Ajik exp[rij VE o + I"k)ﬂ( ?(] x (cosBjik —COSGJ-Ci’k)2 (2.4)
i i

The two-body part has a damped Coulomb potential (in fait,ihthe real space part of
the Ewald summation for calculating Coulomb interactipags)exponential repulsion, and
a soft (and short-ranged) attraction. Note that a differemmhberD;jj of RSL terms are
used for each type of two-body interaction involving hydendSi-H, O-H, and H-H). The
three-body term penalizes deviation from a specified aﬁmecontrolled by parameters
for cutoff distance, magnitude, and rate of decay. This ialeatom, dissociable poten-
tial and can be used to study chemical reactions in soluthmhyding the hydrolysis and

condensation of siloxane bonds and the early stages ofetpirgcessing [1, 2, 61].

The FG potential was fit to thermophysical quantities inaigdhe radial distribution func-

tions and angular distribution functions of melt-quenckiéida. The short-ranged repulsive
term was parametrized using a formula based upon ionic aadiicharges. The other pa-
rameters were chosen based on hydrogen-bond energigsy gasmetries and liquid state
properties extracted from molecular dynamics simulati@atthough how trial parameter

sets were chosen for these simulations was not described.
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The FG potential has two-body parameters for all combinat@f the elements Si, O, and
H, and parameters describing four different three-bodylioations (Si-O-Si, H-O-H, O-
Si-O, and Si-O-H), for a total of 55 adjustable parametensthis investigation, 45 were
optimized, and 10 were kept at fixed values because of pHyasigaments. The fixed
parameters include the charges on each atom type, five blodeeutoff distances?, and

the four preferred angl ﬁk The atomic charges were kept at their formal values (+1
for hydrogen, +4 for silicon, -2 for oxygen) so that dissdicia produced ions with the
correct integer charges. The three-body cutoff distanndsaagles ensure that all silicon
and oxygen atoms prefer tetrahedral geometries, excepidse oxygens in a water-like

environment, which prefer the experimental angle of. 50found in liquid water.

2.2.4 Training Sets

Two types of training set were used in this study, both caimgjof configurations sam-
pled from molecular dynamics simulations of an aqueousisoiwf three silicate species.
Each configuration in both sets contained one of each oics#icid, disilicic acid, and
cyclotrisilicic acid molecules and 64 water molecules, icubic box of 1.4014 nm edge
length for a total density of 1.0 g/cc. These species wersambecause they are the ini-
tial components of silica oligomerization and gel formatio aqueous systems, a topic of

interest to our group.

The first type of reference data, used below in the meta-agdinon of the evolutionary
strategy, consisted of configurations sampled accorditiget®&G potential and the associ-
ated FG energies. These data were generated using a mol@gagmics trajectory ther-

mostatted (via the Gaussian isokinetic method [14]) at 30@ikh configurations sampled

20



at intervals of 2 ps. As in previous studies using this paaénnteractions were truncated

at 7A.

The second training set was generated using Car-ParriMelecular Dynamics (CPMD)
simulations [67], also in the canonical ensemble. In theseutations the Perdew-Burke-
Ernzerhof (PBE) functional [68] was used with a plane-waasi®with 30 Rydberg cutoff
for the wavefunction and 150 Rydberg cutoff for the densdrfanderbilt ultrasoft pseudopo-
tentials were used for all atoms [69]. The silicon pseudepl featured a non-linear core
correction. This level of theory was checked by comparingneged bond distances, bond
angles, and hydrogen bond strengths with similar data édavith the same PBE func-
tional, and the 6-31G* and cc-pVTZ basis sets in Gaussian03 The plane-wave results
were closer to the 6-31G* basis results, giving bond lengthisin 0.005A and similar

hydrogen bond strengths.

Four visibly and temporally distinct configurations werkeseed from the first training set.
These were used as the starting points for the CPMD simuakatieor each configuration,
the following procedure was followed. First, each configiorawas optimized to a root-
mean-square force of 0.005 a.u. Next, the configuration eiased through a series of
eleven 200-step CPMD simulations using a 3.0 a.u. timestepaa400.0 a.u. fictitious
mass for the electrons. A velocity rescaling thermostatweasl, with a target temperature
of 300 K and rescaling whenever the temperature of the iossma@e than 37.5 K away
from the target value. After the first six 200-step simulasigthe convergence criterion for
the gradient of the wavefunction was tightened from.t 10 6 a.u. Between each 200-
step simulation the electrons were quenched back to the-Bppenheimer surface. This
ensures the nuclear and electronic wavefunctions are simedusly minimized. After the
relaxation procedure was finished, the production CPMD ras started. The production

run used a Nosé-Hoover thermostat for each degree of fre¢db]. The temperature was
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300 K with a thermostat frequency of 2500.0 thfor the ions and 10000.0 cm for
the electrons. These simulations ran for 10000 steps, g@itotal of 242 fs of data in
each of the four CPMD simulations, or nearly 1 ps total datanfthese trajectories, 370
evenly-spaced configurations were selected. Single poiatgees were then calculated
for each configuration; these differ slightly from the CPMBeegies because during the
dynamics run the electrons are not quenched to the Borni®ier surface at each
timestep. These configurations and single-point energaserap the second training set.

The program “CPMD version 3.9.2”, was used for these calmna [72].

2.2.5 Implementation

We have developed a computer code to optimize empiricahpiate against training sets
of the type described above. Our program implements sewptihization techniques, in-
cluding evolutionary strategies, a simple direct searahimmizer, an unconstrained Powell
line search algorithm, simplex simulated annealing [73] Bletropolis simulated anneal-
ing [6]. The direct search minimizer and Powell algorithne deterministic, local opti-
mization methods. The simplex and Metropolis simulatedeating methods are global
search techniques similar in strategy, of which the Metlisgamulated annealing will be
described in detail later. Several potentials are impldetnncluding the the Lennard-
Jones model, central force water model, FG model, and a etieagsfer model [8]. Addi-

tional potentials may be easily added.

The program is parallelized using the Message Passingdngee(MPI) library for For-
tran in two ways. In evolutionary strategy optimizationgaleation of the fitness of the
n children in each generation is divided over many procedspi@ssigning some number

of children to each processor. In other optimization teghas, which do not involve the
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simultaneous evaluation of many trial solutions, the eatiun of a single(2 may be paral-
lelized by the distribution of training-set configuraticaeong multiple processors and the
simultaneous evaluation of many of thgmgR;) terms. Evolutionary strategy speedups
were found to be nearly ideal using up to 16 processors, \inderaining-set decomposi-
tion approach is slightly less efficient due to the increapeahtity of communication re-
quired. The parallel scalability is also different for tineotapproaches. For algorithms that
only evaluate one trial solution at a time, the theoreticakimum number of processors
that can be used is equal to the number of configurations itraireng set. Evolutionary
strategies, on the other hand, evaluate many individuagsarallel, with each processor
handling an equal number of individuals. Therefore, if ajdarge number of processors
is available (as is increasingly the case with modern nuoglte processors), cases where
N > Ncpu > Neonfig allow evolutionary strategies to scale higher than othethous. Fi-
nally, evolutionary strategies can be further paralleliby distributing the evaluation of
eachy? among several processors (as in the single-evaluatiorogig)Xtwhich could then
be used even fdx.p, > n, and for all methods, even the evaluation of the energy aiglsi
configuration could be spread across several processoigeither domain-decomposition

or replicated-data strategies.

2.3 Meta-optimization of evolutionary strategies

The evolutionary strategy may itself be optimized for a igatar class of problems by
selection of appropriate population sizes, recombinat@thods, mutation size control
schemes, and selection methods. In this study this will beraplished by optimizing the
FG functional form against reference data (training setsegated using the FG potential

itself. Since the functional form is unchanged, it is in pipie possible for an optimization
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algorithm to reduce(? to zero (within some numerical tolerance), which would scau
the exact FG parameterg?(xgg) = 0. Different ES algorithms will approach this limit

more or less quickly, and with different “profiles” gf vs. generation.

Testing different evolutionary strategies is accomplishere by first selecting a “default”
combination of population size, recombination methodea&n method, etc., and then
considering and comparing several alternatives for eadhesfe components. Note that
this approach does not consider all possible combinatibnsethods, but does allow for
controlled comparisons of different variants of the samerajor (for instance, mutation

size control schemes).

The default options were selected based on a large numbeglohmary trials and recom-
mendations from the literature discussed above. They sbofspopulations ofn= 8 and
n = 96, local discrete recombination, mutation size contraigigvolving independerd;

and an initialog = 0.03, and non-overlapping truncation selection.

Unless otherwise stated, all individual optimizations eveuncated after 192000 func-
tion evaluations, which took roughly 27 wall-clock hoursining on two Opteron 250
(2.4 GHz) CPUs. Near-linear scaling of parallel perfornren@s observed in additional
tests on up to 16 CPUs; all calculations were performed orusted of dual-processor

nodes each with 2-4 GB of RAM, networked using Infinibandrcd@nects.

2.3.1 Preliminary studies

In equation (2), each configuration provides only one endegym. Therefore, the number
of configurations in the training set must exceed the numbga@meters to be optimized.

Training set size may affect the reliability, speed and sitmoe@ss of optimizations. These
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effects are shown in Figure 2.1, which compares training gevarying sizes. Each opti-
mization profile in Figure 2.1 consists of the lowest parpehat each generation, averaged
over ten independent optimizations (see below). Two of tbélps, using 4 and 16 config-
urations, are for optimizations against too few indepehdata to be meaningful. These
optimizations have considerably different profiles tham dthers, rapidly finding parame-
ter sets with very lowy?, which is perhaps not surprising given that in these casesaim

be satisfied in a large fraction of parameter space.

All the other traces are quite similar, both in the shape efgiofile and the lowest?
reached after the allotted simulation time. In Figure 2llogtimizations were run to
between 1500 and 2000 generations. Based on the simildrihese data, a training set
size of 128 configurations was chosen for use in all the catlicrs that follow. This is
significantly greater than the number of free variables,(48p requires less CPU time
than the larger sets of 192, 256 or 320 configurations whiart} retaining the same

general properties.

Data are plotted in log-log form in this and subsequent figuiéis therefore important

to note that the absolute decreasexthis much larger in the early generations than in
later ones. The units gf? are [(kJ/mol) per configuratiofi] The initial values ofx? >

10° (kJ/mol} correspond to the randomly generated parent populaticsgibed above,
which are clearly of poor quality. The final values »f (for meaningfully large training
sets) do not converge to zero in the allotted number of génes but instead tend to
reach values near 100 (kJ/nfolrhe meaning of this value can be assessed by performing
simple perturbations of various parameters from theirioagFG values, and measuring
the resulting change ig2. This measure can then be averaged over perturbationstbéall
parameters. Single-parameter perturbations@fl% increasex? to 0.392 (kJ/moB, on

average. Deviations af1% increase(? to 39.17 (kJ/moB, on average, and deviations of
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Figure 2.1: Variation of optimization profile with number @adnfigurations in the training
set. Training set sizes used ranged from 4 to 320 configmsatibhe quantity plotted is the
fitness of the fittest (lowegt?) member of the current parent population at each generation
averaged over ten independent runs.

+10% increase it to 3812.5 (kJ/m@l)on average. Thus, final values near 100 (kJ/fol)
correspond roughly to parameters that have converged binli%o of their optimal values.
However, the sensitivity 0k? to such deviations varies considerably from parameter to
parameter. Sensitive parameters includgghparameters for the Buckingham exponential
repulsions between oxygen and hydrogen atoms and betwsgemxand silicon atoms,

and the positiorg;j of the second RSL oxygen-hydrogen term (which is important f

modeling hydrogen bonding).
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In any single optimization rurx? fluctuated strongly because the recombination and mu-
tation steps are stochastic. In order to make meaningfupeoisons of different ES al-
gorithms, we therefore presext profiles averaged over over multiple independent runs.
“Independent” in this case means differently re-seedimgréimdom number generator for
each run after generation of the initial population. Thdedént runs therefore have the
same “starting point”. We determined that ten independams were sufficient to reliably
profile different evolutionary strategy variants. This vaase by performing twenty runs
and then comparing the averaged profiles of two differerst sieten runs with the average
profile of all twenty runs. As shown in Figure 2.2, the averafeither set of ten runs is
quite similar to the average of all twenty runs. Note thas ikinot the case for averages
over only three independent runs, as used by Strastradr[28, 56]. Each of the twenty
individual runs is also plotted in order to illustrate thegnaude of variation between runs.

It is clear that the shape of the optimization profile can \@gsiderably from run to run,
and also that the final fithess values can vary by approximnated order of magnitude be-
tween runs started from the same initial population. As guke 2.1, all subsequent figures
will show the x? for the best parent in each generation averaged over 10unless noted
otherwise. Further analysis of the variations betweerviddal runs will be presented in

section 2.5.

Genetic diversity is a measure of the difference betweenmeesrof a population. If mem-
bers of the population differ only slightly, then a popubatihas low genetic diversity. We

measure this through a radius of gyratRy) defined as:

1

m;

XE = X, (2.5)

M3
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Figure 2.2: Variation of optimization profile with randommber sequence. 20 indepen-
dent runs (starting from the same initial population) arevah, along with averages over
the full set of 20, the first 10, and the last 10. Run conditiaresthe “default” algorithm,
corresponding to the 128-configuration data shown in Figure
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j=1i

wherex; j is the value of parametéin parentj. Genetic diversity is an important quantity
in ES optimizations. If there is too little genetic diveysthen the entire population will
become trapped in a single minimum. While this is generdlé/énd result of an evolu-
tionary optimization, it is important that it not happen tearly in the calculation, before
a large part of parameter space has been expldgdata for the default ES strategy are
shown in Figure 2.3. This is a strongly fluctuating quantityt shows clear structure. The
initial Ry is large. After approximately 10 generations (correspogdd a reduction of
x2 from approximately 5« 10° to around 16, see Figure 2.2, drops to a plateau near
0.3, where it remains for approximately 250 generations. @visrperiody? decreases by
another two orders of magnitude. After thi&, begins to diminish quickly, becoming very

small by the late generations.

2.3.2 Population

For an(m,n)-ES, a parent:childn:n) ratio of 1:4 has been recommended [38], although
many studies use larger ratios [74]. Having a very high rafiehildren to parents is
considered inefficient, since the vast majority of compatetl time is spent evaluating
individuals which do not survive to the next generation. tdger, in preliminary work we
found that am:n ratio of 1:12 seemed more effective. The effects of chantiiesgiumbers

of children and parents, and the rathn, are therefore of interest in further optimizing the

ES approach.
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Figure 2.3: Radius of gyration for 10 individual runs andittaerage. This calculation
corresponds to the 128-configuration data shown in Figure 1.
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Figure 2.4: Variation of optimization profile with numbersparents and children. Tested
are: (P-1) 8 parents and 96 children, (P-2) 8 parents and ildte, (P-3) 1 parent and
8 children, (P-4) 48 parents and 96 children, (P-5) 8 parants 384 children, (P-6) 8
parents and 48 children. Top: optimization profiles vs. nendf generations. Bottom:
optimization profiles vs. number of births.
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In Figure 2.4,(m,n)-ES choices of (8,96), (8,16), (1,8), (48,96), (8,384), &d8) are
compared, labeled P-1 through P-6, respectively. As expthabove, each variant was ter-
minated after a total of 192000 fitness function evaluatioagesponding here to different
numbers of generations. The best initial fithess value antteagarents for anym, n)-ES
with same number of parents is the same. The profile of P-3 (B8 a slightly worse
initial best fitness than any = 8 ES, while P-4 (48,96) has an initial best fithess over five
times smaller than anypn = 8 ES. This is not surprising: a initial population with= 48

instead ofm = 8 has a much larger probability of containing a parent with jc.

Comparing the P-1 (8,96) and P-4 (48,96) data shows the benhéfving a smaller par-
ent:child ratio. In P-4x? actually increases over the first few generations. This canro
when the fittest parents are either not chosen in the recatidmstep or chosen so infre-
guently that a child more fit than those parents is not produds the selection method in
the default strategy does not allow parents to survive tonthe generation, the fitness of

the best individual may increase from generation to geiwarat

P-3 is less effective than the other strategies throughoitiespecially at early times. With
only one parent, there cannot be recombination. Therditmess can only be improved by
random mutation of the single initial parent. Distinct jusngan be seen near generations
200, 600 and 1100, when especially productive mutationaroed. These data are again
averaged over ten independent runs, and each of these jutopdiyacorresponds to a very

large drop inx? in an individual run.

Comparing strategies wittn = 8 shows that an increase in the number of children leads
to larger decreases ix® per generation during the early stages of the optimizat®+h
(8,384) has the largest initial decreasesyfper generation, followed by P-1 (8,96), P-

6 (8,48) and P-2 (8,16), in that order. However, the use gfelacumbers of children is

32



generally avoided because it is both computationally mapeesive (per generation) and
it tends to more quickly reduce genetic diversity. This caubderstood as follows. In the
(8,384) optimization, there are only 36 unique pairs of ptxgeach of which will produce,
on average, 10.67 children per generation. If the childrfea single pair of parents are
particularly fit and truncation selection is used (as is tefadlt here), then thentire next
generation of parents may consist of the offspring of that plaparents, and will have
very low genetic diversity. As the ratio ofito n is increased, more of the current group of
parents will likely contribute to the next generation, aeaetic diversity will be preserved.
Of the populations tested in Figure 2.4, P-1 (8,96) achiéivesowesty? after the allotted
time and appears to make the most effective compromise batgenetic diversity ang?
reduction per generation. This finding has implicationdffi@ruse of evolutionary methods
on massively parallel computers. Increasing the numbehitddren, n, may appear to be
an efficient way to utilize many processors in an optimizatiout thenm must likewise
be increased to prevent loss of diversity. Furthermoreageesing bothm andn does not
necessarily improve the rate of convergence of the alguaritha cost-effective way; this
is easily seen in Figure 4b, wherein the performance of nteBi6é measured against the
number of births is clearly superior to the other algorithehsiearly all times, with only

P-1 pulling very slightly ahead after 1®irths.

2.3.3 Recombination

Our default algorithm was local, discrete recombinatiohisTs the most commonly used
recombination operator and is procedurally similar to thethrad used in genetic algo-
rithms. Various recombination operators are comparedguarei2.5. The two intermediate

operators (local, R-3, and global, R-5) are seen to providertost efficient recombination.
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Figure 2.5: Variation of optimization profile with choice i@combination operator. Oper-
ators tested include: (R-1) local discrete, (R-2) none3)Rcal intermediate, (R-4) global
discrete, (R-5) global intermediate, (R-6) local discfetgparameters and intermediate for
o, (R-7) global discrete for parameters and intermediate@{dR-8) local discrete for the
first 250 generations, none for the subsequent 1750.
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After approximately 250 generations, using no recombamatt all (R-2) gave results
equivalent to local discrete recombination (R-1). This wasinexpected result, and sug-
gests that recombination is most effective in the early ggians of an optimization. After
the first 250 generations, all the optimization profiles hsivailar slopes, suggesting that
after this time the optimization is controlled by mutatiostead of recombination. If re-
combination was still important in the later generations, would expect the profiles in
Figure 2.5 to differ significantly at late times. Intermediaperators (R-3 and R-5) pro-
duce better results overall due to their clear superiotityrd) the early generations; these
recombination operators eventually located parametervgigh x2 (again, averaged over

ten independent runs) only 1/5 that of the typical resulhefdther operators.

These findings are consistent with the genetic diversitg daFigure 2.3, where a substan-
tial drop-off in genetic diversity is observed after approately 250 generations. Once a
population is sufficiently inbred, it is unlikely that recbimation can lead to substantial im-
provements in fithess, since the parents are already allswerilar. This is investigated by
performing an optimization using the default ES paramegessn R-1), but then disabling
all recombination after 250 generations. These result8)(Bverlap with those obtained
with the default (R-1) until roughly 1000 generations, efthich the default improves very
slightly over the modified version, as shown in Figure 2.5sTehavior is consistent with
the hypothesis that recombination is not a substantiatitnor to further improvementin

fitness after the drop-off in genetic diversity.

It has been suggested that using a discrete operator foathmpters; and an intermediate
operator for theg; is more effective than using either fully discrete or fulhtermediate
operators [3]. Our results show that this is not the casasragpplication, and that the use of
an intermediate operator for the parameiers the key factor. Fully intermediate operators

R-3 and R-5 are clearly much more efficient than operatorsdreb R-7, which apply
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discrete recombination to the and intermediate recombination to tbe The similarity
between R-3 and R-5 after the first 50 generations suggestshére is no substantial

difference between local and global recombination opesatothis application.

2.3.4 Mutation Size Control

Mutation operators must be included in ES optimizationghee recombination operators
alone cannot fully search the available parameter spacein@nce, when using inter-
mediate operators, the averaging of parameters would niearchildren withx; values
outside of the largest and smallestn the current group of parents would never be gener-
ated. Likewise, when using discrete recombination opesatbe only children that could

be created would be combinations of parameters alreadipdpulation.

While all mutations involve Gaussian perturbations, tlze sif these perturbations may be
controlled in various ways. It is considered advantageousave large mutations at the
beginning of the optimization, which helps to search quicdross the range of allowed
values. However, at later times smaller mutations may beatds as they can allow near-
optimal parents to produce children that are “refinement#fi@mselves; this is analogous
to the very small steps taken by conventional optimizatemimhiques as they approach an
extrema. Therefore, the absolute size of mutations shaulgt&ddually reduced [38]. The

method used for this may also attempt to promote geneticsitye

The default method used here, labeled M-1, has an indepeogdér each parametes.
Following Beyer and Schwefel [38], thm are generated through a recombination process

(as above), and then mutated via

gchild . gehild . o . o (2.7)
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where the two mutation operatorg and.” are:

Sg=exp(1g-G(0,1)) 19= \/% (2.8)
A= el 601) 1= (2.9

g is calculated independently for each child and used fohalbt ; this acts as a global
scaling of mutation size, while the; are calculated independently for eadr each child,

allowing for variations in mutation size between paranseter

The simplest mutation size control operator is todifor the entire length of the optimiza-

tion. Method M-2 demonstrates such a constant global

Method M-3 is referred to as “simple annealing.” Here, a glabis reduced by a constant
factor every generationo := 0 - c; Where 0< ¢; < 1. For the profile in Figure 2.6,

cgs = 0.995. Note that M-2 may be considered a special case of M-3.

Method M-4 introduces history dependence. It setby scalinggp by the square root
of the current average value of the parents’ fitness dividethb average value of the
parents’ fitness after an initial equilibration period. 3kguilibration period is determined
as the end of the initial rapid decreasexii Specifically, for generatiog > 100, once

(x?)(g) > 0.9(x?)(g—100), we set(x?)ret = (x2)(g) and proceed according to:

2 3
0 = 0o x (%s) (2.10)

whereagy is the initial value foro. This directs the mutation size to decrease at a slower rate

than fitness itself for the majority of the simulation, aliog search for a global minimum.
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The mutation size decreases rapidly when the fitness is d Bawion of the fithess found

at the end of the equilibration period, enhancing localdear

Method M-5 is also history-dependent, and attempts to ptemgenetic diversity while still
allowing only small mutations near the end of a run. To do, this5 compares(2;, (the
lowestx? of the current population) with thg? averaged over the last 100 generations. It

uses the following quantities:

Kote= (5 + 1) Xfin® (2.11)
5 1 i—100 )
(XD 100(9) = 755 2 X(9) (2.12)

Every tenth generation, {f x2))100(g) > stca|ethen0 is reduced by a multiplicative factor
Cg, €lseo is increased by the inverse of the factgt In this workc, = 0.95. Furthermore,

if x2i,(9) = X%in(d— 100) then we assume that the minimum has been approximately
located and reduce by ¢2. Note that this condition can only be satisfied using ovegitag

or semi-overlapping selection methods.

Lastly, mutation size control method M-6 uses a historyetelent adjustment af which
is similar in motivation to M-5, but with a different critem for changingo. M-6 tracks
the average of the last 10 changeg{y, by defining a quantityAx2;,),,(9), which is the
average over the 10 most recent non-zero changg%iip This measures the “step size”
of progress towards an optimum solution. Then((ik?)),,(9) > 4- (Ax3in)1,(9), O is
reduced by a multiplicative factay; elseo is increased by the inverse ¢f. As in M-5,

Co = 0.95, and ifx2,,(g— 100) = x2,,(9) thena is reduced by a facta?.

The performance of these different mutation operatorsasvahin Figure 2.6. There is no

significant impact of mutation size control until roughly®generations. It was argued
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Figure 2.6: Variation of optimization profile with mutati@ize control algorithm. Algo-

rithms tested include: (M-1) independefd; }, (M-2) constanto, (M-3) annealingo by

a constant factor, (M-4) adjustment of relative to earlyx?, (M-5) history-dependent,

diversity-preserving algorithm, (M-6) alternative histalependent, diversity-preserving
algorithm.
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above that recombination methods only had a significantiffiehe first 250 generations.
It appears that after 250 generations the populations dfieisntly homogeneous that

mutation becomes the dominant method of search.

Keeping a constant mutation size prevents parameters feang loptimized to values any
more precise than the size of Gaussian mutations beingeapplThis is shown by the
fluctuating yet flat fitness of the constamtmethod M-2 from generation 300 onward. The
flat fithess profile occurs because the default selectionadathnon-overlapping and the
best parent is not carried forward to the next generatiorth&M-4 gives results similar
to keepingo constant in the later generations, which is surprising. 3teing factor
in M-4 should allow for drops irx? to produce relatively greater drops @nwhen the
optimization is in its later generations. However, thisa$ observed, and never became

small enough to reach the? values achieved in other methods.

History-dependent, diversity-promoting methods M-5 and lidroduce results similar to
simple annealing, algorithm M-3. Methods M-5 and M-6 did é#lve desired impact on
the genetic diversity of the parent population, but theatftely became noticeable after
roughly 1300 generations. At that point, the population &lagady converged on a single
minima and the diversity was quite low. The likely explaoatfor the observed behavior
is that the diversity-enhancing mutations tended to be foameters on whicly? did not
depend sensitively, so that the mutations would increasesttius of gyration but not lower
the fitness. These mutations, therefore, would not contistnongly to the location of new,
lower-x2 minima. For such methods to have a significant effect on thienigation, they
would have to be tuned to become active closer to the poinhwihgation takes over from
recombination as the dominant form of search, near 250 ggaes. The default algorithm
M-1 performed well but has a somewhat “wavier” profile thae tither variants, possibly

caused by sporadic large reductionsthin one of the independent runs. This algorithm
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ends up very slightly outperforming the other mutation gimatrol algorithms tested. It
may be that the large amount of local search towards the ewgtohizations does not
provide an opportunity for more complex mutation size colntrechanisms to outperform

the basic M-1 algorithm.

2.3.5 Selection

Selection methods are compared in Figure 2.7. The defdattte®n method used, S-1, was
the (m, n) non-overlapping truncation method, S-1 is deterministigosing the besh out

of nchildren to be the parents for the next generation. Thisnggared against overlapping
(S-2) and semi-overlapping (S-3 and S-4) truncations, drudenbinations of overlapping
and non-overlapping two-way and eight-way tournament oasHS-5 through S-8). S-
1, S-3 and S-4 clearly outperformed all other options in #ledion tests. S-1 and S-2
performed similarly until roughly 350 generations into thyimization. S-1 provided a
final result with ay? almost 50% better than S-2. Tournament methods are leiss #an
truncation methods, and also less effective. The two-wagntament methods S-5 and S-6,
also called binary tournaments, do not approachxthealue of other methods. Increasing
the number of participants in a tournament increases thaadest elitism, which makes
this method more flexible than truncation methods. Howesxern eight-way tournament

selection methods S-7 and S-8 still lag behind truncatiothous.
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Figure 2.7: Variation of optimization profile with choice sélection operator. Operators
tested include: (S-1) non-overlapping truncation, (Sa&®rtapping truncation, (S-3) non-
overlapping truncation plus best parent, (S-4) non-opgileg truncation plus best-ever
individual, (S-5) non-overlapping 2-way tournament, (S¥%erlapping 2-way tournament,
(S-7) non-overlapping 8-way tournament, (S-8) overlag@rway tournament.
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2.3.6 Simulated Annealing

For comparison with the evolutionary strategies, we alswittered an efficient simulated
annealing (SA) algorithm [6]. Simulated annealing is sanilo (1+1)-ES, though with

different selection and mutation size control operators.

In our SA implementation, a new trial solution (child) is geated by applying Gaussian
mutations to parameters of the parent. As this is only doneh@ child per cycle, we
refer to births instead of generations. With probabilit§ Qe mutate each parameter

by addition of a Gaussian random numitH0, o), whereg; is a globalo scaled by the
allowed range of parametér as in most of the ES mutation size control variants. An-
other change made beyond a typical simulated annealingitigois that acceptance and
rejection of trial solutions are tracked over the past 5kthbi If fewer than 20 percent
of children are accepted, thenis decreased by a factor of = 0.995. If more than 20
percent are accepted, thenis increased by a factor of/t,. This is a simple version
of the “1/5 rule” sometimes used in (1,1) evolutionary ggies and Monte Carlo simu-
lations [3]. The algorithm has a “temperatur®”(with initial value 1750585 (kJ/mol§)
which is annealed by a factof = 0.99994 after each birth. The child replaces the parent
if U(0,1) < exp(— (X4 —xgarem)/T) where U(0,1) is a uniform random number on the

interval [0, 1].

As shown in Figure 2.8 the shape of the convergence profilerinlated annealing is sub-
stantially different from that displayed by the evolutiopatrategies tested. After an initial
rapid improvement, a period of slow searching occurs. Thpa&rteedback of simulated
annealing — only considering one child per generation lgefboosing a new parent — may
explain the advantage of SA in the first thousand births o be.advantage of SA towards

the end of the simulation is probably related to the “1/5’rwhich allows mutation size
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to be adjusted on-the-fly. The historical success of thigisuis in part what inspired

attempts to use mutation size control heuristics in evohary algorithms. Interestingly,
the profile of SA optimizations at very late times is stillfdifent in shape than that of any
of the ES mutation size control variants, even though theydasigned to have similar

effects.

As the simulated temperature is lowered, the algorithm lmasotrapped in a single mini-
mum. Different annealing runs produce fitness values vgrgirer about one order of mag-
nitude, much as do the independent ES optimizations of Bigwt. The cooling schedule
used here was chosen to allow the optimization to reach loypégatures, characterized by
fluctuations iny? much smaller thae (1), within the same number of function evaluations
that the evolutionary strategies were allowed. There mdgdsevariation between final fit-
ness values when using a slower cooling schedule. Nevesthesimulated annealing is

very effective in finding a good solution.

2.4 Parametrization against CPMD reference data

Using combinations of ES options that were found to be dffech the meta-optimization
study, we then ran many optimizations of the FG potentiaireahe second training set,
composed of DFT data. These calculations fit the FG functifamen against data which
it cannot perfectly reproduce, and so the minimum possiBleill no longer be equal to
zero. These optimizations were initialized with the oraiRG potential parameters as one

of the parents.
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Figure 2.8: Simulated annealing optimizations. As in Fegg2yten independent runs (start-
ing from the same point) are shown, as well as their average.
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Figure 2.9: Fitting the FG functional form to the CPMD traigiset. FD-1 is the de-
fault method in the meta-optimization tests. FD-2 usesljactermediate recombination,
and other options as in FD-1. FD-3 uses local, intermedetembination and simple
annealing mutation size control, and other options as iflFBD-4 uses local, intermedi-
ate recombination and non-overlapping truncation plus-eesr individual selection, and
other options as in FD-1. FD-5 uses local, intermediatermdxnation and non-overlapping
8-way tournament selection, and other options as in FD-1.
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These results are shown in Figure 2.9. FD-1 was the defauhodeused in the meta-
optimization study. FD-2 used local, intermediate recarabon. FD-3 used local, inter-
mediate recombination and simple annealing for mutatize sontrol. FD-4 used local,
intermediate recombination and semi-overlapping truanatelection from the population

m+ n. FD-5 used local, intermediate recombination and 8-waynaument selection.

The FG parameters are better than almost any random guessis€lof non-overlapping
selection then creates a “spike” at the second generatifmuirof the five methods tested,
since recombination and mutation create children with @elax? than the FG parameters

while the FG potential is not carried over to the second gaiaer.

FD-2 and FD-4 performed the best, and have extremely simpitaiiles for the last 1000
generations of the optimization. Against this training sie¢ effects of recombination are
observed much further into the optimization than the 250geions usually seen during
the meta-optimization study. The effects of recombinatitay be observed for a longer
number of generations because an exact solution is notalailor this case, and because
the initial guess may be much further from a good solution-1Rihd FD-2 develop similar
slopes after generation 1000. FD-3, using simple annegtiegorms strongly until just
after generation 1000, whenbecame too small to make further significant improvements
in fitness. Lastly, FD-5 lagged consistently behind the otigions, showing that for this
problem and the population size used, even large tournasieag may not be sufficiently
elitist. Excepting FD-3, all of these methods displayedroation profiles similar to those
seen in the meta-optimization study, suggesting that tipeoagh of fitting an empirical

potential to itself is a reasonable choice of test probleninfieestigation of ES behavior.

The parameter sets obtained from these calculations amensimoTable 1; these are the

fittest individual results from the ten independent runsi\gsach evolutionary strategy
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Parameter FD-1 FD-2 FD-3 FD-4 FD-5 FG
A(H-H), x10~% ergs 0.03103 | 0.02106| 0.03571 | 0.02257 | 0.021513| 0.0340
p(H-H), A 0.2827 | 0.1784 | 0.2573 | 0.1786 | 0.2206 0.35
B(H-H), A 1.319 1.3790 | 1.3526 | 1.3496 | 1.3727 2.10
ai(H-H), x10 2 ergs -5.335 | -6.3800 | -5.3370 | -5.7848 | -5.3192 | -5.2973
by (H-H), A-1 5.117 4.7664 | 4.7996 | 5.2802 | 5.4553 6.0
c1(H-H), A 1.2663 | 1.2006 | 1.2770 | 1.2207 | 1.2542 1.51
ap(H-H), x10 2 ergs 0.2009 | 0.2632 | 0.4197 | 0.2993 | 0.3546 0.3473
ba(H-H), A-1 1.8539 | 2.0173 | 1.3476 | 2.1513 | 2.2582 2.0
co(H-H), A 3.2085 | 3.1084 | 2.5569 | 3.0789 | 3.0109 2.42
A(O-H), x107 9 ergs 0.3360 | 0.3838 | 0.4018 | 0.3882 | 0.3848 0.3984
p(O-H), A 0.2992 | 0.2773 | 0.2695 | 0.2757 | 0.2787 0.29
B(O-H), A 1.7270 | 1.7978 | 1.7405 | 1.9038 | 1.9026 2.26
a1(0-H), x10 2 ergs -2.2366 | -1.2288 | -1.8019 | -1.7787 | -1.4016 | -2.0840
by (O-H), A2 10.2427 | 21.4197| 19.0815| 20.9755| 17.0696 | 15.0
c1(0-H), A 1.1064 | 1.1605 | 1.1855 | 1.1760 | 1.1541 1.05
ap(0-H), x10 2 ergs 6.8043 | 7.1150 | 7.1936 | 8.4660 | 7.8496 7.6412
ba(O-H), A1 2.8448 | 3.2279 | 3.2265 | 2.7840 | 3.0235 3.2
c2(0-H), A 1.4358 | 1.6233 | 1.5092 | 1.5852 | 1.5941 1.50
ag(0-H), x10 2 ergs -0.8008 | -1.1142 | -0.8619 | -0.8341 | -1.0400 | -0.8336
bs(O-H), A-1 3.8372 | 5.3733 | 4.9270 | 5.1868 | 5.1650 5.0
c3(0-H), A 1.7244 | 1.9072 | 1.8161 | 1.9928 | 1.8755 2.00
A(0-0), x107% ergs 0.6204 | 0.9318 | 0.7086 | 1.0126 | 0.6314 0.7250
p(0-0),A 0.1536 | 0.2258 | 0.2316 | 0.1685 | 0.1815 0.29
B(0-0),A 1.6597 | 1.7056 | 1.7057 | 1.7451 | 1.7893 2.34
A(Si-H), x10~% ergs 0.03488 | 0.04092| 0.05571 | 0.05767 | 0.05520 | 0.0690
p(Si-H), A 0.3333 | 0.1732 | 0.2241 | 0.1868 | 0.2076 0.29
B(Si-H), A 1.7574 | 1.8393 | 1.8692 | 1.8520 | 1.9144 2.31
a1(Si-H), x102ergs | -5.9716 | -5.9754 | -6.2415 | -6.0339 | -6.3399 | -4.6542
by (Si-H), A-1 3.6173 | 3.7601 | 3.7488 | 3.7710 | 3.7888 6.0
c1(Si-H), A 2.1270 | 2.1799 | 2.2019 | 2.1767 | 2.1761 2.20
A(Si-0), x10 % ergs 4.3049 | 2.0904 | 2.3021 | 2.1387 | 2.3477 2.9620
p(Si-0), A 0.2320 | 0.3052 | 0.3041 | 0.3058 | 0.3070 0.29
B(Si-0), A 1.2277 | 1.5972 | 1.6715 | 1.6305 | 1.7657 2.34
A(Si-Si), x107% ergs 2.0641 | 2.0021 | 2.2312 | 1.7762 | 2.1179 1.8770
p(Si-Si), A 0.3035 | 0.1890 | 0.2862 | 0.2197 | 0.1855 0.29
B(Si-Si), A 1.1892 | 1.4321 | 1.4610 | 1.4137 | 1.5670 2.29
A(0O-Si-O), x10 T ergs | 11.3068 | 10.1754 | 19.44 9.6978 | 19.1985 | 19.0
¥(O-Si-0),A 4.1957 | 3.8445 | 3.1944 | 4.1697 | 3.9531 2.8
A(Si-O-Si), x10 Tergs | 0.4496 | 0.4483 | 0.3136 | 0.4447 | 0.4439 0.3
y(Si-0-Si), A 1.0005 | 1.0052 | 2.0065 | 1.0021 | 1.0067 2.0
A(Si-O-H), x10 Tergs | 4.8690 | 3.1015 | 5.1819 | 2.7365 | 3.9802 5.0
y(Si-O-H: Si-0),A 1.6022 | 1.0161 | 1.9427 | 1.0495 | 1.7518 2.0
y(Si-O-H: O-H),A 1.5203 | 1.7038 | 1.3923 | 1.7058 | 1.5326 1.2
A(H-O-H), x10 T ergs | 31.9566 | 25.3210| 32.1643 | 38.3666 | 32.3834 | 35.0
y(H-O-H), A 1.4741 | 1.3718 | 1.4345 | 1.4649 | 1.4264 1.3

X?, (kJ/moly [ 3524 [ 4307 [ 5013 [ 459.8 | 560.7 [ 52963.0

Table 2.1: Feuston-Garofalini re-parametrizations byli@nary strategies. The fittest
parameter sets from Figure 9 are shown, as well as the origBgarametrization. Pa-
rameter names and units are as given in [61]. Only “fitted’ap@aters are given in the
table; other parameters (cutoffs, reference angles, amdafocharges) are kept fixed at
their literature values [61].
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variant. All five parametrizations are dramatically fittetocer to the CPMD reference
data) than the original FG parameters, though we shouldthatethis does noa priori
indicate that they will be more suitable for modeling a mautar system or property. The
obtainedy? values of~ 500 (kJ/mol§ correspond to an rms deviation of 0.1 kJ/mol per
atom in the energy of any given configuration relative to #fenence configuration. The
average hydrogen bond strength in liquid water is about 20&J Since hydrogen bond-
ing is expected to dominate the energy differences betweefigurations, we expect that
these important interactions should be described well bgdlparameter sets, at least to
within the accuracy of the density functional theory usetle @ifferent sets vary consid-
erably in the actual values of particular parameters, wattmes, such as thas, varying
over a fairly large range, while others, suchH©-0), are very similar from one set to
the next. In a few casey(Si-O-Si), for example) parameters have converged to ate si
of their “allowed range,” which suggests that better fitslddee obtained by expanding
these ranges. Additionally, training set coverage couléiended to include more con-
figurations which contain geometries at extreme bond argglésstances. As the training
set was generated using a CPMD simulation, physically guieat configurations were not

necessarily sampled.

2.5 Discussion

All of the optimization profiles shown above are averaged ¢&e independent runs. In a
typical run, for instance as shown in Figure 2.3, the radfigymation Ry of the population

at the endpoint had a value near to 0.03, indicating that temipers of the population
were all very similar to each other and that the algorithm ¢@a/erged into a single min-

imum of the fitness function. However, tiiRy value measured for the ten best solutions
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obtained from the ten independent runs is 1.49, approxignai® orders of magnitude
larger. Comparing the two values suggests that indepemgbimization runs are finding
different minima of the fitness function; inspection of thetual parameter sets given in
Table 1 (which is a different calculation, but with similamvergence properties) supports
this. While evolutionary methods are often touted as glgl@invergent, it appears that
for “reasonable” run conditions, performing multiple imp@@dent runs is probably a good
strategy. In practice, for a sufficiently complex probleny arethod which is globally con-
vergent in infinite time will only be locally optimal in finittme. The stochastic nature of
the method leads to different locally optimal solutionsngegiound through independently
seeded runs. However, global methods are still quite védushtheir solutions will usually

be better than those found by purely local optimizations.

The number of minima, and the “shape” of the fitness funcgénare of interest in this
regard. Given the high dimensionality of the parameter spaoe might suppose that
the many different solutions found in these optimizationseafrom the relatively small
number (128) of configurations used in the training set: @veef conditions there are to
satisfy, the more ways there should be to do so. Howeverafipgears to not be the case.
The Ry values for the ten independent optimal solutions for eadhefifferent training
set sizes of Figure 1 are all between 1.33 and 1.68, with n@lkedion with training set
size. That is, adding additional data beyond 128 configumagnergies does not bring the
many locally-optimal parameter sets any closer to eachr.otliiewise, the corresponding
Rg values for the runs of Figure 4, which varymandn, are all between 1.49 and 1.73,
and likewise do not exhibit any trend with population parteare It therefore appears
that the many local minima in this objective function redultm the potential itself and
the particular definition of(? used, rather than the size of the training set or other, more

arbitrary parameters.
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A significant feature observed in many of the optimizatioaofites in this study was an
apparent crossover, at about 250 generations, from betdmminated by recombination
to behavior dominated by mutation. This crossover was rkeafdy robust to changes in
the various operators involved and therefore its appeararay be anticipated in related
problems. Manipulating the number of generations in whedombination is the dominant
mode of search may be an important tactic for future evahatip algorithm work, as it is

believed that recombination is almost entirely global,loogl, search.

Since most of the computational effort is expended afterctbssover, in order to more
quickly locate optimized parameter sets one should makmttiation operator as efficient
as possible. However, of the considerable number of mutaterators tested in this work
there were no clearly superior ones, and significant fuithprovements may be difficult.
One possible alternative could be a composite (or “mem¢Tig]) optimization strategy,
in which, once the ES algorithm “slows down”, one switchesraw a different, locally-
convergent, method which is good at “refining” an approxehatocated solution. The
radius of gyratiorRy introduced above is an effective signature for the ES crassand
could be monitored to trigger the change to another methaa nbte, in this regard, that
rapidly-converging methods such as conjugate-gradietiingration or Newton-Raphson
root-finding are not very well suited to parameter optimaaproblems, since it is prefer-
able to not have to implement derivatives of the energy wegpect to the potential pa-
rameters. However, such derivatives could be efficienttyreged by using parallelized
one-way finite or centered difference methods, which coutdide a cost-effective route
to the precise location gf? minima; the effectiveness of this approach would depend on
the roughness of thg? function and the stability of the optimizer with respect towerical
precision. It should be noted that when applied to ligandkahay; a prior study did not find

local optimization to be beneficial [55].
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Based on the results of the meta-optimization study, wemneeend the use of intermediate
recombination operators for both the paramefet$ and mutation size control variables
{ai}. No substantial difference is observed between globalimdiate and local interme-
diate recombination at long times, though at short timegtbkal variant appears prefer-
able. Of the mutation operators considered, the self-adggpbhdependent method M-1

is at least as effective as any of the others considered akd &ny “adjustable” parame-
ters. We note that “simple annealing” is nearly as effectwth one adjustable parameter
(here chosen arbitrarily) and considerably simpler to enpgnt. Finally, non-overlapping
or semi-overlapping truncation methods are clearly pretefor selection, as the tourna-
ment methods appeared to not have enough selection preasdreverlapping methods

exhibited slowdowns in the later stages of optimization.

Simultaneous parametrization of all parts of a potential tee advantage of providing
more uniform “quality” between different terms, but grgaithcreases the complexity of
the numerical problem to be solved. Even in fully automatecametrizations one must
still provide initial estimates of the magnitude (and, likethe allowed range) of each
parameter, which requires at least some physical insigbtie problem. In applications
where an existing potential is to be extended, such estsvaate straightforward, but for
the parametrization of a new functional form or previousigtudied chemical species they
may be more difficult to obtain. For very large problems, ipnglary parametrization of
groups of related parameters against subsets of the aeaitfbrence data may also be a

viable strategy.

ES methods are inherently parallelizable. While evolutibtine objective (fithess) function
used here can also be parallelized over a reasonable nufrffrecessors, the ES approach
has a considerable advantage in this regard, and therdfotddsbe of particular interest

when wall-clock time is a limiting factor. This suggeststt&® is particularly suitable for
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work involving a large number of parametrizations, for amate comparisons of different
functional forms, comparisons of potentials based on wffereference data, or even the

(common) extension of an existing potential to treat sonve cteemical species.

This type of design is implemented in a “data parallel” peogr Each CPU is performing
the same type of work, but on different data sets. The adgentd ES methods over
simulated annealing methods is the multiple level strectfrits data parallelism, which
is useful on cluster computers with many independent nodRegpid communication is
needed when calculating the fithess of a specific individaedimeter set, which is confined
to a single node. The evaluation of the entire set of indiidumay be distributed over
many nodes, and communication between nodes will be leggdrg than communication
between CPUs on the same node. This is important becausatémey on inter-node
communication is orders of magnitude higher than intraenodmmunication. In other
fields, parallel programs are often “task parallel” in wharte CPU will perform work of
one type (such as graphical rendering) and another CPUrpegn entirely different task
(such as sound processing). This type of parallelism isfareptimization applications.
When increasing the size of the training set or the numbendifiduals being evaluated
as part of an ES, this optimization method provides a goothei@of Gustafon’s law for
parallel computing, where the possible speedup from additiprocessors is essentially
unbounded.

S=f(n)+px(1—f(n)) (2.13)

In this equation, the speedup is S, f(n) is the fraction (r@pdrom zero to one) of work
that must be done sequentially, and p is the number of procesés the parallelizable
part of the work increases (training set size and numberdiVieuals, represented as “n”),

f(n) decreases, and therefore speedup increases as moesgocs are used. For a fixed
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problem size, Amdahl’s law applies, with high scaling.

S=1(1-F)+Fp (2.14)

In this case, S is the speedup, F is the fraction of work thparallelizable (and is a fixed

value), and p is once again the number of processors that enagdal.

As shown in Figure 2.8, the efficient simulated annealinghmetused in this study gen-
erally outperformed the evolutionary strategies whemfittihe FG potential to the FG
training set. Simulated annealing can be parallelizeckeitirough distribution of configu-
rations in the training set or by performing multiple indedent runs. As discussed earlier,
evolutionary strategies may spread the evaluation of grafpchildren across available
processors. This is a significant advantage: the number bf €ifes available in modern
supercomputers or clusters is increasing at a greaterhatethe performance per core.
We also note that the adaptive mutation algorithm in the Eted annealing optimizations
may have been superior to the mutation algorithms used iavbleitionary strategy, as no

equivalent to the “1/5 rule” was available for ES runs.

Finally, we note that the type of reference data used (cordigunal energies) and defini-
tion of the fitness function as a least-squares—like catesire themselves arbitrary choices
and there are certainly other possibilities. Force (gragliéata could also be used in the
fithess function (as in the “force-matching” studies ddsamliabove [24, 25]), for instance,
and a “minimax” criteria could be used to define the fitnessfion, so that the final opti-
mized value would limit the maximum deviation in selectecuagities between the model

system and the reference data.
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In this chapter, we have presented guidelines for the seteaf ES operators and training
set sizes suitable for the parametrization of empiricaéptéls against reference data gen-
erated using electronic-structure methods. Such paraagbdns are considerably higher
in dimension and complexity than the typical problems usedevelopment of evolu-
tionary strategies, and algorithms optimized for thestedkht problem classes differ in
non-obvious ways. The ES approach is highly parallelizabié may therefore be suited
to “large” optimization problems. However, ES exhibitsatalely slow convergence at
later generations that may warrant changeover at late timas alternate method which

converges rapidly once a solution has been approximatehidd.
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Chapter 3

Towards an Improved Charge-Transfer

Potential for Silica

3.1 Introduction

Our research group has a long-standing interest in sinmglatioperties and formation of
silica sol-gels [76—78]. This has included developmentadrse-grained models of gel
networks and atomistic simulation using existing modeld extremely large simulation
cells to directly simulate the early stages of gelation B, 7As part of this effort, we

sought to create a better atom-based potential for silica.

Incorporating changes in charge distribution among atonmaalecules during chemical
reactions is a challenge for empirical potentials [33]. Axdssed in the previous chapter,
most commonly used potentials use fixed partial charges @miatsites, possibly aug-
mented with dipoles or higher multipoles centered near et@ites or geometric centers
of small molecules. These empirical potentials are ofteabiento undergo bond-breaking
and bond-forming reactions. The Feuston and Garofalini) (B@ential does undergo

bond-breaking and bond-forming reactions, but its elstatics are relatively primitive,
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consisting only of hard-core electronic repulsion and a pisinCoulomb interaction [1].
Further, full formal charges are usedX for hydrogen,—2 for oxygen,+4 for silicon),
which may be appropriate for ionized, isolated atoms buttvkio not accurately describe

the electrostatic field around a molecule.

There has been significant work on empirical models whiahwaitom charges to change
over the course of a simulation. One widely cited model ipooaites a charge equilibration
technique (the “ReaxFF” model, which uses the “QEq” techaideveloped by the same
group) [18, 19]. This approach has been successful in moglsbme molecular reactions.
However, we judged that it is too costly to use for systemsistimg of millions of atoms,
due to the complex algorithms used to calculate new chatgesch timestep. In particular,
the QEq algorithm formally ha®(N?) scaling (N is the number of atoms in the system),
which would be prohibitively expensive at large systemsiZehe Kieffer group has also
created a charge-transfer model for silica species whicimder active development [80,

81], but will not be considered in detail here.

Alavi, Alvarez, Elliot and McDonald developed a chargeaster model (henceforth, the
“AAEM-CT” model) which is inexpensive, using only the locahvironment of atoms to
determine charges and charge-transfer forces at eachtéimnf@. As this model had al-
ready been applied to liquid silica, we decided to combiree ¢harge-transfer features
of the AAEM-CT model and some of the empirical features of & model to create a
new charge-transfer model of silica which could eventulayextended to aqueous silicate
species. The AAEM-CT energies and charge-transfer foroegiaen in Equations 3.1
through 3.5. They include a Coulombic interactidfs) and empirical covalent terms
(Eemp of a generalized Morse (also known as a Hulbert-Hirscleigltbrm, plus a steric

repulsion between oxygen atoms. Note that only atoms of siggosign and within a cutoff
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distance Rjj < Rct) are allowed to transfer charge (for all other atoms nornaail@mb

interactions still apply).

o qid;
o= |Zj>| 4TEoRj G-
a'=q"-aqy f(rirf) (32)
J
of =a®+aqy f(ritrf) (3.3)
f(Ry) = 5 {1~ tant{(R; — Rae)/]} (3.)

Eemp = €[(1—exp(—x))%+cx3(1+Dbx)exp(—2x) — 1]

e o\’
3671500 (RT,) (3:5)

In these equations{* is the charge on an individual catiof)( andg? would be the charge
on an anionB), andx = (R — Re)/ain Equation 3.5. The amount of charge which may
be transferred between them is determined by the paradetehich is specific to a given
A — B pair, and the charge transfer functiorfalvhich depends on the distance between

atomsi andj and their specific types (its shape is shown in Figure 3.1).

We planned to parametrize our new model, the Barnes-Gellificettcbn of the AAEM-CT
model (the “BG-AAEM-CT” model) using an evolutionary segy (ES), with ES tech-
niques optimized in the previous chapter. The model woulfitlagainstab initio training
sets. Simulations of different phases of silica would beldsealidate the empirical poten-

tial form and parameters. In this chapter we describe thffisgs problems encountered
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Figure 3.1: The charge-transfer functidi{R;; )) for the AAEM-CT model shown in graph-
ical form. At small separation, the full amoudg is transferred, while the amount trans-
ferred goes smoothly to zero outside a certain range.

and overcome, and some simulation results obtained usirgjienary version of the new

model.

3.2 Potential Development

While working with the AAEM-CT model, we noticed problemsttvsimulations at con-
stant pressure. Specifically, the simulation cells woulditeo expand rapidly and soon
after that the numerical integrator would become unstaftiérst, this was quite puzzling.
No mention of such problems had been mentioned in the litexaprior work was mostly
performed in the canonical and microcanonical ensembiest, e verified our program’s

implementation of the analytical equations for force anelspure calculations. This was

59



— AAEM-CT: complete potentig|
— AAEM-CT: Coulomb terms

-1000|— —

-2000— —

Energy (kJ/mol per atom)

-3000

\ \ \ \
-4
000 15 2 2.5 3

Si-O distance (A) in B-cristobalite cubic (diamond) crystal

Figure 3.2: AAEM-CT model energies forfzcristobalite cell. In this crystal, the silicon
atoms occupy lattice sites of a diamond structure, with exygtoms bridging between
them. The lattice constant on th@xis is that of the Si-O bond distance.

done through comparison with numerical differentiatioth&f energy with respect to parti-
cle displacement (for forces) and simulation cell size gear{for pressure). We eventually
discovered the root cause of the problem by examining3ttegistobalite crystal phase of

AAEM-CT silica.

In Figure 3.2 we show the AAEM-CT potential energy versugasii-oxygen distance for

a uniformly expandegB-cristobalite crystal. The minimum energy lattice consiamear
2.35A instead of the experimental 1.8 This occurs because the total energy of the sys-
tem is minimized at silicon-oxygen distanaastsidecharge-transfer range, due to the in-
creased magnitude of attractive Coulomb interactionst iEhthe charge-transfer between
neighboring atoms lowers the magnitude of (opposite) n®ghg charges, and therefore
the total cohesive energy of the crystal. As a result, atorafepnot to be bonded when

the system is allowed to expand freely. At 4000 K and 1 bargetpglibrium density of
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AAEM-CT silica is only 0.24 g/cc, roughly 1/10 of experimahtensity. A correction for

this rather fundamental problem had to be part of our improea plan.

3.2.1 Functional Form

Our proposed functional form is most easily understood lamering the Coulombic and
non-Coulombic parts separately. We will discuss the Cobiorpart of the potential first,
as it is the most complicated. We include a short-rangedyrbady modification to the
AAEM-CT form when atoms are transferring charge. As with #&EM-CT model, for
two atoms andj to transfer charge, they must be within ranBg & Rct) and of typesA

andB which form bonds with each other. The following equatiorestiapply:

o = —aqy f(ri\rf) (3.6)
,
¥ = qB+Aqlz f(rrf) (3.7)
f(Ry) = 3 (1—tank(R; —Res)/2]) 38)
Eor(rfrf) = g-la+0a- 1(Ry J[af-0a- (R )] (3.9)
et rf) = (A+ - AL eeri + - pH T @io)

During the normal evaluation of the Coulomb sum for the systeéquation 3.10 is used to
evaluate the pair energy for two atoms transferring chafdeés would be identical to the
handling of the Coulomb sum in the AAEM-CT model except fog terms in green and
red. The changes in Equation 3.9 modify the short-rangeggrierms so that some energy

from charge transferred between a pair of atoms is “give’biacthe energy evaluation
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of that pair. The motivation behind this change was to mirhie ¢tonversion of energy
from an ionic interaction into a covalent bond. The changeBquation 3.10 include an
interpolation parametef, with a range of O to 1) between charge-transfer Coulomb and
formal-charge Coulomb energies, which restores additisimart-ranged bonding energy.
The second term (the “bare” Coulomb interaction) is larganagnitude at short distances
than the first term, which usds:t (the charge-transfer Coulombic energy). A value of
A = 1 indicates that the interpolation is turned off (“puer”), and B = 0 indicates the
interpolation is fully active. This interpolation may sotinees be useful for adjusting bond
lengths during parametrization, as its value may complernmenshape and magnitude of
the hard repulsive wall in a potential. The constBst is the cutoff distance for charge-
transfer and used in the interpolation scheme. Importalathg-range Coulomb interac-
tions are unaffected by our changes. This allows the evaluaf short-range many-body

charge transfer and the resulting forces to remain inexpens

The forces that result from charge transfer are complicadigst, it is important to note that
the change in charge on an atom with respect to the changeidinates of a nearby atom

is a derivative through the charge transfer functi¢R;j ), which is given in Equation 3.11.
This expression is used in the Coulombic force on akgr,, which is given in both an
expanded and a simplified form (Equations 3.12 and 3.13) fadters; is a “sign” factor
and always equal to plus or minus one. It is positive if theratd typei is a cation, and
negative if the atom of typeis an anion. The usage of this sign factor allows for a more
compact expression of the forces and computationally begsresive implementation in a

simulation program as some of the work is moved outside theriloop.

oq" _ Ag _ |
o fsecf?[ak —Rag]/{ ik (3.11)
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The augmented functional form also has non-Coulombic tevineh may be divided into

two-body and three-body interactions:

Ean(rij) = Ajjexp(—pijRij) — %(2 5 tani((Rij — dyj) )/dZI]) (3.14)
J

Yik
— R Rk—R.?(

Eao(rij, I jk, Ojik) = )\ukexp[ ] x (cosji —cosBf)>  (3.15)

The two-body form includes an exponential repulsion andttaciive dispersion inter-
action, which is damped to zero at short distances to presehard repulsive core. The
three-body term is of the Stillinger-Weber form (as pregiguused in the FG model),
which acts as a penalty function for deviation from a preférangle for specified types
of triplets. All of the constants represented by symbols qu&iions 3.14 and 3.15 are

“fittable” parameters (onlRij, Rk and codjix are variables).
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3.2.2 Training Sets and Parametrization

Our approach to parametrization was based upon that dedartChapter 2: least-squares
optimization againsab initio “training set” data. Two systems were used to create the
training set. The first was a box of fluid Si@ontaining 192 atoms at a density of 2.20
g/cc. The second was anquartz box containing 576 atoms at a density of 2.64 g/cc.
The procedure used to create the configurations and evahetenergies was as follows.
First, molecular dynamics simulation using the Beest-Kea®anten (BKS) silica poten-
tial [82] to equilibrate the system, at 600 K for tilequartz and at 4000 K for the fluid
phase. This was done using a Gaussian isokinetic thermoSta¢ hundred configura-
tions from the equilibration runs (widely separated in dimtion time) were then selected.
Each of those configurations was then used as the input ggofoeta separate plane-
wave DFT single-point energy calculation using the CPMDkpge [72]. These DFT
calculations used a 30 Rydberg cutoff, a Vanderbilt ultitgseeudopotential [69] for oxy-
gen, a Troullier-Martins pseudopotential [83] for silic@md the Perdew-Burke-Ernzerhof
(PBE96) exchange-correlation functional [68]. Therefdhe training set contained one
hundred configurations, representative of systems witkreifit phases, temperatures, and
densities. We believed that the range of energies and atdistences represented would

provide enough data to parametrize a transferable emigiatantial effectively.

Initial attempts to optimize the BG-AAEM-CT parameter ssing evolutionary strategies
were almost totally unrestricted, allowing all parametergary within physically possible
plausible ranges (for example, repulsive wall pre-facteese constrained only to be non-
negative). When tested in short simulations of amorphdicasfor models obtained this
way often resulted in physically unrealistic behaviorgafforming small, dense clusters
with hexa-coordinated silicon atoms. To address this, spatameters were often held

fixed during optimization. These include the amount of chargnsferred (to replicate
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BKS charges, which are known to be effective in atomistic eyl the interpolation pa-
rameter, and three-body terms. Other terms, such as thgezhransfer curvaturé, were
set to values near best-fit ES optimization results. A widgetaof parameter sets were
tested in preliminary simulations; one such table of vaisegiven in Table 3.1. In this
parameter set, isolated atoms have fully ionic charges,thike FG model, but can transfer
charge so that at full coordination they would have the saardgb charges as the BKS
model. The two-body parameters are similar to those of th8 Btbdel, but with repulsive
walls which are larger in magnitude. The three-body paramédtave the same value as

those in the FG model.

3.3 Preliminary Simulations using the BG-AAEM-CT Model

In this section, we describe results obtained using the BE&M-CT model with the
parameters in Table 3.1. This includes both analyticalutatons of lattice energies
and molecular dynamics simulations. Our isobaric-isatt®rensemble simulations were
performed at temperatures from 3000 to 10000 K and a presdgutebar, for bothg-

cristobalite and amorphous phases.

3.3.1 Lattice Constant Investigation

BG-AAEM-CT silica has more realistic constant pressurgoprties than the original AAEM-
CT model. The minimum-energy lattice constant is near tipeemental 1.63A. This is
shown in Figure 3.3, which displays energy vergusristobalite lattice constant for both
the BG-AAEM-CT model and the previously examined AAEM-CT aed In our model,
the energy change with respect to system size is much snrpatitethe minimum is at the
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o”(proportion of formal charge) 1.0

qP 1.0
Aq(Si-O) 0.4
Rag(Si-0), A 1.75
At 0.2
A(Si-0), x10 ° ergs 21604.50864
p(Si-0), A 4.87318
B(Si-0),A 133.5381
dh(Si-0),A 1.25
dy(Si-0),A 1 0.2
A(0-0), x10 % ergs 1666.5276
p(0-0),A 2.76
B(0-0),A 175.0
d,(0-0),A 1.25
d>(0-0),A1 0.2
A(Si-Si), 1079 ergs 36000.0
p(Si-Si), A 3.0
B(Si-Si), A 200.0
d(Si-Si), A 2.0
dy(Si-Si), A1 0.2
A(0-Si-0), x10 1 ergs 19.0
y(O-Si-0),A 2.8
RO(O-Si-0) 3.0
6(0-Si-0), degrees 109.471
A(Si-O-Si), x10 M ergs 0.3
y(Si-O-Si),A 2.0
RO(Si-O-Si) 2.6
6(Si-O-Si), degrees 109.471
R 0.0

Table 3.1: Parameter set for the BG-AAEM-CT model. This is ohmany parameter sets
tested. For many of the parameters not related to chargsféravalues used are similar to
those in the BKS or FG models.
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Figure 3.3: B-cristobalite energy versus lattice constant for BG-AAEM-and AAEM-
CT models. The dashed line indicates the experimental yalaoeh is near the minimum
for the BG-AAEM-CT curve in this Figure.

right position. The BG-AAEM-CT repulsive wall also has aegier slope, and resembles

that of more well-behaved potentials such as the BKS model.

3.3.2 Structure and Charge Distribution

Oxygen-oxygen and silicon-oxygen radial distributiondtions (RDF) for these models
are given in Figure 3.4. Thg-cristobalite simulation was performed at 3000 K and 1
bar. The amorphous phase results are from a simulatioredtaith an amorphous initial
configuration and run at 5000 K and 1 bar. They show thaiBtueistobalite crystal re-
mains intact, with the crystalline structure signified byaighpeaks. The silicon-oxygen

and oxygen-oxygen RDFs for the amorphous phase of the BGMW&H model are quite
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similar to that of the BKS model simulated under the same itioms, with the nearest-

neighbor and next-nearest-neighbor peaks occurring ghigithe same distances.

The structural differences between the crystalline andrphuaus phase are also reflected
in charge distributions from simulations using the BG-AAEDT model, which are given
in Figure 3.5. In each figure, the broader distribution ofrgka in the higher temperature
amorphous phase reflects the wider distribution of intenatalistances. In the amorphous
phase atoms are sometimes not fully coordinated, as theasmelly experience rear-

rangements in their local environment.

3.3.3 Melting

A short investigation into the melting point of this modelsaaso conducted. The original
problem with the AAEM-CT model was that the crystal was ubabut the BG-AAEM-
CT model as parametrized here appears to overcorrect ®ptbblem and tended not to

melt at any physically realistic temperatures in our sirtiates.

For example, Figure 3.6 contains density results from &serfi isobaric-isothermal simu-
lations for the BG-AAEM-CT and BKS models. Each simulatioasyperformed indepen-
dently, in parallel: the beginning of one simulation was dependent on the result of the
prior state point in the series. For the BKS amorphous phatg the simulations were
seeded using an amorphous system previously equilibra@Da K. The initial configu-
ration for the crystal simulations was a perfect crystale @ata shown are density versus
temperature; when a phase transition occurs, the densityeofell undergoes a signifi-
cant change. At 4000 K and above, the BKS crystal melts, andlations seeded from
the crystal phase have the same density as those seedechaambrphous phase. For

BG-AAEM-CT [-cristobalite silica, the equilibrium density at 4000 K ahdbar is near
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Figure 3.4: Oxygen-oxygen and silicon-oxygen radial dstions functions for BG-
AAEM-CT and BKS models. Crystals simulated at 3000 K, 1 bad #me amorphous
phase at 5000 K, 1 bar, with a duration of 1 ns.
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the BG-AAEM-CT model. Systems simulated at 3000 K, 1 bar fgstals and 5000 K, 1

bar for the amorphous phase, with a duration of 1 ns.
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Figure 3.6: Density versus temperature from isobaridisonhal simulations of the BG-
AAEM-CT and BKS models. The amorphous phase is more densefkaistobalite,
hence the BKS model density rises upon melting of the crysiasimulations performed
at 1 bar, with a duration of 1 ns.

2.12 g/cc. However, the BG-AAEM-CT model does not have apsbansity change in the
range of temperatures shown, and inspection of snapshotesé¢hat the crystal is still

intact, even at the highest temperatures.

3.4 Discussion

Developing a new charge-transfer model proved to be a aitallg endeavor. Our original
aspiration was to include terms for hydrogen-oxygen anddgeh-silicon interactions,
and we chose a functional form similar to the BKS or FG potntvhich had previously
been augmented with three-body potential terms. After entawing multiple difficulties

in getting a good “fit” with evolutionary strategy optimizans, our close investigation
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of the AAEM-CT model discovered the flaw in how its chargeisfer form behaved in
constant pressure simulations. We focused first on silicasaiving the problem of low
density at normal pressure, but ultimately could not ob&aivell-behaved charge-transfer
silica model. The sources of problems in our new model caalshimany different places.
The AAEM-CT charge-transfer form could be flawed beyond iepath our attempts to
“fix” it simply revealing new problems after solving an old@nOur choice of charge-
transfer parameters may not have been appropriate for botiiphous and crystalline
phases. Ultimately, while some progress was made in impgavie AAEM-CT form and
we obtained a new model which was usable in constant pressutgations, we decided

not to extend the model further for simulation of aqueousagystems.
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Chapter 4

Structure, Thermodynamics, and

Solubility in Tetromino Fluids

4.1 Introduction

The reversible self-assembly of objects of controlled sizé shape is of great interest for
construction of nanoscale devices and nanostructuredialatesithout laborious manip-
ulation of individual particles. Self-assembly—basedhods have been proposed, and in
many cases demonstrated, for applications in areas froastiaiage [84] to medicine [85]
to energy generation [86]. Self-assembly occurs both antblecular scale, most famously
in self-assembled monolayers [87,88], and in nanopadieldystems, polymers, and com-
binations of the two [89, 90]. Apart from its potential amaltions, self-assembly is also
fascinating in its own right, with complex structures fourtrough an interplay of ener-
getic and entropic forces. Studies of self-assembly relaterally to work on the appear-
ance and stabilization of structure in other systems, rapfjom ordered crystals through

partially-ordered liquid crystals to disordered liquids.
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Much insight into the structure and behavior of self-asdethbystems, liquid crystals and
normal liquids has come from theoretical and simulatiowligtsi of idealized models. The
simplest models are “hard”, or “athermal”, in that partgctdo not interact except to com-
pletely avoid overlap, behaving like idealized billiardlba In such systems the behavior
is entropically controlled: the structure adopted by aaysof rigid hard objects is that
which maximizes the total entropy, a sum of translationdl@rational contributions. Flu-

ids of rigid hard objects studied to date have included d8k§ spheres [92,93], confined
spheres [94], hard dumbbells in two [95] and three [96] disiems, squares [97] rect-
angles [98-101], pentagons [102], rods, spherocylindedsedlipsoids [103—-105], cubes
[106], and others.

Lattice models, in which objects are positioned only atidisesites, are appealing because
of their simplicity, analytical tractability, and low comatational cost. Hard sphere lattice
systems have been studied with both analytical and nunteniethods for more than 40
years [107, 108]. Hard hexagons on a lattice were solved/aeelly by Baxter [109].
Freed and co-workers have studied the behavior of a varfelgttace objects, with and
without energetic interactions, in the context of theirtlcat Cluster Theory (LCT) [110—
112]. Columnar phase transitions were also investigatpdd®f their LCT, which we will
revisit in studies on larger polyominoes. Panagiotopoetosl. have obtained the phase
behavior of a variety of on-lattice shapes in three dimamsiboth with nearest-neighbor
attractive interactions and in the athermal limit. Firstler crystallization transitions were
recovered for on-lattice spheres and capped cylinderdewttier rigid hard objects were

found to display continuous order-disorder transitioris3]1

Dill et al. have used both analytical methods [114] and simulation][d Study solvation
in fluids of hard lattice objects. Exact expressions for thgifjon functions of very small

numbers of objects in a bounded domain were obtained ustmwgsige methods. From
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these were obtained the equations of state (density velmmical potential) of objects
of several shapes, which were then analyzed in terms of fHoiggins theory and virial-
like expansions [114]. In the subsequent study [115], etitra interactions were added
to the model and large-scale Monte Carlo simulations in Hmenical ensemble used to
extract relations between the chemical potential of thel fund its contact free energy per
unit area, the latter being unambiguously definable in #&atnhodel. Analysis of fluid

structure or the phase diagram of the model was not attempted

Connected shapes on a two-dimensional lattice, as sinduddteve, are referred to in the
mathematical literature as “polyominoes”, and have beentefest for a considerable time
[11]. They have received attention in the popular presdi@éaundation for series of puz-
zles in Scientific American [9]. Shapes which occupy one sgjage monominoes, those
which occupy two are dominoes, etc. The mathematics of poiyoes has focused on
two questions, the first being enumeration of the possiblggpainoes occupying a given
number of squares, and the second being the number of waysaofyang polyominoes
in a bounded region, generalizing the question originalbppsed as the number of possi-
ble placements of dominoes on a chessboard, also known &irtter model” [116,117].
Other properties of lattice animals which are commonly stigmated include more complex

tiling theorems, percolation thresholds and perimetdritigions [118].

Here we consider self-assembly, liquid structure, andamwm in the multicomponent
“tetromino” fluid using Monte Carlo simulations. There aevan different one-sided tetro-
minoes, corresponding to the shapes from the well-knowrpcoen game Tetrid! [119].
While some of the tetrominoes (and various other polyonshbave been simulated in the
studies mentioned above [98,114,115], no comprehensiveysof the statistical mechan-
ics or self-assembly of these objects seems to have beentmddte. \We note that related

models have also been used in studies of compaction in gramatter [120, 121], and
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that the problem of arranging “falling polyominoes,” farail from the computer game,
is of practical interest as it is related to algorithms foe thptimal packing of crates in
trucks [122]. Another packing problem more specific to tetirmoes that has been studied
recently was the critical behavior of rigid rods on two-dmsmnal lattices, in which cu-
mulants were used to quantify nematic transitions [123haHy, Cicoira and Rosei have
drawn an analogy between the arrangement of pieces in Eetdghe self-assembly of
molecules on surfaces [124], and a version of tetrominogmauated with energetic inter-

actions has been studied in the context of self-organizdyoTroisiet al. [125].

We performed these simulations in the grand canonical elpiggorresponding to an open
system. Since the model is two-dimensional, this is similapirit to experimental work

on adsorption [124] and self-assembled monolayers [87,B8$uch studies a surface is
placed in contact with a solution or gas, from which parsd¢l&e solute, in the former case,
and molecules of the gas, in the latter) reversibly adsothdéasurface. The surface layer
is therefore in mass equilibrium with a reservoir of addiibmaterial; the concentration
of the solution (or pressure, in the case of a gas) deternireesoverage or density at
the surface. Adsorption of molecules on surfaces also ®ffdgeresting possibilities for

introducing and controlling chirality not present in thi@ienensional systems [126, 127].

The details of the model and simulations are discussed itioged.2, followed by dis-
cussion of the structure of pure fluids (section 4.3.1), tyimaixtures (section 4.3.2) and
multicomponent mixtures (section 4.3.3). The interactibetween different shapes are
analyzed in terms of virial coefficients in section 4.3.4jdeed by further analysis of
solubility thermodynamics in both pure and multicomporféntls in section 4.3.5, and a

general discussion of these findings in section 4.4.
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The one-component fluids all exhibit marked self-orderegdiencies at higher densities,
with quite complex structures formed in some cases. Sigmficlustering of objects with
the same rotational state (orientation) is also observesbime of the pure fluids. In all
the binary mixtures, the two species are fully miscible agdascales, but exhibit strong
species-specific clustering (segregation) at small scaldss behavior persists in mul-
ticomponent mixtures; even in seven-component mixtureallahe shapes there is sig-
nificant association between objects of the same shapedén tr better understand these
phenomena, we calculate the second virial coefficientseofdtrominoes and related quan-
tities, extract thermodynamic volume of mixing data frore 8imulations of binary mix-
tures, and determine Henry’s Law solubilities for each shapa variety of fluids. The
overall picture obtained is one in which complementaritypoth the shapes of individual
objects and of the characteristic structures of differantll are important in determining
the overall behavior of a fluid of given composition, with setimes counter-intuitive re-
sults. Finally, we note that no sharp phase transitionslaserved, but that this appears to
be due to the small size of the objects considered. It is\liket complex phase behavior

may be found in systems of larger polyominoes.

4.2 Methodology

4.2.1 The Model

The objects (“pieces”) simulated are the seven possibteotteénoes,” orthogonally con-
nected objects which occupy four lattice sites. These shapéd their common names are
given in Figure 4.1. The pieces only interact through avoogaof overlap; there is no

attractive potential. There are two enantiomeric paire:SlandZ shapes, and th&and
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L shapes. These shapes are not chiral in three dimensiongdbrttion to two dimen-
sions eliminates some symmetry operations such that tleega@tonger superimposable.
This is the complete set of “one-sided” tetrominoes, as spgdo the complete set of five
“free” tetrominoes which would exclude one of the enanticgrfeom each pair [11]. One
could also consider simulations of larger polyomino saishsas the eighteen one-sided

pentominoes or sixty one-sided hexominoes.

_|_
O (square) | (rod)

Figure 4.1: The seven one-sided tetrominoes, with corredipg names and symbols, and
rotation centers/anchor points marked by “+” symbols. @Qtaéons are labelled numer-
ically, starting at 1. Squares have one orientation, ®&dndZ shapes have two, anlj

L andT shapes have four. The shapes shown above are all in ora@nthtisubsequent

orientations correspond to 90r 180 clockwise rotations around the marked points.

Further specifications are required for purposes of sizdignechanics. Only distinguish-
able rotations will be considered as available “states’ech piece, by analogy with the
symmetry of molecules. Therefore, a squddg ltas one rotational state, the rdgl, Sand

Z pieces two states, and tdeL andT pieces four states. As shown in Figure 4.1, each
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shape is given an “anchor point”, which will be used in the Mo€arlo simulations to

define rotational and piece-insertion moves.

4.2.2 Simulation details

In the grand canonical ensemble, the number of pieces ofemgiltape is not fixed but is
controlled by an applied chemical potential. Simulatioras/nmclude any number or com-
bination of the seven shapes. Typically, grand canonicalikitions of arN-component
system sample an ensemble at constant temperature, vohuhtleedN chemical potentials
{li}, or equivalently,3, V and theN {Bp;}, with B = 1/KT. Since this is an athermal
model the temperature is an arbitrary parameter with n@ede the distribution of states,
and so the thermodynamic variables are reduced to the vomahéheN {BL;}; we shall
refer to these latter quantities as chemical potentialg3 jAt= 0 for a system of ideal gas
particles, the equilibrium state would have unit densithisTmay be considered a refer-
ence state, and observed deviationgat= 0 are the direct result of the size, shape, and

non-overlap requirement of the pieces in a simulation.

The classical grand partition function for a one-comporsgstem with discrete states is:
states

ZVTH) =5 e PeighuN (4.1)

BPV =In= (4.2)
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After excluding states with infinite energy (where piecesrtap), only states with zero

energy remain, and Equation 4.1 reduces to:

==y eBHN: (4.3)

Which may be expressed using a sum over the number of paricla configuration,
instead of a sum over states:

== %W(N)eﬁ“’\‘ (4.4)

Where theW(N) are degeneracy coefficients (microcanonical densityaiks). Deriva-

tives of this equation may be taken in order to recover thelynamic quantities:

din= B uN =
( 3B )v,;z = %W(N)Nea /== (N) (4.5)
Integrating:
Aln:‘ﬁm = /B“2<N>(B )dp (4.6)
Tlpm B H H .

This result is related t8PV through Equation 4.2, and is useful for calculating theryrod

namic quantities.

Our simulations include the following trial moves: inserts, deletions, translations, rota-
tions, identity changes, and piece switches. With the ei@epf insertions, deletions and
identity changes, all of these are normal (that is, unbipstahte Carlo moves, such that
the Boltzmann weight—based acceptance/rejection aiged simply that moves which in-
troduce an overlap are always rejected, and moves which dare@lways accepted. For

insertion and deletion moves, we use a bias to improve samptihigh densities, similar
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to cavity bias insertion [128]. In this approach, a list ofgynlattice sites is stored, and
insertion attempts place a trial piece’s anchor point onaditleose empty sites. The bias al-
gorithm works by selecting a lattice site known to be emptythie anchor point’s insertion
attempt. This means that the acceptance criteria for ioseaind deletion must be altered
in order to maintain detailed balance. This bias greatlyaases efficiency at high densi-
ties by avoidance of trivially-rejected insertion moves$iile maintaining microscopic re-
versibility. The probability of accepting a piece insertis then expB ) x Psree/ (N + 1),
and the probability of accepting a deletiorNs/ (exp(BLi) X (Psree+4)), WhereN,; is the

number of pieces of typeandPs e refers to the number of currently empty lattice points.

The other trial moves are straightforward. Translatiomsesi of displacements of an entire
piece by one lattice site, in one of the four Cartesian dimast Rotational moves consist
of attempts to rotate a piece to a different distinguishatdée, chosen randomly and uni-
formly from the other available states for the piece. Cledinle location of the anchor point
may affect the probability of a rotation attempt being a¢edpn dense configurations. The
anchor points shown in Figure 4.1 were chosen near to thercehtach piece in order
to provide more compact rotations that will likely resultfewer overlaps. The choice of
anchor point only affects the efficiency in simulating a giveate point, not the equilib-
rium results. Identity change moves attempt to both chahgeshape of a piece and its
orientation. A piece of shapges chosen at random and changed to a uniformly randomly
selected different shapeand rotational state. Provided that no overlaps resultintbee

is accepted with probability ex1; — Bui) x Ni/(Nj +1). Note that the available shapes
j are determined by those present in the simulation; thaths;iwhave defined chemical
potentials. “Piece switch” moves preserve both shape aational state. The locations of

two pieces are switched, again using the anchor points toaléfe location of each piece.
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If there are no overlaps, the move is accepted. The idertapge and piece switch moves

are potentially useful in multi-component simulations whdemixing may occur.

In any multi-component simulation, we attempt moves withtree frequencies of 3:3:9:2:2:1
(insertion:deletion:translation:rotation:identityacige:piece switch). These weights were
chosen as a compromise between efficiency at low and and kigtitees. In simulations
of one-component fluids identity-change and piece-switclwes were not used, and the
relative frequencies of the remaining moves were uncharfg@dsimulations with at least
one species at high chemical potential, insertion andideletents tend to be infrequently

accepted, and identity changes or piece switches becongimportant.

A simulation at a given state point consists of an equilibraphase followed by a data
collection phase. For scans of many state points over atyasfeconditions, the use of

constant numbers of trial moves in the equilibration andhdatllection phases proved
inefficient. We use automation and heuristics to determihenndata collection can be
begun at each state point and when sufficient statisticditgueas been achieved that a
simulation can be terminated. All quantities to be evaldaseich as density and mole
fraction, are tracked via the block-average method desdrtty Flyvbjerg and Petersen
[129, 130]. Each block contains 3000 samples, and each samgéparated by 1000 trial
moves. The block-average method is useful as it allows nigtfonthe expectation value

of interest to be calculated, but the variance of that qtiaatid an estimate of the error of
that variance. The last part is most valuable, and with agerhinimal number of blocks

(independent groups of samples), a complete set of resultsstimate of their quality may

be obtained.

The separation between samples was chosen to be on the dtderrnaximum number

of pieces present in simulations at very high densities. Qlbek length is chosen based
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on preliminary runs and appears to provide reliable and walzied block averages at
all densities simulated. Data collection is not started| attieast three blocks have been
completed and the density and other quantities have coed@crording to an exponential
criterion, viz. In(pn/pn_1) < 103, wherepy, represents the average density of the system

sampled during block.

Simulation of an individual state point is terminated in afiévo ways. Standard termina-
tion occurs when at least 500 million trials have been peréat. Early termination occurs
when the relative standard error of the density is belowD(001%), the relative standard
errors in the mole fractions of all components in a mixtuee lass than 0.2 (20%), and at
least 10 blocks (30 million trial moves) of data collectiavh been completed. In practice,
convergence of the density is the more stringent critefignder nearly all conditions mole
fractions have converged to well within 0.01 (1%) by the tithe density has converged;
the only exceptions are in high-density mixtures where @mmaponent is of exceedingly

low ( < 0.01) mole fraction, for which quantity uncertainties of ugta5 (15%) are seen.

For these simulations, in our computer implementation twipancies of all lattice sites
are stored in a 512 byte integer vector, and bitwise operaiiwe used to detect overlaps
when evaluating trial moves. This approach provides foy iggh efficiency and low mem-
ory footprint. On a modern processor (Intel Q9400, at 2.6&);bBur code performs 2.36
million Monte Carlo trials per second (estimate obtainedbgraging over simulations at
low, medium and high densities), and requires an average e¢@onds to complete a simu-
lation at a single state point to the satisfaction of our ebggnce criteria. It is thus possible
to survey large portions of the multicomponent phase spaceasonable time. We also
used Python and shell scripting tools to parallelize sonaselspace surveys across hun-
dreds of processors simultaneously. This allowed rapidanaund of results and remote

creation and submission of jobs.
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We have simulated systems ranging from pure species to s®@reponent mixtures. All
single-component fluids were simulated over at least thenated potential range -4.0 to
+8.0 in increments of 0.2, for 61 total values per fluid. All lo-component (binary)
mixtures were also simulated, with the chemical potenfiab@h component scanned over
the same range for a total of 3721 state points per two-coemgonixture. Mirror symme-
try of enantiomers was not used to reduce the number of stiantarequired, partly for
convenience and partly to illustrate the quality of the ddttained. All possible ternary
(three-), quaternary (four-), quinary (five-), senary {sand septenary (seven-component)
mixtures were simulated, but only along the phase spacgédas” where all species have
equal chemical potentialu; = Buj = Bk = . .., again scanned from -4.0 to +8.0. There
are 35 each of ternary and quaternary mixtures, 21 each afjpband quinary mixtures, 7

senary mixtures, and a single septenary mixture.

Simulations were performed on a 6464 square lattice, under toroidal boundary condi-
tions (periodic boundaries on both tk@xis andy axis). A maximum of 1024 pieces can
be present in a simulation cell of this size. To be confideistl#itice was large enough that
finite size effects were not significant, lattice sizes of 8, 16 x 16, 32x 32, and 48x

48 were also tested. Properties such as the density and racl®hs were well-converged

at the 64x 64 lattice limit.
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4.3 Results

4.3.1 Single-component (pure) fluids

The packing fraction as a function of chemical potentipl3u), for all seven single-
component fluids is given in Figure 4.2a, and the pressuttéepl@as a function of packing
fraction,Bp(n), is given in Figure 4.2Db; calculation of the pressure is dbed in the Ap-
pendix. The packing fraction is the fraction of lattice sit®vered; each shape occupies
four lattice sites, so the actual density (pieces per ueid)is 1/4 of this quantity. These
data may be considered analogous to isotherngg pj or p(p) in a real system. The first
form of the equation of state corresponds to the “raw” rasoftsimulations in the grand
ensemble, while the second corresponds to the way dataaflyuptesented in studies us-
ing isothermal-isobaric and canonical ensemble simuiat[@5]. Again, simulations are
performed fromBu = —4.0 to Bu = 8.0, corresponding to occupancies ranging from be-
low 0.10 to nearly 1.0 (complete filling). The isotherms fthshapes collapse onto a single
curve at low chemical potentials. This is as expected; thesessentially gaseous systems
with repulsive interactions and identical particle sizgsshould have very similar (though
non-ideal) gas-like behavior at low densities. This poiiit kae revisited in section 4.3.4,
below. At higher chemical potentials, the differences leswthe shapes become more
apparent. At all chemical potentials squar@sshapes) exhibit higher density (or packing
fraction) than all other shapes. Rodsshapes) are the second-densest, and have density
similar to that of the remaining shapes urtji ~ —1.0, after which they exhibit) (B )
behavior rather more like that of the squares. The curveS &ordZ shapes are identical
because they are enantiomers, as are the curves farah@l shapes. At the same chemi-

cal potential SandZ fluids are slightly denser thahandL fluids, and the fluid o shapes
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is the least dense at every chemical potential. In all cgmesing fractions smoothly ap-
proach the complete-filling limit at high chemical potehti@he critical packing fraction

for randomly-placed small rectangles on a lattice is ne@r (98], suggesting that these
fluids must exhibit significant structure in order to achiéngh densities. We have also
obtained the isothermal compressibilities of all the puned, which are entirely smooth

and do not exhibit any significant features over this rangeheimical potentials.

The smoothness of the density plots belies significant cexitglin the structure of the
fluids. Snapshots taken from simulations of the pure fluidshown in Figure 4.4 and 4.5.
In each case three snapshots are given, at chemical ptéeatisesponding to low, medium
and high densities. In the fluid of squares, there is littecttire apparent in the snapshot
at low density, other than that which might be expected froenton-overlap condition. In
the medium-density snapshot, at a packing fraction of apprately 0.8, significant short-
ranged structure is visible, with the pieces arranged inllsmall-aligned groups. These
tend to be three to six squares across at this density. Treaegme and growth of these
groups appears to correspond to the feature irih@) ) curves where the squares “break
off” from the rods (Figure 4.2b). In the highest-density gstaot, near 95% coverage, the
squares form larger domains, some of which extend over tiredength of the simulation
cell. We note that these structures break up and re-forrmgdhie simulation. At these
high densities a sort of one-dimensional ordering is oleseinv which the great majority of
the pieces in the system are anchored on a lattice site withi§ case) an even-numbered
y-coordinate; in the snapshot shown, only a few odd-anchpreces are visible in the
lower left. This behavior occurs because alignment in onectibn increases translational
mobility in the other, providing an overall entropic stamation. As the packing fraction
increases from 95% through 99.5%, this behavior becomes prevalent and pronounced.

While this is suggestive of the appearance of a true crysta$@, high-resolution scans in
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Figure 4.2: (a) Packing fractiam versus chemical potentiflu for one-component fluids.

(b) Pressurg8 p vs. packing fraction for one-component fluids. The coloresoh in these
plots is the same as for the shapes themselves (Figure 4.1).
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Figure 4.3: Isothermal compressibilixy versus chemical potentiBlu for one-component
fluids.

the chemical potential range 4.0 to 6.0 do not show any sigeadf an abrupt transition
and there is the likelihood that these structures are aafificstabilized by the periodic
boundary conditions used. Similar “columnar” behavior pesviously been observed in
constant-pressure simulations of off-lattice hard squdigese also do not exhibit a true
crystallization transition, and the columnar behaviohisught to be due to the influence
of the periodic boundary conditions [97]. As it turns outistis not strictly a periodic

boundary effect and is quite noticeable for larger polyarem

The structure of the fluid of rod$ €hapes) is rather different. In the snapshots shown in
Figure 4.4, rods of vertical orientation are shown in a legldolor than rods of horizontal
orientation, to highlight the orientational structuringepent in this fluid. Even at low
density, significant orientational correlation is presenthe rod fluid, with neighboring
rods tending to orient parallel to each other. This behastigigests a possible transition to
a nematic phase at higher densities, but in fact this doesawoir. As the density increases

the local orientational correlation becomes stronger.timgtugh a clustering mechanism
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Figure 4.4: Configurations of pure fluids of squares and radew (-1.0), medium (+3.0)
and high (+7.0) chemical potentials. These are 38 sections cut from 64 64 simulation

cells; as a result, pieces may extend over the boundary afett@n shown. For the rods,
which have two possible orientations, each orientatiohass in a slightly different color.
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that destroys any long-ranged correlation. In particatathe middle density one observes
clusters of approximately four parallel rods which are tbeanted more-or-less randomly
to each other. This behavior is similar to the “tetratic” enidg (which has elements of both
horizontal and vertical order) observed in both off-lat&imulations of hard rectangles
[99] and in experimental work on a quasi—two-dimensionatem of a monolayer of disk-
shaped colloidal particles standing on edge [131]. Howepaaticles in these systems can
take any orientation, while the on-lattice nature of ourdaetions allows for only two
orientations of the rod clusters (reinforcing tetraticelbehavior), so the comparison is not
wholly appropriate. At high density the clusters tend tonggmmewhat larger, and a sort
of layering is observed as they pack against like-orientesters. The apparent lack of an
isotropic-to-nematic transition in this system is coreistwith previous work. Ghosh and
Dhar found that for packing fractions up to 0.85, only rodteoigth 7 or greater display an
orienting transition on the square lattice [132]; we havdgrened additional calculations
on rods of up to and greater than length 7, reaching packagiéms of 0.99, and also

found no transition.

A related kind of ordering is observed in the fluids®#ndZ shapes, of which th&fluid

is shown in Figure 4.5. Again, even at low densities, therelearly short-range orien-
tational order visible in the fluid, with pieces preferringalign parallel with each other.
At the medium density, two kinds of local structure are obsdr In the first, and most
common, neighboring pieces are offset in the diag@adl, +1) directions, which gives
a “herringbone”-like structure. In the second, pieces dii®ebin the Cartesian directions
(0,+1) or (£1,0), depending on whether they are in the vertical or horizariahtations,
respectively. Interestingly, at higher densities, thet€aan offset structure is largely sup-
pressed in favor of the herringbone structure. As in the oéasige rods, large domains of

uniform alignment and greater positional regularity apeigh densities, but no sharp
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Figure 4.6: An example herringbone packing motif for an ma¢ional interface of S-
shapes, commonly observed in high density snapshots.
transition to a crystalline phase (ordered or not) is okt the chemical potential range

studied, and these domains remain much smaller than thensyste.

The remaining shapes, the enantiome&endL and theT shape, also display interesting
orientational and positional ordering but of qualitativeifferent types, as shown in Fig-
ure 4.5. These shapes all have four distinguishable otienta and unlike rodS andZ
shapes, preferentially associate with pieces of oriemalifferent to their own. We first
consider the fluid. At low density,L pieces are frequently found in a “stacked” config-
uration, with neighbors of the same orientation displacged Bingle diagonal step on the
lattice, much as in th& andZ fluids. However, at higher densitids pieces begin to ori-
ent antiparallel with each other to form compact 2 site objects, which themselves pack
efficiently along the Cartesian directions, much as in thiel$lof squares and rods. The
T fluid is also quite complex. At low densitie§, shapes tend to be rotated°9@r 180°

from their nearest neighbors. At higher densities, a pessgacking motif appears to be a
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stack of several like-oriented pieces offset by the lattieetors(0,2) or (2,0), with other
pieces “fit” into the structure thus created in a less-reguby. Recall that th@ fluid is the
least dense of all the single-component fluids at a given atemotential. This appears
to be because thE shapes are the most compact of the pieces with four orientathVoid
spaces in thd& fluid allow for much more orientational freedom than in, sing L fluid,

and the associated entropy drives Th#tuid towards lower density.

4.3.2 Two-Component Systems

We have also scanned the phase space of all 21 binary mixsimadating a total of 78141
state points. In all cases, the two shapes were fully mis@bkr the chemical potential
range simulated, but substantial non-ideality was frey@&bserved, which we attribute
to complex micro-scale fluid structure. Due to the large neindd binary mixtures, only a

selection of these systems will be discussed.

We first consider the two-dimensional equation of stat@L;, 1), analogous to the
isotherms of Figure 4.2 for one-component mixtures. Twdnese are shown in Figure 4.7,
as contour plots. In these plots, the low density state iaddn the lower left corner, at
low chemical potential of both species, and the highestitdeissfound in the upper right
corner, at high chemical potentials of both species. Fotispavith similar properties, the
plot should be approximately symmetric across the phasgespagonaP i = B ;. Inthe
square/rod mixture, substantial deviations from idedity clearly evident. For example,
the contour beginning gé o = +6.5 andf L = —4.0 gradually moves to higheB Lo
and asfy, is increased. Equivalently, increasifigio at constanf L decreases the total

system density. That increasing the pressure in one of tharass reservoirs to which
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the system is connected would lead to a decrease in totamsydtnsity was quite unex-
pected! This result is due to the rods disrupting the streobd the pure square fluid, and
corresponds to a positive volume of mixing (technicallgaaof mixing, since the system
is two-dimensional). Of course, at sufficiently hi§ly the total density again increases;
this occurs here foBLy > 4.0. A similar effect might be expected on the other side of
plot, where squares are introduced into a dense fluid of tmatsfollowing the contour
beginning neaf i, = 6.0 we see a much weaker effect. The difference between thet effe
of rods on the structure of the fluid of squares and the effesgjoares on the structure
of the fluid of rods can be seen in representative snapshaigjnsin Figure 4.8. In the
former case, at high rod density and low square density,dbares seem to fit well into
the rod fluid, the structure of which is generally similar batt seen in Figure 4.4. In the
latter case, at low rod density and high square densityjghmet the case. The rods, which
span two or more rows of squares, induce alignment betweeorte-dimensional rows of
squares described earlier. This reduces the entropy ofydters and hence destabilizes
it; the equilibrium density is thus lowered in compensatidaditional vacancies created
by lowering the density help the system regain some of theopytiost via the induced
alignment. Finally, the middle snapshot in Figure 4.4 in atore of squares and rods at
the same chemical potentials (and nearly the same densiteesnole fraction of squares
is 0.509 in the snapshot shown). Here the overall structudeamatically perturbed, with

both species still forming clusters, but of much smallerahteristic length scale.

The equation of state of the mixture $&andZ shapes (an enantiomeric pair), also shown
in Figure 4.7, is necessarily symmetric about gss = Buz axis. The contours at high
Bus and low Bz are very nearly vertical, indicating that shapes are almost perfectly
solvated by thes fluid; they simply replacé pieces and the density does not change. A

configuration from a near-equimolar mixture ®&ndZ shapes is shown in Figure 4.9, in
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Figure 4.7: Contour plots of packing fraction versus cheirpotentials for (top) mixtures
of squares and rods, and (bottom) mixtureSahdZ shapes.
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Figure 4.9: Snapshots taken from simulations of a mixtur& ahdZ shapes, aus =
Buz = 4.0, (top) without orientation-specific coloration, and @oot) with orientation-
specific coloration.

two different representations. As in the square/rod mestwe see a dramatic tendency
of the two species to segregate into “micro-clusters” (fopge). This mixture displays
herringbone-like structures as seen in the pure fluids, adame sort of stacking motifs
are also present. Interestingly, the bottom image in FigWelearly indicates that the ten-
dency of pieces of the same orientation to aggregate (aswalusi@ Figure 4.5) is preserved
in the mixture; individualS andZ pieces strongly prefer to associate with other pieces of
both the same species and orientation. This behavior isdudiscussed in section 4.3.4.
The virial analysis may be extended to five-site and largérgminoes, as discussed in the

next chapter.

Returning to the square/rod binary system, the structutkeofluid along theB o = B,

phase space diagonal (pictured in Figure 4.8) may be fuah&iyzed in terms of average
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cluster size, shown in Figure 4.10. For these purposes eewakpieces of like species to
belong to the same cluster if they touch along any face; piedth only “corner contacts”
are not considered part of the same cluster. We see in thiefthat the average sizes of
clusters of both shapes remain small even up to very hightiEs)£onsistent with a picture
of a globally well-mixed but locally clustered or phase-@eped fluid. Interestingly, the
rods form clusters that are over twice as large on averageoase formed by squares. In
the middle snapshot in Figure 4.8 we see, however, that #rage size of the rod clusters
is in fact misleading; the rods form a very large percolathgster along with a number of
very small isolated clusters. The clusters of squares,®ottier hand, are distinct and well
separated. The tendency of rod shapes to form large clugéesrsbserved in all rod/shape
binary pairs. However, a transferable hierarchy of clusiee is not otherwise present.
For instance, while clusters of squares were largest in areffshape mixture, clusters
of T shapes were largest in high density squBmaixtures. However, in th&T mixture,

clusters ofSshapes were consistently larger than clustefE sapes.

To more deeply probe the non-ideality of the binary mixtuveshave extracted the volume
of mixing in each over the entire range of conditions simedatThese data, for selected
binary systems, are shown in Figure 4.11. The conventiogfahition of the volume of
mixing is:

AVimix (N, Bp) =V (N, Bp) = 3 Vi (BP)N 4.7)

whereN is the vector quantity of thisi, the number of particles of each species, %4r{f p)

is the molar volume of pure specieat pressur@p. The datain Figure 4.11 are normalized
by system volume and given as percentag¥%yix/V) x 100%, plotted against pressure
and mole fraction. The complete procedure for calculatirggpressures and volumes of
mixing is given in the Appendix to this chapter. For an idedison, the volume of mixing

is zero.
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Figure 4.10: Average sizes of clusters of squares and ragtpuiare/rod mixtures, along the
B Lo = B phase space diagonal.
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Figure 4.11: Contour plots of volume of mixing versus pres$ip and mole fractiorx
for various binary mixtures: (a) squares and rods, (b) ssgiandS shapes, (c) rods ard
shapes, (d) rods anidshapes, (epshapes and shapes, and (& shapes ant shapes. In
all cases the mole fraction shown is that of the first shapkeopair. All figures are plotted
on the same vertical scale, in relative percentage uiit4,ix/V) x 100%.
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All of the binary systems in this model are non-ideal, thotwgtvarying degrees. The
mixture of squares and rods is strongly asymmetrical andl@ety dependent on pressure,
with a modest positive peak centered near= 0.7 andBp = 1.2. This corresponds to the
substantial deviation from ideality already seen in Figliféand 4.8 — that introduction
of rods into the square fluid at high density substantiallyysbs the structure of that fluid,
lowering the density (see Figure 4.7) until it is completadgtructured neatp = 0.5. At
low pressure, however, the most positive volume of mixinguos to the left of theg = 0.5
line, on the plateau locatedxa = 0.4 andB p = 0.6. The fluid density is much lower here,
and this effect appears to be due to the presence of the sqoneupting the low-density

orientational ordering behavior displayed in the pure raalfl

The squared mixture is the most strongly non-ideal of all the binary syss, with a dra-
matic peak in the volume of mixing observedkat= 0.7 andBp = 1.2. This peak is more
than twice the height of that observed in the square/rodurext The reason for this is
that the structures of the dense square fluid and the defisel are fundamentally in-
compatible. The squares prefer to align along the Cartéattice directions with regular
displacements of two lattice spacings, and clusters ofreguaave facets indexed along
these lattice vectors. THepieces prefer to align along the lattice diagonals, as dsedl
previously, and have facets indexed by the diagonal lattezors. In an aperiodic sys-
tem, it is impossible to create a fully rectilinear clustéiSshapes without vacancies. In
our simulations using a periodic boundary, a strip may batecewhich tiles a rectilinear
domain. When not phase separated, the two structures aefdieincompatible: one
cannot pack clusters of squares and clustelS sifapes together without either introduc-
ing vacancies at the interface or perturbing the struct@ithe clusters. This leads to a

very significant positive volume of mixing of these fluids. a\g, this effect is asymmetric
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across theo = 0.5 line, with squares clearly more compatible with (lessyoding to) the

structure of the&sfluid than vice versa, much as in the square/rod mixture.

Rods andZ shapes display the second largest positive volume of migfrifpe systems
shown, though at somewhat lower pressures and near to elquitpoRods are somewhat
more compatible with th& (or S fluid than are squares, because rod clusters are better
able to distort and accommodate the characteristic diddacets of clusters o shapes.
Nonetheless, this disrupts the rods’ tendency to form sohaditers aligned in both direc-
tions. This incurs a free energy cost, which the system ialles by increasing the total

volume, corresponding #@WVmix > O.

Of the remaining binary systems shown, rods dndhapes are most strongly non-ideal
at pressures near 0.5, suggesting that the structures s th® fluids at even modest
packing fractions (near 0.7) are particularly incompatil#\t higher pressures, the peak in
volume of mixing shifts tax > 0.5, suggesting thal shapes are less soluble in the rod
fluid than are rods in th& fluid. The mixture ofZ andL shapes is closer to ideal than any
of those discussed so far, with a broad but low peak shiftigthty} to the Z-rich side of

the diagram. Finally, the mixture &andZ shapes, already considered in Figures 4.7 and
4.9, is of course symmetric abaxg = 0.5 and shows only very slightly positive volume of
mixing at very high pressures, even while displaying sigarit microscopic segregation

(Figure 4.9).

Mixtures containing rods exhibhVyix maxima at generally lower pressures than other
mixtures. In Figure 4.11 this is particularly evident foetrodT mixture and the rod
mixture, but it is also true for rods and squares and the_.radkture not shown. This is
another consequence of the pronounced local ordering ticat®in the rod fluid at lower

densities (Figure 4.4). Finally, we note that at very lowssteges and/or at mole fractions
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very close to 1 or 0, many mixtures appear to display negabliemes of mixing. We are
confident that this is a numerical artifact. Under these tars the molar volume in one
or both pure fluids becomes extremely large, and the cornespgly large statistical error
in these quantities leads to large uncertainty in the (gees) volume of mixing. Note that
it is possible for binary mixtures such as these to displaggative volume of mixing, as

discussed below in section 4.3.4.

4.3.3 Many-Component Systems

We have simulated all multicomponent systems at many statggoalong the phase space
diagonal, and find that the tendency of shapes to self-agsopersists even when many
components are present. To illustrate this behavior, $rap$rom simulations of selected
three-, four-, five-, six- and seven-component mixturesigih ldensities Bu = 7.0) are
shown in Figure 4.12. In all cases, clusters of each speogegeadily apparent, which is
true in every multicomponent mixture that we have visualizA&s in the binary mixtures,
pieces are well-mixed at large length scales, and we haveideree for any sort of first-
order fluid-fluid transition in these systems. Furthermewen when many different shapes
are present, there is no tendency to form clusters or clearsiit structures composed of

more than one shape.

We have obtained the average sizes of the clusters of eaple gh@&ach of these simu-
lations, shown in Table 4.1. As the number of componentsaszs, the average size of
clusters of a given species decreases. Most of this effesitriply due to dilution; the
tendency to form clusters must be significantly reduced deeaumber of particles of a
given shape decreases. For instance, indEé&T ternary mixture, the average size $f

(or Z) clusters at high pressure reaches as high as 3.364, whihe @/1/SZ/J/L senary
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Figure 4.12: Representative snapshots of selected thiee-, five-, six- and seven-
component mixtures, with all speciesfti = 7.0. These are 38 38 sections cut from
64 x 64 simulation cells; as a result, pieces may extend over dh@dary of the section
shown. All pieces of a given shape are shown in the same celyardless of orientation.
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Mixture Average size of clusters of species:

° [ (s [z [J [t [T |
oll 11.407| 24.041
SzZIT 3.354| 3.364 2.962
SzIT 2.284| 2.248| 2.415 2.181
ISVANIR 2.450 | 1.826| 1.828| 1.932| 1.933
oNnIsZ13IL 1.769 | 2.051 | 1.628| 1.628| 1.703| 1.698
o/l/9z/3/LiT || 1.608 | 1.836 | 1.517| 1.518| 1.568| 1.570| 1.550

Table 4.1: Average size of clusters of each shape, from sitounls atBp; = 7.0 for all

i, for the mixtures shown in Figures 4.8 and 4.12. Statisticadertainty in these data is
+0.005 at 95% confidence.

mixture, it is reduced to very nearly half that value, 1.62Bere is nonetheless significant
information contained in the cluster size data. In the twsieys containing rods, the clus-
ters of rods are substantially larger than those of othgreshaOne might suspect that this
is simply due to the ability of rods to make contacts at laggyaration than other pieces.
However, upon inspection of the snapshots in Figure 4.1%eeehat rod clusters tend to
be closely packed rather than extended, which suggestisittaat the rods aggregate more
strongly than the other pieces. In tB&/J/T quaternary mixture, thBandZ cluster sizes
differ by a statistically significant 0.036, while in tI®Z/T ternary mixture they are the
same to within the uncertainty of the measurement. Thisésalt of the two enantiomers
interacting differently with the (also chiral)shape in the quaternary mixture. In the senary
and septenary mixtures shown, both members of each chiradugapresent, and there is
no enantiomeric resolution. Finally, in the two systemstamning squares, squares form
larger clusters than any other shape besides rods, delspitmimpactness of the squares
reducing their ability to make contacts at large distancpia®es also only have eight sites

of contact, tied for the lowest among tetrominoes. Yet, tieases form large clusters.

An approximate combinatorial argument can provide furiheight regarding the mean

cluster sizes. In the dense fluids shown in Figure 4.12, nedirpieces have 4, 5 or 6
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neighbors. We can make an approximate prediction of theageetluster size in a “well-
mixed” equimolar fluid by using combinatorics to predict gr@bability that a randomly
chosen particle will have a certain number of neighbors@ftme shape as itself, and then
using these values as estimates of the probability distobwf different cluster sizes. For
an exactly equimolar seven-component mixture, assumiaigethch piece has six neigh-
bors, the probability that a chosen piece has zero “likegnleors is approximately 0.396,
the probability of one “like” neighbor is also 0.396, and grebability of two “like” neigh-
bors is 0.165. Assuming that this is also the distributioclaters of one, two and three
pieces, respectively, we obtain an average cluster sizeb6f 1f each piece has only five
neighbors, then the average cluster size predicted in thysisv1.39; for pieces with four
neighbors, 1.32. Such a simple argument will under-predetverage cluster size, but not
by a large amount; a “well-mixed” fluid should therefore bgested to have average clus-
ter sizes near to 1.4. Significantly, in the simulated ses@nponent mixture, all shapes
have average cluster sizes larger than this, with squace®ds in particular forming much
larger clusters than would be expected from random placenternhe seven-component

mixture, then, all of these shapes prefer to self-assaociate

4.3.4 Analysis of Virial Coefficients

In order to better understand the interactions betweearéift shapes, we have calculated
all of the second virial coefficient8;j, as defined by the expansion of the pressure of a

binaryi, j mixture in powers of the densities of both species:

Bp=pi+p;j+Biip” + 2Bij pip; + Bjjpf + .. (4.8)
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BjJo |t [S |z [J L |T

450 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00
5.00 | 5.75 | 5.75 | 575 | 575 | 5.75 | 5.75
500 | 5.75 | 525 | 525 | 550 | 5,50 | 5.25
5.00 | 5.75 | 5.25 | 525 | 5,50 | 550 | 5.25
5.00 | 5.75 | 5,50 | 5,50 | 5.50 | 5.625| 5.50
5.00 | 5.75 | 5,50 | 5.50 | 5.625| 5.50 | 5.50
5.00 | 5.75 | 5.25 | 525 | 5,50 | 550 | 5.25

—lrlalN| v —|o

Table 4.2: Matrix of second virial coefficienBs;. Note that these coefficients are exact.

These are obtained from the lattice analog of a clusteriat¢t33, 134]:

%Z—%ZMW) (4.9)

wherefjj (k) = 0 if pieces of typesand j do not overlap if placed in a configuration indexed
by k, andfjj (k) = —1 if they do overlap. In the summatidruns over all possible configu-
rations (that is, orientations and relative displacemeasftsvo pieces. Because the number
of such configurations is enumerable this sum can be evalex@ctly; the resulting;;
values are shown in Table 4.2. Likewise, an “orientatioeesfic virial coefficient”Bj; is
defined by taking the two pieces in specific orientations amlgt summing over relative

displacements. These “orientation-specific coefficieats’shown in Table 4.3.

TheB;j are clearly measures of how “strongly” two pieces overldpeyfare all necessarily
positive, and contribute to increasing the pressure of d @uer its ideal value. Low values
may be interpreted as indicating a more “favorable” inteoacthan high values, though
of course there is no direct attraction between any of theeshaThese values may also
be compared to the virial equation of state for the hard diskieh For that model it is
well known that the magnitude of the second virial coeffitisrexactly twice the area of
the disk B, = g(Zr)z = 2a,). If our virial coefficient results were divided by the arefa o

a tetromino, the resulting scaled virial would provide apragimate comparison of the
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Bi’j || o1 | 11 12 |1 &2 |(z21 z2|J1 J2 J3 J4 (L1 L2 L3 L4 |T1 T2 T3 T4
Ol| 45|50 50|50 50|50 50{50 50 50 5050 50 50 5050 50 50 50
1 ||50|35 80|65 50465 5050 65 50 6550 65 50 6565 50 65 50
2 ||5.0/80 3550 6550 6565 50 65 5065 50 65 5050 65 50 65
S1||50|65 50[{45 60|55 50|55 55 55 5560 50 6.0 5050 55 50 55
S || 50|50 65|60 4550 55|55 55 55 5550 60 50 6.055 50 55 50
Z1|/50|65 50455 50|45 6.0/60 50 6.0 5055 55 55 5550 55 50 55
Z2 || 50|50 6550 55|60 45|50 60 50 6.055 55 55 5555 50 55 50
Jl || 50|50 65|55 55/60 50[{55 60 45 6055 55 55 6.0060 50 55 55
J2 || 50|65 50|55 55|50 6.0[{60 55 60 4560 55 55 5555 6.0 50 55
J3 || 50|50 65|55 55/60 50[{45 60 55 6055 60 55 5555 55 6.0 50
J4 || 50|65 50|55 55|50 6.0[{60 45 60 5555 55 60 5550 55 55 6.0
L1 || 50|50 6560 50{55 5555 60 55 5555 6.0 45 6.0 6.0 55 55 50
L2 || 50|65 50[50 60({55 5555 55 6.0 5560 55 6.0 4550 60 55 55
L3 ||50|50 6560 50({55 5555 55 55 6045 6.0 55 6.055 50 60 55
L4 ||50| 65 50[50 60({55 5560 55 55 5560 45 6.0 5555 55 50 6.0
T1]/ 50|50 6550 55|50 55|60 55 55 5060 50 55 5555 55 45 55
T2 | 50|65 5055 50|55 50|50 60 55 5555 60 50 5555 55 55 45
T3]/ 50|50 6550 55|50 55|55 50 6.0 5555 55 6.0 5045 55 55 55
T4 ] 50|65 5055 50|55 50|55 55 50 6050 55 55 6055 45 55 55

Table 4.3: Matrix of “orientation-specific second virialegicients”Bj;. The orientations
of each piece are numbered according to the scheme desuoribaglire 4.1. These coeffi-

cients are exact.
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excluded volume between that shape (or specific orienfasiod hard disks. In general,
the scaled virials of tetrominoes would be smaller than #®osd virial coefficient of
hard disks (indicating lower excluded volume). Scaling ifaV coefficients thus makes
comparison of different size objects possible. In Bye matrix of Table 4.2, a variety
of interesting features are seen. Consider first the didg@haes, corresponding to the
second virial coefficients of the seven pure fluids. Thesealiref the same magnitude,
because the shapes all occupy the same number of sites amdih@lar lateral extent.
Nonetheless, the variation is significant. The value forasgs,Boo = 4.5 is the lowest,
while the value for rodsB;, = 5.75, is the highest. Of the remaining, t8eZ andT values

of 5.25 are slightly lower than th& andL values of 55. One would expect based on these
data that the squares would have the highest density at a gressure, followed in turn
by S, Z andT, J andL, and finally the rods. While the squares do in fact have thkdsg
density at a given pressure, this argument fails to predehigh density of the rods, and
does not distinguish between tBgor Z) and T shapes at all. Another feature of these
data is that th&px all have the same value ot~ O, which is due to the squares having
higher symmetry than any other shape. Interestingly, alBik are the same foX # | and

X #£ O, and rods have the second-highest symmetry.

Likewise, theB;j clearly do not tell the whole story in regards the behavidpiaary mix-
tures. For example, while tH&z value of 575 is certainly larger thaBzz = 5.25, itis the
same as the coefficient for pure rods, and does not seem wlaterwith the significant
positive volume of mixing seen in Figure 4.11. The coeffitilem squares an& shapes,
Bos= 5.0, is smaller even thaBss= 5.25, which does not correlate at all with the ex-
tremely large positive volume of mixing in this system. Tdtbeunderstand these effects

we turn to the “orientation-specific coefficientsy; in Table 4.3.

109



Firstly, the two values foBj, explain the discrepancy of the density of the rod fluid and
the high value ofB);. Like-aligned rods hav®' = 3.5, the lowest value on the table,
while unlike-aligned rods havB’ = 8.0, the highest. The average of these two gives the
high B;; = 5.75, but since there is significant orientational clusteim¢he rod fluid, the
“effective” value should be much lower (closer t&J accounting for the very high density
of this fluid. For the puré& (andZz) fluids, we see that again the diagonal valueB'ef 4.5

are lower than the off-diagonal values Bf= 6.0, in accord with the earlier observation
that these pieces tend to form clusters with all pieces irséime orientation. In the pure

J andL fluids, different behavior is observed. Of the four orielntas, each prefers to
associate with (that is, has the low@&5tvalue for) the 180 rotation of itself. That is,J1
andJ3 are a preferentially associating pair, wBh= 4.5, as areJ2 andJ4. This again,

is consistent with the behavior seen in the snapshots of&igb. Theli—Ji association,
corresponding to the diagonal-offset “stacking” seen at ttensities, ha®’ = 5.5, the
second lowest value. The 98ssociationsJl-J2, etc.) are the least favorable, and are less
common in the snapshots. Finally, somewhat similar behasiobserved in the puré
fluid, with a strong preference for tHel-T3 andT 2-T4 associations, witB’ = 4.5, over

all others, withB’ = 5.5.

Considering theBj; and Bi’j values fori # j, we see that, while thBjj suggest possibly
favorable associations between pieces of different shaga)g orientation into account
shows a substantially different picture. The lowBsfor any binary mixture is ®, while
for every pure species there is at least one value®bd below. This suggests that every
shape packs better with its own kind than with any other, idied/they are allowed to adopt

favorable orientations.

Although the strongest associations are between piecés sbime shape (though not nec-

essarily in the same orientation), in binary mixtures themes still preferred orientations
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for associations between pieces of different shape. Fanpbe for neighborings andzZ
pieces, the preferred orientations are between the §aH&l andS1-Z0, that is, with one
piece turned 90to the other. In fact, looking at the snapshot in Figure 4i8 thotif is
often, though not always, adopted at the interface betwiersters ofSshapes and clusters
of Z shapes. We also see a significant difference in the interectf the members of the
enantiomers; th&-J coefficients (equal to those of tle-L pair, of course) are substan-
tially different from theS-L (Z-J) ones. TheS-J coefficients are all the samB, = 5.5,

in fact, while in theS-L case there is orientational preference, v8ihpieces preferring
association with.2 andL4 (B’ = 5.0) over association withl andL3 (B’ = 6.0.) This

reflects the enantiomeric resolution discussed earlier.

Finally, we note that it is possible in this system to obtainegative volume of mixing
at pressures sufficiently low that the virial equation otestauncated at second order is
accurate. We have verified numerically that this occurs enrthd/square mixture. The
requirement of accuracy at second order means that the effeeen only at extremely
low pressures and densities and is therefore very smalkthefess is is curious to see a

negative volume of mixing between two dilute gases with jyurepulsive interactions.

4.3.5 Solubility and solvation

To further probe the interaction between different shapestwn to Henry’s Law co-
efficients, which measure the solubility of one species inua ftomposed of others.
The Henry’s Law constark; for solutei in a given solvent is defined b§f (T, p,x) =
xiKi (T, p), wherex; is the mole fraction of specidsand f is the fugacity of species
at infinite dilution, which in a real liquid is similar to itsgptial pressure in the coexisting

vapor. In our athermal model, this beconEg” (Bp,x ) = xBKi (Bp). BK; measures the
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ratio of fugacity to mole fraction for the solute at infinitdudion; when its value is very
small, speciesis very soluble, and when its value is large, speciss/ery insoluble. The
inverse quantity 18K, therefore, is a measure of solubility: it reports the moéetion of

solute that would be attained at unit solute fugacity (phgressure), if the Henry’s Law

region extended to such high mole fraction

In fact, simulations indicate that these systems displayie Law behavior only for mole
fractions significantly below = 0.001, indicating strong non-ideality. We have measured
these constants for each shape dissolved in each pure fidich @nlarge number of mul-
ticomponent solvents, all at several pressures. The daththis calculation are given in
the Appendix. A selection of these datgBgi = 0.5 are shown in Table 4.4. This pressure
corresponds to packing fractions near 0.65 for all the suf/eonsidered. We first consider
the various shapes dissolved in pure fluids. Overall, sguame always the most soluble,
and rods are usually the least soluble. There is significamton from solvent to solvent,
however. Squares are themselves most soluble id &melL fluids, and least soluble in the
SandZ fluids. The latter is consistent with the large volume of mgf squares an8
shapes seen in Figure 4.11, which indicates poor compstibétween those two shapes.
However, such behavior would not have been predicted framvihal coefficients; the
cross-coefficients for squares aBdZ, J andL shapes are all the same. Rods, on the other
hand, are most soluble in the fluid of squares, followed byflthds of J andL shapes and

T shapes, and are least soluble in §a@ndZ fluids. TheS Z andT shapes are all mutually
quite soluble, withS andZ being slightly more soluble in th€& fluid than in each other,
andT being more soluble in thBandZ fluids than in any other. This appears due to the

strong similarity in shape of these three pieces, whichesadstepped” motif. We also see

LA common, though less rigorous, formulation of Henry’s Lawrittenc; = ky pi, reflecting its original
discovery [135]. Here large values of the constigntindicate high molar concentratian at given partial
pressurep;; ky is thus analogous to our/ BK;.
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Solute Species
Solvent Ns O I S Z J L T
O 0.696 0.218 0.168 0.168 0.196 0.196 0.167
I 0.694 | 0.232 0.146 0.146 0.159 0.159 0.149
S 0.660 | 0.227 0.147 0.210 0.168 0.174 0.205
Z 0.660 | 0.226 0.146 0.210 0.174 0.168 0.205
J 0.653 | 0.267 0.185 0.185 0.191 0.178 0.183
L 0.653 | 0.267 0.185 0.191 0.184 0.178 0.183
T 0.650 | 0.243 0.167 0.212 0.212 0.182 0.182
orT 0.664 0.193 0.202 0.202 0.195 0.195
SJ 0.647 | 0.256 0.174 0.206 0.185 0.201
L/T 0.646 | 0.256 0.179 0.207 0.202 0.183
Senary | 0.649-56| 0.253 0.176 0.192 0.192 0.185 0.184 0.191
Average 0.244 0.175 0.185 0.185 0.176 0.176 0.182

Table 4.4: Solubility (XBK;) of each shape in various solventg3gi = 0.5. Values given
are certain to withint0.002. The first column contains the packing fraction of theaol,
Ns. The first seven rows of the table show the solubility of edudps in the pure fluids
of each other shape. The diagonal values are missing beckumsg’'s law does not apply
to components of the solvent. The next three rows show thebsity of various shapes
in each of three binary mixtures, with both mixture compdsext the same chemical po-
tential. The row labeled “Senary” shows the solubility otleahape in a 6-component
mixture composed of all the other shapes, again all at thes sdramical potential and
Bp = 0.5; these solvents do not all have the same packing fractidrihby vary over only
a small range, given in thgs column. The final row gives the average of the solubility of
each shape in the six other pure solvents; note that thistiudones not have a rigorous
thermodynamic interpretation, and is only given for theesakcomparison.

evidence of chiral interactions in the solubilitiesbandL in the SandZ fluids and vice

versa. The solubility oSin L is the same as that & in J, and theJ—Z (or L-S) pair is

more mutually soluble than the-S (or L-2).

In the near-equimolar binary mixtures, the solubility diet shapes is generally intermedi-
ate between the solubilities in the corresponding puredlukar instance, squares are less
soluble in theS/J mixture than in the puré fluid, but more soluble than in the pugdluid.
This is consistent with the clustering behavior seen aavlikich suggests that, to a solute,

the mixture looks like small regions of pure fluids. In a fewes, such asdissolved in the
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OIT mixture, shapes are as soluble in the mixture as in one obitgoonents. In this case,
the poor structural compatibility of th®@ andT fluids and their relatively large volume of
mixing provides many voids into which the solute may fit. Irequarticularly interesting
case, thd. shape is noticeably more soluble in t§#d mixture than in either of the pui®
or Jfluids. There is a large positive volume of mixing in t&§d system, which is the likely

cause.

In the “senary” row of Table 4.4 are shown the solubilitieseaich shape in the six-
component mixture of the remaining shapes, again all atlezpeamical potentials such
that Bp = 0.5. For comparison, the averages of the solubilities of ehape in the six

other pure solvents are given in the last row. In all casessitk-component mixture is a
better solvent than one might expect from averaging oveoitsponents, though the differ-
ence is relatively small. Also, the trend established inpilnes fluids remains, with squares

being the most soluble of the shapes and rods being the [@abtes

Finally, we note that the ratio of the/ BK; values for a speciesin two different solvents

is a partition coefficient which describes the distributmna solute between them. At
this pressure, the largest partition coefficient is for rddsolved in square and (or S
solvents, withK,(O/Z) = 1.49, a relatively modest preference for the fluid of squares. A
the pressure is increased, the total solubilities decr&asg¢he partition coefficients can be
greater; aBp = 1.00,K,(0/Z) = 2.14, but the solubilities are reduced to 0.015 in the fluid
of squares and 0.007 in tiZefluid.
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4.4 Discussion

The simulations described above provide a detailed piaifitiee structure and thermody-
namics of both the single-component fluids and binary meguas well as some insight
into the behavior of many-component mixtures. The tetranfimids do not display sharp
(first-order) phase transitions in the density range stiydieough there remains the possi-
bility of continuous phase transitions without divergenae the compressibility or other
signatures. However, they do display intriguing local stuwe, including clustering of
like-oriented pieces in the pure fluids and localized strepgcies segregation in binary
and multicomponent mixtures. That is, although only puesiyropic forces are present
in these systems, pieces appear to preferentially assowitit other pieces of the same
shape and complementary (though not necessarily identcaintation. The qualitative
picture of these interactions obtained through inspedaiforpresentative configurations is
supported by analysis of several quantitative measurelsidimg second virial coefficients,
volumes of mixing, cluster size statistics, and solulatin the form of Henry’s Law con-
stants. While related models have been used in a number ef sithulation studies, the
structure of the fluids and the associated thermodynamiasiinat been considered in any
detail, and multicomponent mixtures have not been treateahy previous study of which

we are aware.

While the structures adopted in the fluids of squares andisod=sasonably intuitive, the
behavior of the remaining pieces is rather less so. All oftdteominoes can be used
to completely tile the lattice (100% packing) in a combimgtity large number of ways,
including via well-ordered periodic structures. The stmues of thel, L andT fluids, while
successfully rationalized in terms of piece-piece intéoas, are not easily predicted, and

one can easily imagine other structural motifs for packiregse shapes at high densities. It
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thus appears that using shape alone to direct self-assés@yhaps more difficult than in

might appear, since rather surprising behavior is obsezved among such simple shapes.

The preference for association of pieces of like shape angbEmentary orientation, the
solubilities of each species in the other fluids, and the melwf mixing data can all be
interpreted via the usual chemical rule of thumb that “likesdlves like”, provided that
one has an expansive interpretation of “like.” Considerjrigtance, that squares and rods
are the most and least compact of the shapes studied, yatiggargutually soluble, while
rods andJ shapes are much less soluble in each other. Solubility isr@ted by the
compatibility of the solute with the characteristic stuwrets formed in the solvent, rather
than with the solvent pieces themselves. Squares are varglaon the densd fluid
because thé pieces tend to pair, forming compack2 site structures, and a fluid of such
structures is amenable to formingx2 site vacancies, which exactly fit a square. Rods
are much less soluble in tlEfluid than are squares, despite “looking” more likpieces
than squares do, because the4 vacancy required to accommodate a rod requires a larger
perturbation of the structure of thkefluid. Another type of compatibility occurs in fluid
mixtures, between the characteristic structures formeldily shapes. Squares and rods
have only modestly positive volume of mixing even at highsieées, because both pieces
form structures faceted along the Cartesian lattice vec&andZ shapes have nearly zero
volume of mixing while displaying significant microscopiegsegation, because they both
form structures faceted along the lattice diagonals. SxpuandS shapes, however, exhibit
the most positive volume of mixing of any two species, dudtdxtreme incompatibility

of their characteristic structures; rods @shapes are nearly as incompatible.

It remains curious that in all the mixtures considered eaelps prefers to associate with its
own type rather than with any combination of others. Therdagonal virial coefficients

provide some evidence that this should be the case: a sHape'st orientational virial is
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always with itself. Another possible explanation for theshlvior, or one possible reason
for the virial results, is that the tetrominoes are quite tf@ither one or two lattice spac-
ings), and so their “face” on one side tends to be the sameaasitithe other; this is true
for all the shapes except tie This would lead to a natural tendency for shapes to pack
efficiently in the same orientation, which is observed fa tbds,SandZ shapesJ andL
shapes also pack this way, but only at low densities; at hegtsities they rotate to make
contact with the same face on another piecshapes form the most complex structures at
high density, perhaps because they are unlike the othezgpiraot having opposing faces
of similar shape. Self-association is likely not a genegaltdire of polyomino fluids; one
can easily imagine larger shapes which exhibit “lock and’ lséyape complementarity, or

frustrated structures that cannot pack efficiently witmikelve$.

Much of this behavior can be predicted qualitatively by eketion of second virial coef-
ficients. The orientationally-averaged “thermodynamicéfficients defined in eq 4.8 do
not provide much insight into the fluid structure, but theeatationally-resolved coeffi-
cients correlate extremely well with behavior observedhia simulations. In nearly all
cases, the relative orientation adopted by pieces in theedituids are those with the low-
est orientationally-resolved coefficients. This sugg#ss these quantities may be useful
in designing shapes that will exhibit a particular struetar packing motif; this should be

equally true in systems which exhibit attractive interact.

Increasing the number of components in a mixture decrehsggmndency of each species
to self-associate. This appears to be principally due tatidih, rather than any tendency
for shapes to form characteristic multicomponent striesuAnalysis of Henry’s Law data

indicates that some many-component mixtures are gendreiilgr solvents (for shapes not

present in the mixture) than were pure species or binaryurest Much of this behavior

2Many may consider the tetrominoes already sufficientlytfaiig in this regard.
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can be correlated with the volume of mixing in the solventgwihe solvent components
do not mix well, the density of the fluid is lower (at a given gsare) than otherwise, and
it becomes a better solvent for other species because it bes empty space available.
Such a correlation is likely to be present for other polyomeis and perhaps real colloidal
and nanoparticulate systems, and may suggest routes ®wWardsystematic control of

solvation behavior in such systems.

All of the fluids studied are fully miscible; no macroscopibgse separation was ever
observed in these simulations. In off-lattice hard modalen in two dimensions, this is not
always the case. For instance, demixing can be observedinmes of hard rectangles and
disks or discorectangles [100]. Again, we expect that sudnpmena may be observed
in other (on-lattice) multicomponent polyomino fluids, esglly when components are
of substantially different size. Since an isotropic-tornatic transition has already been
identified for on-lattice rods of lengths greater than cdesed here [132], we believe that
many single-component and multicomponent fluids of largdygminoes are likely to

exhibit true phase transitions. Extension of the model tegldimensions would increase
the number of rotational states available and thus incrigeskkelihood of observing first-

order transitions.

The off-lattice counterparts of some of the shapes cornsitibere have been studied by
other groups [98-101,132]. The behavior of the on- andattfde models is quite different,
but this should not be surprising. In the off-lattice modspecially at high densities, the
free energy of the fluid is principally determined by freeuroke considerations, and the
structure adopted is one which maximizes the ability ofvidiial objects to move about
within the confinement of their neighbors. In the lattice mlostudied here, there is very
little opportunity for such small-amplitude motions at higensities. Most importantly,

the orientational degree of freedom in the lattice modelissréte, with very few states
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available, so that the total entropy is dominated by trdimsial terms; this is not the case

in the off-lattice systems.

In conclusion, we have observed a number of interesting asdqusly unexplored phe-
nomena in simulations of an idealized model with relevaceblecular adsorption and
self-assembly in two dimensions. The extreme simplicitthefshapes studied and their in-
teractions belies considerable complexity and non-itealithe structure of the simulated
fluids and mixtures. Quantities such as second virial coeffts, familiar from the anal-
ysis of simple liquids, and rigorous solution thermodynesréan nonetheless be used to
correlate and understand most of this behavior. Largergooigoes may exhibit true phase
transitions, long-range ordering and even more compleaweh and these results will be
examined in the next chapter. We note in this regard that) eWth an inexpensive model
such as this and an efficient computer implementation, aauestive search of a seven-(or
more)-dimensional phase space is likely beyond currentpcbational capabilities. We
believe statistical approaches for locating phase triansitin such a space based on ideas
from quantitative stereology may prove useful [136]. Tetiwoes confined in small spaces
may be induced to exhibit regular structure. If the confinetneinforces the characteristic
structure of a fluid it will be enhanced, perhaps leading ®ugs-crystallization; on the
other hand, an incompatible confinement geometry may be taseichance fluid mixing.
Confinement might also be used to effect a chromatograplpiaragon based on liquid
structure, rather than particle size; this will also be cd&®d in future work. Finally, the
results obtained to date may have some relevance to to sfglcstsategies for playing the

Tetris computer game, but this has not been consideredil.det
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Appendices

Calculation of pressure in multicomponent mixtures

In the athermal thermodynamics appropriate to this motdel@ibbs-Duhem equation is:

dBp = 3 pdBu; (4.10)

Bu , ,
BR(BI) = BP(Buo)+ 3 [ o (Bu)dBu (4.11)

(For a system with a real temperature, these expressiorstibinalid at constan3.) In
principle, the integration in eq 4.11 is path independeng(can integrate through any set
of Bu; state points). For a pure fluid the path selection is triviad #he quality of the
result depends only on the spacing@p between simulations. For each binary mixture of

species A and B we have chosen to use rectilinear paths tb ezat state point:

Bla , ,
P(BUa,Bus) = P (BHa0, BUBO) —+ /Bu oA (BUa, BUso) dB Lia
Bué
+ o 0B (BUa, Bug) dB g (4.12)

Buao and Bugo are chosen such that the density is very low, so m(flflle,BH&O)
can be accurately computed using the virial equation oédtaincated at second order,
Equation 4.8. The integration is a two step procgsgg o is held fixed while integrating
up to the desire@ L, after whichB ua is held fixed while ug is varied. Integrations were
performed using Simpson’s 1/3 integration. We examinefégifnt integration paths and
found that the variation i p due to choice of integration path was insignificant, confirgni

that the simulations are spaced closely enougBirto provide reliable thermodynamics.
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Calculation of volume of mixing

The change in volume upon mixing is defined as:

AVimix (N, Bp) =V (N, Bp) = 3 Vi (BP)N (4.13)

whereV, (Bp) is the molar volume of pure specieat pressurg p. Our simulations of bi-
nary mixtures were performed in the grand ensemble, whichswtates several additional

manipulations in order to obtalVyx as it is conventionally used, as follows:

1. Obtain the equation of stai@p as a function off u for each single-component (pure)

fluid by thermodynamic integration, as described above.

2. For each species fit Vi (B) vs. Bp(Bu;) via a cubic-spline function to provide
Vi (Bp).

3. ComputeBp as a function of the chemical potentiga for the desired mixture,
again by thermodynamic integration. Combine this with tbenbers of each shape

N (B L), obtained in the simulation, to yieM (N, Bp).
4. For each state poifti, computeAVyix via eq 4.13 .

5. PlotAVpix (or AVimix/V) as a function of3 p and mole fractions.

Calculation of Henry’s Law constants

In an athermal system, in the Henry’s Law regime:

B (Bp,xi) =xBKi (Bp) (4.14)
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that is, the fugacity of speciést infinite dilution in a particular solvent is equal to its l®mo
fraction in the solution multiplied by a constaBK;, which depends on both the solvent
and solute and varies with pressufi; is related to the excess chemical potential of the

solutei at infinite dilution by [137,138]:

BKi(Bp) = psexp[Buex(BP)] (4.15)

whereps is the solvent density. We measi#g;’s, via Widom test-particle insertion [139].

In the grand canonical ensemble

Buiofex: —In <exp(_BAUi>>ﬁy7V (4.16)

whereAU; is the energy associated with the insertion of a test parttispecies in the
solvent, and the ensemble average is taken over both pegsdartion positions (and ori-
entations) and the positions and number of particles ofratpecies present. Note that in
the grand ensemble this expression applies only to theesahd not to the components of
the solvent. In the hard model studied here, the term-in brackets reduces to the en-
semble average probability of successfully inserting gaagicle of speciebin the system

when there are no other particles of specipgesent.
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Chapter 5

Polyomino Fluids and Crystals

After our extensive study of the tetrominoes, the next lagstep was examining the pen-
tominoes, searching for more complicated behavior. Intamdia selection of larger poly-
ominoes were studied. These included enlarged (size 16jover of the tetrominoes, a
series of high-symmetry shapes, and a family of shapes we t@fs “fish”. Tetrominoes
displayed non-ideal mixing, “microscale phase separatiemd short-range geometric or-
dering. Pentominoes display much of the same microscaksedeparation and clustering.
The pentominoes also display fluid-to-solid phase tramssti Polymorphism (multiple
solid phases) is observed in some pentominoes, and mares laofyominoes. In some
larger polyominoes, we observe columnar behavior. Sizdighechanical models are used

to assist in explaining the isotherms and stability of somlggmino solids.

5.1 Mathematical Research on Polyominoes

Most prior literature on polyominoes is found in mathematjournals, and mathematical
challenges involving polyominoes were first popularizedhe 1960s [9]. Mathematical

researchers are generally concerned with different tap@s we are in this dissertation,
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but some of their work is useful when considering how to gateepolyomino families or

how to systematically categorize crystalline packingd.[10

5.1.1 Enumeration

“Fixed” polyominoes cannot be rotated, and are the most confyrenumerated type of
polyomino. “One-sided” and “free” polyominoes are subs#tshe set of “fixed” poly-
ominoes [140]. “One-sided” polyominoes considered edaivaif superimposable after
rotation, while “free” polyominoes are allowed to both rietand flip. There are 18 “one-
sided” pentominoes. In Chapter 4 we considered the set pbalible “one-sided” tetro-
minoes, and continue to examine only “one-sided” polyoragbere. This is in keeping
with an interest in molecular adsorption on surfaces, whavkecules may preferentially
adsorb in one configuration. Also, real molecules adsorlpesliofaces are generally able
to change orientation, which is consistent with examining-sided as opposed to “fixed”

polyominoes.

Enumeration of polyominoes has been a longstanding rdsgaoblem in their mathe-
matical literature, as the size of the families (polyom#oéa given ared\; tetrominoes
haveN = 4) grows exponentially, as quantified by Klarner’s consfadi]. A simple brute
force approach is to enumerate a family of dkedy generating them from the family of
sizeN — 1. First, take a polyomino of siZd — 1, add an additional lattice site at one edge
site, and store the result. Repeat this process over allgtigeof every polyomino of size
N —1, and then eliminate duplicates to complete the set. Theefiiisient algorithm for
enumeration of all possible fixed polyominoes is due to Rededr [140]. Redelmeier’s

algorithm avoids generation of duplicates. Redelmeier alzle to enumerate up to all
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possible 24-site polyominoes using ten months of compiurtes, twhich was a more than

tenfold increase in rate of enumeration over other algor#tlavailable at that time.

More recent work by Conway has focused not on actual corntgtruof every single poly-
omino of a given size, but instead on calculation of the pridge (including number) of
those families of polyominoes using transfer-matrix megoThis has resulted in calcu-
lation of polyomino properties such as perimeter, peraatathresholds, area, and number
up to size 30 and beyond [118]. However, his algorithm is seful if the properties of in-
dividual shapes are to be studied, since it does not actgafigrate the shapes. Conway’s

algorithm also applies only to fixed (not one-sided or fre@ypminoes.

5.1.2 Tiling

Golomb was the original author of much of the mathematitatditure on polyominoes, in-
cluding an early study of different packings (“tiling”) ofr&all polyominoes [10]. Golomb’s
book [11],Polyominoesencapsulates much of the original discussion of polyoesrand

challenging or classic problems regarding their tilingr irgtance, how can one tile domi-
noes so that a “fault line” does not run through the stru@ufdis has a direct applica-
tion to masonry, as brick walls with continuous fault lines aeaker for bearing loads or
shock resistance. We would also hope that a thorough uagelisty of polyominoes may
eventually lead to a better understanding of assembly inemmodhemical problems. For
example, TEM micrographs of some binary nanopatrticle dafiees [142] bear a strong

resemblance to polyomino crystals.

Conway created a sufficient, but not necessary, set of remeints for a polyomino to be
able to tile the plane. By this we mean a regular structurelwvbovers every lattice site on

an infinite plane. This rule is dubbed “Conway’s criterioahd no better rule has yet been
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discovered [143]. The generalized version of the rule if@@onway Hexagon”, which is
defined as followsA, B,C, D, E, F are points in order on the boundary of some region. Let
b(A,B) refer to the part of the boundary curve connecting poiésdB without passing
through any other point, arft{C, D) refer to the same curve f@ andD, and similar for
the rest of the adjacent points. A= B, b(A,B) is just a point: this may be useful for
shapes without much curvature, or shapes such as pent@srondetrominoes. A shape
satisfies “Conway’s criterion” if there is a translationttsanultaneously take& to E and

B to D, and each of the four sidégB,C), b(C,D), b(E,F), b(F,A) has 180 degree rotation
symmetry. In practice, polygons that satisfy this criterwill have opposite sides that are
congruent and parallel. This allows them to pack by stackiog to bottom” along the

congruent edges, and also “end to end” through 180 degratoms.

5.2 Simulation details

5.2.1 Change from binary to integer representation

For this work our simulation code was modified such that oatiop of the lattice was

no longer stored bit-by-bit in a 512 byte integer vector (8yper element). Instead, a
two-dimensional integer array of two byes per element wasl tis record the state of the
lattice. Initially, possible reduced speed was a concern.n@dern CPUs, the storage
array appears to still fit within the L2 cache (up to roughly égabytes in size) provided
that the dimension of the array is kept to a reasonable sipele @nd data stored within
the L2 cache of a processor can be accessed much faster thamrdeh has to be fetched
from main memory. We typically use 256 as a maximum latticeetision, which equates

to only 128 kilobytes of cache (23@irray values at 16 bits per value), and most modern
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CPUs have at least one megabyte of L2 cache. Allocatablgsaware also tested, but the
resulting performance was slower by at least an order of maggwhen compiled with

the GCCl/gfortran, version 4.3.

5.2.2 Expanded lattice

As some of the polyominoes to be studied are much larger gteontinoes, the simulation
cell size was increased. Larger lattices were needed tammaiany finite size effects.
Preliminary runs included many different sizes, up to a %1212 lattice, but typically a

120 x 120 or 144x 144 lattice is used for these simulations. An edge lengti26fHas

the advantage of being evenly divisible by 2,3,4,5,6 andi8¢kvis useful for simulations
of shapes with many solid phases, or unknown crystal strectiithe simulation cell edge
length is not a multiple of the unit cell edge length, graiubdaries or line defects may

appear in the simulation.

5.2.3 Modified convergence heuristics and block averaging

In general, simulations of larger polyominoes take muclgésrio equilibrate than those of
smaller ones. This was expected for a few reasons. Our biasedion method becomes
less efficient as the polyominoes become larger. Translatioves, still limited to a dis-

placement of one lattice site in any direction, are sma#étive to the size of the piece.
Since the shapes are larger, there is a lower acceptanderalemoves at high densities
— with more lattice sites being affected by a move, therengbi a greater chance of a
move resulting in overlap with another piece. The number ohtéd Carlo moves between

samples, and the number of samples per block, were theliefoeased to 4000 and 16000
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respectively, to reflect the increased lattice size. Toldmgate a system in the vicinity of
a phase transition, several billion Monte Carlo moves, orapnwere often needed. The
nucleation and growth of a crystalline phase is a slow pmcasafu just barely above
a transition and starting from an empty lattice or fluid, tetgation may proceed for bil-
lions of MC moves in the fluid phase before the solid phasg fadcupies the cell. ABu

below the transition point, the fluid phase does not need ay & moves to equilibrate.

5.3 Vacancy Thermodynamics

For crystalline phases, we should be able to accurately eeuisely model isotherms in the
high density regime by determining the average number adivaies present. One model
used for this will be described in this section. Specific eglsmwill be discussed in a later

section.
In the grand canonical ensemble, for an athermal system:

BPV:InZ:§+BH<N> (5.1)

where(N) is the average number of pieces in a system. During the cofissimulation
BPV is maximized. Therefore, when examining crystalline sph@ses or interfaces be-
tween different cluster domains, packings which have greattropy at a given density are

the more favorable.

The thermodynamic properties of crystalline phases ofrttadel can be accurately mod-
eled as follows. Crystalline phases are characterized thytigh density and translational

order. For a lattice of sizk x L and polyominoes of siz®l, we defineN as the number
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of polyominoes and/ = L?/M as the maximum number of polyominoes. The partition
function can be presented as a sum over configurations, whiaghthen be restated as a
sum over occupancies by introduction of degeneracy coeffis¥V (N) (which are micro-

canonical density-of-states):

states

= 3 eBHN (5.2)

= ﬁ W(N)ePHN (5.3)
=0

Instead of summing over the number of pieces, we may sum beenimber of voids

(Ny =V —N):

= = eﬁ“VéW(N)eB“(N‘V) (5.4)
=0
= eﬁ“\/éwmv)e—ﬁﬂ“‘v (5.5)

The “complete occupancy” terefHV is factored off, which shows thatB u is the quantity
conjugate to the number of vacancies. Then, for Ig8ge only the first few terms of the

sum are important, and we write

/PR — 1+ W(1)EPH +W(2)e 2PH 4 .. (5.6)
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The specific degeneracy expressions are as follows Wiittepresenting the “local” states
at anyV sites, and\, being an interaction term which is defined in its expresssanjlar

to the definition of a virial coefficient.

In this equationyV(Ny ) is the total number of ways to arrange all the pieces in theesys
whenNy of them is missing. Because of the translational symmeteycan factor off a

volume term, giving

W(1) =V -W, (5.7)

whereW, is a “local” degeneracy — the number of states associatddansingle vacancy
at a specific positionW(2) is the total number of states for a system missing two shapes.
These can be divided into two groups: those where the twoimgigseces are far enough

from each other that they can be considered independenthased where they interact:

VV-1
W(2) = %-WerV-Wz (5.8)
The first term covers the “non-interacting” situation, bgating the vacancies as a non-
interacting “ideal gas”V (V — 1)/2 is the number of ways of placing two vacancies on the
lattice, and they each give rise\fg local states. The other term covers the “interaction” of

the two vacancies. This equation may be regardeddediaitionof theW, quantity, which

should be thought of as a second virial coefficient of the neiess.

For two different crystal structures, andB, a largetV; should lead to a larggBPV and
therefore determine the thermodynamically stable ph&s#: (A) = Wi (B), a comparison

would have to be made betwe¥h(A) andW,(B) , and so on. This second order effect on
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the partition function (and hence, packing fraction as camijncompared in isotherms) is
small compared to first order effects. The average vacanesityefor a given crystal can
be determined by examining the derivative of the log of thetif@n function with respect

to —Bu:

Jdin= 7}
<M’>:a(—ﬁu> = m|n[1+v-wlexp8“+...] (5.9)
~ 0 . H
~ 0(—Bu)v w;e? (5.10)
~ V- -WePH (5.11)

Finally, we note that this theory may also be applied to edgstvith multiple “kinds” of

sites, sayX andY. To first order,

W(1) = Vx -Wix +W -Wyy (5.12)

whereV is the number of sites of typ¥, Wix is their associated local degeneracy, and

similarly for site typey.
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5.4 Pentomino results

5.4.1 Overview

The phase behavior of each of the 18 one-sided pentomincestwdied in detail. The
shapes themselves are shown in Figure 5.1. There are fivegia@nantiomers, and sev-
eral of the shapes can be seen as larger versions of tetresighile there is a rod in
this set, there is not a square. TKeshape has the same symmetry as the square, but its
different shape may result in different packing. As eachi@®imo may be constructed by
adding a single site to one or more tetrominoes, the othgreshalso contain features of
the tetrominoes, such as the pentominshape resembling both the tetromihehape and

J/L shapes. Like the tetrominoes, all of the pentominoes caritd plane.
X Y'Y P/Q FIF I
V N/N L/J U Z/S

L

Figure 5.1: The 18 one-sided pentominoes. Some enantiompairs are labeled with a
single letter, “primed” and “unprimed”. Colors indicateetpresence, absence, and type
of phase transition. Yellow indicates no phase transitldoe indicates transition to a
disordered phase, and red indicates transition to a cliygtahase or phases.
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For each pentomino, five independent isotherm simulatiogr® werformed in the range
Bu=1toBu=11. Aspacing of 0.0B u between state points was used. While the initial
simulations began from an empty lattice, simulations a¢iostate points were seeded from
the prior state point. This “sequential” simulation praibgreatly accelerates equilibration
at high densities. It also allows us to obtain forward an@rse branches of isotherms. The
sequential simulation protocol restricts us from paradiey a single isotherm calculation.
To make full use of computing resources, we performed maligptherm calculations in

parallel using different random number generator seeds) entirely different species.

5.4.2 Pentominoes without a phase transition

The rods,T, N/N’, W, L/J,V, F/F" andU pentominoes did not undergo a phase transition
in the Bu range studied. The isotherms for these shapes are showgurer.2. As in the
isotherms shown in the previous chapter, our unified tentperand chemical potential,
Bu, is on the horizontal axis. The packing fraction @s defined in the previous chapter),

is on the vertical axis.

While not displaying phase transitions, these systemsthetess have many interesting
features. Snapshots of these fluids at high densities avenshd-igures 5.3 and 5.4. In the
T fluid, the predominant structure involves two pieces pldtedk to back”. An example
of T shape packing is shown in Figure 5.3. The “back to back” difoens a vacancy-
free interface (there are no unoccupied lattice sites) usgidf when rotated 90 degrees.
In the snapshot, we see that vacancies are often associdtedieces not being part of
“back to back” dimers. The capability of differently oriexkclusters to accommodate each
other through vacancy-free interfaces is observed in manyogpnino fluids, and especially

those which do not undergo phase transitions. This abdityigplay orientational disorder
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Figure 5.2: Isotherms of pentominoes without a phase tiansiData for each isotherm
was gathered via “sequentially” seeded simulations. E&ate $oint in an isotherm is
separated by 0.08u.
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Figure 5.3: Pentominoes that do not display phase transitieach aBu = 11. In this

and other snapshots, pieces are shaded differently angat@iorientation. The blue and
purple shades differ in rotation by 180 degrees, as do tHewand orange shades. Each
snapshot shows a section of the full simulation cell. Fromlédt to bottom right (reading

order):T, N, W, L.
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Figure 5.4: Additional pentominoes that do not display ghaansitions, all aBu = 11.
Each snapshot shows a section of the full simulation celbnftop left to bottom right

(reading order)V, F, U.
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without loss of packing fraction appears to inhibit crylzaltion. That is, the large number
of non-crystalline high density states this orientatidregdom provides make it less likely

that a crystalline state will be the final result at any giygn

Diagonal stacking, as seen in tBeandZ tetrominoes in Figures 4.5, is also observed in
many pentominoes. Thé shape shown in Figure 5.3 is one example. This is not sumngrisi
as theN shape resembles tlgshape tetromino. Similar to tH&/Z tetrominoes, th&l can
form a herringbone interface between clusters of perpetatiorientation. We see large

“stacked” domains, but no phase transition to an orientatly ordered crystal.

TheW shape also displays strong orientational clustering, aatlifes vacancy-free inter-
faces between clusters of different orientation. Due tadibgonal edges of thé/ shape,

a perpendicular piece will always fit flush against a stacWagpieces. Interestingly, the
packing and clustering observed in iesimulations is similar to that of the tetromino and
pentomino rods, but rotated by 45 degrees. Whehape also has quite high density over

most of the chemical potential range scanned, second otivatef the rod shape.

In theL fluid, pairs of pieces aggregate to formk2s rectangular dimers, analogous to the
dimers seen in the tetromiofluid. When al piece is not part of a dimer, quite often there
are multiple vacancies next to it. A&u is increased and more dimers form, the density of

L fluids approaches that @ fluids, which have nearly equal packing fractiorBat = 11.

TheV fluid, shown in Figure 5.4, displays multiple types of clustdJltimately, they pack
only poorly and apu = 11,V fluids have an average density lower than any systent but
fluids. The two main clusters observed are either “headitodimers, or diagonal stacks
of pieces of the same orientation. However, these two typelsisters cannot form defect-

free interfaces. Four pieces, each with a different orteriamay form a cluster shaped
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like a “cross” or “plus sign”, which will feature prominemtin discussion of th& shape.

However, this cluster does not frequently occur in\thiduid.

TheF shape displays orientational clustering at hggh Two types of dimers are observed
and large orientationally oriented domains are formed.igh 8 1, the density of this fluid
increases faster than that of other pentominoes which damigrgo transitions, except
for theU shape. The interlocking diagonal dimer tiling with 21 edge, easily visible in
the upper right of the snapshot, is the dominant structusemied. Clusters of head-to-tail

dimers are seen in the lower middle region.

This strong orientational clustering was also seen in shajech had phase transitions to
a disordered state (and will be discussed in those casetby3hliiis not entirely clear why
theF shape has domains which look largely analogous t¥ tsleape, but has an anomalous
isotherm instead of its own phase transition. No cell-sgeah boundaries were found and
testing of various system sizes did not show significantlieteént packing. It is possible
that a larger variety of domain interfaces simply leads toenpmssible defect states, and
the rotational and translational entropy gained througsehstates is enough such that a

transition never occurs.

The U shape can only form high-density configurations throughefiocked” dimers.
These dimers may form diagonally stacked clusters witheeithx 1 or 2 x 2 interfaces,
either of which may form a vacancy-free interface with a pedicularly oriented cluster.
A snapshot is shown in Figure 5.4. Where there are vacarmitgs snapshot, there is
usually aU piece nearby that is not part of a dimer. The anomalous higkityebehavior
for F andU shapes may be because they act as “larger” dimerized shapesstnongly

than, for example, thé/L shapes.
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Figure 5.5: Pentomino rods Biu = 11. Orientation-specific clustering of groups of rods
into larger rectangular (often square-like) shapes is tmidant form of packing.

Lastly, the previously studied system of rods on a squatiéatvith an aspect ratio of
5:1[132] is reproduced here. The rods cluster strongly awe the highest density at any
given B u of the species which do not have a phase transition. A snapshas system is

shown in Figure 5.5, and is very similar to the tetromino rodihe previous chapter.

5.4.3 Isotherms of pentominoes with phase transitions

The X, 9Z, Y/Y', andP/Q pentominoes undergo phase transitions, as indicated lop sha
discontinuities in their isotherms, which are shown in FFegb.6. As already mentioned,
the data in this figure are averages of five independent r@insy different random seeds.
In some cases, the transitions were not always observed aatheBu (that is, there was

hysteresis). This results in jagged steps in the averagieeisu; the individual isotherms
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Figure 5.6: Isotherms of pentominoes that display phassitians (data averaged over 5
runs). State points in each isotherm are separated byduQdividual points are shown
only for theX data. Differences between enantiomers appear due to ssngls size.

each display a single steep step (not shown). K, andQ shapes are mirror images of

theZ,Y, andP pentominoes, so need not be discussed.

Briefly, the X shape freezes to a single crystal structure. ZhendY shapes undergo
transitions to disordered structures; in the case ofvtlghape the density of this phase
approaches nearly = 1, while the dens® phase has rather more vacancies. Ztshape

also crystallizes, but to many different polymorphs.

5.4.4 Y and P shapes: transition to a disordered phase

Both just below and above the phase transitioivtiflaid consists of “back to back” dimers.

This is shown in Figure 5.7. The high density phase has a pgdkaction very near to
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Figure 5.7:Y pentomino snapshots @i = 9.50 andBu = 11.00 (pre- and post-transition).

1.00, comparable with that of a perfect crystalline streetiVe speculate that orientational
disorder as observed in Figure 5.7 is the source of someiaaaientropy which inhibits

true crystallization.

The phase transitions observed for thehape did not result in systems with unit density
or ordered, crystalline domains. An example result is shimwFigure 5.8. Pre-transition,
P pieces often dimerize “face to face” and formx52 rectangles, but post-transition this
dimer form is not observed. A diagonally “stacked” dimetiaa or clustering is seen both
pre- and post-transition. To test whether this disorderesfjular packing was a function of
periodic boundaries, lattice sizes of £208C” and 218 were tested, all of which produced

similar results.
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Figure 5.8:P fluid, at u = 10.15 andBu = 11.00 (pre- and post-transition).

Figure 5.9:X pentomino snapshots: before transitiofBat= 3.650 and after transition at
Bu = 3.70.
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5.4.5 X shape: transition to an ordered crystal

The X shape undergoes a first-order phase transition to a cigstatate, and was the
first shape studied to do so. Inspection of snapshots frota gtants before and after this
transition show that the system has gone from a disordeigpddilike state to a highly
ordered, largely crystalline state. In Figure 5.9 we seetlieesystem before and after
the transition. Notably, the crystal has two possible sismmers: a left-handed packing
and a right-handed packing. ftu just above the transition point, the resulting solid has
many vacancies and several defects. It is also a pure stereer instead of some kind of
racemic mixture with interfaces. If it were a mixture, thadwld indicate either problems

with equilibration or periodic boundaries and the dimensiof the crystal unit cell.

Additional isotherms in both increasing and decreagipgfor the X shape are given in
Figure 5.10. These display hysteresis. Hysteresis mayr @doen a system has two states
of distinctly different structure and a barrier to intergersion. The phenomenon is com-
monly observed in experiment, for example, with meltingreeking. For these calcula-
tions we slightly altered the simulation methodology. Ebchnch (forward and reverse)
was simulated using “sequential’ seeding as describedqusgly. We also re-ran the cal-
culations in a smaller system with= 60. Here, no hysteresis loop is observed, but the

transition does occur at near the same chemical potential.

5.4.6 Z shape: phase transitions and polymorphism

There are six known periodic tilings of tileshape [144], shown in Figure 5.11. In the type
1 and type 4 crystals, each piece has the same orientaticey difier by being stacked

“body-to-body” versus “head-to-tail”. The type 2 and typerystals also have common
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Figure 5.10: X pentomino isotherms, including both the forward and rexvdnanches.
Significant hysteresis occurs in this system.
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Figure 5.11: The six periodic tilings of th& pentomino. These are found through back-
tracking (a form of exhaustive enumeration for tilings)t simulation. These unit cell size
on the underlying square lattice widely varies for theseds.
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features. Each may be viewed as inter-meshed rows of piecas,an assembly of “cross”
subunits composed of four pieces. When viewed as inter-etesbws, the repeat units
differ in being composed of rows single units (type 5) versuss of dimers (type 2).

When viewed as assemblies of “cross” subunits, they diffdrandedness. In the type 6
tiling, vertical columns of pieces in one orientation arpa@ted by a columns of dimers in
the perpendicular orientation. Lastly, in the type 3 tiliggoups of four pieces form cross-
shaped subunits which are separated by additional piecesryihg orientations, colored

red. This is the most complex tiling.

When initial simulations were performed on theshape, we observed that post-transition
configurations at higisu often had multiple domains, and that different simulations
could also result in different crystal structures. A seoésepresentative configurations
are shown in Figures 5.13 through 5.16. Figure 5.13 shows-#ransition configuration,
displaying nuclei of type 1 and type 3, and a small number p&t2 nuclei. Its post-
transition counterpart, Figure 5.14, is composed of twgdalomains, one of type 2 and one
of type 3, with the type 2 domain occupying roughly 80% of timedation cell. Figure 5.15
is an example of a cell with type 1 and type 2 domains, wheréyihe 1 domain occupies
about 40% of the box. The “band” feature is observed in mamykitions, and apparently
presents a difficult obstacle to equilibration. Lastly,g5.16 displays a mixture of three
similarly sized domains of type 1 and type 3 crystal, with tfdhe type 1 domains being
of different orientation. There is also a small type 2 domaime system in Figure 5.16 was
grown from an empty lattice in a procedure described belbe;slystems in Figures 5.13

to 5.15 were selected from preliminary “sequentially se€dsotherm calculations.

To better understand shape polymorphism, the following protocol was used: 1@&@in
pendently seeded simulations were rurBat = 8.0, each starting from an empty lattice

and a different random number generator seed, were run &rlog trillion Monte Carlo
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Crystalline domain occurrence:
Type 1| Type 2| Type 3| Type4| Type 5] Type 6]
Pure crystal 4 67 3 0 0 0
Complete coverage, multiple domaifsO 17 1 0 0 0
Majority component 13 48 8 0 0 0
Equal partin 2-component system || 5 9 8 0 0 0
Minority in 2-component system 15 10 11 0 0 0
Equal part in 3-component system || 11 15 15 0 0 0
Minority part in 3-component system| 7 7 14 2 0 0

Table 5.1: Distribution of dense phase compositionsZfpentominoes a8 = 8.0, past
the phase transition point. This data was gathered througblations lasting over 1.1
trillion Monte Carlo moves for each system, beginning frameanpty lattice in each case.
moves with occasional checkpointing to observe the statkeo$ystem. The final state in
each run was characterized “by eye”, as either a singlealrysta multi-domain structure,
and the various phases present determined. These resuttellacted in Table 5.1. The
majority of simulations resulted in a multi-domain configtion, indicating that even after
one trillion MC moves the system is not fully equilibratedneTtype 2 structure was the
most commonly observed. It occurred as a pure crystal — desttggnain filling the entire
simulation cell — 67 times, and additional 17 times as thg type of crystal in the system
(but in multiple domains). This means it is the only obsersadcture in over half the
simulations, and in 48 of the remaining 76 simulations ihis majority component. The
type 1 and type 3 crystals occur with similar frequency, battype 3 is less likely to be the
majority component. The type 4 crystal was rarely obseraad,then typically only at the
interface of two different crystal domains. Type 5 and tyr@ctures of domains at least
several repeat units in size were not observed, althougherkican sometimes be found at
interfaces between domains of other types, and small nadeseen in configurations in

lower Bu simulations.

The frequency of occurrence of the different crystal strites does not correspond to the

predicted order based upon single-defect vacancy modétheQix tilings in Figure 5.11,
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Figure 5.12: Doubly-degenerate vacancies in type 3 andltyg@lyomino crystals. These
are the onlyZ polymorphs with multiply-degenerate states created upomdtion of a
single vacancy.
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four have only singly-degenerate single-vacancy statesjs, Wi = 1 at all lattice sites (see
Equation 5.7). In the types 1 and 3 crystals, there is a pdati¢double-rotation” possible
which gives\; = 2 at certain sites, raising the entropy of the crystals.dfblymorph ap-
pearance frequencies were controlled by thermodynanhies,the type 3 crystal would be
most frequently observed. It has multiple doubly degeesatgle vacancy states, shown
in Figure 5.12. Instead, the type 2 crystal is clearly fadorkn the type 2 crystal, single
vacancies resultin no additional states. Interestinglyy@two crystals which only contain
pieces in a single orientation, just one is observed relyulér that case, the polymorph
with greater entropy does predominate. Overall, it apptbatthe frequency of appearance
of the different polymorphs depends more on kinetic efféateleation and growth rates)

than on thermodynamic stability.
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components and chem. pot 0 8.750

Figure 5.14: Post-transition snapshotZoét B u

by a large domain of type 2 crystal

8.75. This configuration is dominated

and a smaller domain of 8/prystal.
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5.5 Columnar behavior

In the square tetromino fluid, configurations were often mrdento columns in which
translations were only possible in one direction. In thigtise we describe further studies
of this and larger shapes, in which this type of behavior eatuated, giving rise to true

phase transitions.

5.5.1 Theory

At very high densities the number of vacancies is very sraall, a crystal can be modeled

as an “ideal gas of vacancies.” The entropy, according ®approach, is:

—S/kglL?=(1—n)In(1—n)+nlnn

Note that this is the same form for the entropy as for germzdlparticles which follow

Fermi-Dirac statistics.

A truly columnar phase should be exactly equivalent to a dingensional system, and
therefore should be exactly solvable. For instancenfblocks of lengthm placed on an

L-site 1D lattice, Lee and Yang have shown the number of states [145]:

L—mn+n
W(n) =
n

which leads to the entropy of the system (in the thermodyodimit, L — o):

S/kg = InW(n)
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—S/kgl? = (1—n+n/m)n(l—n+n/m

—(1-n)In(L—n)+(n/m)in(n/m)

In the case of a system with periodic boundaries, additiete&ies are available as pieces
may occupy sites near the boundary which may be excluded $yst&m that has hard

walls. This leads to:

L{ L—mn+n-1
W(n):ﬁ
n—1

Work presented below involving squares will show that somlggmino systems display
true columnar behavior, as they are accurately modeled img uke exact enumeration

model with periodic boundary conditions.

5.5.2 Squares

In addition to the tetromin® (2 x 2 squares), we also obtained isotherms of the 3
and 4x 4 square square polyominoes. Both shapes displayed cotdmehavior at high

density. In addition, the & 4 system displayed hysteresis.

The 3x 3 square does not exhibit a first-order phase transitionc@hesponding isotherm
is shown in Figure 5.17. In the ran@g: = 5.3 to 55 a smooth transition from an isotropic
liquid to a columnar state occurs. The columnar orderingtgerfect: a3 u = 5.95, the
system has multiple small defects in the columnar ordefTings is shown in Figure 5.18.
However, the change from lower chemical potentials is ndhemough to be given as the
cause for the increase in packing fraction. Before this ghan curvature of the isotherm,

there was essentially no ordering in the system. The snapeken atBu = 5.95 shows
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Figure 5.17: Isotherm of & 3 squares. This data was collected using the same protocol as
the isotherm data faX shapes, with the reverse branch seeded from a perfectlicrysta

columnar ordering with only occasional defects. The entngrsus packing fraction for
this system is plotted in Figure 5.19. At lo@u, there is large disagreement between
varying theories and simulation. This is because the sys@ma disordered, low density
fluid phase. At higheBu, simulation and the exact enumeration match nearly exactly

supporting identification of this as a true columnar phase.

The isotherms for 4« 4 squares are shown in Figure 5.20. The discontinuous jurmpadk-
ing fraction and presence of hysteresis (betw@gn= 6.4 and 6.5) supports identification
of the transition as first-order. A snapshot of this systewvalihe transition is shown in
Figure 5.21 — almost no out-of-column defects are obseM#tken a vacancy occurs in the
4 x 4 system, more entropy is gained in comparison to a vacanay3ixx 3 system. A
single vacancy allows translational freedom for up to 4 tolidal pieces. This may explain

why the 4x 4 system has a true first-order transition, but smaller sgsystems do not.
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Figure 5.18: Snapshot 0f>33 squares gBu = 5.950. Columnar behavior is evident.

5.6 Shapes that exhibit “diagonal” columns

After observing phase transitions and columnar orderingpunare shapes, we decided to
investigate shapes which might display columnar behav@rgadiagonal directions. One
such polyomino was the size 6 “sort tail” fish shown in Figurg2; which can pack in a
head-to-tail fashion. At first glance its shape resemblasdha goldfish cracker, hence the

name.

The size 6 fish was essentially a negative result in that iareed disordered at higBu,
with no phase transition observed. Its isotherm and a sw&psd shown in Figure 5.23.
The availability of disordered very high density statess&éo remove any driving force

for formation of a diagonal columnar phase.

The size 11 “long tail” fish (isotherm shown in Figure 5.249mays a sharp transition with

hysteresis. This fish does not have a columnar phase, instgstdllizing into one of two
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Figure 5.19: Entropy versus packing fraction foix33 squares. This data was gathered
through thermodynamic integration, using the virial egprabf state for zero-density ex-
trapolation and then continuing the integration from logndity states to near unit packing
fraction states.
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Figure 5.22: The four fish-like shapes examined in this st&dym left to right: the “short
tail” gold fish, “long tail” goldfish, “enlarged” fish, and “tafish.

crystal polymorphs (we observe both) in which there is nogiaional freedom. These
are shown in Figure 5.25. Also interesting to note is thatdimeer phase has a pair of
enantiomeric tilings much like the pentomiXoshape, except in this case dimers form the

“base” of the tiling, rather than monomers.

The two structures have different entropies, which meaas dhlarge system sizes the
polymorph with diagonal columns of varying orientation glibbe entropically favored.
Each column of “head to tail” fish may also be oriented in twitetient directions, adding

a factor of In2 to the entropy.

The “enlarged long tail”, a size 15 fish, was chosen becausanihot pack in a perpen-
dicularly striped polymorph like the size 6 fish. Its isotmeand snapshot are shown in
Figures 5.26 and 5.27, in which we observe a strong firstrdrdasition and the result-
ing crystal phase. The crystal is composed of diagonalestrgd fish packed head-to-talil,
with the stripes randomly oriented in one of two directioAsvacancy would not create
translational entropy within a stripe, but the crystal ashel gains entropy through the

directional degree of freedom.

Lastly, the “fat fish”, another size 15 fish, does not have arpding “tail”. The isotherm
in Figure 5.28 shows a first-order transition with no hystereand the corresponding snap-

shots in Figures 5.29 provide a picture of the fluid state hadrobility within the diagonal
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Figure 5.23: (A) Size 6 fish shape isotherm. No phase transsiobserved. (B) Snapshot

of this system afu = 15.
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Figure 5.24: Isotherms for the size 11 “long tail” fish, whinlay undergo a phase transition
to one of two crystal phases.

columnar phase. The transition occurs gfanear 9, with a jump in packing fraction of
from near 0.825 to above 0.925. The snapshots show thatskensygoes from a fluid with
many small clusters to a system with stripes of two complaargmirections. Voids which
are the result of translation within a diagonal stripe comitgy a vacancy are also visible,

as are occasional non-columnar out-of-column defects.

5.7 “Square-like” shapes

Motivated by the known phase transitions in off-latticeteyss such as 2-D hard disks and
the interesting columnar behavior of squares discussedonsy, we decided to investi-
gate a series of shapes of high symmetry. We refer to thessgasre-like” shapes. They

follow a logical progression from th& pentomino to selected larger shapes. In order, we
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Figure 5.25: The liquid phase of size 11 fishBat = 8.2, shortly below a phase transition,
and in two crystal polymorphs post-transition.
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Figure 5.26: Isotherms for the “enlarged long tail” size Ehfi This system undergoes a
phase transition to a single crystal without translatidregdom.

Figure 5.27: Solid phase of “enlarged long tail” size 15 figtih stripes of opposite direc-
tions.
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Figure 5.28: The “fat fish” isotherm, displaying a columneansition. This diagonal
columnar transition was “by design”.

Figure 5.29: The “fat fish” just below (left) and above (rigtite chemical potential for the
phase transition.
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studied 5-site, 9-site, 12-site, 13-site and 16-site shafée 5-site shape is the previ-
ously discusseX pentomino, while the 9-site and 16-site shapes are the33and 4 x
4 squares which were discussed in the section on columnavritoehThis leaves the size

12 “big cross” and size 13 “diamond” shapes to be discussbdsd shapes are shown in

o

12 13

Figure 5.30.

Figure 5.30: The size 12 “big cross” (0f) and size 13 “diamond” shapes.

The 12-site polyomino has a sharp first-order phase transishown in Figure 5.31 (A).
The phase transition itself is abrupt, and a hysteresisitoolpserved. Although this species
has a shape manifestly similar to tigpentomino, it does not form a crystal with stereoiso-
mers (snapshot in Figure 5.31) (B). There are orientatidmiseocrystal which are degen-
erate via a 90 degree rotation. The density change throwginahsition is also significant,
with dn > 0.1. After the transition, the system has a packing fractioowar 0.975 with

only a few vacancy defects present. The hysteresis looughty 0.48u in width.

The isotherm of the 13-site “diamond” polyomino is shown igufe 5.32, along with a
snapshot of the crystal. It exhibits a strong first-ordergehmansition and hysteresis loop
in the 4.8 to 5.33u range. The crystalline phase has two enantiomers, sinailtreX
pentomino. As expected, after the phase transition, onéyadrthe two is present in the

simulation cell.
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Figure 5.31: (A) Isotherms for a size 1X™ polyomino. Hysteresis is observed with the
phase transition. (B) Snapshot of the size X2 polyomino crystal atBu = 5.0. The
“interlocking” columns remove translational freedom forgle vacancies.

166



=

0.95—
=
% r o—o Forward Branc|
g 0.9 o—o Reverse Branch N
(o2}
£
x
Q
g -
~ 0.85 n
= -

0.8

4.6 4.8 5 5.2 5.4

o
I ®
J i

1&# i g el ry ey
)
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5.7.1 Two-component systems

We ran a single preliminary scan of a two-component systeabserve phase transitions
in a mixture. The components chosen were the 12-site “bigst¢rand 13-site “diamond”
shapes discussed above. As these species are of similansizach has a phase transition,
we speculated that there would be phase separation or shasp fransitions in the binary
system. This is indeed the case. Figure 5.33 shows packiogdn (colored according to a
temperature scale) versus chemical potentials of bothiesethe plot contains the results
of a binary scan of 6400 individual state points. Speciess‘the 13-site polyomino, and
species “j” is the 12-site polyomino. The lower left handrean, colored dark blue, repre-
sents a total system packing fraction of 0.708. The dark redsacorrespond to packing

fractions near 0.98, which are nearly pure crystallineaegi

One feature that immediately stands out is the presence mflistinct ledges on either
side of the phase space diagonal. These correspond torfiestjhase transitions. One
example of this is the transition frofi; = 6.1 to 6.2 at constarfi i = 2 (this is located
along the central left edge of the plot). As that phase ttemmsis followed in3u phase
space to neaifu; = 6, Buj = 7), it gradually becomes less distinct. Configurations near
that point, but before the transition, resemble a well mjxizhse, two-phase system with
occasional clusters of pure species. When the chemicahfaltef both species is high, the
system may be difficult to equilibrate. As a result, it is difit to mark the ends of these
transition lines. Sharp “ends” may not even exist; the fteors may change to second

order or something else.

The asymmetry in the plot corresponds to what would be erpeftom the packing and
phase transitions observed with the pure species in eagbmpolo. Species “i”, the 13-

site polyomino, must overcome the disorder of the liquidgeheo form a solid with two
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Figure 5.33: A 2D isotherm of the size 12 “big cross” (labelnpd size 13 “diamond” (label
i) shapes fronBu = 2 to 10 on each axis. The isotherm uses a “color temperatosdé s
to indicate density, with blue locations indicating low déy and red locations indicating
high density.
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possible stereoisomers. It is also bigger than the 12-siomino. These factors explain
why the phase transition for a binary system composed maostly3-site polyominoes

occurs at a higher chemical potential than when the systemosily 12-site polyominoes.

5.7.2 Future Work

The rich behavior displayed in the tetrominoes, pentonsnard selected larger polyomi-
noes suggests many avenues for continued work. We haveogedethe computational
tools to simulate isotherms for subsequent polyomino f@silsuch as hexominoes) in a
nearly automated fashion. As the size of polyomino famijesvs exponentially, examin-
ing the hexominoes through octominoes could result in @stigng discoveries. One such
discovery could be that of a polyomino with over 10 polymaptine existence of which
is still an open question [146]. While binary and multi-camngnt mixtures of tetrominoes
were studied in detail, only very limited work has been perfed on mixtures of pentomi-
noes or larger species. As larger polyominoes (some of whiehhave quite complicated
shapes) are studied, their mixtures may display a strikimgtle range of behavior. For

example, formation of co-crystals may occur.

To date, we have only studied phase transitions in pure casmngaand binary systems.
Phase transitions in mixtures containing many componerig be discovered using a
form of stereological analysis which is computationallgxpensive compared to exhaus-
tive mapping. Or, rather than increasing the number of corapts, we could increase the
number of dimensions and examine polycubes, of which onipallsselection have been
simulated [108]. Our simulations have also always useddalt®woundary conditions and
cells of equal width and height. Pore-like conditions, jpregly studied for off-lattice rect-

angles [101], could be created by using “hard wall” bourekafor edges of the cell, and
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pore size (and shape) could be tailored by varying the celedsions. Another alteration
of the underlying lattice could be to use an equilaterahtyidar lattice in order to simulate
polyiamonds, or a hexagonal lattice for polyhex speciesalBy, our simulations have fo-

cused on an athermal model. Inclusion of attractive inteyas between polyominoes — a
drastic change to the model that would affect many partsestimulation and analysis —
would almost certainly provide many interesting resultsany opportunities for research

await investigation.
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