Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: wucse-2009-72

2009

Design of an Extensible Network Testbed with Heterogeneous
Components

Charlie Wisemen, Jyoti Parwatikar, Ken Wong, John Dehart, and Jonathan Turner

Virtualized network infrastructures are currently deployed in both research and commercial
contexts. The complexity of the virtualization layer varies greatly in different deployments,
ranging from cloud computing environments, to carrier Ethernet applications using stacked
VLANSs, to networking testbeds. In all of these cases, there are many users sharing the
resources of one provider, where each user expects their resources to be isolated from all other
users. Our work in this area is focused on network testbeds. In particular, we present the design
of the latest version of the Open Network Laboratory (ONL) testbed. This redesign generalizes
the underlying infrastructure... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Wisemen, Charlie; Parwatikar, Jyoti; Wong, Ken; Dehart, John; and Turner, Jonathan, "Design of an
Extensible Network Testbed with Heterogeneous Components” Report Number: wucse-2009-72 (2009).
All Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/26

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/26?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/26

Design of an Extensible Network Testbed with Heterogeneous Components

Charlie Wisemen, Jyoti Parwatikar, Ken Wong, John Dehart, and Jonathan Turner

Complete Abstract:

Virtualized network infrastructures are currently deployed in both research and commercial contexts. The
complexity of the virtualization layer varies greatly in different deployments, ranging from cloud
computing environments, to carrier Ethernet applications using stacked VLANS, to networking testbeds.
In all of these cases, there are many users sharing the resources of one provider, where each user expects
their resources to be isolated from all other users. Our work in this area is focused on network testbeds.
In particular, we present the design of the latest version of the Open Network Laboratory (ONL) testbed.
This redesign generalizes the underlying infrastructure to support resource extensibility and heterogeneity
at a fundamental level. New types of resources (e.g., multicore PCs, FPGAs, network processors, etc) can
be added to the testbed without modifying any testbed infrastructure software. Resource types can also
be extended to support multiple distinct sets of functionality (e.g., an FPGA might act as a router, a
switch, or a traffic generator). Moreover, users can dynamically add new resource extensions without any
modification to the existing infrastructure.

https://openscholarship.wustl.edu/cse_research/26?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/26?utm_source=openscholarship.wustl.edu%2Fcse_research%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2009-72

Design of an Extensible Network Testbed with Heterogeneous
Components

Authors: Charlie Wiseman, Jyoti Parwatikar, Ken Wong, John DeHart, Jonathan Turner

Corresponding Author: wiseman@wustl.edu

Web Page: http://onl.wustl.edu

Abstract: Virtualized network infrastructures are currently deployed in both research and commercial contexts.
The complexity of the virtualization layer varies greatly in different deployments, ranging from cloud computing
environments, to carrier Ethernet applications using stacked VLANSs, to networking testbeds. In all of these
cases, there are many users sharing the resources of one provider, where each user expects their resources to
be isolated from all other users. Our work in this area is

focused on network testbeds. In particular, we present the design of the latest version of the Open Network
Laboratory (ONL) testbed. This redesign generalizes the underlying infrastructure to support resource
extensibility and heterogeneity at a fundamental level. New types of resources (e.g., multicore PCs, FPGAs,
network processors, etc) can be added to the testbed without modifying any testbed infrastructure software.
Resource types can also be extended to support multiple distinct sets of functionality (e.g., an FPGA might act
as a router, a switch, or a traffic generator). Moreover, users can dynamically add new resource extensions
without any modification to the existing infrastructure.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Design of an Extensible Network Testbed with Heterogeneous Components

Charlie Wiseman, Jyoti Parwatikar, Ken Wong, John DeHart, and Jonathan Turner
Washington University in St. Louis
wiseman@wustl.edu, {jp,kenw,jdd} @arl.wustl.edu, jon.turner@wustl.edu

Abstract

Virtualized network infrastructures are currently de-
ployed in both research and commercial contexts. The
complexity of the virtualization layer varies greatly
in different deployments, ranging from cloud comput-
ing environments, to carrier Ethernet applications using
stacked VLANS, to networking testbeds. In all of these
cases, there are many users sharing the resources of one
provider, where each user expects their resources to be
isolated from all other users. Our work in this area is fo-
cused on network testbeds. In particular, we present the
design of the latest version of the Open Network Labo-
ratory (ONL) testbed. This redesign generalizes the un-
derlying infrastructure to support resource extensibility
and heterogeneity at a fundamental level. New types of
resources (e.g., multicore PCs, FPGAs, network proces-
sors, etc) can be added to the testbed without modifying
any testbed infrastructure software. Resource types can
also be extended to support multiple distinct sets of func-
tionality (e.g., an FPGA might act as a router, a switch,
or a traffic generator). Moreover, users can dynamically
add new resource extensions without any modification to
the existing infrastructure.

1 Introduction

Virtualized network and system infrastructures are be-
coming more and more commonplace across a variety
of commercial and research deployment contexts. Cloud
computing environments use end system virtualization
to allow many applications to share computational and
storage resources owned by one cloud provider. ISPs
use VLAN stacking to provide carrier Ethernet services
across the wide area to large enterprise customers. Net-
work testbeds use various types of virtualization to share
network nodes and links among many concurrent virtual
network experiments running on the shared testbed sub-
strate. Fundamentally, these types of systems use virtu-
alization to share the resources of one provider among

many customers or users. More importantly, the re-
sources assigned to each customer are isolated from
those of other customers.

Configuration and management in non-virtualized in-
frastructures is already a difficult task. Supporting
virtualization layers adds further complexity whereby
providers must configure their networks to meet the iso-
lation and performance requirements of all of their cus-
tomers. Our work in this area is focused on network
testbeds, although the ideas explored here could be ap-
plied in other virtualized infrastructure settings.

Researchers have come to rely extensively on testbeds
for developing, testing, and evaluating new ideas. In-
terestingly, nearly all existing testbeds have only PCs as
user configurable resources. There are clear benefits to
this choice, including simpler testbed management soft-
ware and user familiarity with the PC platform. How-
ever, a testbed with a diverse collection of heterogeneous
resources would provide a number of benefits to the re-
search community. Researchers would be able to con-
duct experiments with a variety of networking devices
and technologies in a contained environment. This is
also useful for educators who are interested in giving stu-
dents hands-on experience with networking technologies
other than PCs. Natural additions to such a testbed would
include network processor systems, FPGAs, and other
hardware-based or commercial devices. Access to these
types of high performance, reconfigurable nodes would
also allow researchers to test new protocols and ideas un-
der realistic conditions while still operating in an isolated
setting. PCs alone can certainly be used to emulate the
functionality of many different devices, but they can not
sustain Internet-scale throughput or match delay charac-
teristics of specialized technology.

Most existing testbeds also provide only a low level in-
terface to users for configuring nodes in their virtual net-
works. This is a reasonable choice for PC-only testbeds,
although including higher level tools would reduce the
manual configuration burden. In the case of a testbed

with heterogeneous components, it is necessary to in-
clude configuration interfaces that export higher level
abstractions to users (e.g., routes, packet filters, queue-
ing parameters, etc) as most users will not be familiar
with the native configuration tools for resources such as
FPGAs or network processors. Of course, many types
of devices can be reprogrammed to support a range of
networking functionality. It is thus important to support
extensible resources, where users can select among the
different possibilities for each device type and even add
their own new functionality if necessary.

In this paper, we present the latest version of the Open
Network Laboratory (ONL) testbed, which has been ex-
tended based on the above observations. Specifically,
this work includes four key contributions:

1. We have deployed a testbed which provides the net-
working community with an experimental facility
that supports a variety of heterogeneous resources.

2. We have developed a testbed architecture that is de-
signed explicitly for extensibility. This architec-
ture provides a general framework for configuring
and interacting with heterogeneous resources that is
easy enough for novices to learn while still support-
ing complex functionality.

3. We provide a general mechanism for specializing
and extending reconfigurable resources to allow
higher level interaction. For example, users can di-
rectly manage an appropriately configured FPGA
card as an IPv4 router.

4. We have developed a fast and efficient resource
reservation system that accommodates heteroge-
neous collections of resources and arbitrary virtual
network configurations.

The rest of the paper is organized as follows. Sec-
tion 2 gives some background about the Open Network
Laboratory prior to this work. Section 3 then highlights
the design considerations for an extensible testbed with
heterogeneous resources. The new ONL software infras-
tructure is described in Section 4, including important
abstractions and implementation details. An overview
of how resources are scheduled in ONL is given in Sec-
tion 5. Section 6 describes the resources currently in the
testbed, and Section 7 shows three example ONL ses-
sions. Section 8 contains related work. Future work is
discussed in Section 9. Section 10 concludes the paper.

2 Open Network Laboratory

The Open Network Laboratory has been operating for a
few years now [13]. It has been used primarily as an

£ Remote Laboratory Interface (RLI)
File Edit Monitoring Topology

n2p2

E}/_‘u::::abl e |
Ingress Filters

nipla n?p1 Egress Filters

nipS

Queue Tables
Flugin Table
Monitoring [
Ingress

Show Error Lop

Egress

Figure 1: Original ONL RLIL

education tool in graduate and undergraduate network-
ing courses [41][40]. Originally, ONL was designed to
give users access to four locally built extensible hardware
routers [10] and a few dozen PCs for traffic generation.
One of the most important elements of the original de-
sign was the Remote Laboratory Interface (RLI), which
is a GUI for interacting with the testbed.

The RLI is used to build arbitrary virtual network
topologies and then configure and monitor nodes in that
topology. All of the initial configuration can be done
without ever actually being connected to the testbed.
Of course, with only four routers, resource contention
quickly becomes an unavoidable issue. One solution
would have been to virtualize the routers. However, that
is not a practical alternative for many realistic router plat-
forms. It is also not desirable in a testbed that seeks to
support high performance networking experimentation.

Instead, a simple reservation scheme was devised
whereby users make a reservation in advance for the
routers and PCs they need. For example, a user might
request a resource reservation for two routers and twelve
PCs from 3pm to Spm. Assuming that there are enough
resources available at that time, the user is then guaran-
teed to have access to those resources for the duration of
their reservation. When the reservation time arrives, the
RLI is used to connect to the testbed. The infrastructure
software maps the user’s virtual network onto the physi-
cal substrate of the testbed and then gives the user access
to the PCs and routers in their virtual network.

The routers and PCs are all indirectly connected via
commodity Ethernet switches, and VLANs are used

to isolate each virtual link in all active virtual net-
works. These switches will be referred to as “backbone”
switches for the rest of the paper. The backbone switches
are invisible to users, and the testbed software infrastruc-
ture manages them automatically. Every PC has an extra
network interface that is connected to a separate control
network in the testbed. This provides out-of-band access
for users to log in to the PCs to start traffic sources and
sinks.

Once running a session, the RLI is used for ongoing
configuration and monitoring of the user’s virtual net-
work. Simple menus give users access to routing tables,
packet filters, queueing subsystems, etc. A screenshot of
the original RLI is shown in Figure 1.

More recently, an opportunity arose to include a new
type of programmable router based on a network proces-
sor platform [39]. At the time, there was no way to easily
support two different types of routers due to limitations
in both the RLI and the reservation system. A temporary
solution was to replicate the testbed infrastructure and
run two testbeds in parallel, i.e., there were two com-
pletely independent instances of ONL running that each
contained only one type of router and PCs.

Clearly, this situation was undesirable, and it served as
a driving force for the redesign of the testbed software.

3 Design Considerations

Before discussing specific design choices, it will be use-
ful to clearly define certain terms. First, a session is
one instance of a virtual network running on the testbed.
Each session begins when the user requests resources in
the testbed and ends when those resources are released.
Second, a resource type, or simply type, describes the
properties of a particular kind of device that is available
in the testbed. For example, PCs and FPGAs would be
different types. Finally, a node is one user-allocatable
instance of a type.

Most testbeds share a common set of basic design ob-
jectives. This includes the ability to support multiple
concurrent sessions in the testbed and to provide some
level of isolation between those sessions. Those require-
ments apply here as well. Of course, the first new objec-
tive is to support heterogeneous resource types. Ideally
this means supporting any and all types of networking
technology. The initial design presented here is focused
on wired devices, although extending the model to wire-
less resources is possible.

Objective: The testbed must support a wide
range of diverse networking devices.

Naturally, many of the types that will likely be in-
cluded in such a testbed are going to reprogrammable,

such as FPGAs, network processors, and PCs. Users
may want nodes of these types to logically function as
many different network devices (e.g., routers, switches,
firewalls, traffic generators, etc). It is therefore necessary
for resource types to support many sets of functionality.
More importantly, users may extend an existing type on
their own. For example, a user might add support for new
protocols to an existing router, or add traffic generation
capabilities to an FPGA device.

Objective: Resource types must be extensible
by users.

Having many configuration options and possibilities
certainly increases the flexibility of the testbed. How-
ever, it is often the case that systems with higher config-
urability and flexibility also have a higher barrier to en-
try for novice users. Some of this trade-off is intrinsic in
any complex system, but a well designed testbed could
maintain high levels of flexibility while still providing
user interfaces that are simple and intuitive enough for
inexperienced users.

Objective: Session configuration must be sim-
ple enough for novices.

It is also important for testbed control and manage-
ment to remain as simple as possible. This is particularly
important when it comes to adding new resource types
to the testbed. The testbed infrastructure should be de-
signed to minimize the effort of adding new types, and
ideally it should be handled without the need to modify
any of the testbed software. This burden is entirely on
the testbed managers, not the users, but reducing the time
spent on ongoing management tasks frees up testbed staff
to improve the testbed in more substantive ways. In other
words, the testbed itself should also be easily extensible.

Objective: The testbed infrastructure must be
extensible to support simple management.

All testbeds provide some level of isolation between
concurrent sessions. Depending on the testbed, this
ranges from PC-only solutions relying on virtual ma-
chine isolation (e.g, PlanetLab [29]) to complete isola-
tion of testbed nodes and traffic in a user virtual network
(e.g., Emulab [37]). Given the previous design objec-
tives, it is likely that the testbed will contain high per-
formance devices. Again, this might include network
processor platforms or FPGAs, but could also include
other commercial or research hardware platforms. One
of the benefits to having high performance types in the
testbed is to allow users to conduct performance eval-
uations. To support this class of experimentation, it is
necessary for the testbed infrastructure to provide strong
isolation guarantees for every virtual network.

=

F

PCs
12 Gb/s |12:Gb/s 12 Gb/s
- anna
:&\gl | Routers Processors s witches

Figure 2: ONL testbed network with session mappings for three user virtual networks.

Objective: Concurrent sessions must be
strongly isolated from one another.

A related consideration is how resources are shared
among users. One approach is to virtualize all the nodes
in the testbed and allow multiple users to share the same
node simultaneously. This is clearly not a viable option
here, as many networking devices do not support vir-
tualization. PCs are one of the few types that are eas-
ily virtualized, although PC virtualization typically leads
to poor performance isolation. Another approach is to
allocate nodes solely to one user at a time, which fits
more closely with the previous objective. Of course, the
testbed may only have a small number of nodes of some
resource types, so a reservation-based scheduling system
should be used to allow users to share nodes easily over
time. Scheduling sessions in this context is not a triv-
ial problem, but it does provide an effective means to
share testbed resources while still meeting the other de-
sign objectives. Note that virtualization is still used in
the testbed substrate network in order to provide traffic
and link isolation (e.g., by using VLANs on backbone
switches to separate traffic on different virtual links).
The testbed as a whole is, of course, a virtualized plat-
form, whether or not individual nodes in the testbed are
virtualized.

Decision: Nodes are assigned to one user at
a time and are shared according to the testbed
resource scheduling policy.

4 Testbed Infrastructure

The new ONL testbed infrastructure is now presented.
A brief overview of the current ONL testbed network is
given first along with an example that shows how the
testbed is shared among multiple sessions. A descrip-
tion of the major software components is next, followed
by the core abstractions that are used in the software to
meet the design objectives from Section 3. Finally, some
implementation details are discussed for key pieces of
the infrastructure.

4.1 Testbed Network

There are currently 5 backbone switches in ONL. Each
switch has 48x1 Gb/s ports and supports a vendor-
specific 12 Gb/s stacking connection [24]. These stack-
ing connections are used to connect the 5 switches into
a simple linear backbone, where all testbed nodes con-
nect to one of the switches. The actual layout is shown
along the middle of Figure 2. The details of the resource
types are given in Section 6, but as the figure shows, there
are 4 hardware routers, 14 network processor systems, 6
NetFPGAs [23], and around 100 PCs. VLANSs are auto-
matically configured for every virtual link in every ses-
sion. ONL also allows users to add virtual switches to
their experimental topologies in the same manner as vir-
tual links, by adding all endpoints connected to the same
virtual switch to a unique VLAN.

Figure 2 also shows how three concurrent sessions

Node Daemons

_ Central
User Intern . F|rewall Resource Testl;;ed
with RLI Daemon Physical
Network
. \ -

-v

Figure 3: ONL infrastructure overview.

might be scheduled and mapped to the testbed network.
The top of the figure shows RLI screenshots from each
session. The node and link mappings for each session
are included in the testbed network diagram below the
screenshot. The colors of the different types in the RLI
correspond to the colors of the blocks in the diagram.
Circles in the backbone switches correspond to virtual
switches in the user session. For example, the left topol-
ogy has one hardware router, two network processor sys-
tems, three virtual switches, and seventeen PCs. Note
that the three sessions in this example are mapped to dis-
tinct subsets of the backbone switches only for clarity. In
practice, different virtual networks can and often do over-
lap in complicated ways when mapped onto the testbed
network.

4.2 Software

A high level view of the ONL infrastructure is shown
in Figure 3. There are three core software components:
the Remote Laboratory Interface, the Central Resource
Daemon, and the Node Daemons. These is also a testbed
firewall whose primary function is to keep experimental
traffic from leaving the confines of the testbed network.

The Remote Laboratory Interface (RLI) is the user in-
terface to the testbed. It runs on the user’s computer
and is used to build experimental topologies, configure
nodes, and monitor the user’s virtual network. Clearly,
the RLI must present a consistent and intuitive view of
the diverse resources in the testbed.

The RLI communicates over the Internet with the Cen-
tral Resource Daemon (CRD) on behalf of the user. The
CRD has four main functions. First, it manages all the
nodes in the testbed, ensuring that nodes are in a proper
state after a session ends and granting users access to
nodes in their virtual topologies. Second, the CRD man-

ages all session state for the testbed. This includes invok-
ing the testbed scheduler to verify that a user has permis-
sion to start a session when requested. Third, the testbed
backbone switches are configured when sessions are ini-
tiated or removed. Finally, the CRD relays control mes-
sages from the RLI to other nodes in the testbed, rather
than having the RLI contact nodes directly. This forces
all user messages to pass through the CRD for authenti-
cation and verification.

The Node Daemons (NDs) accept control messages
from the CRD and the RLI. There is one ND for each
resource type, and every node of that type runs that ND.
The ND understands how to interact with the node and
makes any necessary changes based on the control mes-
sages received.

4.3 Abstractions

The most important abstractions used in the ONL soft-
ware are the fype abstraction and the specialization ab-
straction.

The type abstraction represents the physical device,
e.g., a PC, network processor card, or NetFPGA. Each
type is accompanied by a type description. Although
this description could encompass many things about the
hardware, there is no need for the core of the description
to be complex. Indeed, the description of each type only
needs to contain a unique identifier and a list of network
interfaces. That is enough to accurately represent a node
in a virtual network topology in the RLI and in the CRD.
Figure 4 shows the XML type description for the IXP
2800 network processor platforms that are currently in
ONL.

The specialization abstraction represents one set of
functionality supported by a particular type. For exam-
ple, an IPv4 router built on top of a network processor

<type id="ixp2800">
<networkInterfaces>
<port number="0" linkType="GigE"/>
<port number="1" 1linkType="GigE"/>
<port number="2" linkType="GigE"/>
<port number="3" linkType="GigE"/>
<port number="4" 1linkType="GigE"/>
</networkInterfaces>

</type>

Figure 4: Type description for an IXP 2800 platform with
five 1 Gb/s network interfaces.

card, or a traffic generator built on top of a NetFPGA.
Each specialization of a type has a corresponding in-
terface description that is used by the RLI to build the
user interface for that specialization. GUI menus, tables,
and monitoring displays are automatically added to the
RLI based on this description so that new specializations
can be added simply by providing the interface descrip-
tion. The RLI software does not need to be modified.
Of course, the description specification needs to be fixed
so that the RLI can parse it to produce the desired con-
figuration options, but general enough to support most
common user interactions with diverse networking tech-
nologies.

There are two basic ways for users to interact with a
node. They can send configuration updates to the node,
and they can monitor the node. Configuration updates
can include anything that changes the operational state
of the node. For example, a router might accept configu-
ration requests to modify the routing state and to config-
ure queues. In general, networking devices keep most of
their operational state in tables. The interface description
thus includes generic table elements that can be tailored
for each specialization. Every table and general configu-
ration command is either associated with the global node
state or per-port state. For example, a router may have a
separate routing table at each input port, or a global rout-
ing table shared by all input ports. Monitoring requests
are used to get real-time data from the device. Contin-
uing the router example, it may support monitoring the
packet rates at each network interface as well as moni-
toring current queue lengths. Monitoring commands are
also tied either to a particular port or to the node globally.

These two classes of interaction provide a generic
framework for specifying the interface associated with
each specialization of a device. Configuration updates
consist of a message type and a series of parameters to
accompany the request. If the update is associated with
per-port state on the node, the port number is also sent
with the request. The RLI automatically gets the appro-
priate information from the user to fill in the update re-

<specialization id="NPR" type="ixp2800">

<configuration>

<portTable name="routes">
<param name="address" type="str"/>
<param name="outputPort" type="int"/>
<param name="statsIndex" type="int"/>
</portTable>

<portTable name="flowFilters">
<param name="dstAddress" type="str"/>
<param name="srcAddress" type="str"/>
<param name="protocol" type="int"/>
<param name="dstPort" type="int"/>
<param name="srcPort" type="int"/>
<param name="queue" type="int"/>
<param name="outputPort" type="int"/>
<param name="drop" type="bool"/>
<param name="statsIndex" type="int"/>

</portTable>

<globalTable name="plugins">

<param name="MEcore" type="int"/>
<param name="obJjectFile" type="str"/>
</globalTable>

<portCommand name="setQueueParams">
<param name="queue" type="int"/>
<param name="threshold" type="int"/>
<param name="quantum" type="int"/>
</portCommand>

<portCommand name="setPortRate">
<param name="bitRate" type="int"/>
</portCommand>

</configuration>

<monitor>
<portMonitor name="rxPkt"/>
<portMonitor name="txPkt"/>
<portMonitor name="rxByte"/>
<portMonitor name="txByte"/>
<portMonitor name="queueLength">
<param name="queue" type="int"/>
</portMonitor>
<globalMonitor name="flowPkt">
<param name="statsIndex" type="int"/>
<param name="preQueue" type="bool"/>
</globalMonitor>
<globalMonitor name="flowByte">
<param name="statsIndex" type="int"/>
<param name="preQueue" type="bool"/>
</globalMonitor>
<globalMonitor name="errorCnt">
<param name="errorNum" type="int"/>
</globalMonitor>

</monitor>
</specialization>

Figure 5: Specialization description for an IPv4 router
on an IXP 2800 platform.

quest and sends the update to the ND for the node. In the
case of a table, the RLI generates add, remove, and up-
date entry messages for the user as they modify the table
in the RLI. Responses are often simple success or fail-
ure notifications, but could include other information to
be presented to the user. Monitoring requests are rep-
resented the same way, but the responses consist of a
timestamp and the requested data. Monitoring requests
can also be periodic, e.g., to monitor a value in the node
once a second. These values are displayed on real-time
charts that allow the user to track soft state in their virtual
network. Figure 5 shows part of the XML specialization
interface for the Network Processor-based Router (NPR),
described in Section 6, which is an IPv4 router built on
the IXP 2800 type shown in Figure 4.

Each specialization is tied to one type so that the ap-
propriate nodes can be assigned to the user, but each type
may have many specializations. This separation allows
the testbed to support node extensibility directly by al-
lowing reprogrammable devices to export different con-
figuration interfaces based on their current functionality.
It also provides a means to support multiple user inter-
faces for a type that are targeted at different levels of ex-
pertise. For example, a specialization for novices might
only support the most basic interaction with a type, while
a specialization for experts would expose every possible
control knob and option.

4.4 Implementation Details

The RLI parses all available type and specialization de-
scriptions to build menus for adding each type and each
specialization to a user’s virtual network. Note that users
can add types without any specialization if they do not
need a higher level interface and plan to configure every
node manually. Once added to a topology, each special-
ized node can be configured according to its specializa-
tion description via menus and dialogs that are accessed
by clicking on the node.

By design, the RLI is not part of the trusted code base
for the testbed because it is run on remote PCs under the
control of users. The CRD is therefore responsible for
all security checking, user authentication, and messag-
ing protocol verification. In principle, users could run
any program that conforms to the CRD interface, but,
practically speaking, the RLI is a very complex piece of
software that would not be easy to replicate.

Once the user is ready to start a session, the RLI sends
the user’s virtual topology to the CRD to instantiate the
session. The CRD only uses the type description, not
the specialization description, for each node. As men-
tioned above, the CRD has four primary functions. To
keep the implementation clean, some of those functions
are broken out into separate software processes as shown

To/From To/From

User RLIs @ NDs
-, i -, ———i»

'

Session Manager
Node

Manager

Physical
Network
Manager

Testbed
State

Figure 6: Software Components of the Central Resource
Daemon.

in Figure 6.

The Relay accepts messages from all user RLIs and
routes them either to the Node Daemons or to the Ses-
sion Manager as needed. This serves as the gateway to
the testbed for the RLIs. It also performs simple secu-
rity and isolation checks to ensure that users attempting
to send messages to a particular node actually have that
node assigned to them in a current session.

The Session Manager handles the bulk of the work in
the CRD and maintains all state related to the testbed.
This state includes current session information, reserva-
tions, and descriptions of the nodes and physical network
for the testbed. Adding new types or new nodes to the
testbed is accomplished by adding new entries into tables
in the testbed database and requires no modifications to
the Session Manager or any other ONL software com-
ponents. The scheduler subsystem is invoked to add and
remove reservations. It is also called to verify that the
user has a valid reservation when a new session request
arrives. The Session Manager then initiates the new ses-
sion by performing any initial configuration for all the
nodes and links in the user’s virtual network.

Configuring the underlying physical testbed net-
work is handled by the Physical Network Man-
ager (PNM). The PNM supports two basic functions:
adding/removing a virtual link and adding/removing a
virtual switch. The actual mapping from virtual links and
switches in a user virtual network to the physical links in
the testbed network is handled by the scheduler in the
Session Manager. The PNM simply adds or removes the
mappings as requested. In the case of ONL, this means
contacting the backbone switches (via SNMP) to add or

remove VLANSs. This functionality is not complex, but
it is tied fairly closely to the types of backbone switches
used in ONL. Separating it from the Session Manager
allows this infrastructure to be more easily adapted to
changes in the physical network as only the PNM would
need modification.

The Node Manager subsystem of the Session Man-
ager contacts the appropriate Node Daemons for any ini-
tial configuration. The Node Daemons are split into two
parts, corresponding to the type and specialization of the
node. The Type Node Daemon (TND) is responsible for
initializing the node at the beginning of a session and
for bringing the node back to a known state at the end
of a session. It also starts the appropriate Specialization
Node Daemon (SND) at the end of its initialization. The
SND interacts with the RLI to respond to configuration
and monitoring requests defined in the specialization de-
scription.

This split enforces a clean separation between the spe-
cializations for every type. More importantly, it allows
users to add their own specializations for a type by pro-
viding the specialization interface description and the
SND associated with it. For example, a user might add a
firewall specialization to a PC by writing a simple SND
and interface description for adding and removing fire-
wall filtering rules. The SND is a standard socket pro-
gram and so users are free to use any programming lan-
guage to build one, but at the moment we only provide
C++ templates that handle the details of the messaging
protocol. None of the testbed software infrastructure
needs to be modified to handle the new specialization.

S Resource Scheduling

ONL utilizes a resource scheduler to map user virtual
networks onto the physical resources available in the
testbed. As was discussed in Section 3, each physi-
cal node is given to at most one user at any time. The
scheduling policy is thus used to determine how nodes
should be shared when the demand is higher than the
capacity for any particular resource type. The full de-
scription of the problem and the solution used in ONL
is beyond the scope of this paper, but a brief overview is
given here. See [38] for details.

There are two basic scheduling approaches: resources
are either given on-demand or reserved in advance. In
the former case, the scheduler looks strictly at the physi-
cal resources that are not in use by any other current ses-
sion, as in standard admission control. The latter case is
somewhat more complicated. The scheduler must keep a
time line of reservations that determines which resources
are available at any given time. In addition to the vir-
tual network topology, user requests include a period of
time when that virtual network should be active. When a

@

Figure 7: a) Example user virtual network, and b) exam-
ple testbed physical network.

new request is made, all previously accepted reservations
with overlapping times are considered. Any reservations
whose start time has not come (i.e., are not yet active)
could potentially be remapped to a new set of physical re-
sources, if necessary, to “make room” for the new reser-
vation. Maintaining a schedule of network mappings is
a generalization of pure on-demand admission control.
Given the nature of ONL and the design objectives, the
more general reservation-based approach is used here.

Scheduling virtual networks in testbeds has been stud-
ied previously [31][32][3]. It is a variant of the general
network embedding problem, long known to be NP-hard.
As such, ONL uses heuristic schedulers.

The scheduler takes a virtual network request and at-
tempts to find a mapping from the virtual network onto
the available physical resources. If a mapping is found,
the physical resources in that mapping are added to a
reservation for the user. The scheduler ensures that each
physical node is mapped to no more than one virtual
node across all virtual networks. It also ensures that there
is enough capacity in the underlying testbed network to
support every virtual link. Of course, the scheduler has
to consider every previously accepted reservation when
finding a new mapping. Figure 7 shows a simple exam-
ple mapping. In the figure, different shapes represent dif-
ferent types, with rectangles representing the backbone
switches. The edge labels are edge capacities. Node la-
bels show an example mapping from nodes in the user

network to nodes in the testbed network. The dashed
lines show one mapping from an edge in the user net-
work to the corresponding path in the testbed network.

The current ONL scheduler utilizes Mixed Integer
Programs (MIPs) to find mappings that maximize the po-
tential of accepting future requests. When a new request
comes in, the scheduler finds all existing reservations that
overlap with the requested period of time. All resources
(nodes and link capacities) used in those reservations are
removed from the set of available resources. The remain-
ing testbed resources and the user’s virtual network are
encoded in a MIP that computes a mapping, if possible,
between the two. The objective function of the MIP is set
to minimize the use of link capacity between backbone
switches in the testbed network.

Our experience so far with this scheduler, and verified
in simulation results given in [38], has been that response
times to reservation requests are nearly always under 50
ms. The scheduler also accepts a large percentage of rea-
sonable requests, even under medium to high loads. It is
not yet clear how well this approach scales as the size of
the testbed network increases. Our initial results indicate
that the testbed could increase to several times its cur-
rent size while maintaining sub-second response times,
but larger and more complex testbeds could require faster
(and more approximate) mapping algorithms.

6 Current Resources

The Network Services Platform (NSP) [10] is the
custom-built IP router from the original version of ONL.
It is designed to operate in a similar fashion to larger,
scalable router platforms. Each of the eight 1 Gb/s ports
houses an FPGA and a general-purpose processor. The
ports are connected via a 2 Gb/s cell switch. All of
the standard packet processing tasks are handled by the
FPGA. Users write plugins for the general-purpose pro-
cessor to dynamically extend the router’s functionality.
ONL currently contains four NSPs.

The second router added to ONL was the Network
Processor-based Router [39] (NPR), which is an IPv4
router built on Intel IXP 2800s [1]. Each IXP 2800 has
five 1 Gb/s ports. The NPR is a specialization of the
IXP 2800 type. The router software is itself extensible
through user-written plugins as in the NSP. Here, plu-
gins are run on five of the sixteen MicroEngine cores
on the IXP. The router supports complex flow filters that
are used to direct specific packet flows in the router to a
destination other than the matching route. This includes
sending packet flows to plugins for processing. Now
that ONL directly supports many specializations of the
same type, we are building extensible Ethernet switch
and OpenFlow [21] switch specializations for the IXP
2800 boards. There are currently 14 of these IXPs in

ONL.

The newest addition to ONL is the NetFPGA [23].
The NetFPGA is a relatively new FPGA-based device
that has seen substantial use in both research and edu-
cational contexts. There are a number of projects read-
ily available including IPv4 routers, Ethernet switches,
OpenFlow switches [22], and packet generators [12].
Some of these projects already have specializations avail-
able in ONL, and more should be available soon. There
are currently six NetFPGAs in ONL.

Linux PCs are used as standard end points in ONL.
Each PC has two network interfaces. The firstis a 1 Gb/s
data interface used in experimental topologies. The sec-
ond is an out-of-band control and management interface.
Users can select from a small set of pre-built Linux ker-
nel images to boot, or supply their own if needed. Ap-
proximately 100 PCs are currently available in ONL.

7 Example Sessions

ONL can be used to conduct networking experiments
over a wide range of areas. Three examples follow to
illustrate some of these possibilities.

7.1 TCP Dynamics

The first example is a simple session to study TCP dy-
namics over a shared bottleneck link. A screenshot is
shown in Figure 8. The topology configuration window
is on the left, and two real-time charts are on the right.
The 8 port device at the bottom right of the central square
is an NSP. The 4 port device at the top left of the square is
a NetFPGA running as an IPv4 router. The two 5 port de-
vices at the other corners are NPRs. The small ovals are
virtual switches, and the other symbols represent PCs.

Two TCP flows are started at the same time, one from
a PC in the top left of the topology to a PC in the bot-
tom right, and the other from a PC in the bottom left to a
second PC in the bottom right. Network routes are con-
figured statically so that both flows share the bottom link
in the central square as a bottleneck link. The link capac-
ity is set to 100 Mb/s. Initially, both flows share a 100
KB queue at the bottleneck. Half way through the flows,
the router is reconfigured to map one of the flows to a
different queue.

The results are shown on the right of Figure 8. The top
chart shows the bandwidth of each flow, and the bottom
chart shows the queue lengths of the two queues at the
bottleneck. When the flows share a queue, they do not
converge to their fair share of 50 Mb/s each. This fol-
lows because each flow is attempting to use packet drops
as feedback to adjust its sending rate, but the shared
queue leads to uneven drops for each flow. When one

Remote Laboratory Interface (RLI) v.3.9 o

Bandwidth

-

a

= =B L= = L=lE =]
File Edit Monitoring Topology Extras Options Parameter View
= 100
= ger
= Flow 1
w Flaw 2
33.3
2 0
T T T T T T T T ‘}
3156 3211 3267 3322 336 3433 3489 3544 360
time(secs)
[4] LI
(] Queue Lengths —|[o] =

Options Parameter View

a3

EE:
Queue 1
Queue 2

33

.

3172 3228 3283 3338 3334 345 3505 3561 361E

time(secs)
4] |

Il

Figure 8: ONL session studying TCP dynamics.

2 Remote Laboratory Interface (RLI) v.3.9
File Edit Monitoring Topology Extras

S
HST1Z H3T13 HST14 HsT13

L A s S e
HSTO HST1' "HST2 “HsT3 HST4" HSTS HSTG HSTT HST8 "HSTS HST10 HSTL1

Figure 9: ONL topology for a small-scale data center.

of the flows is remapped so that each flow is in a sepa-
rate queue, the standard TCP queueing behavior is seen.
Weighted Deficit Round Robin scheduling is used at the
bottleneck, and each queue has the same quantum. As a
result, the two flows quickly converge to their expected
fair share of the link.

7.2 Data Center Networking

The second example uses ONL to replicate one segment
of a data center network. A screenshot of the ONL topol-
ogy is shown in Figure 9. This session uses six NetF-
PGAs as data center switches. In this case, they are
running as OpenFlow switches, and the OpenFlow con-

10

troller, NOX [18], is running on one of the PCs at the
bottom of the hierarchy. This network is organized sim-
ilarly to a fat tree (e.g., as in PortLand [25]), but with
twice as many PCs connected to each edge switch as in a
standard fat tree.

ONL allows users to build data center networks like
this one quickly and easily. The result is that it is much
faster to study a broad range of possibilities than it would
be without a testbed infrastructure. In this example, ONL
is being used to study slight modifications to fat tree
topologies, but it could also be used to explore com-
pletely different data center topologies without any extra
overhead.

7.3 Overlay Networking

The final example session is an overlay network sce-
nario, where the overlays are built on top of a virtual net-
work in ONL. This particular overlay network is based
on the Forest [19] architecture that is designed to sup-
port highly interactive virtual worlds. Forest networks
are built around provisioned tree-structured communica-
tion channels called comtrees. Comtrees support both
unicast and multicast packet delivery. In a typical Forest
application, such as a First Person Shooter game, each
comtree is associated with a separate game session or
world instance. Within that comtree, then, each multi-
cast address is associated with the state of some object

- = 1LY B Romoto Laboratory Interface
(Cpfionn B e File Edit Monitoring Topology Extras
LI e
- from bosta
2 4 o hosts.
Z
&
1478 ot
< JT Ll =1
5 Bar mas 2a 283 ms nsr e
time{secs)
4 | >
=lo]x=|

Options Parameter View

~| swer
= trom hasts
2 s 10 hosts
@

@

110095.

= o

1841 1923 004 086 1108 248 30 M3
time(secs)
| >

B router 2

Options. Parameter View
Y
2 saes o hts
a —ﬁ o
14742 11
< J L

[ETINTT S TR)

M2 w3 2ws
time(secs)
1 [T»

Options Parameter View

Al apea

from bests

[CERENTTEREE > TRV TR T LR I]

time(secs)
[l | I»

Show Error Log

Figure 10: ONL session for PC-based overlay networking.

in the game, such as a player’s avatar. The multicast
mechanism in Forest is extremely light-weight in order
to support the high levels of churn in state subscription
changes within such virtual worlds.

Figure 10 shows a screenshot of a Forest overlay op-
erating within ONL. The four PCs in the middle of the
topology implement Forest routers and are connected to
one another by a full mesh of overlay links (implemented
by the IP routers in the ONL context). The PCs around
the periphery represent end systems in a Forest network
and each of them is connected by an overlay link to one
of the four Forest routers. In this sample session, the
end systems are simply sending artificial traffic which is
passing over pre-configured multicasts spanning several
different comtrees. The four real-time charts in the figure
show traffic rates (in packets/s) at each of the four Forest
routers.

8 Related Work

Of all the current networking testbeds, Emulab [37] is
the most closely related to ONL. Emulab is one of the
most widely used testbeds in operation today, for both
networking research and education. The Emulab testbed
provides users with access to a large number of PCs. Ses-
sions are strongly isolated from one another, as in ONL,
by using a set of Ethernet switches that indirectly connect
all the PCs in the testbed. VLANs are then configured
to isolate traffic along user virtual links. Emulab PCs
also have at least two network interfaces, one for out-of-
band control access and the others for use in experimen-
tal topologies. Most of the PCs have two to four inter-
faces which allows them to more readily emulate other
devices like routers or switches. Unfortunately, Emulab
is limited to PCs, and most configuration of nodes is done
at a low level by logging in to the nodes individually to
run system utilities.

11

The Emulab software has been made available so that
other groups can use it to run their own testbeds. A num-
ber of these Emulab-powered testbeds are currently op-
erating, although most of them are not open to the pub-
lic. One exception is the DETER testbed [8] that is fo-
cused on security research. The control infrastructure
is identical to Emulab, but additional software compo-
nents were added to ensure that users researching se-
curity holes and other dangerous exploits remain both
contained in the testbed and isolated from other ses-
sions. The Wisconsin Advanced Internet Laboratory
(WAIL) [36] is another testbed that utilizes the Emu-
lab software base. WAIL is unique among the Emulab
testbeds in that they have extended the testbed software
to support commercial routers as fundamental resources
available to researchers. The documentation on the web-
site indicates that users do not have write access to router
configurations by default, and, unfortunately, there is not
yet any detailed documentation that discusses how they
have modified the Emulab model to support these hetero-
geneous resources.

Another widely used network testbed is Planet-
Lab [29], which is an Internet overlay testbed that has
been in operation for many years. At its core, PlanetLab
simply consists of a large number of PCs with Internet
connections scattered around the globe. At the time of
this writing there are over 1000 PlanetLab nodes at over
475 sites [30]. Each PlanetLab node can support multiple
concurrent sessions by instantiating one virtual machine
on the node for each active session. The PlanetLab con-
trol software takes user requests to run a session on a set
of nodes and contacts the individual nodes to add the vir-
tual machines for the user. Researchers use PlanetLab to
debug and refine their new services and applications in
the Internet context. Unfortunately, PlanetLab’s success
has resulted in large numbers of active sessions (particu-
larly before major conference deadlines) which results in

extremely poor performance for any individual session.
Each active session is competing for both processor cy-
cles and the limited network bandwidth available on the
node, and there is no admission control or limit on the
number of sessions on each node.

There have been a few efforts that aim to enhance
PlanetLab through the design of new nodes while still
operating in the PlanetLab context. VINI [7] is at the
vanguard of these efforts. VINI nodes are currently de-
ployed at sites in the Internet2, National LambdaRail,
and CESNET backbones [35], and have dedicated band-
width between them. The VINI infrastructure gives re-
searchers the ability to deploy protocols and services in
a realistic environment in terms of network conditions,
routing, and traffic, as well as some stronger guaran-
tees on node and traffic isolation between sessions. The
Supercharged PlanetLab Platform (SPP) [34] is another
project which is working to provide new resource types
for PlanetLab. SPP nodes consist of a mix of general-
purpose and network processors. Users can run existing
PlanetLab software unmodified on the general-purpose
systems and then push down core networking code to
the network processors to achieve much higher and more
consistent performance. A small number of SPP nodes
are currently being deployed to the Internet2 backbone
as part of the GENI project [15].

SatelliteLab [14] is another Internet overlay testbed. It
does provide some support for heterogeneous edge de-
vices. The testbed contains desktop PCs, laptop PCs,
and handheld devices that are connected to the Internet
over a range of link types, including broadband, ISDN,
Wi-Fi, and cellular connections. Users can then test
their applications across widely varied network condi-
tions. Of course, it would be difficult to have user-
written code running on devices like cell phones, so they
break their architecture into two tiers. Standard Planet-
Lab nodes form the backbone of the testbed where users
run their applications. The edge devices only forward
traffic with pre-built code from the testbed operators. As
a result, SatelliteLab does provide users with network
heterogeneity that is lacking in other testbeds, but does
not actually allow users to experiment with code on any-
thing other than PlanetLab PCs.

There are a few other areas of networking research that
are related to testbeds. Cloud computing has recently be-
come a popular topic of discussion both in the public and
among researchers. The actual definition of cloud com-
puting has been much debated [6], but cloud computing
infrastructures share many properties with testbed infras-
tructures. For example, Eucalyptus [26] and Seattle [9]
are both research-driven cloud computing systems. The
architectures of these systems are similar in many ways
to the testbed architecture described in this paper. There
are also a number of commercial cloud computing so-

12

lutions such as Amazon’s EC2 [2] and Google’s Ap-
pEngine [16]. Few details have been published about the
design internals of these commercial clouds. However,
it is interesting to see the differences in how the cloud is
configured by users. For example, EC2 gives users ac-
cess as close to the bare metal as possible. AppEngine is
on the other end of the spectrum, providing a very high
level interface where the user has little control but can
also build and deploy applications much more quickly.

Finally, there is overlap between testbed management
and general operational network management. In each
case, there are potentially large numbers of distributed
resources that have to be managed by the single provider.
The interesting research questions for the two areas may
differ somewhat, but the mechanisms used to address
network control and management plane issues are sim-
ilar. For example, testbeds typically support end-user-
driven experiments that utilize some set of the testbed
resources, while an operational network is configured
by the network provider in response to a set of high
level policy decisions. Both cases, however, rely on
easy deployment of changes to the underlying networks.
This, in turn, requires a software infrastructure that can
present all the relevant information to the user/operator
and then enact changes across the entire network. Most
network management solutions are tied to the actual net-
work equipment such as Cisco’s I0S [11] or HP’s Open-
View [20]. There are other commercial solutions like
OpenNMS [28] which are less hardware-dependent but
generally do not scale well. Some research has also been
done to try to simplify the entire management plane by
redesigning the control protocols from the ground up,
e.g., as in the 4D architecture [17].

9 Future Work

All of the types currently in ONL are built on 1 Gb/s Eth-
ernet technology, but 10 Gb/s Ethernet is becoming more
and more commonplace. As such, we are in the early
phases of a 10 Gb/s Ethernet expansion for the testbed.
The existing ONL infrastructure already allows us to add
new types with a minimum of effort, so we plan to in-
corporate multicore PCs with 10 Gb/s NICs, newer ver-
sions of the NetFPGA, and next generation network pro-
cessors cards. We also will expand the backbone Ether-
net network to include 10 Gb/s switches (e.g., [5]). This
will require modifying the Physical Network Manager to
manage the new testbed network.

Using VLANS to isolate every instantiated virtual link
is a proven approach. One implication, however, is that
users can not configure their own VLANSs for use in their
experimental networks because they might conflict with
the VLANS used by the testbed. Until recently this has
not been a serious limitation as the available types in

the testbed led most sessions to be focused on IPv4 and
above concerns rather than Ethernet issues. Particularly
with the coming 10 Gb/s expansion, it is much more rea-
sonable for users to want to manage their own VLANS,
e.g., in data center research. Fortunately, many Ethernet
switches now support VLAN stacking. When packets
arrive at a switch, a VLAN header can be added even if
the packet has an existing VLAN header. This “outer”
VLAN header can similarly be removed as packets leave
a switch. We plan on utilizing these features to allow
users to configure and manage their own VLANS in their
virtual networks.

A recent trend in networking research is to build
high performance systems out of many distinct compo-
nents [4][33]. For example, trying to build a 10 Gb/s
router out of 10 PCs each with a 1 Gb/s NIC. ONL is
particularly well suited for this research already, and we
are currently working on mechanisms to enhance user
interactions with these types of systems. Users will be
able to provide “aggregate” or “cluster” descriptions that
are composed of other types connected in some topology.
As with specializations now, users will also provide an
aggregate daemon that handles messages from the RLI
to either relay messages to existing Node Daemons or to
configure all the nodes in the aggregate directly. The RLI
will only display a single icon to represent the aggregate
so that users can configure it as if it were a single entity.

10 Conclusion

We have presented the newest version of the Open Net-
work Laboratory testbed, which is an experimental fa-
cility for networking and systems researchers and edu-
cators. ONL supports a wide variety of heterogeneous
resources from which users build virtual topologies. The
Remote Laboratory Interface provides an intuitive user
interface that is easy for novice users to learn while
still providing complex configuration options for expert
users. The testbed infrastructure was designed to sup-
port both resource heterogeneity and extensibility from
the ground up. Adding new types of resources requires
no modification to the existing testbed software. Each
resource type can support many different specializations,
either to extend the functionality of a type or to provide
different interfaces targeted at users with different levels
of expertise. Moreover, users can add new specializa-
tions with no modification to the testbed infrastructure.

The ideas developed in this work can also be applied
to other virtualized infrastructures where many users are
sharing the resources of a single provider. They could
also be applied to other testbeds. We hope that our ex-
periences with ONL will be used to help build a bet-
ter GENI [15], where heterogeneous and extensible re-
sources will play a fundamental role.

13

ONL is available now and is open to all researchers,
educators, and students. New users can sign up for ac-
counts at the ONL website [27]. The website also con-
tains tutorials and other documentation.

References

[1] ADILETTA, M., ROSENBLUTH, M., BERNSTEIN, D., WOL-
RICH, G., AND WILKINSON, H. The next generation of intel
ixp network processors. Intel Technology Journal 6 (2002).

(2]

AMAZON. Elastic compute cloud website. http://aws.
amazon.com/ec2/.

(3]

ANDERSEN, D. G. Theoretical approaches to node assignment.
2002.

ARGYRAKI, K., BASET, S., CHUN, B.-G., FALL, K., JANNAC-
CONE, G., KNIES, A., KOHLER, E., MANESH, M., NEDE-
VSCHI, S., AND RATNASAMY, S. Can software routers scale?
In PRESTO ’08: Proceedings of the ACM workshop on Pro-
grammable routers for extensible services of tomorrow (New
York, NY, USA, 2008), ACM, pp. 21-26.

ARISTA. Arista 7100 series switches. http://www.
aristanetworks.com/en/7100Series.

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
Katz, R., KONWINSKI, A., LEE, G., PATTERSON, D.,
RABKIN, A., STOICA, 1., AND ZAHARIA, M. Above the clouds:
A berkeley view of cloud computing. Tech. rep., University of
California, Berkeley, 2009.

BAVIER, A., FEAMSTER, N., HUANG, M., PETERSON, L.,
AND REXFORD, J. In vini veritas: Realistic and controlled net-
work experimentation. In SIGCOMM ’06: Proceedings of the
2006 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (New York, NY,
USA, 2006), ACM, pp. 3-14.

BENZEL, T., BRADEN, R., KiM, D., NEUMAN, C., JOSEPH,
A., SKLOWER, K., OSTRENGA, R., AND SCHWAB, S. De-
sign, deployment, and use of the deter testbed. In DETER: Pro-
ceedings of the DETER Community Workshop on Cyber Security
Experimentation and Test on DETER Community Workshop on
Cyber Security Experimentation and Test 2007 (Berkeley, CA,
USA, 2007), USENIX Association, pp. 1-1.

CAPPOS, J., BESCHASTNIKH, I., KRISHNAMURTHY, A., AND
ANDERSON, T. Seattle: a platform for educational cloud com-
puting. In SIGCSE ’09: Proceedings of the 40th ACM techni-
cal symposium on Computer science education (New York, NY,
USA, 2009), ACM, pp. 111-115.

CHoI, S., DEHART, J., KANTAWALA, A., KELLER, R.,
Kunns, F., LockwoobD, J., PAPPU, P., PARWATIKAR, J.,
RICHARD, W. D., SPITZNAGEL, E., TAYLOR, D., TURNER,
J., AND WONG, K. Design of a high performance dynamically
extensible router. In Proceedings of the DARPA Active Networks
Conference and Exposition (May 2002).

(4]

(51

(6]

(71

(8]

[9]

[10]

[11] Cisco. Tos website. http://www.cisco.com/en/US/
products/sw/iosswrel/products_ios_cisco_

ios_software_category_home.html.

[12] COVINGTON, G. A., GIBB, G., LOCKWOOD, J., AND McK-
EOWN, N. A packet generator on the netfpga platform. In The
17th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (57 April 2009).

DEHART, J., KUHNS, F., PARWATIKAR, J., TURNER, J., WISE-
MAN, C., AND WONG, K. The open network laboratory. In
SIGCSE ’06: Proceedings of the 37th SIGCSE Technical Sym-
posium on Computer Science Education (New York, NY, USA,
2006), ACM, pp. 107-111.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

DISCHINGER, M., HAEBERLEN, A., BESCHASTNIKH, I.,
GUMMADI, K. P., AND SAROIU, S. Satellitelab: adding hetero-
geneity to planetary-scale network testbeds. In SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 conference on Data
communication (New York, NY, USA, 2008), ACM, pp. 315—
326.

GENI. Global environment for network innovations website.
http://www.geni.net.

GOOGLE. Appengine website. http://code.google.
com/appengine/.

GREENBERG, A., HIALMTYSSON, G., MALTZ, D. A., MYERS,
A., REXFORD, J., XIE, G., YAN, H., ZHAN, J., AND ZHANG,
H. A clean slate 4d approach to network control and manage-
ment. SIGCOMM Comput. Commun. Rev. 35, 5 (2005), 41-54.

GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., CASADO,
M., MCKEOWN, N., AND SHENKER, S. Nox: towards an op-
erating system for networks. SIGCOMM Comput. Commun. Rev.
38, 3 (2008), 105-110.

HAITJIEMA, M., PATNEY, R., TURNER, J., WISEMAN, C., AND
DEHART, J. Performance-engineered network overlays for high
quality interaction in virtual worlds. Tech. Rep. WUCSE-2009-
18, Washington University in St. Louis, June 2009.

HP. Openview website:
software.hp.com.

http://www.management

MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H.,
PARULKAR, G., PETERSON, L., REXFORD, J., SHENKER, S.,
AND TURNER, J. Openflow: enabling innovation in campus net-
works. vol. 38, ACM, pp. 69-74.

Naous, J., ERICKSON, D., COVINGTON, G. A., APPEN-
ZELLER, G., AND MCKEOWN, N. Implementing an openflow
switch on the netfpga platform. In ANCS '08: Proceedings of the
4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (New York, NY, USA, 2008), ACM,
pp. 1-9.

Naous, J., GiBB, G., BOLOUKI, S., AND MCKEOWN, N.
Netfpga: reusable router architecture for experimental research.
In PRESTO ’08: Proceedings of the ACM workshop on Pro-
grammable routers for extensible services of tomorrow (New
York, NY, USA, 2008), ACM, pp. 1-7.

NETGEAR. Gsm7532s website. http://netgear.
com/Products/Switches/FullyManagedl10_100_
1000Switches/GSM7352S. aspx.

NIRANJAN MYSORE, R., PAMBORIS, A., FARRINGTON, N.,
HUANG, N., MIRI, P., RADHAKRISHNAN, S., SUBRAMANYA,
V., AND VAHDAT, A. Portland: a scalable fault-tolerant layer 2
data center network fabric. In SIGCOMM ’09: Proceedings of
the ACM SIGCOMM 2009 conference on Data communication
(New York, NY, USA, 2009), ACM, pp. 39-50.

NuURrMI, D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI,
G., SOMAN, S., YOUSEFF, L., AND ZAGORODNOV, D. The
eucalyptus open-source cloud-computing system. In Proc. 9th
IEEE/ACM International Symposium on Cluster Computing and
the Grid CCGRID ’09 (May 18-21, 2009), pp. 124-131.

ONL. Open network laboratory website. http://onl.
wustl.edu.

OPENNMS. Opennms website. http://www.opennms.
org.

PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE,
T. A blueprint for introducing disruptive technology into the in-
ternet. In Proceedings of HotNets—I (Princeton, New Jersey, Oc-
tober 2002).

14

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

PLANETLAB. Planetlab website.

planet-lab.org.

http://www.

Riccr, R., ALFELD, C., AND LEPREAU, J. A solver for the net-
work testbed mapping problem. SIGCOMM Comput. Commun.
Rev. 33,2 (2003), 65-81.

RIccl, R., OPPENHEIMER, D., LEPREAU, J., AND VAHDAT,
A. Lessons from resource allocators for large-scale multiuser
testbeds. SIGOPS Oper: Syst. Rev. 40, 1 (2006), 25-32.

SHEVADE, U., KOKKU, R., AND VIN, H. M. Run-time system
for scalable network services. In Proc. INFOCOM 2008. The
27th Conference on Computer Communications. IEEE (Apr. 13—
18, 2008), pp. 1813-1821.

TURNER, J. S., CROWLEY, P., DEHART, J., FREESTONE, A.,
HELLER, B., KUHNS, F., KUMAR, S., LOCKwooOD, J., LU,
J., WILSON, M., WISEMAN, C., AND ZAR, D. Supercharg-
ing planetlab: a high performance, multi-application, overlay net-
work platform. In SIGCOMM ’07: Proceedings of the 2007 Con-
ference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (New York, NY, USA, 2007),
ACM, pp. 85-96.

VINI. Vini website. http://www.vini-veritas.net.

WAIL. Wisconsin advanced internet laboratory website. http:
//www.schooner.wail.wisc.edu/.

WHITE, B., LEPREAU, J., STOLLER, L., Ricci, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In OSDI '02: Proceedings of the
Sth Symposium on Operating Systems Design and Implementa-
tion (New York, NY, USA, 2002), ACM, pp. 255-270.

WISEMAN, C., AND TURNER, J. The virtual network scheduling
problem for heterogeneous network emulation testbeds. Tech.
Rep. WUCSE-2009-68, Washington University in Saint Louis,
September 2009.

WISEMAN, C., TURNER, J., BECCHI, M., CROWLEY, P., DE-
HART, J., HAITIEMA, M., JAMES, S., KUHNs, F., Lu, J.,
PARWATIKAR, J., PATNEY, R., WILSON, M., WONG, K., AND
ZAR, D. A remotely accessible network processor-based router
for network experimentation. In ANCS '08: Proceedings of the
4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (New York, NY, USA, 2008), ACM,
pp. 20-29.

WISEMAN, C., WONG, K., WOLF, T., AND GORINSKY, S.
Operational experience with a virtual networking laboratory. In
SIGCSE ’08: Proceedings of the 39th SIGCSE Technical Sym-
posium on Computer Science Education (New York, NY, USA,
2008), ACM, pp. 427-431.

WONG, K., WOLF, T., GORINSKY, S., AND TURNER, J. Teach-
ing experiences with a virtual network laboratory. In SIGCSE
'07: Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education (New York, NY, USA, 2007),
pp. 481-485.

	Design of an Extensible Network Testbed with Heterogeneous Components
	Recommended Citation
	Design of an Extensible Network Testbed with Heterogeneous Components

	tmp.1415131658.pdf.1KrAT

