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Introduction

In the realm of shared spaces where humans and robots coexist,
safeguarding interactions is vital. This study presents a data-driven
trajectory prediction method that enhances robot action planning by
Integrating human danger awareness, promoting both safety and
operational efficiency in human-robot environments.

Problem Formulation

Robot Model

» State and Action: The Robot’s state and action at time ¢ are represented
by xr(t) € R"? and ug(t) € Up C R™E.

 Dynamics: The robot’'s dynamics are modeled by:

rr(t+1) = fr(za(t), ug(t)) (1)
This updates the robot’s state based on its current state and action.

+ Objective Function: The objective function, denoted as ()%, incorpo-
rates the Euclidean distance from the robot’s current state to its goal state
and the action cost:

Q% (xr(l), ur(l), gr) = Oillzr(l) — gl + O:llur®> (2

where 0, and 0, are weighting parameters.

« Optimization Problem: The robot solves the following optimization prob-
lem over the prediction horizon T'z:

t+1Tr—1
arg min Z QR()
k=t
up(t:t+Tp —1) = (st ur(k) € Up VEk, (3)
Model(1)

Poon(k) < P VEk

where k =1+1,....1+1k, u}}(t 4+ 1Tr—1) = [*u.}}(t) - -u}‘-i(ﬂ +Tr — l”T,
Pcon(k) € [0,1] is the probability of a collision between the human and
robot at prediction time instant k£, and Py, € |0, 1] is a threshold value.

Human Model

- State and Action: The Human'’s state and action at time ¢ are repre-
sented by xy(t) € R and uy(t) € Uy C R™",

 Dynamics: The human’'s dynamics are modeled by:
ry(t+1)= fu(ru(t),un(t)) (4)
This updates the human’s state based on its current state and action.

« Objective Function: The human'’s objective function is a weighted sum
of two components—the goal-reaching and the safety objectives:

QY% (xu(t),up(t),gn) = Osl|xu(t) — gul|® + Oal|un(t)|? (9)

Q4 (zu(t), un(t), Tr(t)) = 5 dellzn () —2rO)I” (6)
where 603, 64, 05, and 0 are weighting parameters.

« Action Selection: The human selects the action that optimizes the com-
bination of the goal and safety objectives:

uy(t) =arg min (mQY%,(-) + BnQ(+)) (7)

up€Up

where 7,1, € R are the weighting factors and 3 € {0, 1} represents
the human’s danger awareness.

Trajectory Prediction

Model Structure
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Fig. 1. Recurrent Neural Network (RNN) model for trajectory prediction

Inputs:

t—Te:t

— Robot's Past Positions: pp , from time ¢t — T to current time ¢.

t—To:

— Human'’s Past Positions: p'; *©**, from time ¢ — T, to current time ¢.

— Danger Awareness Coefficient: 3, indicating the human’s perception
of potential risks.

Outputs:

— A sequence of predicted future positions of the human over the pre-
diction horizon, denoted by p};*%.

Main Modules of the Danger-Informed Model:

— Robot State Encoder: An LSTM module that processes the se-
quence of past robot positions and encodes it into a state repre-
sentation, zp.

— Human State Encoder: An LSTM module that processes the se-
gquence of past human positions and encodes it into a state repre-
sentation, zy. This module also incorporates the estimated value of
the danger awareness coefficient, j.

— Decoder Module: An LSTM module that takes the concatenated
state representations of the robot and human, zr and zg, and pre-
dicts the future trajectory of the human.

Experiments & Results

Experiment Setup and Data Generation

« Simulation Environment: A two-dimensional space where both the hu-
man and robot navigate towards dynamically updating goal positions.

« Past and Future Data: Positions and velocities of the human and robot
are recorded over Ngm time steps. For each time step ¢, the dataset
Includes past observations over a horizon of 7o and future positions over
a horizon of Ty.
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Fig 2. Human Robot Interaction sample trajectories.

Prediction Results

* Feed the trajectory data into the prediction model.

« Generate the human trajectory prediction.

« Compare with the ground truth human future position to evaluate the
performance of the prediction model.
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Fig 3. Sample output of the prediction system.

Conclusion

This research advances the predictive modeling of human trajectories with a data-
driven approach that accounts for human danger awareness. The resulting model
demonstrates potential for enhancing robot decision-making, fostering safer and
more efficient human-robot interactions. Future integration into action planning
schemes promises significant improvements in the cohabitation of humans and
autonomous systems in shared environments.
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