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Discovery Of Inactive E* Conformations In Thrombin And Other Vitamin K- Dependent 

Clotting Proteases 

 

by 

 

Alaji Bah 

 

Doctor of Philosophy in Biology and Biomedical Sciences (Biochemistry) 

 

Washington University in St. Louis, 2009 

 

Professor Enrico Di Cera, Supervisor 

 

Serine proteases of the chymotrypsin family play important roles in the regulation and 

function of numerous biological processes including digestion, blood coagulation, 

fibrinolysis, development, fertilization, apoptosis and immunity. For many of these 

proteases, activity unfolds when a zymogen is activated by limited proteolysis and the 

associated conformational changes result in the formation of a proper active site and 

oxyanion hole, both of which are required for efficient hydrolysis of peptide bonds. The 

transition from zymogen to active enzyme, E, thus provides critical temporal and spatial 

regulatory mechanism of protease function. 



 iii 

Catalytic activity of serine proteases belonging to Vitamin K-dependent clotting factors is 

significantly affected by Na+ through an allosteric mechanism. Over the past 30 years, 

structural and biochemical studies revealed that Na+ enhances the enzymatic properties of 

these proteases from a low activity, E, to a high activity (E:Na+) conformation. However, 

investigation of the effects of Na+ on these proteases has mainly focused on the 

thermodynamics of interaction and the resulting catalytic enhancement, with little 

emphasis on characterizing the kinetics of Na+ binding. In deed, the kinetic mechanism of 

Na+ binding to many Na+-activated enzymes remain for the most part unexplored due to 

lack of convenient probes to monitor the interaction or the difficulty of resolving rate 

constants for reactions that likely occur on a very fast time scale. My thesis project aims 

to fill this gap in the investigation of Na+-activated proteases by elucidating the kinetic 

mechanism of Na+ binding to vitamin K-dependent clotting factors.  

 

While studying the kinetics of Na+ binding to human α-thrombin, we observed a biphasic 

mechanism of binding whose analysis led to the discovery that in the absence of Na+, the 

enzyme exists in dynamic equilibrium between two conformations, E* and E. Structural 

and kinetic studies indicate that E is the active form of the enzyme responsible for its 

catalytic properties while E* is an inactive conformation that features a collapsed active 

site cleft, a disrupted oxyanion hole and an abrogated Na+ binding site. E* is not unique 

to α-thrombin, however, as we have observed a similar E* to E transition in meizo-

thrombin-des F1, factor IXa, factor Xa and activated protein C. 
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Discovery of E* to E transition embedded in these trypsin-like enzymes is novel, and the 

observation of E*-like features in structures of other serine proteases reveal a level of 

unprecedented conformational plasticity present in the chymotrypsin fold. The inter-

conversion between E* and E has mechanistic significance on how these proteases 

function in vivo. Based on the physiological role of each protease, catalytic activity can 

be regulated by properly setting the E*–E equilibrium, favoring E* or E depending on 

whether that protease requires low or high catalytic activity for its in vivo function. More 

importantly, stabilization of E* through mutagenesis can provide a low activity enzyme 

incapable of interacting with substrate or binding inhibitor until an appropriate cofactor 

binds and unleashes its full catalytic activity. 

 

Using α-thrombin, a key enzyme of blood coagulation as a model system, we 

demonstrated how each conformation could be stabilized through rational protein 

engineering using site-directed mutagenesis. Stabilization of its E* form will turn α-

thrombin into an effective anticoagulant agent that can be utilized for in vivo therapeutic 

purposes. In fact, α-thrombin mutants, E217K and W215A/E217A that show 

anticoagulant and antithrombotic effects in non-human primates both exhibit some 

structural features of E* like partial collapse of the 215-217 β-strand and disruption of 

the oxyanion hole. Thus stabilization of E* through mutagenesis or binding of a small 

molecule can provide an elegant regulatory control that can fine tune specificity along a 

particular pathway. In addition, discovery of E* in Na+-activated clotting proteases 

expands our understanding of allostery in monomeric enzymes in general and in 
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particular explains why the activity of some thrombin mutants is orders of magnitude 

lower than the activity of the wild-type in the absence of Na+.  

 

Findings from this thesis project reveal a fundamental property of structure-function 

regulation in the vitamin K dependent clotting enzymes and thus set the stage for further 

investigation of inactive conformations in other serine proteases of the chymotrypsin 

family. Whether the presence of E* is a universal property of all serine proteases will 

await future studies. 
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SERINE PROTEASES 

Serine proteases, which derive their name from the nucleophilic serine residue in the 

enzyme active site, make up the largest group of proteolytic enzymes, forming more than 

a third of all known proteases (1-3). Serine proteases are present in every kingdom of 

cellular life, and are grouped into clans and families based on their catalytic mechanism 

and common ancestry respectively (4). They play critical roles in the function and 

regulation of many biological processes including digestion, coagulation, fibrinolysis, 

and complement activation as well as cell proliferation, activation and differentiation (3). 

Several excellent reviews are available in the literature that describes in depth the 

diversity, structure and functions of serine proteases (1, 2, 5-8). In what follows, I will 

give a brief overview of that aspect of serine proteases that is relevant to this thesis 

project. 

 

The largest group of serine proteases belongs to the Clan PA, family S1 peptidases which 

are further divided into S1A and S1B subfamilies. S1A proteases are extracellular and are 

mostly found in eukaryotic organisms while S1B proteases participate in protein turnover 

in all organisms (1, 5). Although they are phylogenitically distinct, S1A and S1B 

proteases contain the same chymotrypsin fold and utilize the canonical catalytic triad of 

Ser195, His57 and Asp102 (chymotrypsin numbering used throughout) in hydrolyzing a 

peptide bond (Figure 1.1) (9). The occurrence of this triad in identical spatial 

configuration in trypsins, subtilisin, prolyl oligopeptidase and ClpP peptidases is an 

indication of its success as efficient catalytic machinery (1).  
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Peptidase activity occurs via two tetrahedral intermediates and is divided into three main 

stages: (i) formation of an enzyme-substrate Michaelis-Menten complex (ii) acylation 

and(iii) de-acylation steps (Figure 1.2). Even though the majority of serine proteases are 

endopeptidases that hydrolyze peptide bonds within polypeptide chains, there are some 

exopeptidases that cleave residues from either the N- or C-terminal of substrates. Many 

S1 peptidases usually require proteolytic activation from a zymogen precursor. Cleaving 

between residues 15 and 16 results in the formation of ion pair between the nascent N-

terminus and Asp194, which induces a conformational change that stabilizes an accessible 

active site architecture and proper formation of an oxyanion hole (10-12) (Figure 1.1).  

 

 

Figure 1.1 Cartoon representation of the 3-D structure of a typical serine protease of the S1 family of 

proteases. Residues of the catalytic triad located between the two β-barrel (yellow), ion-pair (blue dashes) 

between residues 16 and 194 & Asp189 at the bottom of primary specificity pocket are all shown in stick 

model. PDB Code (2PTN). 

 

His 57 

Ser 195 

Asp 102 

Asp 189 



 4 

 



 5 

Figure 1.2 Catalytic mechanism of serine protease peptide bond hydrolysis.   

With the aid of His57 acting as a general base, the hydroxyl group of the catalytic ser195 attacks the carbonyl 

group of the amide substrate. This leads to the formation of a tetrahedral anion intermediate, which is 

stabilized by the oxyanion hole, a net positively charge pocket formed by the N atoms of Ser195 and Gly193. 

Collapse of the tetrahedral intermediate results in the formation of an acyl-enzyme complex and 

stabilization of the new N-terminus by His57.  Finally, a water molecule displaces the free N-terminus 

product and then attacks the acyl-enzyme intermediate to form another tetrahedral intermediate. The 

collapse of this intermediate releases the new C-terminus of the product (2). 

 

In the chymotrypsin fold, residues responsible for catalysis and regulation are distributed 

across the entire protein. The catalytic triad is strategically located at the interface of two 

six-stranded β-barrels with His57 and Asp102 residing at the N-terminal β-barrel while 

Ser195 and the oxyanion hole are located in the C-terminal β-barrel (13) (Figure 1.1). The 

active site face is defined by surface exposed loops that mediate substrate specificity and 

allostery through interaction with substrates, cations or macromolecular cofactors (1). As 

a result, within the same fold for instance, trypsin is optimized to cleave after Arg/Lys 

residues while chymotrypsin prefer aromatic side chains.  

 

The molecular origin of the difference in substrate specificity within S1 proteases is not 

fully understood (3). The architecture of the primary specificity pocket partly determines 

their corresponding specificity since its engineering is necessary but not sufficient for 

converting one protease into another. However, extensive additional mutations at loops 

not directly in contact with substrate are also required to generate substrate specificity 

conversion (14). Nonetheless, the resulting catalytic activity of these engineered mutants 

are poor relative to the wild type enzyme. For example, the swapping of chymotrypsin 
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into trypsin or trypsin into elastase is never fully realized (15, 16). These results 

demonstrate our current lack of understanding of the determinants of substrate specificity 

in S1 serine proteases. The linkage between structure and function underlying the 

mechanism of protease specificity is missing a key element. The considerable 

conformational plasticity and the allosteric pathways embedded in the chymotrypsin fold 

may be the missing link (3). 

 

 

THE BLOOD COAGULATION CASCADE 

Serine proteases of the chymotrypsin family play important roles in the blood coagulation 

cascade. Blood coagulation, a key component of homeostasis, evolved as a specialization 

of the complement system and immune response (17). The coagulation cascade involves 

several proteins that act together following vascular injury to generate a clot that prevents 

a severe loss of body fluids and/or pathogenic invasion (18). The initiation and 

termination of the clotting process is timely and localized, otherwise uncontrolled clot 

formation will result in the occlusion of blood vessels and thrombosis, which can lead to 

cardiovascular diseases such as strokes and heart attacks.  Thus, a tightly-regulated 

coagulation cascade is essential for survival to prevent excessive bleeding or widespread 

clot deposits (18). 

 

The blood coagulation cascade can be initiated through two pathways known as the 

intrinsic (contact) and extrinsic (tissue factor) pathways (Figure 1.3) (18). Each pathway 

consists of a series of zymogen activation steps where a newly activated enzyme 
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catalyzes the activation of the next zymogen in the series until prothrombin is converted 

to thrombin. Thrombin then cleaves fibrinogen to form an insoluble clot that anchors the 

activated platelets to the site of lesion to initiate the process of wound repair.  In addition, 

thrombin stabilizes the clot by generating the transglutaminase, FXIIIa, that crosslinks 

the nascent clot, and down regulates the fibrinolytic system by activating Thrombin-

activatable fibrinolysis inhibitor (TAFI). TAFIa removes C-terminal lysines and arginine 

residues from fibrin, hence reducing the ability of fibrin to initiate the fibrinolyic 

response(17). 

 

Laboratory and clinical data have shown that the primary route of initiating the 

coagulation cascade after vascular injury is the extrinsic pathway (18).  This pathway is 

composed of three procoagulant vitamin K-dependent enzyme complexes and one 

anticoagulant enzyme complex (Figure 1.3). Each haemostatic complex consists of a 

vitamin K dependent clotting enzyme and a macromolecular cofactor, assembled in a 

Ca2+ dependent manner on a phospholipids membrane of activated or damaged cells.  The 

central event of the coagulation cascade is the formation of thrombin, and can be divided 

into three distinct phases (initiation, propagation and termination).  

 

Thrombin generation begins by exposure of tissue factor that forms a complex with factor 

VIIa and results in the generation of small quantities of factors IXa and Xa (19, 20). This 

small concentration of Xa produces minute amounts of thrombin (initial phase) that can 

activate factor XI and cofactors VIII and V. During the propagation phase, the 

procoagulant complexes are assembled, and they enhance the generation of FXa and 
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thrombin in the tenase (IXa, VIIIa, Ca2+, phospholipids, X) and prothrombinase (Xa, Va, 

Ca2+, phospholipids, prothrombin) complexes by ~5 orders of magnitude relative to their 

free enzymes.  

 

The termination phases involves the coordination of stoichiometric and dynamic 

inhibitors that down regulate the explosive generation of thrombin to halt the progression 

of the coagulation cascade. Although antithrombin III (AT-III) and the tissue factor 

pathway inhibitor (TFPI) are the principal stoichiometric inhibitors, heparin cofactor II, 

α2-macroglobulin, α1-antitrypsin, activated protein C inhibitor are essential inhibitors 

that contribute in regulating the coagulation cascade as well (21, 22). AT-III is a potent 

neutralizer of all the procoagulant enzymes while TFPI shuts down the generation of 

Factors IXa and Xa by effectively inhibiting the tissue factor-VIIa-Xa complex (Figure 

1.3).  

 

The dynamic inhibitory system is composed of the thrombin-thrombomodulin-protein C 

system (23). Binding of thrombin onto thrombomodulin, a receptor constitutively 

expressed on the surface of the endothelium, prevents the cleavage of fibrinogen and the 

activation of PARs, but enhances the activation of protein C over a 1000-fold. Activated 

protein C binds and cleaves cofactors VIIIa and Va thereby inactivating the tenase and 

prothrombinase complexes respectively. As a result, the exponential amplification of α-

thrombin generation is down regulated. 
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 In addition to its roles in the coagulation cascade, other important effects are triggered by 

thrombin upon cleavage of protease-activated receptors (PARs), which are members of 

the G-protein-coupled receptor super family.  Four PARs have been cloned and they all 

share similar mechanism of activation (24).  Thrombin and other proteases, derived from 

the circulatory and inflammatory cells, cleave at a specific site within the extracellular N-

terminus to expose a new N-terminal tethered ligand domain, which binds to and 

activates the cleaved receptors (25). Thrombin activates PAR1 (26), PAR3 (27, 28) and 

PAR4 (29-31) through this mechanism and elicit several cellular responses. 

Consequently, thrombin is a potent mitogen that affects the physiology of many cell types 

including smooth muscles, macrophages and endothelial cells. In addition, thrombin is by 

far the most potent platelet activator. PAR1 is responsible for platelet activation in 

humans at low thrombin concentrations and its action is reinforced by PAR4 at higher 

concentrations of the enzyme (25). Activation of PAR1 and PAR4 triggers platelet 

activation and aggregation and unfolds the prothombotic role of thrombin in the blood.  
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Figure 1.3 The Blood Coagulation Cascade. Shown are the intrinsic (contact) and extrinsic (tissue factor) 

pathways of initiation thrombin generation. Zymogens (squares), procoagulant enzymes (blue ovals), 

cofactors (red ovals), anticoagulant enzymes (green ovals), platelets (red diamonds) and inhibitors (white 

pentagons) (17, 18, 24). 
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Na+ ACTIVATION & VITAMIN K-DEPENDENT CLOTTING FACTORS   

Metal ions play a key role in serine proteases of the vitamin K dependence clotting 

factors as well as in many other enzyme-catalyzed biological processes (32-34). The first 

observation of monovalent cation (M+) activation of enzymes was made by Boyer et. al. 

(35) when they discovered that K+ was absolutely required by pyruvate kinase for 

catalytic activity (36). Later, Monod demonstrated Na+-dependent catalytic rate 

enhancement in β-galactosidase (37) and thereafter, the activities of many enzymes were 

observed to be modulated by M+ (38). Due to the tight control of the [M+] in vivo, M+ are 

not regulators of enzyme activity. They function by lowering the energy barriers in the 

ground or transition states, hence affecting substrate binding or catalysis (39). 

 

A recent classification of M+-activated enzymes groups them according to the selectivity 

of the effect and the mechanism of activation, as established from kinetic and structural 

analysis respectively (40). The mechanism of activation can be can be either cofactor-like 

or allosteric. In the former case known as type I, M+ is absolutely required for catalysis 

because it anchors the substrate to the enzyme’s active site. However, in the later case 

called Type II, M+ enhances enzyme activity through conformational changes induced 

upon binding to a distant site where M+ makes no direct interaction with the substrate. In 

this case, that is most relevant to the vitamin K- dependent family of clotting enzymes (1, 

41), the M+ acts as an allosteric effector and is not absolutely required for catalysis since 

the enzyme is still active in the absence of M+. 
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Na+ influences the activity of all vitamin K -dependent clotting enzymes. Orthner and 

Kosow were the first to show that factor Xa (42) and thrombin (43) are optimally active 

in the presence of Na+ while Steiner and Castellino made a similar observation in 

activated protein C (44-47). Since then, it has been demonstrated that Na+ had a 

significant influence on the activity of factor VIIa (48, 49), factor IXa (50) and 

meizothrombin-desF1 (51, 52).  

 

Wells and Di Cera first established that the Na+ activation of human thrombin is specific 

and allosteric, and involves the transition of the enzyme between two active forms (53) 

leading to an increase in kcat and a decrease in Km. These forms are E with low activity 

and E: Na+ with high activity, originally defined as the slow and fast forms respectively 

(53). Because the Kd for Na+ binding to thrombin is 110 mM at 37oC, the physiological 

concentration of NaCl of 140 mM is not enough to saturate thrombin. As a result, both 

the E and E: Na+ forms of thrombin are significantly populated (2:3 ratio) in vivo (53-56). 

Na+ is required for the optimal cleavage of fibrinogen, PAR1, PAR3 and PAR4 as well as 

activation of factors V, VIII and XI. More importantly, however, Na+ binding is 

dispensable for activation of the anticoagulant protein C with or without thrombomodulin 

(Figure 1.4). Therefore, Na+ binding is the major driving force behind the procoagulant, 

prothrombotic and signaling functions of the blood (57). This explains why several 

naturally occurring mutations of the prothrombin gene that affect residues linked to Na+ 

are associated with bleeding and why all anticoagulants thrombins engineered to date are 

defective for Na+ binding (58). 
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Further insights into how Na+ regulates the function of human thrombin came from the 

work of Bush et. al. who observed that murine thrombin lacks Na+ activation, yet it 

retains high catalytic activity towards all its physiological substrates (59). Structural and 

kinetic analysis later revealed that the murine enzyme is adopts an E:Na+ conformation 

both in the presence (personal communication) and absence of Na+ binding (60). The lack 

of Na+ activation allows the murine enzyme to be more resistant to mutations that 

destabilize the Na+ binding environment or the transmission of that binding to function.  

 

After being overlooked in previous crystal structures, the Na+ binding site of thrombin 

was finally identified unequivocally using Rb+ replacement in 1995 (61) and its definition 

facilitated the subsequent identification of the analogous Na+ binding sites in Factor Xa 

(62, 63), Factor IXa (50) Factor VIIa (64), activated protein C (65) and the thrombin 

precursor meizothrombin-desF1 (51) (Figure 1.5). Structural analysis of E and E: Na+ 

reveals that a network of water molecules transmits the effect of Na+ from its binding site 

to the active site. However, spectroscopic and mutagenesis evidence indicate that Na+ 

binding has long range allosteric effects that globally affect the enzyme (56, 66). 

 

Because Na+ has a significant influence on the activity of all the vitamin K - dependent 

clotting factors (42-44, 48-50, 52, 53) investigating the molecular determinants and 

mechanism of its binding is key to understand the function and regulation of this family 

of clotting enzymes. However, investigation of the effects of Na+ on these proteases has 

mainly focused on thermodynamics of interaction and the resulting catalytic 

enhancement, with little emphasis on characterizing the kinetic mechanism of Na+ 



 14 

binding.  In general, the kinetics of M+ binding to M+-activated enzymes remain for the 

most part unexplored due to lack of convenient probes to monitor the interaction or the 

difficulty of resolving rate constants for reactions that likely occur on a very fast time 

scale.  

 

My thesis project aims to fill this gap in the investigation of Type II Na+-activated 

proteases by elucidating the kinetic mechanism of Na+ binding to vitamin K-dependent 

clotting factors. Stopped flow and ultra-rapid continuous flow fluorescence techniques 

were utilized to investigate the mechanism of Na+ binding by monitoring the associated 

conformational changes in the µs and ms timescales. These studies, along with structural 

analysis reveal the presence of inactive E* conformation that interconvert with the active 

E form. To further understand the molecular determinants of E* and gain insight into its 

role in substrate specificity, investigation of its properties were performed using a 

combination of site-directed mutagenesis, enzyme catalysis, calorimetry and X-ray 

crystallographic studies. 

 

Several important questions are addressed in this thesis. What is the kinetic mechanism of 

Na+ binding in all vitamin K-dependent clotting factors? What are the structural and 

kinetic features of E* and what is the physiological role of the E* to E equilibrium? 

Finally, can we alter substrate specificity by stabilizing E*? Due to the diversity of its 

substrate and cofactor interactions, as well as its wealth of kinetic and structural data, 

thrombin offers a unique opportunity to explore these questions. 
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Chapter 2 gives a detailed description of the kinetics and thermodynamic properties of 

the E* to E transition in human α-thrombin using stopped-flow measurements of intrinsic 

fluorescence. The stopped-flow data presented in chapter 2 is complemented with the 

ultra-rapid kinetic investigation from our collaborators in Stefano Gianni’s group to 

establish the complete analysis of Na+ binding of thrombin. 

 

Having established the presence of E* inactive conformation in wild type α-thrombin, 

Chapter 3 explores the potential of stabilizing E* to abrogate catalytic function until a 

suitable cofactor restores activity by triggering the E* to E transition. In α-thrombin, this 

strategy can be utilized to turn off the procoagulant and prothrombotic functions of the 

enzyme that do not require a cofactor, while maintaining the protein C anticoagulant 

pathway in the presence of the cofactor TM. Stabilization of E* through mutation of the 

autolysis loop provides a molecular mechanism to turn thrombin into an anticoagulant 

with potential therapeutics for in vivo application. 

 

Chapter 4 builds upon the results from the previous chapters and extend the mutagenesis 

studies on the autolysis loop to explore the effects of its length and amino acid 

composition in the E* to E transition and Na+ dependent allostery. Murine thrombin, 

which is stabilized in an E: Na+ -like conformation, was utilized as a model to dissect the 

role of the autolysis loop in the stabilization of E and E: Na+ conformations of human 

thrombin. 
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Chapter 5 describes the investigation of the kinetic mechanism of Na+ binding in clotting 

factors VIIa, IXa, Xa and activated protein C. A binding mechanism similar to human α-

thrombin was observed in activated protein C, Factors IXa and Xa, indicating the 

presence of E* is not unique to thrombin.  

 

Finally, in chapter 6, we discuss how the knowledge gained from this thesis work can be 

applied in future to enhance our understanding of protease function and to generate more 

proficient enzymes for biological or industrial use. 

 

 

 

 

 

 

Figure 1.4 Role of Na+ in the multiple roles of thrombin function. Na+ is the major driving force for the 

procoagulant and prothrombotic functions of human thrombin. However, it is dispensable for the activation 

of protein C. The E* is an inactive conformation incapable of interacting with Na+, substrates or inhibitors. 
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Figure 1.5 The Na+ binding site of Vitamin K-dependent clotting factors. (A) In thrombin Na+ is 

coordinated by four water molecules and two backbone carbonyl oxygens (221a, 224) while (B), the 

reverse is true for FXa, two water molecules and four carbonyl oxygens (185a, 186, 222, 224). Note how 

only a single loop is involved in thrombin but both 186- and 220-loops are coordinating the Na+ in FXa. 

The Na+ sites in the other vitamin K-dependent clotting factors are similar to that of FXa. PDB codes 

(1SG8, thrombin & 2BOK, FXa) 
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The kinetic mechanism of Na! binding to thrombin was
resolved by stopped-flow measurements of intrinsic fluores-
cence. Na! binds to thrombin in a two-step mechanism with a
rapid phase occurring within the dead time of the spectrometer
(<0.5 ms) followed by a single-exponential slow phase whose
kobs decreases hyperbolically with increasing [Na!]. The rapid
phase is due to Na! binding to the enzyme E to generate the
E:Na! form. The slow phase is due to the interconversion
between E* and E, where E* is a form that cannot bind Na!.
Temperature studies in the range from 5 to 35 °C show signifi-
cant enthalpy, entropy, and heat capacity changes associated
with both Na! binding and the E to E* transition. As a result,
under conditions of physiologic temperature and salt concen-
trations, the E* form is negligibly populated (<1%) and throm-
bin is almost equally partitioned between theE (40%) andE:Na!

(60%) forms. Single-site Phe mutations of all nine Trp residues
of thrombin enabled assignment of the fluorescence changes
induced by Na! bindingmainly to Trp-141 and Trp-215, and to
a lesser extent to Trp-148, Trp-207, and Trp-237. However, the
fast phase of fluorescence increase is influenced to different
extents by all Trp residues. The distribution of these residues
over the entire thrombin surface demonstrates that Na! bind-
ing induces long-range effects on the structure of the enzyme as
a whole, contrary to the conclusions drawn from recent struc-
tural studies. These findings elucidate the mechanism of Na!

binding to thrombin and are relevant to other clotting factors
and enzymes allosterically activated by monovalent cations.

Numerous enzymes with widely different functions, struc-
tures, and mechanisms require a monovalent cation (M!) for
optimal catalytic activity (1–3). In practically all cases reported
to date, M! activation is mediated by Na! or K! with high
selectivity (3, 4). Remarkable progress has been made during
the past decade in the structural characterization of such
enzymes. Structural studies have uncovered two basic mecha-
nisms of activation, one in whichM! functions as a cofactor by
bridging atoms of the protein and substrate in the active site
and another in whichM! binds away from substrate and influ-
ences recognition and catalysis through an allosteric mecha-

nism.A simple classification ofM!-activated enzymes has been
proposed recently by merging information from kinetic and
structural studies (3). The classification groups enzymes based
on their M! specificity (Na! or K!) and the mechanism of
activation, cofactor-like (Type I) or allosteric (Type II).
Among Na!-activated Type II enzymes, thrombin has been

studied in considerable detail both functionally and structurally
(5–7). Na! binds near the primary specificity pocket, nestled
between the 186 and 220 loops (8, 9), and is required for effi-
cient cleavage of the procoagulant factors fibrinogen (10), fac-
tors V (11), VIII (12), XI (13), and the prothrombotic factor
PAR1 (14), but not for activation of the anticoagulant protein C
(10, 15). Hence, Na! binding to thrombin controls key reac-
tions responsible for the initiation, amplification, and feedback
inhibition of the coagulation cascade (16) as well as platelet
aggregation (7). Indeed, several naturally occurring mutations
of the prothrombin gene, like prothrombin Frankfurt (17),
Salakta (18), Greenville (19), Scranton (20), Copenhagen (21),
and Saint Denis (22), affect residues responsible for Na! bind-
ing (9) and are often associated with bleeding. Furthermore,
thrombin can be engineered for optimal anticoagulant activity
in vitro and in vivo by mutating residues linked to Na! binding
(15, 23–26).
Thrombin and a few other M!-activated enzymes like Trp

synthase (27, 28), pyruvate kinase (29, 30), Hsc70 (31), !-galac-
tosidase (32, 33), and inosine monophosphate dehydrogenase
(34) have been the subject of detailed treatments of the kinetics
of M! activation. At steady state, Na! promotes diffusion into
the active site and acylation of substrate by thrombin (35–37).
The binding affinity is relatively weak, with aKd in themillimo-
lar range (35) as found for many other M!-activated enzymes
(1–4), and changes significantly with temperature (38–40).
However, the kinetics ofM! binding toM!-activated enzymes
in general remain for the most part unexplored due to the dif-
ficulty of resolving rate constants for reactions that likely occur
on a very fast time scale (4). In the case of thrombin, earlier
studies have suggested thatNa!binds in a two-stepmechanism
with a fast phase occurring within the dead time of the spec-
trometer (2 ms), followed by a slow phase in the 30-ms time
scale at 5 °C (41). In the present study, we revisit these earlier
observations and address the kinetic mechanism of Na! bind-
ing to thrombin in more detail. We identify the Trp residues
responsible for the spectral changes and the precisemechanism
that gives rise to the two-step components of Na! binding.
MATERIALS AND METHODS

Site-directed mutagenesis of human thrombin was carried
out in aHPC4-modified pNUTexpression vector (15, 42), using
the QuikChange site-directed mutagenesis kit from Stratagene
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(La Jolla, CA) as described (9, 39). Expression of thrombin
mutants was carried out in baby hamster kidney cells. Mutants
were activated with the prothrombinase complex between 40
and 60 min at 37 °C. Enzymes used in the activation were from
Enzyme Research (South Bend, IN). Mutants were purified to
homogeneity by fast protein liquid chromatography using
Resource Q and S columns with a linear gradient from 0.05 to
0.5 M choline chloride (ChCl), 5 mM MES, pH 6, at room tem-
perature. Active site concentrations were determined by titra-
tion with hirudin (43). All nine Trp residues of thrombin were
mutated to Phe by single-site substitutions. The conservative
replacement did not change the kinetic properties of the con-
structs, which retained activity toward substrates andNa! acti-
vation comparable with wild-type (data not shown). Murine
thrombin was prepared as reported elsewhere (44).
Stopped-flow fluorescence measurements of Na! binding to

thrombin were carried out with an Applied Photophysics SX20
spectrometer, using an excitation of 280 nmand a cutoff filter at
305 nm. Samples of thrombin at a final concentration of 50 nM
were mixed 1:1 with 60-"l solutions of the same buffer (5 mM
Tris, 0.1% polyethylene glycol (PEG),2 pH8.0, at 15 °C) contain-
ing variable amounts of NaCl (up to 400 mM) kept at constant
ionic strength of 400 mM with ChCl. The baseline was meas-
ured with 400 mM ChCl in the mixing syringe. Each trace was
determined in quadruplicate. Na! binding studies were carried
out for wild-type thrombin in the temperature range 5–35 °C.
The pH was precisely adjusted at room temperature to obtain
the value of 8.0 at the desired temperature. Tris buffer has a pKa
of 8.06 at 25 °C and a temperature coefficient of "pKa/"T of
#0.027 (45). These properties ensured buffering over the entire
temperature range examined.
The fluorescence increase observed upon Na! binding has

an initial rapid phase that cannot be resolved within the dead
time ($0.5 ms) of the spectrometer, followed by a single expo-
nential slow phase with a kobs that decreases as [Na!] increases
(see “Results”). The total change in fluorescence calculated
from the sum of the amplitudes of the fast and slow phases
coincides with the value of F determined by equilibrium meas-
urements of intrinsic fluorescence. The value of F as a function
of [Na!] was fit according to Equation 1 (39)

F #
F0 $ F1 Kapp%Na!&

1 $ Kapp%Na!&
(Eq. 1)

where F0 and F1 are the values of F in the absence and under
saturating [Na!] and Kapp is the apparent equilibrium associa-
tion constant for Na! binding (see below). The value of F0 cor-
responds to the base-line reading.
The simplest kinetic scheme accounting for the two-step

mechanism ofNa! binding detected by stopped-flowmeasure-
ments is given by Scheme 1.

E*9|=
k#1

k1

E N
KA

E:Na!

SCHEME 1

The free enzyme exists in equilibrium between two forms, E*
and E, that interconvert with kinetic rate constants k1 and k#1.
Of these forms, only E can interact with Na! with an equilib-
rium association constant KA to generate the E:Na! form. The
fast phase detected by rapid kinetics is due to the binding of
Na! to E to generate E:Na!. Analysis of the fast phase was
carried out according to Equation 2, which is analogous to
Equation 1,

F #
F0 $ Fi KA%Na!&

1 $ KA%Na!&
(Eq. 2)

where Fi is the value of F under saturating [Na!] (Fi $ F1) and
KA is the intrinsic equilibrium association constant for Na!

binding. The slow phase is due to the interconversion between
E* andEwith an observed rate constant as shown in Equation 3.

kobs # k1 $ k#1

1
1 $ KA%Na!&

(Eq. 3)

The value of kobs is expected to decrease with increasing [Na!]
from k1 ! k#1 ([Na!] ' 0) to k1 ([Na!] ' ∞). Analysis of kobs
yields k1, k#1, and a value of KA that is independent from that
derived from analysis of the amplitude of the fast phase accord-
ing to Equation 2. In the event of a mutation that abrogates the
fast phase, the effect of Na! binding can still be detected from
measurements of kobs (see “Results”). The alternative two-step
mechanism as shown in Scheme 2

E N
KA

E:Na! 9|=
k#1

k1

E*:Na!

SCHEME 2

where a slow isomerization follows the rapid binding of Na!

leads to an observed rate constant as shown in Equation 4.

kobs # k#1 $ k1

KA%Na!&

1 $ KA%Na!&
(Eq. 4)

In this case, the value of kobs is expected to increase with
increasing [Na!] from k#1 ([Na!]' 0) to k1! k#1 ([Na!]'∞).
Hence, the dependence of kobs on [Na!] is of diagnostic value
and rules out Scheme 2 in favor of Scheme 1 (see “Results”).
There is a relationship between the apparent equilibrium

association constant Kapp derived from Equation 1 and the
intrinsic equilibrium association constant KA derived from
Equation 2 or 3. The value of Kapp can also be derived from
equilibrium titrations of intrinsic fluorescence (35, 39–41, 46,
47) or linkage studies (38, 46, 48). The value of KA, on the other
hand, can only be derived from rapid kinetic studies. Because of
the presence of E, E*, and E:Na! in Scheme 1, at equilibrium
one has (49) Equation 5.

Kapp #
KA

1 $
k#1

k1

#
KA

1 $ r
(Eq. 5)

The parameter r ' [E*]/[E] measures the population of E* rel-
ative to E. Under conditions where r $$ 1 and the free form is

2 The abbreviations used are: PEG, polyethylene glycol; MES, 4-morpho-
lineethanesulfonic acid.
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essentially all E, the value of Kapp coincides with KA. However,
under conditions where r is significant, a sizable fraction of free
thrombin exists in the E* form and the value of Kapp underesti-

mates the true Na! binding affinityKA. Hence, it is very impor-
tant to know how r changes under conditions of interest to
correctly interpret Na! binding in terms of the process that
converts E to E:Na!.
The temperature dependence of Kapp, KA, and r yields the

thermodynamic parameters associated with the underlying
processes according to Equation 6 (39)

#ln K #
"H0

R
1
T

%
"S0

R
$

"CP

R !1 %
T0

T
% ln

T
T0
" (Eq. 6)

where K is Kapp, KA, or r, "H0 and "S0 are the enthalpy and
entropy changes at the reference temperature T0 ' 298.15 K,
"CP is the heat capacity change, R the gas constant, T the abso-
lute temperature. The van’t Hoff plot of #lnK versus 1/T is
linear when "CP ' 0 and curves upward when "CP $ 0.

RESULTS

Na! binding to human thrombin gives rise to a significant
increase in intrinsic fluorescence (35, 39–41, 46, 47). The
change occurs in two steps, clearly revealed by stopped-flow
measurements (Fig. 1A). A fast phase, whose amplitude
increases with [Na!], occurs within the dead time of the spec-
trometer ($0.5ms) and is followed by a single-exponential slow
phase whose kobs decreases with increasing [Na!]. Control
experiments run with murine thrombin, an enzyme devoid of
Na! activation (44), show no change in fluorescence even at
200 mM Na! (Fig. 1B). The dependence of kobs on [Na!] is
hyperbolic (Fig. 2) and is consistent with the mechanism

FIGURE 1. A, kinetic traces of Na! binding to human thrombin in the 0 –250-ms time scale. Shown are the traces obtained at 0 (black circles), 5 (red circles), 10
(green circles), and 50 (blue circles) mM Na!. Notice how the binding of Na! obeys a two-step mechanism, with a fast phase completed within the dead time
($0.5 ms) of the spectrometer, followed by a single-exponential slow phase. The kobs for the slow phase decreases with increasing [Na!] (see also Fig. 2), as is
evident from the plot. Experimental conditions were 50 nM thrombin, 5 mM Tris, 0.1% PEG, pH 8.0, at 15 °C. The [Na!] was changed by keeping the ionic strength
constant at 400 mM with ChCl. Continuous lines were drawn using the expression a{1 # exp(#kobst)} ! b with best-fit parameter values: black circles, a ' 0 (
0 V, kobs ' 0 ( 0 s#1, b ' 8.19 ( 0.01 V; red circles, a ' 0.11 ( 0.02 V, kobs ' 170 ( 10 s#1, b ' 8.39 ( 0.02 V; green circles, a ' 0.15 ( 0.02 V, kobs ' 150 ( 10
s#1, b ' 8.46 ( 0.02 V; blue circles, a ' 0.37 ( 0.01 V, kobs ' 130 ( 10 s#1, b ' 8.54 ( 0.01 V. B, kinetic traces of Na! binding to thrombin wild type and mutants
in the 0 –250-ms time scale expressed relative to the base-line value F0 to enable comparison. Shown are the traces obtained at 200 mM Na! for human
thrombin (black circles), mutants W141F (red circles), and W215F (green circles). Also shown, as a control, is the trace obtained at 200 mM Na! for murine
thrombin (blue circles), which is devoid of Na! activation. Notice how mutation of Trp-141 and Trp-215 essentially abolishes the fast phase seen in the wild type
(see panel A) and reduces significantly the total fluorescence change associated with Na! binding (see also Fig. 3 and Table 2). Experimental conditions were
50 nM thrombin, 5 mM Tris, 0.1% PEG, pH 8.0, at 15 °C. Continuous lines were drawn using the expression a{1 # exp(#kobst)} with best-fit parameter values: black
circles, a ' 0.36 ( 0.02 V, kobs ' 111 ( 7 s#1, b ' 0.37 ( 0.02 V; red circles, a ' 0.21 ( 0.02 V, kobs ' 84 ( 8 s#1, b ' 0.02 ( 0.02 V; green circles, a ' 0.20 ( 0.01
V, kobs ' 130 ( 10 s#1, b ' #0.01 ( 0.01 V; blue circles, a ' 0 ( 0 V, kobs ' 0 ( 0 s#1, b ' 0.00 ( 0.01 V.

FIGURE 2. Values of kobs for the slow phase of fluorescence increase due
to Na! binding to thrombin (see Fig. 1) as a function of [Na!] in the tem-
perature range 5–35 °C. Shown are the results pertaining to 5 (black circles),
10 (gray circles), 15 (red circles), 20 (green circles), 25 (blue circles), 30 (yellow
circles), and 35 (magenta circles) °C. Experimental conditions were 50 nM
thrombin, 5 mM Tris, 0.1% PEG, pH 8.0. The [Na!] was changed by keeping the
ionic strength constant at 400 mM with ChCl. Continuous lines were drawn
according to Equation 3 under “Materials and Methods” with best-fit param-
eter values listed in Table 1.
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depicted in Scheme 1 and Equation 3. That supports the con-
clusion that, in the absence of Na!, thrombin exists in equilib-
rium between two conformations, E* and E, and that only E can
be converted to the E:Na! form. The binding of Na! to E gives
rise to the fast phase. The slow phase detected by stopped-flow
measurements is the result of the interconversion between E*
and E that takes place on a time scale of milliseconds.
The sum of the amplitudes of the slow and fast phases

changes hyperbolically with [Na!] (Fig. 3A) and recapitulates
the behavior observed by intrinsic fluorescence measurements
at equilibrium (35, 39–41, 46, 47). Analysis of such curves in
the temperature range 5–35 °C enables determination of Kapp
fromEquation 1 (Table 1). A van’t Hoff plot of theKapp values is
shown in Fig. 4 and reveals a curvature conducive to the pres-
ence of a heat capacity change of #500 cal/mol/K, consistent
with previous results (38–40). Analysis of the amplitude of the
fast phase as a function of [Na!] (Fig. 3B) according to Equation
2 enables the determination ofKA (Table 1). These values ofKA
are practically identical to those derived independently from

analysis of kobs as a function of [Na!] according to Equation 3
(Fig. 2), which also enables resolution of k1 and k#1 (Table 1).
The van’t Hoff plot of theKA values is curved, as forKapp, due to
a heat capacity change of #500 cal/mol/K (Fig. 4). This proves
that the heat capacity change reported previously for the values
ofKapp (38–40) reflects an intrinsic property of Na! binding to
thrombin and is not the result of the pre-existing equilibrium
between E and E*. In fact, from the definition of Kapp in Equa-
tion 5, it can be seen that the E-E* equilibrium gives rise to an
apparent heat capacity change when the value of r changes with
temperature, even if no heat capacity change is associated with
KA and/or r. The direct determination of KA from rapid kinetic
data resolves the transition from E to E:Na! in Scheme 1 and
decouples this process from the linked equilibrium between E
and E*. The temperature dependence of KA then offers direct
validation of the heat capacity change associated with Na!

binding as a basic thermodynamic property of thrombin
(38–40).
Binding of Na! is characterized by a large enthalpy change of

FIGURE 3. A, Na! binding curves of thrombin obtained from the total change in intrinsic fluorescence measured as the sum of the amplitudes of the fast and
slow phases determined by stopped-flow kinetics (see Fig. 1). Shown are the results pertaining to 5 (black circles), 10 (gray circles), 15 (red circles), 20 (green
circles), 25 (blue circles), 30 (yellow circles), and 35 (magenta circles) °C. Experimental conditions were 50 nM thrombin, 5 mM Tris, 0.1% PEG, pH 8.0. The [Na!] was
changed by keeping the ionic strength constant at 400 mM with ChCl. Continuous lines were drawn according to Equation 1 under “Materials and Methods”,
with best-fit parameter values listed in Table 1. B, Na! binding curves of thrombin obtained from the amplitude of the fast phase of fluorescence increase
determined by stopped-flow kinetics (see Fig. 1). Shown are the results pertaining to 5 (black circles), 10 (gray circles), 15 (red circles), 20 (green circles), 25 (blue
circles), 30 (yellow circles), and 35 (magenta circles) °C. Experimental conditions were 50 nM thrombin, 5 mM Tris, 0.1% PEG, pH 8.0. The [Na!] was changed by
keeping the ionic strength constant at 400 mM with ChCl. Continuous lines were drawn according to Equation 2 under “Materials and Methods” with best-fit
parameter values listed in Table 1.

TABLE 1
Fluorescence and Na! binding parameters for wild-type thrombin as a function of temperature
The parameters F0, Fi, and F1 defining "Fi ' Fi # F0 and "Ft ' F1 # F0 were derived from analysis of the data in Fig. 3, A and B, using Equations 1 and 2 under “Materials
and Methods.” The values of Kapp were derived from analysis of the data in Fig. 3A according to Equation 1. The values of KA were derived from analysis of the data in
Fig. 3B according to Equation 2, and Fig. 2 according to Equation 3, together with the values of k1 and k#1. r is the ratio k#1/k1. Note how the values of Kapp and KA obtained
independently obey Equation 5 under “Materials and Methods.”

T F0 Fi F1 "Fi/F0 "Ft/F0 Kapp KA k1 k#1 r
°C V V V % % M#1 M#1 s#1 s#1

5 8.36 ( 0.02 8.74 ( 0.02 9.09 ( 0.02 4.5 8.7 220 ( 20 370 ( 40 52 ( 2 48 ( 2 0.92
10 8.32 ( 0.03 8.74 ( 0.03 9.01 ( 0.03 5.0 8.3 180 ( 20 300 ( 40 78 ( 4 75 ( 4 0.96
15 8.19 ( 0.01 8.59 ( 0.02 9.03 ( 0.01 4.9 10.3 100 ( 10 160 ( 20 115 ( 3 83 ( 6 0.72
20 7.94 ( 0.03 8.18 ( 0.03 8.51 ( 0.03 3.0 7.1 68 ( 7 90 ( 9 166 ( 4 65 ( 8 0.39
25 8.18 ( 0.03 8.57 ( 0.03 8.94 ( 0.03 4.8 9.3 46 ( 5 57 ( 4 224 ( 4 34 ( 4 0.15
30 8.21 ( 0.02 8.49 ( 0.02 8.96 ( 0.02 3.4 9.1 24 ( 2 28 ( 2 312 ( 4 27 ( 8 0.086
35 8.16 ( 0.02 8.40 ( 0.02 8.93 ( 0.02 2.9 9.4 13 ( 1 15 ( 1 431 ( 10 23 ( 4 0.053
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#22 kcal/mol that is compensated by a large entropy loss of
#64 cal/mol/K (Fig. 4). The enthalpy change is due to forma-
tion of the six ligating interactions in the coordination shell that
also involve four buried water molecules (3, 4, 9). The entropy
change reflects the uptake and ordering of water molecules
within the channel embedding the primary specificity pocket
and the active site linked to the occupancy of the Na! site (9).
As a result of the enthalpy-entropy energetic compensation, the
binding affinity of Na! is relatively weak (Kd in the mM range),
as seen formany otherM!-activated enzymes (3, 4). An impor-
tant consequence of the large enthalpy change is that the value
of KA becomes only about 10 M#1 at 37 °C, which implies that
under physiologic conditions of temperature and [NaCl]' 140
mM thrombin is only 60% bound toNa!, as first documented in
1992 (35). This makes thrombin optimally poised for allosteric
regulation in vivo, where the Na!-bound and Na!-free forms
are targeted toward procoagulant and anticoagulant roles,
respectively (7, 10).
It is of particular importance to structurally assign the spec-

tral changes linked to Na! binding to thrombin. Trp-215 in the
aryl binding site has been identified as a major fluorophore
responsible for the spectral change (48), but a rigorous test of
the contribution of all nine Trp residues of thrombin has not
been carried out. Previous studies investigated the role of Trp-
60d, Trp-96, Trp-148, Trp-207, and Trp-215 with Phe substi-
tutions, but the analysis involved the activity toward thrombin
substrates and not Na! binding (50). Fig. 5 shows the fluores-
cence enhancement due to Na! binding for the Phemutants of
all nine Trp residues of thrombin. The Phe mutations of the

nine Trp residues of thrombin cause few, if any, changes in the
kinetic and equilibrium properties of the enzyme toward Na!

(Table 2). The Trp 3 Phe substitution therefore provides an
optimal adiabatic perturbation of the indole moiety and probes
selectively the changes monitored by fluorescence spectros-
copy. The data in Fig. 5 refer to the total fluorescence change,
F1 # F0 in Equation 1 (black bars) or the amplitude of the fast
phase, Fi # F0 in Equation 2 (gray bars), both relative to the
base-line value F0. The 10% total increase in fluorescence
observed for wild type is retained by five Trp mutants, namely,
W29F, W51F, W60dF, W96F, and W237F. Two mutants,
W148F andW207F, experience)30% loss in total fluorescence
change. On the other hand, W141F and W215F lose )70% of
the total fluorescence change. Inspection of the fast component
of the fluorescence change is even more informative. This
phasemonitors directlyNa! binding toE to generate theE:Na!

form. In the wild type, the amplitude of the fast phase, Fi # F0
(see Table 1 and Figs. 1B and 3B), is about half the amplitude of
the total fluorescence change, F1 # F0 (see Table 1 and Figs. 1A
and 3A). The amplitude of the fast phase is perturbed in all Trp
mutants, evenwhen the total fluorescence change is the same as
for wild type (Figs. 1 and 5). Because Trp residues are distrib-
uted over the entire structure of thrombin, and their distance
from the bound Na! ranges from 13 (Trp-215) to 35 (Trp-51)
Å, binding of Na! to E likely elicits effects well beyond the
immediate environment of theNa! site and perturbs the struc-
ture of thrombin as a whole. This is in agreement with recent
functional mapping of the Na!-induced allosteric transition of
thrombin (51). The amplitude of the fast phase increases signif-
icantly relative to wild type for the W29F, W51F, W60dF, and
W96F mutants. On the other hand, the amplitude decreases
significantly for W148F, W207F, and W237F and completely
disappears for W141F and W215F. Hence, Trp-215 but also
Trp-141 are major reporters of the process of Na! binding to
thrombin. Trp-148, Trp-207, and Trp-237 also contribute to

FIGURE 4. van’t Hoff plots of Na! binding to thrombin. Shown are the
values of Kapp (open circles) and KA (black circles) obtained from stopped-flow
kinetics in the temperature range 5–35 °C (see Table 1). The plot is curved in
both cases, signaling the presence of a heat capacity change. Also shown is
the temperature dependence of #log r (gray circles, dimensionless units),
measuring the equilibrium between E and E* in Scheme 1 (see Table 1). This
parameter too is associated with significant curvature in the plot, signaling a
large heat capacity change. Experimental conditions were 5 mM Tris, 0.1%
PEG, pH 8.0. Continuous lines were drawn according to Equation 6 under
“Materials and Methods” with best-fit parameter values: open circles, "H0 '
#18.9 ( 0.9 kcal/mol, "S0 ' #56 ( 3 cal/mol/K, "CP ' #500 ( 100 cal/
mol/K; black circles, "H0 ' #21.5 ( 0.9 kcal/mol, "S0 ' #64 ( 3 cal/mol/K,
"CP ' #500 ( 100 cal/mol/K; gray circles, "H0 ' #23 ( 2 kcal/mol, "S0 '
#81 ( 8 cal/mol/K, "CP ' #900 ( 300 cal/mol/K.

FIGURE 5. Fluorescence change induced by Na! binding to wild type
and the Phe mutants of all nine Trp residues of human thrombin.
Shown are the values listed in Table 2 for the total change in intrinsic
fluorescence measured as F1 # F0 (black bars) or the amplitude of the fast
phase measured as Fi # F0 (gray bars). All values are expressed as % change
relative to F0. Experimental conditions were 50 nM thrombin, 5 mM Tris,
0.1% PEG, pH 8.0, at 15 °C. The [Na!] was changed by keeping the ionic
strength constant at 400 mM with ChCl.
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the spectral change, whereas Trp-29, Trp-51, Trp60d, and
Trp-96 produce changes that oppose those of the other fluoro-
phores because their replacement to Phe actually enhances the
fluorescence change due to Na! binding.

DISCUSSION

The results presented here expand and clarify the scenario
offered by the only previous investigation of Na! binding to
thrombin using rapid kinetics (41). The earlier study was car-
ried out at 5 °C and ionic strength values of 0.3 and 2.0 M, using
500 nM thrombin. Two phases were identified, as shown in Fig.
1A, but no dependence of kobs on [Na!] could be detected
below 500 mM [Na!]. This made interpretation of the results
particularly cumbersome and did not support the use of simple
mechanisms like Scheme 1 or Scheme 2. The study, however,
uncovered the pre-existing equilibrium between E and E* as
depicted in Scheme 1. There are several reasons why our
results, and especially the dependence of kobs on [Na!], differ in
part from those reported previously. The SX20 spectrometer is
a much improved version of the SX17 model used previously
(41) and features a shorter dead time and higher signal resolu-
tion and stability. The thrombin concentration used in our
measurements (50 nM) did not result in any photobleaching,
thereby eliminating the need to correct for the effect when fit-
ting experimental data.When using 500 nM thrombin, as in the

previous study (41), we did observe
significant photobleaching that
affected base-line stability, repro-
ducibility, and extent of fluores-
cence change (see supplemental
data). When we further reduced the
thrombin concentration down to 5
nM, the results lacked the optimal
reproducibility observed at 50 nM.
Significant photobleaching was
acknowledged in the previous study
(41), but not resolved. The previous
study was carried out at 5 °C, where
condensation in the cell is very sig-
nificant and must be eliminated
with constant N2 flushing. We
found that the temperature range of
15–25 °C is optimal to resolve the
range of kobs linked to Na! binding.
Last, but not least, the pKa of Tris

buffer at 5 °C is 8.60 (45), which makes it problematic to buffer
a solution at pH 7.4 as used in the previous study (41).
Our results add mechanistic significance to previous studies

of Na! binding because of the use of Phe mutations of all nine
Trp residues of thrombin. The fast phase of fluorescence
increase directly linked to the transition from E to E:Na! in
Scheme 1 is affected in all Phe mutants, vouching for a global
effect ofNa!binding on thrombin structure. The contributions
of single Trp residues are not additive, lending support to the
hypothesis that some of the environments in which they reside
may be coupled allosterically. The coupling may ensure propa-
gation of long-range effects originating at the Na! site via a
limited number of structural conduits. Trp-141 and Trp-215
make a large contribution to the fluorescence change induced
by Na! binding, and their mutation to Phe abrogates the fast
phase completely. This implies that the environments of Trp-
141 and Trp-215 change in the E* to E conversion, and more
drastically in the conversion of E to E:Na!. The important role
of Trp-215 has been reported before (48). This is the closest Trp
residue to the bound Na! (13 Å) and defines most of the aryl
binding site involved in substrate recognition (5, 9, 52). The
importance of Trp-141 is unanticipated. However, recent
structures of thrombin document a flip in the indole ring of
Trp-141 in the absence of Na! similar to that observed for

FIGURE 6. Ribbon plot of thrombin in the Na!-bound form, portraying the structure 1SG8 (9) with the
active site in the front (A) or rotated 180° along the y-axis (B). Shown are the side chains of the catalytic
residues His-57, Asp-102, and Ser-195 and the side chain of Asp-189. Na! is rendered as a green ball. The nine
Trp residues of the enzyme are shown with their side chains in orange. The contribution of these residues to the
fluorescence change induced by Na! binding is shown in Fig. 5 and Table 2. The A chain was removed for
clarity.

TABLE 2
Fluorescence and Na! binding parameters for wild-type thrombin and mutants

F0 Fi F1 "Fi/F0 "Ft/F0 Kapp KA k1 k#1 r Da

V V V % % M#1 M#1 s#1 s#1 Å
wt 8.19 ( 0.01 8.59 ( 0.02 9.03 ( 0.01 4.9 10.3 100 ( 10 160 ( 20 115 ( 3 83 ( 6 0.72
W29F 8.17 ( 0.02 8.69 ( 0.02 9.02 ( 0.02 6.4 10.4 58 ( 6 85 ( 7 126 ( 4 74 ( 4 0.59 24
W51F 8.15 ( 0.01 8.70 ( 0.02 9.04 ( 0.01 6.7 10.9 100 ( 10 170 ( 30 114 ( 3 87 ( 6 0.76 35
W60dF 8.13 ( 0.01 8.73 ( 0.03 9.05 ( 0.01 7.4 11.3 89 ( 6 140 ( 10 132 ( 2 77 ( 9 0.58 21
W96F 8.13 ( 0.03 8.70 ( 0.03 8.98 ( 0.03 7.0 10.4 70 ( 10 110 ( 10 133 ( 2 69 ( 2 0.52 27
W141F 8.02 ( 0.01 8.02 ( 0.01 8.24 ( 0.01 0.0 2.7 110 ( 10 170 ( 10 79 ( 1 40 ( 9 0.51 23
W148F 8.18 ( 0.02 8.35 ( 0.02 8.69 ( 0.02 2.1 6.2 81 ( 8 130 ( 10 95 ( 2 72 ( 4 0.76 21
W207F 8.15 ( 0.01 8.28 ( 0.02 8.73 ( 0.01 1.6 7.1 120 ( 10 190 ( 10 89 ( 2 78 ( 2 0.88 23
W215F 8.12 ( 0.01 8.12 ( 0.01 8.34 ( 0.01 0.0 2.7 59 ( 8 110 ( 10 118 ( 3 81 ( 7 0.69 13
W237F 8.14 ( 0.02 8.36 ( 0.01 9.08 ( 0.01 2.7 11.5 110 ( 10 170 ( 10 101 ( 2 68 ( 3 0.67 30

a Distance from the C&2 atom of the Trp residue to the bound Na! in the crystal structure of the Na!-bound form 1SG8 (9). All parameters were derived as shown in Table I.
Note how the values of Kapp and KA obtained independently obey Equation 5 under “Materials and Methods.”
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Trp-215 (49). Trp-141 is buried in a strategic location between
the autolysis loop and exosite I, and its linkage with the bound
Na!, situated 23 Å away, vouches for a pivotal role in commu-
nicating changes from the Na! site to exosite I (Fig. 6). Among
the other residues that contribute to the fluorescence change
and the fast phase, Trp-148 is located in themiddle of the highly
flexible autolysis loop, 21 Å away from the bound Na!, and is
62% exposed to solvent (52), whereas Trp-207 is completely
buried in the back of the catalytic chain, 23 Å away from the
bound Na!, and in hydrophobic contact with Trp-29 and resi-
dues of the A chain (Fig. 6). Because of their proximity, Trp-207
andTrp-29may function as a single fluorophore and/or quench
each other. It is interesting that the Phe mutation of Trp-29
enhances the amplitude of the fast phase, as though changes
affecting Trp-207 are better reported in the absence of Trp-29.
A similar scenario can be envisioned for Trp-51 and Trp-237
(Fig. 6), whose hydrophobic couplingmay result in overlapping
spectral effects with Trp-51 actually hindering the full response
of Trp-237 to Na! binding. Finally, the effects seen with the
highly solvent-exposed Trp-60d and Trp-96 (Fig. 6) suggest
that these residues may be quite flexible and capable of probing
different environments that reduce the fluorescence response
to Na! binding.
It is of interest to correlate the new information arising from

stopped-flowmeasurements of the mechanism of Na! binding
to thrombin with existing structural data. The three species in
Scheme 1 portray thrombin in the Na!-free (E and E*) and
Na!-bound (E:Na!) forms, and the data presented here dem-
onstrate that Na! binds to thrombin in a two-step mechanism
consistent with Scheme 1. The activation effect of Na! on
thrombin has very clear kinetic signatures and specifically
involves an increase in kcat and a decrease in Km (35–37, 49, 53,
54). Such a “modifier” effect on kcat has long been known to be
of diagnostic value (55) and unequivocally proves the existence
of two active forms in equilibrium, one Na! free with low kcat
and one Na! bound with high kcat (4, 49). E and E:Na! in
Scheme 1 are the two active forms of thrombin that account for
the dependence of kcat on [Na!] and correspond to the slow (E)
and fast (E:Na!) forms originally defined byWells and Di Cera
(35). The structures of these two forms have been solved
recently (9). Basic differences between them involve the orien-
tation of Asp-189 in the primary specificity pocket, Ser-195 in
the active site, and the reorganization of a water network that
connects the Na! site to the active site Ser-195 located 16 Å
away. The orientation of Asp-189 in the fast form optimizes
docking of the guanidinium group of Arg at the P1 position of
substrate. The O' atom of Ser-195 in the fast form is within
H-bonding distance of the catalytic His-57. The H-bond is
required for efficient catalysis (56) and is broken in the slow
form. The network of water molecules ensures the long-range
communication between the boundNa! and the active site that
is at the basis of thrombin allostery. The increase in the number
and ordering of water molecules linked to Na! binding also
explains the large entropy loss and negative heat capacity
change associated with this process. Unfortunately, the differ-
ences between the slow and fast forms reported recently (9) do
not involve Trp residues that contribute to the spectral changes
linked to Na! binding. Either such changes are too subtle to be

unraveled under the constrained environment of a crystal lat-
tice or available structures of the slow and/or fast forms are not
representative of the full landscape of conformational transi-
tions induced by Na! binding. Indeed, functional mapping of
the slow3 fast transition suggests a more global involvement
of thrombin residues (51).
Structural assignments for the E* form are equally problem-

atic. In a previous study on the kinetics of Na! binding to
thrombin, E*was interpreted as an “inactive” slow form unable
to bind Na! and substrate or inhibitors at the active site (41).
The conclusion was drawn from data showing that the binding
of inhibitors to thrombin was also linked to increases in intrin-
sic fluorescence and obeyed amechanism similar to that ofNa!

binding (41). The hypothesis of E* being an inactive conforma-
tion of the slow form, as originally suggested by Lai et al. (41),
has gained prominence recently in the context of several struc-
tures of inactive forms of thrombin in the Na!-free form that
have appeared in the literature. These structures differ drasti-
cally from the active slow form E (9, 57) and share disorder or
collapse of theNa! site and steric blockage of the active site (49,
58–61).We have recently shown (62) that these inactive struc-
tures are likely the result of mutations introduced in the
enzyme (58, 59) and/or artifacts of crystal packing (49, 60, 61). A
recent structure of thrombin obtained in the absence of inhib-
itors and salts appears to be a genuine inactive slow form,
devoid of artifactual effects due to mutations in the Na! site or
crystal packing (62). The structure has the Na! site obliterated
by the side chain of Arg-187 and the active site occluded by the
repositioning of the side chains of Trp-215 and Arg-221a. The
drastic movement of Trp-215 would do justice to the dominant
role played by this residue in the fluorescence changes reported
in our study. However, even this structure lacks significant
changes around all other Trp residues. Hence, evidence that
thrombin can assume an inactive slow form under crystallo-
graphic conditions is strong (62), but the connection with
the functional properties of the enzyme in solution remains
weak. The kinetic signatures of Na! activation do not
require inactive conformations of thrombin and indeed
refute (4, 49) simplistic “alternative” models based on the
equilibrium of active and inactive forms (61).
The data presented in this study vouch for E* being a form

of thrombin unable to bind Na! and not necessarily inactive
toward substrates or inhibitors. In fact, a conformation of
thrombin with the pore of entry to the Na! binding site (4, 39)
occluded would fit the description of E* and would still retain
activity toward substrates and inhibitors. Whether inactive
conformations of thrombin in the slow form exist in solution
remains to be demonstrated by future studies of rapid kinetics
involving the library of Trp mutants presented here in order to
structurally assign the observed spectral changes and confirm
that they have the same origin as those linked to Na! binding.
However, even if future studies in solution prove that E* is
indeed an inactive slow form, then its possible physiologic role
should be clarified. Based on the data in Fig. 5, E* represents
$1% of the population of thrombin molecules at 37 °C, which
raises questions about its possible functional role in vivo. This
conundrum does not apply to the active slow form, which con-
tributes 40% of the thrombinmolecules in vivo and whose anti-
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coagulant role is well established (7, 10, 15). Nonetheless, E*
carries considerable mechanistic significance for Na! binding
to thrombin and may become populated under the effect of
mutations or conditions that involve allosteric effectors to be
identified. In addition, E* is an intriguing new variable to be
taken into consideration when studying Na! binding to other
clotting factors and M!-activated enzymes.
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Stabilization of the E* form turns thrombin 
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Stabilization of the E* Form Turns Thrombin into
an Anticoagulant*
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Previous studies have shown that deletion of nine residues in
the autolysis loop of thrombin produces a mutant with an anti-
coagulant propensity of potential clinical relevance, but the
molecular origin of the effect has remained unresolved. The
x-ray crystal structure of this mutant solved in the free form at
1.55 Å resolution reveals an inactive conformation that is prac-
tically identical (root mean square deviation of 0.154 Å) to the
recently identified E* form. The side chain of Trp215 collapses
into the active site by shifting >10 Å from its position in the
active E form, and the oxyanion hole is disrupted by a flip of the
Glu192–Gly193 peptide bond. This finding confirms the exist-
ence of the inactive form E* in essentially the same incarnation
as first identified in the structure of the thrombin mutant
D102N. In addition, it demonstrates that the anticoagulant pro-
file often caused by amutation of the thrombin scaffold finds its
likely molecular origin in the stabilization of the inactive E*
form that is selectively shifted to the active E form upon throm-
bomodulin and protein C binding.

Serine proteases of the trypsin family are responsible for
digestion, blood coagulation, fibrinolysis, development, fertili-
zation, apoptosis, and immunity (1). Activation of the protease
requires the transition from a zymogen form (2) and formation
of an ion pair between the newly formed amino terminus of the
catalytic chain and the side chain of the highly conserved resi-
due Asp194 (chymotrypsinogen numbering) next to the cata-
lytic Ser195. This ensures substrate access to the active site and
proper formation of the oxyanion hole contributed by the back-
bone N atoms of Ser195 and Gly193 (3). The zymogen3 prote-
ase conversion is classically associated with the onset of cata-
lytic activity (3, 4) and provides a useful paradigm for
understanding key features of protease function and regulation.
Recent kinetic (5) and structural (6, 7) studies of thrombin,

the key protease in the blood coagulation cascade (8), have
drawn attention to a significant plasticity of the trypsin fold that
impacts the function of the enzyme in a decisive manner. The
active formof the protease,E, coexists with an inactive form,E*,
that is distinct from the zymogen conformation (9). The E*

form features a collapse of the 215–217 !-strand into the
active site and a flip of the peptide bond between residues
Glu192 and Gly193 that disrupts the oxyanion hole. Impor-
tantly, the ion pair between Ile16 and Asp194 remains intact,
suggesting that E* is not equivalent to the zymogen form of
the protease and that the E*-E equilibrium is established
after the conversion from the zymogen form has taken place.
Indeed, existing structures of the zymogen forms of trypsin
(10), chymotrypsin (11), and chymase (12) feature a broken
Ile16–Asp194 ion pair but no collapse of the 215–217
!-strand. Stopped-flow experiments show that the E*-E con-
version takes place on a time scale of !10 ms (5), as opposed
to the much longer (100–1000 ms) time scale required for
the zymogen-protease conversion (13, 14).
The E* form is not a peculiarity of thrombin. The collapse

of the 215–217 !-strand into the active site is observed in the
inactive form of "I-tryptase (15), the high temperature
requirement-like protease (16), complement factor D (17),
granzyme K (18), hepatocyte growth factor activator (19),
prostate kallikrein (20), and prostasin (21). A disrupted
oxyanion hole is observed in complement factor B (22) and
the arterivirus protease Nsp4 (23). The most likely explana-
tion for the widespread occurrence of inactive conforma-
tions of trypsin-like proteases is that the E*-E equilibrium is
a basic property of the trypsin fold that fine tunes activity
and specificity once the zymogen3 protease conversion has
taken place (9).
The new paradigm established by the E*-E equilibrium has

obvious physiological relevance. In the case of complement
factors, kallikreins, tryptase, and some coagulation factors
must be kept to a minimum until binding of a trigger factor
ensues. Stabilization of E* may afford a resting state of the
protease waiting for action, as seen for other systems (24–
28). For example, factor B is mostly inactive until binding of
complement factor C3 unleashes catalytic activity at the site
where amplification of C3 activation is most needed prior to
formation of the membrane attack complex (29). Indeed, the
crystal structure of factor B reveals a conformation with the
oxyanion hole disrupted by a flip of the 192–193 peptide
bond (22), as observed in the E* form of thrombin (6, 7).
The allosteric equilibrium as shown in Scheme 1,

E* -|0
k1

k"1

E

SCHEME 1
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involves the rates for the E*3 E transition, k1, and backward,
k"1, that define the equilibrium constant r # k"1/k1 # [E*]/[E]
(5). The value of kcat/Km for an enzyme undergoing the E*-E
equilibrium is as shown in Equation 1 (30),

kcat

Km
# s #

sE

1 $ r
(Eq. 1)

where sE is the value of s for the E form, and obviously sE* # 0.
Likewise, the binding of an inhibitor to the enzyme undergoing
the E*-E equilibrium is shown in Equation 2,

K #
KE

1 $ r
(Eq. 2)

where KE is the value of the equilibrium association constant K
for the E form, and KE* # 0. As the value of r increases upon
stabilization of E*, the values of s and K in Equations 1 and 2
decrease without limits. Hence, stabilization of E* has the
potential to completely abrogate substrate hydrolysis (s3 0) or
inhibitor binding (K3 0). However, binding of a suitable cofac-
tor could restore activity by triggering the E* 3 E transition.
This suggests a simple explanation for the anticoagulant profile
observed in a number of thrombin mutants that have poor
activity toward all physiological substrates but retain activity
toward the anticoagulant proteinC in the presence of the cofac-
tor thrombomodulin (31–34). Here we report evidence that
stabilization of E* provides a molecular mechanism to turn
thrombin into an anticoagulant.

MATERIALS AND METHODS

The human thrombin mutant $146–149e was constructed,
expressed, and purified to homogeneity as reported elsewhere
(32, 35, 36), using the QuikChange site-directed mutagenesis
kit from Stratagene (La Jolla, CA) in an HPC4-modified pNUT
expression vector containing the human prethrombin-1 gene.
Values of s # kcat/Kmfor the hydrolysis of the chromogenic
substrates H-D-Phe-Gly-Arg-p-nitroanilide, H-D-Phe-Pro-
Phe-p-nitroanilide, H-D-Phe-Pro-Lys-p-nitroanilide, and H-D-
Phe-Pro-Arg-p-nitroanilide (FPR),2 the release of fibrinopep-
tide A from fibrinogen, cleavage of the protease-activated
receptors PAR1, PAR3, and PAR4, and activation of protein C
in the absence or presence of 100 nM thrombomodulin and 5
mM CaCl2 were determined as reported elsewhere (32, 37, 38)
under physiological experimental conditions of 5mMTris, 0.1%
PEG8000, 145 mM NaCl, pH 7.4, at 37 °C.
Binding of the active site inhibitor argatroban (39) was stud-

ied directly by isothermal titration calorimetry under experi-
mental conditions of 5 mM Tris, 0.1% PEG8000, 145 mM NaCl,
pH 7.4, at 37 °C, using an iTC200 calorimeter (MicroCal Inc.
Northampton, MA) with the sample cell containing thrombin
and the syringe injecting argatroban. The sample volume for
iTC200 is 204.6%l and the total volumeof injected ligand is 39.7
%l. The thermal equilibration step at 37 °C, was followed by an
initial 60-s delay step and subsequently an initial 0.2-%l injec-

tion. Typically, 19 serial injections of 2 %l and 1 last injection of
1.5 %l of ligand were performed at an interval of 180 s. The
stirring speed was maintained at 1000 rpm, and the reference
power was kept constant at 5 %cal/s. The heat associated with
each injection of ligand was integrated and plotted against the
molar ratio of ligand to macromolecule. Thermodynamic
parameters were extracted from a curve fit to the data using the
software (Origin 7.0) provided byMicroCal according to a one-
site binding model. Experiments were performed in triplicate
with excellent reproducibility (!10% variation in thermody-
namic parameters).
Crystals of human thrombin $146–149e were obtained

using the hanging drop vapor-diffusion method. A solution of
$146–149e (8 mg/ml in 1 %l) in 50 mM NaCl, 20 mM Tris, pH
7.5, wasmixedwith an equal volume reservoir solution contain-
ing 20% PEG20000 and 100 mM Tris, pH 8.5, at 25 °C. Crystals
were tetragonal, space group P43, with unit cell parameters a#
b # 58.2 Å, c # 119.6 Å, and contained one molecule in the
asymmetric unit. Crystals were flash-frozen in liquid nitrogen
after soaking in artificial mother liquor containing 15% (v/v)
glycerol. X-ray diffraction data were recorded on an ADSC
Quantum 315 CCD at beamline 14-BM-C at BIOCARS
(Argonne, IL). One pass of 150° with steps of 0.5° was collected
and processed to 1.55 Å resolution. Integration and scaling of
diffraction data were carried out with the HKL-2000 package
(40). The structure was solved by molecular replacement using
the CCP4 suite (41) and Protein Data Bank accession code
2GP9 (7) as a search model. Rounds of positional and isotropic
temperature factor refinement in REFMAC (42) were alter-
nated with model building in COOT (43). After most of the
model was found, TLS tensorsmodeling rigid-body anisotropic
temperature factors were calculated and applied to the model
using REFMAC. This was alternated with moremodel building
in COOT until the final model was produced. Ramachandran
plots were calculated using PROCHECK (44). Statistics for data
collection and refinement are summarized in Table 1. Coordi-
nates of the structure of the human thrombin mutant $146–
149e have been deposited to the Protein Data Bank (accession
code 3GIC).

RESULTS

Once generated in the blood from its inactive precursor pro-
thrombin, thrombin acts as a procoagulant when it converts
fibrinogen into an insoluble fibrin clot (45) and acts as a pro-
thrombotic when it cleaves protease-activated receptors
(PARs) (46, 47). However, upon interaction with the endothe-
lial cell receptor thrombomodulin, thrombin loses both proco-
agulant and prothrombotic functions and increases its activity
%1,000-fold toward the anticoagulant protein C (48). A throm-
bin mutant stabilized in the E* form would have little or no
activity toward physiological substrates. If this mutant could be
converted to the E form upon binding of thrombomodulin,
then a selective anticoagulant response would be elicited upon
activation of protein C in the vascular endothelium where
thrombomodulin is present.
The mutant $146–149e carries a deletion of the nine res-

idues 146ETWTANVGK149e in the autolysis loop and was
originally constructed to assess the role of this highly flexi-

2 The abbreviations used are: FPR, H-D-Phe-Pro-Arg-p-nitroanilide; r.m.s.d.,
root mean square deviation; PC, protein C; TM, thrombomodulin; PAR, pro-
tease-activated receptor.
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ble domain in thrombin function (49). The sequence
149aANVGK149e is not present in trypsin and chymotrypsin and
can be deleted without functional consequences (49). Also,
swapping the entire 146ETWTANVGK149e sequence of throm-
binwith the 146SSGT149 sequence of trypsin (50) or deleting the
146ETW148 sequence (51) produces perturbations of function
that are recapitulated by the single mutations E146A and
R221aA (32, 35). Residue Glu146 makes an important ion pair
interaction with Arg221a in the adjacent 220-loop in the E form
but not in the E* form (6, 7, 35). The entire autolysis loop likely
participates in the long range communication seen in the E*-E
equilibrium (6) between the 220-loop, the active site, and
exosite I where thrombomodulin binds (8). Deletion of the
entire sequence 146ETWTANVGK149e in the $146–149e
mutant causes a significant loss of activity toward chromogenic
and physiological substrates, but binding of thrombomodulin
almost completely restores activity toward the anticoagulant
protein C (Fig. 1). Importantly, thrombomodulin has only a
modest effect on the hydrolysis of a chromogenic substrate
(Fig. 1), as already documented for other anticoagulant
thrombin mutants (52) and wild type (53). These properties
suggest that the $146–149e mutation shifts the E*-E equi-
librium of thrombin in favor of E*, and thrombomodulin in
complex with protein C can switch the mutant back into the
active conformation E.

Evidence that the thrombin mutant $146–149e is stabi-
lized in the E* form in solution comes from inspection of the
values of kcat/Km for chromogenic and natural substrates.
The data in Fig. 1 reveal a remarkable similarity in the loss of
activity toward fibrinogen, PAR1, PAR3, and protein C for
the $146–149e mutant compared with wild type. Likewise, a
comparable loss of activity is observed toward several chro-

mogenic substrates bearing replacements at the P1 or P2
positions (54). On the average, the loss is about 200-fold. For
a mutation that selectively shifts the E*-E equilibrium in
favor of E*, without introducing additional effects on sub-
strate or inhibitor recognition, the values of s and K in Equa-
tions 1–2 must decrease by the same amount. Specifically,
the ratio shown in Equation 3 between the wild-type (WT)
and mutant values of s and K must be the same for all sub-
strates and inhibitors.

sWT

smut
#

KWT

Kmut
#

1 $ rmut

1 $ rWT
(Eq. 3)

The data in Fig. 1 are consistent with the prediction fromEqua-
tion 3. Perturbation of PAR4 recognition is significantly more
pronounced comparedwith all other substrates, but this is con-
sistent with the direct interactions that this substrate makes
with residues of the autolysis loop (55). Further support for
stabilization of E* in the $146–149e mutant comes from calo-
rimetric measurements of the binding of the inhibitor argatro-
ban (39) to the active site. The value ofK (see Equation 2) drops
135-fold in the mutant compared with wild type (Fig. 2), as
expected from Equation 3.
Addition of thrombomodulin restores activity of the mutant

toward proteinC (Fig. 1), indicating that although themutation
stabilizesE*, the active formE is still present in solution and can
be populated for protein C activation in the presence of cofac-

FIGURE 1. Functional properties of the thrombin mutant !146 –149e.
Shown are the values of s # kcat/Km for the hydrolysis of chromogenic sub-
strates H-D-Phe-Gly-Arg-p-nitroanilide (FGR), H-D-Phe-Pro-Phe-p-nitroanilide
(FPF), H-D-Phe-Pro-Lys-p-nitroanilide (FPK), and FPR, fibrinogen (FpA), PAR1,
PAR3, PAR4, protein C (PC), and protein C (PC&TM) or FPR (S&TM) in the
presence of 100 nM thrombomodulin and 5 mM CaCl2 for wild-type (swt) rela-
tive to the thrombin mutant $146 –149e (smut). All substrates, except PAR4,
experience a loss of activity that equals 2.30 log units (solid line) with a stand-
ard deviation of 0.09 log units (broken lines). This supports perturbation of the
E*-E equilibrium in favor of the inactive form E* (see Equations 1 and 3 in the
text). The larger loss for PAR4 (%4 S.D. compared with the other substrates) is
likely due to direct interaction of the substrate with residues of the autolysis
loop (55) that are missing in the $146 –149e mutant. In the presence of
thrombomodulin, the mutant experiences only a 2-fold drop in activity
toward protein C compared with wild type. However, thrombomodulin bind-
ing alone does not restore activity toward the chromogenic substrate FPR.
Experimental conditions are as follows: 5 mM Tris, 0.1% PEG8000, 145 mM
NaCl, pH 7.4, at 37 °C. The values of swt are as follows: 0.52 ' 0.05 %M"1 s"1

H-D-Phe-Gly-Arg-p-nitroanilide (FGR), 0.28 ' 0.03 %M"1 s"1 H-D-Phe-Pro-Gly-
p-nitroanilide (FGF), 4.2 ' 0.2 %M"1s"1 H-D-Phe-Pro-Gly-p-nitroanilide (FGK),
37 ' 1 %M"1 s"1 H-D-Phe-Pro-Arg-p-nitroanilide (FPR), 17 ' 1 %M"1 s"1 fibrin-
ogen (FpA), 39 ' 1 %M"1s"1 PAR1, 0.35 ' 0.02 %M"1 s"1 PAR3, 0.34 ' 0.01
%M

"1
s"1 PAR4, 59 ' 3 M"1 s"1 PC, 0.22 ' 0.01 %M"1s"1 PC&TM, 64 ' 2

%M"1s"1 S&TM.

TABLE 1
Crystallographic data for the thrombin mutant !146 –149e (Protein
Data Bank code 3GIC)

Data collection
Wavelength 0.9 Å
Space group P43
Unit cell dimension a # b # 58.23, c # 119.56 Å
Molecules/asymmetric unit 1
Resolution range 40.0–1.55 Å
Observations 220,618
Unique observations 54,240
Completeness 94.3% (76.1%)
Rsym (%) 3.7% (27.9%)
I/&(I) 27.7 (2.3)

Refinement
Resolution 40.0–1.55 Å
!F!/&(!F!) %0
Rcryst, Rfree 0.188, 0.224
Reflections (working/test) 51,479/2747
Protein atoms 2295
Solvent molecules 257
r.m.s.d. bond lengthsa 0.012 Å
r.m.s.d. anglesa 1.4°
r.m.s.d. $B (Å2) (mm/ms/ss)b 0.86/0.67/2.21
(B) protein 18.6 Å2

(B) solvent 28.6 Å2

Ramachandran plot
Most favored 98.3%
Generously allowed 1.3%
Disallowed 0.4%

a Root mean square deviations from ideal bond lengths and angles and r.m.s.d.
values in B-factors of bonded atoms are shown.

b mm indicates main chain-main chain; ms indicates main chain-side chain; and ss
indicates side chain-side chain.
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tor. Evidence that binding to exosite
I, the major thrombin epitope for
thrombomodulin recognition (56,
57), can convert E* to E has been
provided recently by the structure
of the thrombin mutant D102N
bound to a fragment of the platelet
receptor PAR1 (6). Therefore, the
thrombin mutant $146–149e likely
functions as an allosteric switch sta-
bilized into the inactive form E*
until the combined binding of
thrombomodulin and protein C
shifts E* to E and restores activity.
To gain direct information on the

conformational properties of the
$146–149e mutant, its crystal
structurewas solved in the free form
at 1.55 Å resolution. Consistent
with the functional data, themutant
assumes a collapsed conformation
that is practically identical (r.m.s.d.
0.154 Å) to the E* form identified
recently from the structure of the
thrombinmutant D102N (6, 7). The
$146–149e mutant folds in a self-
inhibited conformation (Fig. 3) due
to a collapse of the 215–217
!-strand into the active site that
moves the indole ring of Trp215 %10

Å to engage the catalytic His57 on the opposite side of the active
site cleft (Fig. 4). The drastic rearrangement of the 215–217
!-strand propagates the perturbation up to the peptide bond
betweenGlu192 and Gly193 that is flipped relative to the confor-
mation of the E form (7) and destroys the architecture of the
oxyanion hole (Fig. 4). These significant structural changes
occur away from the site of mutation in the autolysis loop,
where the shortened sequence 144LKGQ151 shows Lys145 con-
nected directly to Gly150 (Fig. 4). Hence, the thrombin mutants
D102N and $146–149e crystallize in the same E* form, not-
withstanding differences in sequence and crystallization condi-
tions. The inactive form E* is therefore a genuine conformation
of thrombin accessible to the enzyme in addition to its active
form E (9, 35). The E* form is stabilized bymutations that com-
promise activity of the enzyme and is selectively converted to
the active E form under suitable conditions.

DISCUSSION

The new paradigm emerged from analysis of recent crystal
structures of trypsin-like proteases (6, 7, 15–23) supports the
existence of the E*-E equilibrium as a critical feature of the
trypsin fold (9). This allosteric equilibrium explains several
important aspects of protease biology. For proteases that are
poorly active until interaction with a cofactor, as observed for
some clotting and complement factors (29), the onset of cata-
lytic activity can be attributed to the E*3 E conversion. The E*
form acts in this case as a resting state for the enzyme and a
spring-loadedmechanism that can be turned onwhen required

FIGURE 2. Argatroban binding to thrombin wild type (left) and !146–149e (right) measured by isothermal
titration calorimetry.The top panel shows the heat exchanged in each individual titration for the thrombin sample
(bottom trace) and the argatroban buffer control (top trace). The bottom panel is the integration of the data to yield
the overall heat exchanged as a function of the ligand/protein molar ratio. Experimental conditions are 5 mM Tris,
0.1% polyethylene glycol, 145 mM NaCl, pH 7.4, 37 °C. The enzyme and argatroban concentrations are as follows:
13.44 and 140 %M (thrombin wild type); 52.5 and 777 %M ($146–149e). Titration curves were fit using the Origin
software of the iTC200, with best fit parameter values as follows: thrombin wild type,K # 1.0 ' 0.1 108 M"1, $G #
"11.3 ' 0.1 kcal/mol, $H # "15.2 ' 0.1 kcal/mol, and T$S # "3.9 ' 0.1 kcal/mol; $146–149e, K # 7.4 ' 0.4 105

M"1, $G # "8.3 ' 0.1 kcal/mol, $H # "13.8 ' 0.1 kcal/mol, and T$S # "5.5 ' 0.1 kcal/mol. The value of the
stoichiometric constant N was 1.01 ' 0.01 for thrombin wild type and the $146–149e mutant.

FIGURE 3. Ribbon representation of the structure of the thrombin mutant
!146–149e (gold) overlaid with the structure of thrombin in the E confor-
mation (35) (cyan). The newly formed peptide bond between Lys145 and Gly150

is indicated in red in the shortened autolysis loop of $146–149e (see also Fig. 4),
and the loop in the E conformation is not visible between residues Trp148 and
Lys149e. The 215–217!-strand in the mutant collapses into the primary specificity
pocket (red open arrowheads), with the side chain of Trp215 (stick model) reposi-
tioned into the active site (residues of the catalytic triad His57, Asp102, and Ser195

shown as stick models) in hydrophobic interaction with Trp60d, Tyr60a, Leu99, and
His57. This represents a drastic change (r.m.s.d. 0.384 Å) from the conformation of
E where the side chain of Trp215 is positioned 10.5 Å away and leaves the active
site accessible to substrate. The conformation of$146–149e is remarkably simi-
lar (r.m.s.d. 0.154 Å) to that of E* determined recently (6, 7).
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by the biological context. The E*-E equilibrium also provides
context to interpret the effect of mutations associated with loss
of biological activity in highly active proteases. In some cases, as
documented by thrombin (8, 58), the molecular origin of the
effect is unclear because the mutation does not affect residues
in direct contact with substrate. Stabilization of E* through
molecular conduits not necessarily involved in substrate recog-
nition may offer a plausible explanation.
The allosteric E*-E equilibrium has far reaching implications

for protein engineering. Stabilization of E* by selected muta-
tions, coupled with a transition to E triggered by suitable cofac-
tors, may result in expression of protease activity on demand in
a biological context. Thrombin exists predominantly in the E
form, which functions as an ensemble partitioned between
Na&-free and Na&-bound conformations (5, 8) because of the
extremely fast rates of binding and dissociation of Na& with the
enzyme (59). However, a thrombin mutant stabilized in the E*
form that converts toE upon interactionwith thrombomodulin
and protein C would be an anticoagulant of potential clinical
relevance. Such mutant would show little or no activity toward
fibrinogen and PAR1 but would retain activity toward protein
C. A number of thrombin mutants have been reported with an
altered specificity that favors protein C activation over fibrino-
gen cleavage (31–34, 49, 60, 61). Among these mutants, E217K
and W215A/E217A are effective as anticoagulants and anti-
thrombotics in non-human primates (33, 34, 62, 63) and have
been crystallized at 2.5–2.8 Å resolution (52, 64). The struc-
tures show a partial collapse of the 215–217 !-strand and dis-
ruption of the oxyanion hole that resembles the conformation
of E* (7). It is possible that these mutants are stabilized in an
E*-like form, but it is equally possible that the perturbed struc-
tures are the result of the mutations introduced at residues on
the critical 215–217 !-strand. Substantial crystallographic
packing interactions especially evident in the E217K mutant
also bias the conformation, unlike the structures of themutants
D102N (7) and $146–149e reported here. Additional struc-

tural work is necessary to validate the collapsed conformations
of E217K and W215A/E217A.
The mutant $146–149e was previously identified for its sig-

nificant anticoagulant profile (49) and carries a deletion of nine
residues in the highly disordered autolysis loop, whose role in
the function of the enzyme remains elusive. Importantly, resi-
dues of the autolysis loop are separate from the 215–217
!-strand or the oxyanion hole that undergoes substantial rear-
rangement in the E*-E transition (6, 7). Yet the mutant $146–
149e crystallizes in a collapsed conformation that is practically
identical (r.m.s.d. 0.154 Å) to the E* form identified recently (6,
7). This result is notable for two reasons. First, it confirms the
existence of the inactive form E* in essentially the same incar-
nation as first identified in the structure of the thrombin
mutant D102N under different crystallization conditions. Sec-
ond, it provides proof of principle that the anticoagulant profile
often caused by a mutation of the thrombin scaffold finds its
likelymolecular origin into stabilization of the inactive E* form.
The mutant $146–149e was previously reported to feature
reduced Na& affinity (49), which supports the conclusion that
its active E form is essentially Na&-free. This confirms the tenet
that abrogation of the procoagulant effect of Na& (32, 65) is
necessary to switch thrombin into an anticoagulant.
There is no contradiction between the modest effect of

thrombomodulin on chromogenic substrate hydrolysis (Fig. 1)
and structural evidence of the E* to E transition upon exosite I
binding (6). Crystallographic evidence that the D102N mutant
assumes the E* form when free and the E form when bound to
exosite I does not imply an all-or-none distribution of E* and E
in solution. In fact, a significant fraction of D102N does exist in
the E form in solution (7), but this conformation is not favored
under the crystallization conditions so far explored (7). Ther-
modynamic principles (66, 67) establish that an allosteric effec-
tor can only shift the E*-E equilibrium in favor of E by an
amount equal to the ratio of affinities of the two forms. Because
exosite I, unlike the active site, is similarly accessible in the E*
and E form (6–8, 35), binding of thrombomodulin to the two
forms cannot result in extreme perturbations of the E*-E equi-
librium. Hence, when the equilibrium is shifted drastically in
favor of E*, as seen for the $146–149e mutant but not the
D102N mutant, binding of thrombomodulin is insufficient to
populate significantly the active form E. On the other hand, the
combined action of protein C and thrombomodulinmay have a
more profound effect on the E*-E equilibrium by accessing
additional regions of the thrombin surface beyond exosite I
(57), thereby ensuring almost complete restoration of activity.
Elucidation of the molecular mechanism underscoring the

anticoagulant profile of thrombin mutants like $146–149e
provides new impetus to the effort of rationally engineering
thrombin mutants with exclusive activity toward protein C for
clinical applications. The molecular underpinnings of the E*-E
equilibrium have been revealed by structural biology (6), along
with precise targets for mutagenesis aimed at stabilizing the E*
form. An exclusive protein C activator would have several
advantages compared with the direct administration of acti-
vated protein C currently marketed for the treatment of sepsis
(68). Activated protein C acts as an anticoagulant when it inac-
tivates clotting factor Va with the assistance of the cofactor

FIGURE 4. Left, details of the collapse of Trp215 into the active site and disrup-
tion of the oxyanion hole in the thrombin mutant $146 –149e (CPK, yellow)
are shown. The conformation of the same residues in the E form is shown by
comparison (CPK, cyan). The peptide bond between Glu192 and Gly193 is
flipped in the $146 –149e mutant (red open arrowhead), as seen in the E* form
(6, 7, 9), causing disruption of the oxyanion hole contributed by the N atoms
of Gly193 and Ser195. The 2Fo " Fc electron density map (green mesh) is con-
toured at 2.0&. Right, deletion of residues 146ETWTANVGK149e in the autolysis
loop of the $146 –149e mutant results in a new peptide bond connection
between Lys145 and Gly150 (CPK, yellow). The autolysis loop is rarely seen in its
entirety in thrombin structures, and considerable disorder remains in the
mutant $146 –149e where the sequence 144LKGQ151 must be contoured at
0.5& in the 2Fo " Fc electron density map (green mesh).
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protein S and as a cytoprotective agent when it cleaves PAR1
on the surface of endothelial cells with the assistance of
endothelial protein C receptor (69). Importantly, activated
protein C generated in situ with the anticoagulant thrombin
mutant W215A/E217A offers cytoprotective advantages
over activated protein C administered to the circulation (70).
Furthermore, the thrombin mutant W215A/E217A acts as a
potent antithrombotic by blocking the interaction of von
Willebrand factor with the platelet receptor GpIb (71), a
property of which activated protein C is naturally devoid and
that challenges the efficacy of lowmolecular weight heparins
(63). These intriguing properties of the mutant W215A/
E217A, its well established potency as an anticoagulant in
non-human primates (62, 63) and the current elucidation of
the role of E* in switching thrombin into an anticoagulant,
will facilitate the rational engineering of a thrombin mutant
with exclusive activity toward protein C.
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33. Gibbs, C. S., Coutré, S. E., Tsiang, M., Li, W. X., Jain, A. K., Dunn, K. E.,

Law, V. S., Mao, C. T., Matsumura, S. Y., Mejza, S. J., Paborsky, L. R., and
Leung, L. L. (1995) Nature 378, 413–416

34. Tsiang, M., Paborsky, L. R., Li, W. X., Jain, A. K., Mao, C. T., Dunn, K. E.,
Lee, D.W., Matsumura, S. Y., Matteucci, M. D., Coutré, S. E., Leung, L. L.,
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CHAPTER IV 

Investigating the Role of the 145-150 Loop in 

Thrombin Allostery 
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In the previous chapters, we demonstrated that human thrombin exists in equilibrium 

between inactive E* and active E conformations (1-3), and that deletion of the nine 

residues 146ETWTANVGKG149e from the autolysis loop of human thrombin results in 

stabilization of its E* conformation (4). As a result, relative to the wild type enzyme the 

activity of Δh146-149e was significantly but identically compromised for all synthetic 

and physiological substrates tested including protein C in the absence but not in the 

presence of TM. Hence, the TM-PC complex can trigger the E* to E transition and 

restore almost full catalytic enhancement of PC activation (4).  

 

Furthermore, structural and kinetic studies have demonstrated that murine thrombin 

unlike its human counterpart, lacks Na+ activation (5). However, the enzyme is 

functionally stabilized in an E:Na+-like conformation and retains high catalytic activity 

towards all its physiological substrates (5, 6). Obviously the thirty-two amino acids that 

differ between human and murine thrombin are responsible for these different functional 

and structural characteristics between the two enzymes. Six of the thirty-two amino acids 

residues are located the autolysis loop. The contribution of these six substitutions in the 

differences in Na+ dependent allostery between human and murine thrombin is presently 

unknown. 

 

In this chapter, we build upon these data and investigate further what role the length and 

amino acid composition of the autolysis loop play in thrombin allostery, particularly its 

effects in the E* to E transition and stabilization of E and E:Na+ conformations of 

thrombin. Here, we report the generation and characterization of two autolysis loop 
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mutants (Table 4.1). The first is Δh145-150 in which 145KG150 were further deleted from 

Δh146-149e to generate an eleven residue deletion mutation. In the second mutant, 

hm145-150, the human autolysis loop was replaced with the autolysis loop from its 

murine counterpart by substituting the six 145K, 149aA and 149cVGKG150 to the 

corresponding murine residues (Table 4.1).  

 

 

Table 4.1 Amino Acid sequence of autolysis loop constructs generated in this chapter 

 

MATERIALS & METHODS 

Human thrombin mutants Δh145-150 and hm145-150 (Table 4.1) were constructed, 
expressed and characterized as described in chapters 2 and 3. 
 

RESULTS & DISCUSSION 

Δh145-150  

Mutagenesis studies on the autolysis loop of human thrombin have previously shown that 

shorter loops disproportionately compromise the procoagulant/prothrombotic substrates 
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compared to the anticoagulant protein C (4, 7, 8). Molecular determinants of this effect 

originates from the stabilization of the E* conformation (1). Hence, the Δh145-150 

mutant was designed and constructed in anticipation that it will be relatively more 

stabilized in the E* conformation compared to Δh146-149e. As a result of deleting two 

more residues, we expected to generate a mutant with a significantly more compromised 

catalytic activity towards all substrates, but one whose activation of protein C in the 

presence of TM will be comparable to the hwt enzyme as observed in Δh146-149e. When 

successful, these properties will increase its anticoagulant and antithrombotic profile 

relative to Δh146-149e, thereby making it a better therapeutic agent. 

 

The functional properties of Δh145-150 were tested under physiological conditions 

against a diverse set of chromogenic and macromolecular substrates (Figure 4.1). The 

value of kcat/KM for substrate hydrolysis is significantly affected relative to the wt for all 

substrates but the extent of the effect varies with each substrate. More importantly, the 

activation of protein C is not restored relative to the wt in the presence of TM resulting in 

no gain in the anticoagulant profile.  This observation is directly contrary to what will be 

expected from an exclusive E* stabilization in which we would observe a similar effect 

on kcat/KM irrespective of substrate and restoration of protein C activation in the presence 

of TM, as demonstrated for Δh146-149e in chapter 3. Several plausible explanations can 

account for this unexpected observation including; the longer deletion (i) affects the E* to 

E transition and/or (ii) interferes with the intrinsic catalytic properties of the enzyme.  
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To investigate the molecular origins of its observed kinetic profile, crystals of Δh145-150 

were grown in the presence and absence of Na+. Structure of the mutant in the absence of 

Na+ was obtained in the E* conformation of thrombin. All the structural signatures of E* 

were observed (Figure 4.2 and Figure 4.3); abrogation of the Na+ binding site, collapse of 

the 215-217 β-strand into the active site and a disruption of oxyanion hole. The structure 

of Δh145-150  in the absence of Na+ is practically similar to the E* form of Δh146-149e. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4.1. Functional properties of the thrombin mutant Δh145-150. Shown are the values 
of s=kcat/KM for the hydrolysis of chromogenic substrates FGR, FPK and FPR, fibrinogen (FpA), 
PAR1, PAR3, PAR4, protein C (PC) and protein C (PC+TM) in the presence of 100 nM 
thrombomodulin and 5 mM CaCl2 for the thrombin mutant Δh145-150  (smut) relative to wild-
type (swt). Each substrate experiences a different loss of activity that cannot be reconciled with an 
exclusive perturbation of the E*-E equilibrium in favor of the inactive form E*, as recently 
reported for the Δ146-149e mutant (chapter 3). Experimental conditions are: 5 mM Tris, 0.1% 
PEG8000, 145 mM NaCl, pH 7.4 at 37 °C. The values of swt are: 0.52±0.05 µM-1s-1 (FGR), 
4.2±0.2 µM-1s-1 (FPK), 37±1 µM-1s-1  (FPR), 17±1 µM-1s-1 (FpA), 39±1 µM-1s-1 (PAR1), 0.35±0.02 
µM-1s-1 (PAR3), 0.34±0.01 µM-1s-1 (PAR4), 59±3 M-1s-1 (PC), 0.22±0.01 µM-1s-1 (PC+TM).   
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On the other hand, in the presence of Na+, Δh145-150 is stabilized in the canonical E: 

Na+ conformation, but with one notable exception. Although the collapse of the 215-217 

β-strand into the active site is corrected with Trp-215 moving back into the position 

observed in the E: Na+ form of wt, the disruption of the of the oxyanion hole is not 

restored to its proper architecture. Collectively, these functional and structural data 

indicate that in addition to the E* to E equilibrium pertubation, the intrinsic catalytic 

properties of the enzyme are affected by the longer deletion mutation.  

 

 The kinetic and structural properties of Δh145-150 are not unique to this mutant, 

however. Similar properties were recently observed in the N143P mutant of human 

thrombin. Each substrate analyzed was perturbed to a different extent, an E* 

conformation was crystallographically observed in the absence of Na+ and the Na+-bound 

structure also features a disruption of the oxyanion hole. A proper architecture of the 

oxyanion hole is required to stabilize the tetrahedral intermediate during substrate 

hydrolysis and is directly under the control of the bound Na+ (3, 4).  

 

Comparison between the N143P and Δh145-150 Na+-bound conformations indicate that 

in both structures, despite the different mutations, a highly conserved H-bond between 

the carbonyl O atom of residue 192 and the backbone N atom of residue 143 on the 

adjacent β-strand is broken (Figure 4.3). When this important H-bond interaction is lost, 

the 192-193 peptide bond flips and the oxyanion hole pocket is disrupted. As in the case 

of the N143P mutant, Na+ has lost the ability to regulate the architecture of the oxyanion 

hole in Δh145-150, thereby affecting the intrinsic kinetic properties of both enzymes.  
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                     A       

                                       

              B       C 

Figure 4.2 Crystal Structure of Δh145-150  in the E* and E: Na+ forms. A. Structural 

alignment of Δh145-150 E* and Δh145-150  E:Na+ in cartoon representation. Occlusion of the 

active site cleft in the E* by the 215-217 B-strand (blue) compared to E: Na+ conformation (red). 

B and C are surface representation of Δh145-150 E* and E: Na+ structures respectively. Note how 

the catalytic residues and active site cleft are completely occluded in B and accessible in C. 
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                    A             B     C 

Figure 4.3 Achitecture of the oxyanion hole in (A) Δh145-150 E* (B) hWT and (C) Δh145-

150 E:Na+. Conserved H-bond between carbonyl O atom of Glu-192 and backbone N atom of 

143 is broken in Δh145-150 E* and Δh145-150 E: Na+ but not in hWT. As a result, the 192-193 

peptide bond flips and the oxyanion hole is disrupted.   

 

Mutants that are stabilized in the E* confirmation and whose catalytic properties 

are significantly compromised have great potential application for in vivo studies.  Such 

mutants can complement functional studies of anticoagulant and antithrombotic mutants 

such as W215A/E217A (WE). For instance, Berny et. al. have shown that although WE 

cannot activate platelets, it can interact with platelets through GPIb and disrupts the 

GPIb-dependent binding to von Willebrand factor-collagen under shear (9). Wt or the 

catalytically inactive S195A mutant cannot produce these effects, indicating that some 

unique feature (s) of WE is responsible for its antagonistic properties against GPIb. To 

date, the molecular basis of this antithrombotic property of WE is unknown. However, 
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the E* features, the specific mutation effects or some yet unknown characteristic of WE 

is definitely causing this anomalous and extraordinary interaction of WE with GPIb. 

Therefore, Δh145-150 can be an excellent control to test the hypothesis that WE’s E* 

nature is responsible for antagonizing GPIb.  

 

 

hm145-150  

Previous attempts to mimic the activating effects of Na+ in human thrombin or other type 

II- Na+ activating enzymes were moderately successful as they generally results in poor 

activity enzymes both in the presence and absence of Na+ (6, 10, 11). However, structural 

and kinetic studies reveal that murine thrombin has successfully mimicked the E:Na+ 

conformation of human thrombin (5). The origin of this remarkable property is not fully 

understood as the swapping of the entire Na+ binding loops of murine thrombin into the 

human enzyme did not result in a high activity Na+ independent enzyme (6).  

 

However, biochemical studies have shown that one of the effects of Na+ binding to 

human thrombin is to stabilize the highly flexible autolysis loop (12), which in the 

murine enzyme is intrinsically stable due to intra-loop interactions (13, 14). These 

interactions originate from six critical amino acid substitutions that differ between the 

autolysis loop of murine and human thrombin (Table 4.1). The contribution of amino acid 

composition of the autolysis loop in the Na+ dependent allostery of human thrombin has 

not been previously investigated although this loop is not highly conserved in thrombin 
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molecules from different species (15). In this section, we directly addressed the role of 

the autolysis loop in the different Na+ response between murine and human thrombin.  

 

When the human autolysis loop is replaced with its murine counterpart, the catalytic 

properties of the mutant are intermediate between those of the two enzymes. In the 

absence of Na+, the activity of the hm145-150 is higher than that of human but less than 

murine thrombin, while the converse is true in the presence of Na+. Figure 4.4 shows that 

kcat/KM of hm145-150 for FPR hydrolysis was enhanced 7-fold relative to hwt thrombin 

in the absence of Na+, and that the effect of Na+ on the kinetic properties of the mutant 

was drastically reduced as demonstrated by only a 3-fold compared to a 27-fold 

enhancement in kcat/KM in hm145-150 and hWT respectively. Similar results were 

obtained for other chromogenic and macromolecular substrates tested. These data 

indicate that most of the Na+ independent high activity effect of murine thrombin and low 

activity of slow form of human thrombin originate from the amino acid composition of 

their respective autolysis loops.    

 

Furthermore, kinetics and thermodynamic of Na+ binding studies were performed to 

assess the effect of the autolysis loop swap on the Na+ dependent allostery. Na+ binding 

to hWT thrombin is biphasic in kinetics and is characterized by large enthalpy and 

entropy change of -22 kcal/mol and -64 cal/mol/K respectively (1, 10, 16). A major 

contribution to these thermodynamic parameters originate from the six ligating 

interactions involving Na+, and the uptake and re-ordering of water molecules that 

transmit Na+ binding through the water channel to activity in the active site(17). In 
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addition, Na+ binding is accompanied by a large intrinsic heat capacity change of -500 

cal/mol/K, but the molecular origins of this effect have not been uncovered so far (16) 

 

 

Figure 4.4. Effect of Na+ on FPR substrate hydrolysis. Shown are the values of s=kcat/KM for the 
hydrolysis of chromogenic substrate FPR in the presence or absence of Na+ by human wild type 
(hWT), hm145-150 and murine wild thrombin (mWT). Experimental conditions are: 5 mM Tris, 
0.1% PEG8000, 200 mM NaCl or ChCl, pH 8 at 25°C.  
 

 

Stopped flow fluorescence measurements of Na+ binding to hm145-150 shows a similar 

biphasic binding mechanism as observed in the hwt, indicating the presence of E*, E and 

E: Na+ forms (Figure 4.6). However, as highlighted from the amplitude of the slow phase 

in Figure 4.6 and data fitting analysis, in hm145-150, the E* to E equilibrium is shifted 

more towards E and that Na+ binds with a higher affinity relative to hWT. In addition, 

equilibrium-binding measurements using static fluorescence were performed in the 

temperature range from 5 to 40 oC to investigate the thermodynamic signatures of Na+ 
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binding. Under all the conditions tested, hm145-150 has a higher binding affinity 

compared to the hWT. Moreover, van’t Hoff plot of Na+ binding to hm145-150 shows a 

linear relationship between log K versus T-1 where K is the apparent Na+ binding affinity 

and T is the absolute temperature in Kelvin (Figure 4.8). Lack of curvature in the van’t 

Hoff plot indicates that unlike the hwt enzyme, no heat capacity change is associated with 

Na+ binding for this hm145-150 (1). 

 

 

Figure 4.5 Kinetic traces of Na+ binding to hm145-150 in the 0–250-ms time scale. 

Notice how the binding of Na+ obeys a two-step mechanism, with a fast phase completed 

within the dead time (<0.5 ms) of the spectrometer, followed by a single-exponential 

slow phase. Shown are the traces obtained at 0 (red circles), 3.125 (green circles), 25 
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(blue circles), and 100 (cyan circles) mM Na+.  Experimental conditions were 50 nM 

thrombin, 50mMTris, 0.1% PEG, pH 8.0, at 15 °C. Continuous lines were drawn using 

the expression a{1-exp(-kobst)}+ b with best-fit parameter values: red circles, a = 0.000 ± 

0.000 V, kobs = 0.0 ± 0.0 s-1, b = 8.15 ± 0.011 V ; green circles, a =  0.0414 ± 0.0001 V, 

kobs = 60.7  ± 15.1 s-1, b =8.393 ±0.001 V ; blue circles, a =0.0714 ±0.0002 V, kobs = 

56.3± 6.4 s-1, b =8.647  ± 0.012 V ; cyan circles, a =0.0645 ± 0.001V, kobs =45.79  ± 5.6 

s-1, b =8.5825  ± 0.0024 V ; 

 

 

Figure 4.6 Na+ binding to hm145-150.  Binding isotherm obtained from total 

fluorescence change and amplitude of fast phase. Note how the contribution of the slow 

phase, which represents the E* to E transition is negligible. KAapp~KA=288 M-1  
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Figure 4.7 van’t Hoff plot Na+ binding to hm145-150. Continuous line was drawn with 

best-fit parameter values of ∆H= -17.43 kcal/mol, ∆S= -49.48 kcal/mol.K and ∆Cp= 0.0 

 

To gain further insight into the molecular origins of the Na+ effects in hm145-150, crystal 

structures of the mutant were solved in the presence and absence of Na+. In hwt 

thrombin, there are subtle but important structural differences between the E and E: Na+ 

forms. These include (i) an ion-pair between Arg187 and Asp222 that stabilizes the Na+ 

binding site, (ii) the rotation of the Asp 189 in the primary specificity pocket, (iii) H-

bonding of catalytic Ser195 and His57 and (iv) the architecture of the water channel that 

spans from the Na+ site to the active site.  In hm145-150 structures, these differences 

between E and E: Na+ forms are not observed and both structures are similar to the E: 

Na+ form of hWT.   Most notably, the entire autolysis loop was defined, and unlike hWT, 
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E and E: Na+ structures are basically identical. These structural characterizations gives a 

plausible rationale for the observed catalytic properties, high Na+ affinity and lack of heat 

capacity change associated with Na+ binding.  

 

Figure 4.8 Alignment of the Crystal Structures of hm145-150 in the presence and absence of Na+. 

Na+-free and Na+-bound forms of hm145-150 are practically identical and are similar to Na+-bound form 

of hWT [rmsd = 0.257 Å].  

 

What is the molecular mechanism responsible for the remarkable involvement of this 

loop in thrombin allostery? Structural and thermodynamic analysis may hold a key to this 

answer. When the first crystal structures of human thrombin were solved, it was 

hypothesized that the main function of the autolysis loop was to restrict access to the 

active site cleft, endowing thrombin and other clotting factors that have longer loops with 

relatively narrow substrate specificity. However, data emerging from this thesis indicate 
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this loop is critical in allostery as well. In many human thrombin structures, the autolysis 

loop is either not defined due to poor electron density or it assumes different 

conformations depending on crystallization conditions, demonstrating an inherently 

flexible region. However, Na+ and other effector binding have been shown to rigidify and 

stabilize this loop, thereby reducing exposure to proteolysis cleavage (12). Therefore, the 

flexibility of the human autolysis reduces the affinity of Na+ due to an entropic cost 

associated with its stabilization by Na+.  

 

However, amino acid composition analysis of the autolysis loop in murine thrombin 

indicates that this loop has a lower flexibility tendency due in part to the replacement of 

two Gly residues with Ile. Indeed, intra-molecular interactions within this loop stabilize it 

and as a result it is almost always well defined in crystal structures. A stable autolysis 

loop in murine thrombin has been observed in structures whether free or bound to 

different ligands (13, 14). Similar evidence came from the structural characterization of 

hm145-150 that shows that amino acid composition of the autolysis loop can stabilize the 

loop through intra loop interaction irrespective of Na+.  

 

Revealing the mechanism of the molecular mimicry of Na+ activation in murine thrombin 

and its engineering in human thrombin has great potential for understanding other 

mechanism of type II M+ activation. The knowledge gained in these studies can facilitate 

the rational redesign and engineering of more proficient proteases.  
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CHAPTER V 

Discovery of E* in other vitamin K dependent 

clotting factors 
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Kinetic and structural studies of the mechanism of Na+ binding to thrombin demonstrate 

that the Na+ -free form (slow form) of thrombin exists in dynamic equilibrium between 

two conformations E* and E (1-4). E is the active conformation of the enzyme 

responsible for the catalytic activity of the enzyme in the absence of Na+ (5). However, 

E* is an inactive conformation which is unable to interact with either Na+ or substrates 

and is structurally distinct from the active forms (E and E:Na+).  

 

The structural features of E* are not unique to thrombin. The collapse of the 215-217 β-

strand into the active site while still maintaining an intact Ile-16 – Asp-194 has been 

observed in the structures of several members of the trypsin-like serine protease (6). A 

plausible hypothesis resulting from the widespread observation of inactive conformations 

of trypsins is that the E*--E equilibrium is a universal property of a plastic trypsin fold 

that optimizes activity and specificity after the occurrence of zymogen activation. To 

begin to test this hypothesis, we investigate the existence of E* in all vitamin K -

dependent clotting factors. Here we report that like thrombin and meizo-thrombin desF1, 

E* exists in equilibrium with E in Factor Xa, Factor IXa and activated protein C. 

 

 

MATERIALS AND METHODS 

Expression, purification and activation of human α-thrombin (thrombin) were performed 

as described elsewhere (7, 8). Gla-domainless activated protein C (GDPC) was expressed 

using a HPC4-modified pRc/RSVvector (a gift from Dr. A. Rezaie) using baby hamster 

kidney cell line. Purification and activation were done as described in (9). Human Factor 
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Xa (FXa) and human Factor IXa (FIXa) were obtained from Hematologic Technologies 

Inc (Essex Junction, VT) while Gla-domainless Factor VIIa (GDFVIIa) was obtained 

from Enzyme Research Laboratories Inc (South Bend, IN). 

 

Intrinsic protein fluorescence was used to study the kinetic mechanism of Na+ binding to 

FXa, FIXa, aGDPC and GDFVIIa in an Applied Photophysics SX20 stopped flow 

spectrophotometer, using an excitation wavelength of 283 nm and a 305 nm cutoff filter 

as reported in (1,4) with one important modification. Due to the interaction and inhibitory 

effects of quaternary ammonium compounds with the vitamin K dependent clotting 

factors (10), choline chloride could not be used as an inert ion for maintaining a constant 

ionic strength as previously done for thrombin. Therefore, samples of each clotting factor 

at a final concentration of 100 nM in 50 mM Tris-HCl and 0.1 % PEG, pH 8 at 15 oC was 

mixed in 1:1 ratio with the same buffer containing increasing concentration of NaCl. To 

check and ensure that nonspecific ionic effects are not affecting our results, Na+ binding 

to human thrombin was repeated without maintaining a constant ionic strength and results 

obtained were similar to the previously published data.  

 

The fluorescence change accompanying Na+ binding is characterized by a two-step 

binding mechanism, an initial fast phase that is too rapid to be resolved within the dead 

time of the instrument and a single exponential slow phase whose observed rate constant 

(kobs) decreases hyperbolically with increasing concentration of Na+ (see “Results”). The 

initial fast phase shows an increase in fluorescence for FIIa, FXa, FIXa and GDFVIIa but 

not for GDaPC where it shows a fluorescence quenching. The total change in 
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fluorescence, F, calculated from the sum of the amplitudes of the slow and fast phases is 

therefore expected to decrease for GDaPC accordingly. The value of F as a function of 

Na+ was fit according to Equation 1 (11) 
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where F0 and F1 are the values of F in the absence and under saturating [Na+] and Kapp is 

the apparent equilibrium association constant for Na+ binding. However, due to the small 

fluorescence change observed for Na+ binding to GDFVIIa (Figue 5.1e), its Kapp could 

not be obtained with confidence from data analysis using equation 1.As previously 

described for human thrombin (1), the simplest kinetic scheme accounting for the two-

step mechanism of Na+ binding to each clotting factor is 
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where the free enzyme exists in dynamic equilibrium between two forms, E* and E, that 

interconvert with kinetic rate constants k1 and k-1. However, only E can interact with Na+ 

with an equilibrium intrinsic association constant KA to generate E:Na+, which results in 

the fast phase. The slow phase is the result of the inter-conversion between E* and E 

with a observed rate constant, kobs given by 
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According to scheme 1 the value of kobs is expected to decrease with increasing [Na+] 

from (k1+k-1) to k1 when [Na+] increases from 0 to ∞. Analysis of kobs according to 

equation 2 yields the rates of conversion of k1and k-1, as well as KA. There is a 

relationship between the apparent equilibrium association constant Kapp from equation 1 

and KA because of the presence of E* and E,  

                   

! 

Kapp =
KA

1+
k"1

k
1

=
KA

1+ r
                                                                         Equation 3 

where the parameter r=[E*]/[E] measures the population of E* relative to E (Table 1). 

 

 

RESULTS 

The stopped flow fluorescence measurements for Na+ binding to FXa, GDaPC and FIXa 

clearly reveals a two step binding mechanism as previously shown for thrombin and 

meizo-thrombin desF1 (Figure 5.1), thereby indicating similar molecular conformational 

changes. A rapid fast phase that occurs within the dead time of the instrument is followed 

by a single exponential slow phase whose kobs decreases hyperbolically with increasing 

[Na+] (Figure 5.2). The kobs dependence on [Na+] is consistent with the mechanism shown 

in scheme 1 and Equation 3. This supports the conclusion that, like thrombin, FXa, 

GDaPC and FIXa exist in equilibrium between two inter-converting conformations, E* 

and E where only E can interact with Na+ giving rise to the fast phase. The observed slow 

phase is due to the inter-conversion between E* and E that occurs on the time scale of 

milliseconds while the fast phase occurs on microsecond time scale. 
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The total fluorescence change accompanying Na+ binding is obtained from the sum of the 

amplitudes of the slow and fast phases and it increases hyperbolically with increasing 

[Na+] (Figure 5.3) and equation 1. Analysis of Na+ binding curves enables the 

determination of Kapp while the analysis of kobs as a function of [Na+] gives a direct 

measurement of KA, k1 and k-1 using equation 2 (Figure 2 and Table 1).  

 

It is of interest to note that of all the clotting factors, only GDaPC shows a decrease in 

fluorescence due to Na+ binding (fast phase) preceding an increase in fluorescence in the 

E* to E conversion. This observation was totally missed when using steady state 

fluorescence to monitor monovalent cation binding and could account in part for the 

lower %F change compared to thrombin and FXa. Na+ binding to FXa shows more 

significant fluorescent change compared to the thrombin although it has fewer number of 

tryptophan residues. Increase in fluorescence change when some tryptophan residues 

where mutated in thrombin have also been observed (1).  Because of the presence of 

several tryptophan residues which are distributed throughout the protease molecule, the 

changes in fluorescence induced by Na+ implies these conformational transitions are 

global effects as was convincingly demonstrated in thrombin through systematic 

replacements of each tryptophan residue (1).  

 

DISCUSSION 

The results presented in this study complements the investigation of the molecular 

mechanisms of Na+ binding to all vitamin K dependent clotting enzymes, and 
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demonstrates the existence of E*, E and E: Na+ in FIXa, FXa and GDaPC.  Using steady 

state measurements of intrinsic fluoresce and kinetic effects linked to Na+ binding, 

previous studies have shown the presence of E and E:Na+. This study revealed for the 

first time, that E is indeed in dynamic equilibrium with E*. The discovery of E* in the 

vitamin K dependent clotting enzymes have mechanistic significance in understanding 

the allosteric pathways, linkage effects of cations and macromolecular cofactors as well 

as rationalize the effects of mutagenesis studies linked to Na+. For instance, it has been 

demonstrated that the Na+ and Ca2+ sites on the protease domains of FVIIa, FIXa, FXa 

and aPC are thermodynamically linked, but the molecular basis of this observation is 

unknown. The presence of E* may explain this mechanism, for binding of Ca2+ on E will 

shift the equilibrium away from E* (12) resulting in an increase in  Kapp. Secondly, the 

presence of E* may explain the drastic catalytic properties of some mutants in the 

absence of Na+, Ca2+ and cofactors. 

 

Like thrombin, activated protein C is involved in multiple distinct functions in the 

anticoagulant and cytoprotective protein C pathways. Understanding the intrinsic 

molecular mechanisms may aid in dissociating its functions through rational protein 

engineering. Activated protein C utilizes both Na+ and Ca2+ for optimal catalytic activity 

(13). In vivo, efficient inactivation of Factor Va, requires both Na+ and Ca2+ and 

mutations that disrupts the Na+ allostery are significantly compromised in Ca2+ binding 

and activity towards Factor Va (13). Although, the Na+ site and the Ca2+ are 

thermodynamically, only the former is linked to the active site (14).  
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Factor IXa and Factor Xa function in the tenase and prothrombinase complexes 

respectively (15) and in this context, it has been shown Na+ is not required neither for the 

assembly nor for the catalytic enhancement of these membrane complexes (16, 17). 

However, Na+ in conjunction with Ca2+ are needed for the optimal amidolytic properties 

of each of these enzymes when free in solution (18, 19). Therefore, the either the relevant 

in vivo complexes utilitize novel pathways to enhance the catalytic properties of these 

enzymes or they simply replace the effects of Na+. Several mutagenesis studies seem to 

support the latter in that in both FIXa and FXa Y225P mutants whose Na+ machinery are 

severely weakened, the catalytic properties are significantly compromised in the presence 

or absence of Ca2+when free in solution. However, when these mutants are assembled in 

the tenase and prothrombinase complexes, the Km but not the kcat effect for both small 

chromogenic and macromolecular substrates are fully restored to that of the wild type 

(17, 18). In addition, both Na+ and Ca2+ ions are required for the effective inhibition of 

wild type FIXa and FXa and here too, their Y225P mutants are significant compromised 

for inhibition by antithrombin. These data seem to support that, in vivo, because of the 

roles of Ca2+and macromolecular cofactors in mediating the interaction of enzymes and 

substrates on the surfaces of membranes and their linkage to the Na+ site, the effect of 

Na+ is drastically reduced in wild type FXa and FIXa when incorporated in the tenase and 

prothombinase complexes respectively. This is reminiscent of role of Na+ in the presence 

of thrombomodulin. Not only do these cofactors provide the beneficial effects of Na+ 

allostery, they can increase their effects through protein-protein and protein-membrane 

interactions. 
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FIGURE 5. 1. Kinetic traces of Na+ binding to vitamin K dependent clotting factors in the 

0–250-ms time scale. Notice how the binding of Na+ obeys a two-step mechanism, with a fast 

phase completed within the dead time (<0.5 ms) of the spectrometer, followed by a single-

exponential slow phase. The kobs for the slow phase decreases with increasing [Na+] (see also Fig. 

2), as is evident from the plot.  

Human α-thrombin. Shown are the traces obtained at 0 (red circles), 3.125 (green circles), 25 

(blue circles), and 200 (magenta circles) mM Na+.  Experimental conditions were 100 nM 

thrombin, 50mMTris, 0.1% PEG, pH 8.0, at 15 °C. Continuous lines were drawn using the 

expression a {1-exp (-kobst)}+ b with best-fit parameter values: red circles, a = 0.000 ± 0.000 V, 

kobs = 0.0 ± 0.0 s-1, b = 8.239 ± 0.016 V; green circles, a = 0.000 ± 0.000 V, kobs =0.0 ± 0.0 s-1, b 
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=8.470 ±0.001 V; blue circles, a =0.1754 ±0.0099 V, kobs = 120.0± 9.5 s-1, b =9.1174 ± 0.0012 V; 

magenta circles, a =0.3921 ± 0.0013V, kobs =95.6 ± 4.3 s-1, b =9.7321 ± 0.0025 V ; 

 

 

 

Factor Xa. Shown are the traces obtained at 0 (red circles), 20 (green circles), 120 (blue circles), 

and 400 (magenta circles) mM Na+.  Experimental conditions were 100 nM FXa, 50mMTris, 

0.1% PEG, pH 8.0, at 15 °C. Continuous lines were drawn using the expression a {1-exp (-

kobst)}+ b with best-fit parameter values: red circles, a = 0.000 ± 0.000 V, kobs = 0.0 ± 0.0 s-1, b = 

8.1120 ±0.0001 V; green circles, a = 0.000 ± 0.000 V, kobs =0.0 ± 0.0 s-1, b =8.6010 ±0.0019 V; 

blue circles; a =0.2613 ± 0.0017 V, kobs = 64.1 ± 3.9 s-1, b = 9.1297±0.0012 V magenta circles, a 

=0.4876 ±0.0011 V, kobs = 60.3 ± 1.2s-1, b = 9.4274 ± 0.0015 V ; 
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GDaPC. Shown are the traces obtained at 0 (red circles), 25 (green circles) and 300 (blue 

circles) mM Na+.  Experimental conditions were 100 nM GDaPC, 50mMTris, 0.1% PEG, pH 8.0, 

at 15 °C. Continuous lines were drawn using the expression a {1-exp (-kobst)}+ b with best-fit 

parameter values red circles, a = 0.000 ± 0.000 V, kobs = 0.0 ± 0.0 s-1, b = 8.4850 ± 0.0013 V; 

green circles, a =0.1617 ±0.0011 V, kobs = 30.7 ± 0.9 s-1, b = 8.3393± V; blue circles, a =0.4578± 

0.0012V, kobs =26.5 ± 0.4 s-1, b = 8.1492± 0.0011 V 
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FIXa. Shown are the traces obtained at 0 (red circles), 100 (green circles) and 400 (blue circles) 

mM Na+.  Experimental conditions were 100 nM FIXa, 50mMTris, 0.1% PEG, pH 8.0, at 15 °C. 

Continuous lines were drawn using the expression a {1-exp (-kobst)}+ b with best-fit parameter 

values red circles, a = 0.000 ± 0.000 V, kobs = 0.0 ± 0.0 s-1, b = 8.2030 ± 0.0012 V; green circles, 

a =0.000 ±0.0000 V, kobs = 0.0 ± 0.0 s-1, b = 8.3530± V; blue circles, a =0.1031± 0.0009V, kobs 

=31.6 ± 0.9 s-1, b = 8.4165± 0.0018 V 
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GDFVIIa. Shown are the traces obtained at 0 (red circles) and 400 (green circles) mM Na+.  

Experimental conditions were 100 nM GDFVIIa, 50mMTris, 0.1% PEG, pH 8.0, at 15 °C. 

Continuous lines were drawn using the expression a {1-exp (-kobst)}+ b with best-fit parameter 

values red circles, a = 0.000 ± 0.000 V, kobs = 0.0 ± 0.0 s-1, b = 8.1340 ± 0.001 V; green circles, a 

=0.000 ±0.0000 V, kobs = 0.0 ± 0.0 s-1, b = 8.2230± 0.0001V  
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FIGURE 2. Values of kobs for the slow phase of fluorescence increase due to Na+ binding to 

clotting factors (see Fig. 1) as a function of [Na+]. Shown are the results pertaining to FIIa (red 

circles), FXa (green circles), GDaPC (blue circles) and FIXa (magenta circles). Continuous lines 

were drawn according to Equation 2 under “Materials and Methods” with best-fit parameter 

values listed in Table 1. Continuous lines were drawn according to Equation 3 under “Materials 

and Methods” with best-fit parameter values listed in Table 1. 
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FIGURE 5.3. Na+ binding curves of clotting factors obtained from the total change in intrinsic 

fluorescence measured as the sum of the amplitudes of the fast and slow phases determined by 

stopped-flow kinetics (see Fig. 1). Shown are the results pertaining to FIIa (red circles), Fxa 

(green circles), GDaPC (blue circles) and FIXa (magenta circles). Continuous lines were drawn 

according to Equation 2 under “Materials and Methods” with best-fit parameter values listed in 

Table 1. 
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Clotting Factor          F0                 F1           ΔF/F0     Kapp            KA         k1        k-1         r                       

                  

                               V                  V              %           M-1           M-1         s-1        s-1   

 

FIIa                  8.20 ± 0.05        9.39 ± 0.03       14.5       119±12       162 ± 20      89±2       85±9        0.95 

 

FXa                      8.23 ± 0.05      10.47 ± 0.16       27.2         10 ± 2          16 ± 4       45± 4      68 ± 12    1.49 

 

GDaPC                8.15 ± 0.03         8.66 ±  0.02        6.1         59 ± 3       116 ± 15     25 ± 1     24  ± 3      0.95 

 

FIXa                    8.21 ± 0.01          8.51± 0.03         3.6      ~ 0.8 ± 0.1          -                -               -           - 

 

GDFVIIa            8.13 ±  0.02         8.22 ± 0.01         1.1              -                  -                -               -           - 

 

TABLE 5.1 Fluorescence and binding parameters for Na+ binding to the Vitamin K 

dependent clotting factors. The parameters F0, F1 and ΔF=F1-F0 and Kapp were derived from 

analysis of the data in Figure 3 using Equation 1 under “Materials and Methods”. The value of 

KA, k1,k-1 and r=k-1/k1 were derived from analysis of the data from figure 2 using Equation 2 . 
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Data from this thesis as well as from recent kinetic and structural observations on 

thrombin and other S1 proteases support a considerable and unexpected plasticity of the 

trypsin fold (1). Through protein conformational dynamics, the protease can inter-convert 

between inactive E* and active E forms. E* features a collapse of the 215-217 β-strand 

into the active site, a disruption of the oxyanion hole due to a flip of the peptide bond 

between Glu192 and Gly193, and abrogation of the Na+ site (2, 3). Consequently, E* is 

basically unable to interact with either substrate or bind Na+.  

 

The structural differences between E and E:Na+ are subtle, but the E* structure differs 

significantly from both, as such the E* to E transition involves unprecedented 

conformational changes (4). More importantly however, an intact ion-pair between Ile16 

and Asp194 is still maintained in all the structures of E*, suggesting that this 

conformation is not equivalent to the zymogen form, which is characterized by a broken 

Ile16-Asp194 ion-pair and lack of a collapse of the 215-217 β-strand (5, 6). Furthermore, 

stopped-flow experiments show that the E* to E transition takes place on a time scale <10 

msec compared to the zymogen – protease conversion that occurs on a longer (100-1000 

msec) time scale (7, 8). 

 

 E* is not unique to the vitamin K-dependent clotting factors, however. Structural 

features of E* like collapse of the 215-217 β-strand into the active site or the disruption 

of the oxyanion hole have also been observed in other structures of serine proteases such 

as tryptases and complement factors (1). These observations support E* as an inactive 

form that is in allosteric equilibrium with the active form E of the protease. Serine 
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proteases are therefore allosteric enzymes whose activity can be fine tuned by modulating 

the E*-E equilibrium. Allostery is more often discussed in multimeric proteins like 

hemoglobin where large scale conformational transitions are usually evident (9). The 

structural plasticity demonstrated in monomeric proteins like serine proteases supports 

the idea that allostery is an intrinsic property of all dynamic proteins closely intertwined 

with catalysis (10). As shown in this thesis work, conformational plasticity is an integral 

part of protease function, regulation and substrate specificity. 

 

What is the physiological advantage of the E*-E equilibrium? Depending on the activity 

requirement of each protease, the E* to E equilibrium can be set to optimize the function 

of that protease. For low activity proteases, the equilibrium favors E* while the reverse is 

true for high activity protease.  

 

FUTURE DIRECTIONS 

I. THROMBIN AND ANTICOAGULANT THERAPY 

Safe and effective anticoagulants are needed for treatment and prevention of thrombotic 

disorders such as venous thrombosis and acute myocardial infarction (11). Current 

anticoagulant therapy is dominated by heparinoids, which are involved in antithrombin 

inhibition of thrombin and factor Xa; and warfarin, a generic inhibitor of the synthesis of 

all vitamin K -dependent clotting factors. Amongst the limitation of heparin and warfarin 

are a narrow therapeutic window and an unpredictable dose-response profile (12). Direct 

thrombin inhibitors like hiruden and bivalirudin are highly selective for thrombin, yet do 

no have a superior therapeutic efficacy and safety compared with low molecular weight 
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or even unfractionated heparins. Therefore new strategies are needed to generate more 

efficacious anticoagulants (12). 

 

Because of its paradoxical roles in the procoagulant and anticoagulant pathways, 

thrombin mutants with selective specificity toward the anticoagulant protein C pathway 

have been rationally engineered and show potent and safe anticoagulant and 

antithrombotic effects in vivo. α-Thrombin mutants, E217K and W215A/E217A that 

show anticoagulant and antithrombotic effects in non-human primates both exhibit some 

structural features of E* like partial collapse of the 215-217 β-strand and disruption of 

the oxyanion hole (13-15). Thus stabilization of E* through mutagenesis or binding of a 

small molecule can provide an elegant regulatory control that can fine tune specificity 

along a particular pathway (3). The presence of E* in thrombin have significance 

mechanistic importance in generating a completely anticoagulant thrombin with no or 

minimal effect on fibrinogen and PAR1. Because of the collapsed active site, a mutant 

completely stabilized in E* will not interact with substrates or bind inhibitors. However, 

when such mutant interacts with TM-protein C complex, it can regain its ability to 

activate protein C. Stabilization of E* provides a novel strategy for generating 

anticoagulant thrombins and it can be pursued through mutagenesis or binding by small 

molecules identified through high throughput screening techniques.  

 

II. E* in other proteolytic enzymes 

In this thesis project, we have investigated the presence of inactive E* conformations in 

vitamin K- dependent clotting factors using Na+ as a probe to perturb the E* to E 
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equilibrium. However, for proteolytic enzymes that do not interact or interact weakly 

with Na+, this strategy cannot be used. Therefore, specific active site or exosite probes 

should be generated to investigate whether E*-like conformations are present in solution. 

In addition, to detect structural features of E*, crystallographic studies should be pursued 

in the absence of salts or inhibitors to prevent any allosteric transitions caused by these 

effectors. Alternatively, proteolytic enzymes that are amenable to NMR studies, 

structural and kinetic characterization of E* can be performed simultaneously using 

specific experiments based on CPMG relaxation dispersion that have been develop to 

investigate the low-populated transiently-formed conformations in proteins. These 

techniques can be very useful for instance to investigate changes in dynamics of the E* to 

E transition in the presence of effectors. 

 

III. Role of the autolysis loop in S1 proteases 

Sequence comparison of S1 serine proteases shows a lack of conservation in amino acid 

composition and length in the 145-150-loop region. However, this loop is strategically 

located between the 186- and 220 loops (the Na+ binding site in some cases), the active 

site and exosite I/Ca2+ binding site. In many enzymes with longer loops, this region is 

highly flexible and susceptible to proteolysis, and in crystal structures it is either not 

defined or assumes different conformations depending on the crystallization conditions. 

Therefore, it became very difficult to allocate a definite function and it was proposed that 

the main function of this loop is to restrict access to the active site cleft. However, studies 

from our lab and others as well as data from this project shows that composition of the 

autolysis loop plays a major role in protease allostery and specificity. For instance, 
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deletion of the nine residues from human thrombin have stabilized that E* conformation 

whilst substitution of this loop with it murine counterpart resulted not only in a high 

activity human enzyme in the absence of Na+, it generated a thrombin mutant with a 

higher Na+ binding affinity compared to the WT (Chapters 3 & 4). Taken together, these 

results indicate that this loop is at the heart of protease allostery due to its strategic 

location, and can be used to modulate specificity by optimizing its sequence composition 

and length. Therefore, protease engineering efforts focusing on this loop in other trypsin-

like serine proteases have the potential to modulate activity and generate more proficient 

enzymes especially for biological or industrial purposes.       
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