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ABSTRACT OF THE DISSERTATION

Dynamic Thermal and Power Control for Computing Systems

by

Yong Fu

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2013

Professor Chenyang Lu, Chair

Thermal and power management have become increasingly important for computers. Com-

puting systems from real-time embedded systems to data centers require effective thermal

and power management to prevent overheating and save energy. In this dissertation we

investigate dynamic thermal and power management for computer systems and buildings.

(1) We present thermal control under utilization bound (TCUB), a novel control-theoretic

thermal management algorithm designed for single core real-time embedded systems. A

salient feature of TCUB is to maintain both desired processor temperature and real-time

performance. (2) To address unique challenges posed by multicore processors, we develop

the real-time multicore thermal control (RT-MTC) algorithm. RT-MTC employs a feedback

control loop to enforce the desired temperature and CPU utilization of the multicore platform

via dynamic frequency and voltage scaling. (3) We research dynamic thermal management

for real-time services running on server clusters. We develop the control-theoretic thermal

balancing (CTB) to dynamically balance temperature of servers via distributing clients’ ser-

vice requests to servers. (4) We propose CloudPowerCap, a power cap management system

xii



for virtualized cloud computing infrastructure. The novelty of CloudPowerCap lies in an

integrated approach to coordinate power budget management and resource management in

a cloud computing environment.
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Chapter 1

Introduction

Thermal and power management have become increasingly important for both computing

and physical systems. Fast growing power density and on-chip temperature are key challenges

in computer system design. Increased temperatures reduces life span of processors, degrades

performance, adversely affects reliability and increases cooling cost and energy. Hence there

is widespread interest in thermal management at different levels of computing systems from

real-time embedded systems to data centers.

Power management is another critical concern of modern computing systems since it directly

affects both operational and deployment cost. For example, a datacenter of 30,000 square

feet, which host tens of thousands of servers, consumes 10MW of electricity and requires an

accompanying cooling system that costs from 2 to 5 million dollars. Overall, data centers

in US consume 100 billion kWh in 2011 according to estimate by the Environmental Pro-

tection Agency (EPA) [21]. Moreover, power delivery and cooling limitations in datacenters

are bottlenecks of high density configurations to meet the ever increasing performance and

scalability demand.

This dissertation focus on studying of thermal and power management of computer systems.

The research can be divided into two parts. The first part, from Chapter 2 to Chapter 4,

focuses on thermal and power management of real-time systems on different types of com-

puting platforms. Chapter 2 and Chapter 3 investigates thermal management for real-time

systems working on single core and multicore processors, respectively. Due to uncertain-

ties in power consumption and workload, we proposed a suite of control-theoretic thermal

management approaches to meet both the temperature and real-time performance require-

ments. Chapter 4 studies thermal management of real-time clusters. In contrast to existing

1



approach, the proposed approach reduces hot spots in the cluster by balancing thermal

workload rather than regulating individual servers, improving system throughput without

compromising thermal performance.

In the second part, Chapter 5, we focus on power management of distributed systems, specif-

ically, power cap management for cloud computing infrastructure. Our dynamic power cap

management, CloudPowerCap, coordinates with existing resource management framework

to provide integrated power budget and resource management for virtualized server clusters.

1.1 Feedback Thermal Management for Real-time sys-

tems

Real-time embedded systems face significant challenges in thermal management as they

adopt modern processors with increasing power density and compact architecture. Such sys-

tems must avoid processor overheating while still maintaining desired real-time performance.

While modern processors usually rely on hardware throttling mechanisms to prevent over-

heating, such mechanisms cause performance degradation which is unacceptable for real-time

applications. Moreover, real-time systems must deal with a broad range of uncertainties in

system characteristics and environmental conditions, such as power consumption variation,

ambient temperature fluctuation and thermal fault. Finally, multicore processors induce

unique challenges on thermal management due to inter-core thermal coupling and practi-

cal constraints of power management mechanism such as Dynamic Voltage and Frequency

Scaling (DVFS).

In recent years, control-theoretic thermal management approaches have shown promise in

[20, 27, 54, 99, 105, 106] handling uncertainties in thermal characteristics. In contrast to

heuristic-based design relying on trial-and-error, control-theoretic approaches provide a sci-

entific framework for systematic design and analysis of thermal control algorithms. The

major advantage of adopting feedback control theory in thermal management is to system-

atically handle uncertainties of thermal dynamics of computing systems.

2



In this dissertation, we first present Thermal Control under Utilization Bound (TCUB), a

novel dynamic thermal management algorithm specifically designed for real-time systems

running on single-core processors. TCUB employs feedback control loops to control both the

processor temperature and CPU utilization by adjusting task rates. In contrast to earlier

research on feedback control real-time scheduling that ignores thermal issues [60], TCUB can

maintain both desired processor temperature and CPU utilization bound, thereby avoiding

processor overheating and maintaining desired real-time performance.

Secondly, to address the unique challenges posed by mulitcore processors, we present Real-

Time Multicore Thermal Control (RT-MTC), a feedback thermal control algorithm for real-

time systems running on multicore processors. RT-MTC employs a feedback control loop

that enforces the desired temperature and CPU utilization bounds of embedded real-time

systems through DVFS. RT-MTC combines a control-theoretic approach and a practical

design to provide a simple, efficient and easily implemented solution to handle challenges

and requirements unique to multicore processors.

Finally, we designed Control-theoretic Thermal Balancing (CTB), an feedback thermal man-

agement approach for server clusters running real-time services. CTB performs dynamic

thermal balancing to reduce the differences among the temperatures of different processors

through workload distrbution. Thermal balancing is an attractive approach for thermal

management on distributed systems since it can mitigate hot spots without significantly

compromising system performance. CTB employs a feedback control loop that periodically

monitors the temperature and CPU utilization of different servers in a cluster, and redis-

tributes clients’ service requests among different processors to dynamically balance their

temperature.

1.2 CloudPowerCap

In many datacenters, server racks are as much as 40 percent underutilized [30]. Rack slots

are intentionally left empty to keep the sum of the servers’ nameplate power below the power

provisioned to the rack. To address rack underutilization, server vendors have introduced

support for per-host power caps, which provide a hardware or firmware-enforced limit on

the amount of power that the server can draw [19, 39, 43]. However while this approach
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improves rack utilization, it burdens the operator with managing the rack power budget

across the hosts and, even worse, lacks flexibility to handle workload spikes or to respond to

the addition or removal of a rack’s powered-on server capacity.

In this dissertation we developed CloudPowerCap, a holistic and adaptive solution for power

budget management in a virtualized environment. CloudPowerCap manages the power bud-

get for a cluster of virtualized servers, dynamically resetting the per-host power caps for

hosts in the cluster. The key of CloudPowerCap is to treat and manage the power cap in

close coordination with resource management system. CloudPowerCap maps each host’s

power cap into resources capacity, by which CloudPowerCap can interoperate with a so-

phisticated resource management system of cloud datacenters, allowing it to manage power

caps through the VM resource controls supported by resource management systems. Cloud-

PowerCap provides global fairness on dynamical power caps distribution with robustness for

unpredictable workload variation, preventing hosts from gaining unfair entitlement of power

caps and enhancing the system’s capability to enforce VM placement constraints. To the

best of our knowledge, CloudPowerCap is the first holistic framework to provide dynamic

power budget management in coordination with a cloud resource management system.

1.3 Contributions

Specifically, this dissertation made the following contributions:

Feedback thermal management for real-time systems on single core processor: We

designed TCUB, a novel dynamic thermal management algorithm specifically for real-

time embedded systems on single processors. TCUB employs feedback control loops to

enforce both desired processor temperature and CPU utilization by adjusting task rates,

thereby avoiding processor overheating and maintaining desired real-time performance.

Feedback thermal management for real-time systems on mulit-core processor: We

designed RT-MTC, a feedback thermal control algorithm to tackle the challenges posed

by multicore processors, which enforces the desired temperature and CPU utilization

bounds of real-time embedded systems through realistic DVFS mechanisms.
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Feedback thermal balancing for real-time clusters: We designed CTB, a control-theoretic

thermal balancing approach employing feedback control loop that redistributes clients’

service requests among different servers to dynamically balance their temperature.

Dynamic power cap management for cloud computing infrastructure: We designed

CloudPowerCap, a holistic and adaptive solution for power budget management in a

virtualized environment. CloudPowerCap manages the power budget for a cluster of

virtualized servers, dynamically resetting the per-host power caps for hosts in the clus-

ter to respect the power budget of the cluster. The key of CloudPowerCap is to treat

and manage the power cap in close coordination with resource management system.

5



Chapter 2

Feedback Thermal Management for

Real-time Systems on Single Core

Processors

2.1 Introduction

Real-time embedded systems face significant challenges in thermal management as they

adopt modern processors with increasing power density and compact architecture. Such

systems must avoid processor overheating while still maintaining desired real-time perfor-

mance. While modern processors usually rely on hardware throttling mechanisms to prevent

overheating, such mechanisms cause performance degradation unacceptable for real-time

applications.

Moreover, real-time embedded systems must deal with a broad range of uncertainties in

system characteristics and environmental conditions:

• Power consumption: The power consumption of a processor may vary significantly

when running different tasks with different instructions [46].

• Ambient temperature: In contrast to servers operating in air-conditioned environments,

real-time embedded systems may operate in diverse environments under a wide range

of ambient temperature.
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• Thermal faults: Due to their harsh operating conditions embedded systems can be

particularly susceptible to failures of cooling subsystems [23].

• Tasks execution times : The execution times of many real-time tasks may vary signifi-

cantly because their executions are strongly influenced by the operating environment

and sensor inputs.

To meet these challenges, we present Thermal Control under Utilization Bound (TCUB), a

novel dynamic thermal management algorithm specifically designed for real-time embedded

systems. TCUB employs feedback control loops to control both the processor temperature

and CPU utilization by adjusting task rates. In contrast to earlier research on feedback

control real-time scheduling that ignores thermal issues [60], TCUB can maintain both desired

processor temperature and CPU utilization bound, thereby avoiding processor overheating

and maintaining desired real-time performance. TCUB has the following salient features.

• TCUB features a nested feedback control structure consisting of (1) a low-rate thermal

controller dealing with the slower thermal dynamics, and (2) a high-rate utilization

controller handling the faster CPU utilization dynamics caused by uncertainties in task

execution times. The thermal controller outputs a set point for the CPU utilization

below the schedulable utilization bound of the real-time system. This set point is,

in turn, used by the utilization controller to adjust the task rates. The modular

control structure allows separate control designs optimized for thermal-protection and

utilization-regulation.

• In contrast to earlier research on thermal-ware real-time scheduling that relies in ac-

curate system and task models [14, 42, 92, 93, 102], TCUB is a highly robust algorithm

that can handle a broad range of uncertainties in terms of processor power consump-

tion, task execution times, thermal faults, and ambient temperature. The robustness

of TCUB makes it particularly suitable for real-time embedded systems that operate

in highly unpredictable environments.

• TCUB features a simple and efficient thermal controller that integrates a discrete-

time-proportional-integral-controller and a traditional anti-windup controller designed

to enforce the schedulable utilization bound. The anti-windup controller is necessary
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to enforce the schedulable utilization bound that impose hard saturation constraints

on the output of the thermal controller (utilization set point). Moreover, the control

approach allows rigorous analysis of stability and robustness under uncertainties.

• Extensive simulation results demonstrate the stability and robustness of TCUB under a

wide range of uncertainties and operating conditions including varying tasks execution

times, power consumption and ambient temperature, as well as thermal faults.

The rest of the chapter is organized as follows. Section 2.3 presents a difference equation

model that characterizes the thermal dynamics of real-time systems and the goal of thermal

control for real-time systems. Section 2.5 details the design and stability analysis of TCUB.

Section 2.6 provides simulation results. Section 2.2 introduces related work. Section 2.7

summarizes this chapter.

2.2 Related Work

Thermal management of real-time systems received significant attention recently. Some

researchers explore thermal-aware real-time scheduling [14, 42, 92, 93, 102] to enforce tem-

perature bounds while meeting real-time performance constraints. Existing thermal-aware

real-time scheduling algorithms rely on accurate knowledge of the system characteristics such

as task execution times and power consumption, which may vary dynamically at run time

for real-time systems. In contrast, thanks to its robust feedback control approach, TCUB is

especially designed to handle a broad range of uncertainties.

A multitude of feedback real-time scheduling and utilization control algorithms have been

proposed in recent years, [4, 9, 47, 80, 83, 94, 108], but they are not cognizant of processor

temperature. In contrast, TCUB is designed to control both the real-time performance

and the processor temperature. While TCUB incorporates a utilization controller, the key

contribution of this work is the nested control architecture and the novel thermal controller

that can handle the utilization bound constraint needed to enforce desired soft real-time

performance.
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Several papers [17, 69–71,99, 104–106] have adopted model predictive control or online con-

vex optimization for dynamic thermal management. None of these works are concerned with

maintaining real-time performance or enforce CPU utilization bound. In addition, control

approaches based on model predictive control and convex optimization has higher computa-

tion complexity than our efficient proportional control approach.

Fu. et al. [27] proposed a model predictive control approach for thermal and utilization

control in distributed real-time systems. While it shares similar goals as TCUB, there are

several differences between them. First, the algorithm proposed in [27] uses different actua-

tors to control temperature (DVFS) and utilization (task rate adaptation). Instead, TCUB

uses a single actuator (task rate adaptation) to control both temperature and utilization.

This makes TCUB a more general solution applicable to a broader range of real-time sys-

tems including those running on embedded hardware that does not support DVFS. At the

same time, relying on a single actuator also poses unique challenges since temperature and

utilization control are closely coupled due to the shared actuator. Second, our control de-

sign is fundamentally different from the model predictive control approach adopted in [27].

Our novel control design result in a simple and efficient nested control algorithm with O(1)

run-time overhead. In contrast, the model predictive controller [27] relies on a least-square

estimator with polynomial complexity to solve the control output over the control and pre-

diction horizon. The simplicity and efficiency of TCUB make it a practical solution even

for resource-limited embedded processors. Finally, our control approach allows rigorous ro-

bustness analysis. Since our robustness analysis is based on the necessary and sufficient

conditions required of the Nyquist stability criteria, we prove and demonstrate how our

controller can respond quickly while operating under system uncertainties. In contrast, the

small-gain conditions [103] required to satisfy robustness criteria of the proposed model pre-

dictive controller presented in [27] tend to be conservative and computationally intensive to

verify [107]. Loosening these model uncertainty constraints for model-predictive controllers

is a daunting task as noted in [63] and currently being addressed in [32, 50, 59].
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2.3 Problem Formulation

In this section we first present the system model adopted in this work, and then discuss the

goals of thermal control for real-time systems.

2.3.1 System Models

A key feature of our system model is that it characterizes the uncertainties in real-time

systems in terms of tasks execution times, power consumption, ambient temperature, and

thermal faults. We assume a single CPU real-time system running n independent, periodic

real-time tasks, {Ti|1 ≤ i ≤ n}. Each task Ti has a period pi. The rate ri of the task Ti

is defined as ri = 1
pi

. Each task has a soft deadline related to its period and an estimated

execution time ci known at design time. However, the actual execution time ai at run time

is unknown and may deviate from ci.

The rate ri of the task Ti can be dynamically adjusted within a range [Rmin,i, Rmax,i]. Earlier

works have shown that task rates in many real-time applications (e.g., digital feedback

control [12] and multimedia [10]) can be adjusted in certain ranges without causing system

failure. A task running at a higher rate contributes a higher value to the application at the

cost of higher CPU utilization.

When tasks are running on the processor, the active power consumed by the processor

fluctuates significantly. Earlier work refers to such significant power variation during run

time as power phase behavior [46]. At the instruction level, different instruction types,

inter-instruction overhead, memory system states and pipeline related effects cause power

fluctuation [85]. Consequently, while the processor’s estimated active power, Pa, is known,

the actual active power of the processor may deviate from the estimate at run time. When

the processor is idle, the processor consumes idle power Pidle.

We adopt the well known thermal RC model to characterize the thermal dynamics of the

processor [5, 23]:
dT (t)

dt
= −b2(T (t)− To) + b1P (t) (2.1)
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where T (t) is the temperature of the processor, To is ambient temperature, P (t) is the actual

power consumed by the processor, b1 = 1
Cth

and b2 = 1
RthCth

, where Cth is heat capacity and

Rth is heat resistance. As a high level model thermal RC model is efficient for thermal control

design and computation comparing to the architecture level thermal model like Hotspot [41]

because of its simple structure. However thermal RC model may introduce model error

As embedded systems may operate in diverse environments, the ambient temperature T0

may change. Moreover, thermal faults (e.g., fan failure) may cause significant change to the

thermal resistance [23]. A thermal control algorithm designed for real-time systems must

handle these uncertainties at run time.

2.3.2 Design Goals

Our thermal control algorithm is designed to meet two primary requirements: (1) to pre-

vent processor overheating, and (2) to maintain desired soft real-time performance. Due

to the uncertainties faced by real-time systems, TCUB adopts a feedback control approach

that dynamically controls the processor temperature and real-time performance. It allows

users to specify a temperature set point TR, maximum and minimum CPU utilization bound

Umax, Umin. For processors support hardware throttling, the temperature set point is below

the temperature threshold for hardware throttling so as to avoid unpredictable performance

degradation caused by throttling. For processors that do not support throttling, the tem-

perature set point should be below the maximum temperature tolerable to the processor.

The maximum CPU utilization bound Umax should be below the schedulable CPU utiliza-

tion bound of the real-time scheduling policy. For example, the schedulable CPU utilization

bound of Rate Monotonic Scheduling (RMS) is Umax = n(2
1

n − 1), where n is the num-

ber of the periodic real-time tasks [56]. The minimum CPU utilization bound Umin can be

determined by minimum allowable tasks rate Rmin,i for a given system.

TCUB is designed to prevent processor overheating by keeping the temperature close to

the temperature set point TR and to maintain desired software real-time performance by

enforcing the CPU utilization bound Umax.
1 Moreover, TCUB must handle uncertainties in

terms of power consumption, task execution times, ambient temperature, and thermal faults.

1As TCUB only controls the average CPU utilization dynamically, it is not suitable for hard real-time
systems.
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Finally, the control algorithm should be simple and efficient to provide a practical solution

for resource-limited embedded systems.

2.4 Overview of TCUB

We propose a nested feedback control approach to manage both temperature and CPU

utilization. As shown in Fig. 2.1, there are two control loops in TCUB that operate at

different time scales. The outer loop is responsible for thermal control and runs at a lower

rate than the inner loop responsible for utilization control. In the outer loop, the thermal

controller aims to enforce the specified temperature set point TR. At the end of the kth

sampling period of the outer loop, the thermal controller computes the utilization set point

Us(k) for the utilization controller of the inner loop based on the measured temperature

T (k) provided by the thermal monitor. The inner-loop utilization controller ensures that the

utilization converges to the set point Us(k) computed by the thermal controller by adjusting

the task rates. At the k′th sampling period of the inner loop, the utilization controller

outputs the task rate change ∆r(k′) based on the measured utilization U(k′). The rate

actuator adjusts tasks rate based on the output of the utilization controller. Our multi-rate

nested control approach has several important advantages.

1. The thermal dynamics are typically significantly slower than the utilization dynamics,

which motivates a multi-rate control approach. The processor thermal-control problem

usually involves a large thermal time-constant whereas existing utilization controllers

(which we incorporate into our design) typically have dynamic responses within a few

seconds [60].

2. Unlike the computationally intensive model predictive control adopted by earlier work

on thermal control [27], our proposed nested control architecture greatly simplifies the

control algorithms. It requires neither complicated gain-scheduling tables nor com-

plicated on-line optimization algorithms. The lower rate of the thermal-control loop

further reduces computational overhead.
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3. We provide a stability and robustness analysis for the thermal-controller, based on the

necessary and sufficient Nyquist Stability criterion which allows us to directly relate un-

certain physical properties of our thermal-dynamic control problem, whereas the model

predictive control approach [27] has to rely on a conservative small gain assumption

and offers little insight into the physical parameter uncertainties which directly affect

stability and performance.

 Thermal 

Controller
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T(k)

Utilization 
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Utilization 

Controller
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  Rate 
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T

Processor

R
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Taskn
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Controller

...

r(k’)
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Figure 2.1: TCUB structure

Specifically, the nested control loops work as follows. The thermal and utilization controller

employ two sampling periods: Ts, which denotes the sampling period of the processor’s

temperature; and Tu, which is the sampling period of the utilization (Tu < Ts). At the

end of the kth temperature sampling period, the feedback loop is invoked and executes the

following steps:

1. The temperature monitor sends the processor’s temperature T (k) to the thermal con-

troller over the last sampling period.

2. The thermal controller calculates the utilization set point of the processor, Us(k), based

on T (k) and temperature reference. It then sends Us(k) to the utilization controller.

Note Us(k) is effectively held for m samples in which m is a positive integer which

relates the outer-loop sample time Ts to the inner-loop sample time Tu such that

Ts = mTu.
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3. The utilization controller adjusts the task rates through a rate actuator in each Tu

sampling period so as to track the utilization set point Us(k). TCUB employs FC-

U [60] as the utilization controller, which uses a Proportional controller to track the

utilization set point.

A benefit of our nested control structure is modular design, that is, we can design the two

control loops separately. For utilization control loop we reuse the well studied feedback con-

trol utilization controller FC-U [60]. FC-U periodically monitors the utilization of the CPU,

computes the control output based on difference between current utilization and the utiliza-

tion setpoint and then calls rate adaptor to change utilization according to control output.

FC-U is implemented in FCS/nORB, a real-time middleware on a Linux platform [97]. Since

the effectiveness of FC-U is justified by experiments and implementation, in the following

sections, we focus on the thermal controller design and stability analysis.

2.5 Thermal Control Design and Analysis

In this section we describe the control design and analysis of TCUB. In the following sections

we present the design of thermal controller and the stability analysis.

2.5.1 Dynamic Model for Thermal Control

As a foundation for the design of the thermal controller, we derive a discrete-time, difference

equation model that characterizes the dynamic relationship between the CPU utilization

U(k) (the control input) and the processor temperature T (k) (the controlled variable). We

first characterize the relationship between the power consumption and the CPU utilization

and then derive a discrete-time model based on the thermal RC model .

First, we characterize the relationship between the power consumption of the processor and

its CPU utilization. Let U(k) denote the CPU utilization in the kth sampling period. The

average power of the processor in kth sampling period, P̄ (k), has the following relationship
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with U(k):

P̄ (k) = GpPaU(k) + Pidle(1− U(k)) = (GpPa − Pidle)U(k) + Pidle (2.2)

where Gp represents the ratio between the actual active power at run time and the estimated

active power Pa. In (2.2), GpPa is the actual active power, and U(k) is the fraction of time

when the CPU is active. Pidle is the power when the CPU is idle, and 1−U(k) is the fraction

time when the CPU is idle. The same power model is also used in temperature simulation

of server systems [37].

Next, we transform the thermal RC model (2.1) to a discrete-time model. Denote the Laplace

transform of the difference between processor’s temperature and ambient temperature, T (t)−
To, as T (s) as well as P (t) as P (s) from (2.1), we have the following model

T (s) =
Rth

RthCths + 1
P (s) +

1

RthCths + 1
To. (2.3)

For control analysis we need to derive a discrete-time model to approximate this system. The

thermal controller issues a fixed-periodic utilization set point which the inner-loop utilization

controller closely and quickly regulates to. This utilization set point is proportional to the

average power consumed by the processor. As previously mentioned, the thermal-time con-

stant is large, therefore the effects of transients are negligible. Thus a ZOH-equivalent model

is appropriate to approximate a discrete-time model of the thermal dynamics of the system.

It is straightforward to derive the linear ZOH-equivalent discrete time model from (2.3) as

follows [25] :

T (k + 1) = ΦT (k) + (1− Φ)To + Rth(1− Φ)P (k) (2.4)

where k represents kth sampling period, Φ = exp(− Ts

RthCth
) and Ts is the sampling period.

Then we combine the thermal RC model (2.4) and the relationship between power and uti-

lization (2.2), specifically, by substituting P (k) for P̄ (k), we could derive the model employed

in thermal control:

T (k + 1) = ΦT (k) + Rth(1 − Φ)(GaPa − Pidle)U(k) + Rth(1 − Φ)Pidle + (1 − Φ)To. (2.5)
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2.5.2 Thermal Controller Design

The principal challenge for the thermal controller design is to ensure that a maximum al-

lowable temperature TR is not exceeded while the thermal-control output Us(k) is subject

to actuator saturation which is governed by utilization bound Umax(0 ≤ Umax ≤ 1). The

thermal controller is required to regulate the temperature of the processor to subject to

the utilization constraint given its output Us(k). A proportional-integrator (PI) controller

with an integrator-anti-windup controller is proposed to determine Us(k) while addressing

actuator limitations in order to guarantee stability. This simple yet elegant outer-thermal

control loop can be run at a significantly lower-rate without any noticeable performance loss

due to the systems large thermal time constant.

The structure of thermal controller we proposed is illustrated in Fig. 2.2. It consists of a PI

controller (denoted as K(z)), an anti-windup controller (denoted as Ĥ(z)) which is deter-

mined from a processor’s thermal model Ĥ(z) and a saturation block. The PI controller’s

output is limited by the saturated block and then the utilization set point output by the

thermal controller cannot surpass the utilization bound assigned by the users. Essentially

anti-windup controller transforms nonlinear behavior of the real-time systems induced by the

utilization bounds to linear behavior so that normal linear control design could be exploited.

The input of the PI controller is the error between the reference trajectory and linearized

Figure 2.2: Proposed thermal control structure.

temperature ∆Tlin(k). The control output of the PI controller, u(k), is limited to enforce
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utilization bounds by the saturated block, Us(k) = sat(u(k), Umin, Umax), in which

sat(x, xmin, xmax) =























xmin, if x < xmin

xmax, if x > xmax

x, otherwise.

The error between Us(k) and u(k), denoted as Ū(k), is passed through a thermal model of

the processor (denoted Ĥ(z)) which generates a compensation term ∆T̂ (k), when combined

with the actual processor temperature difference ∆T (k), a linearized temperature difference

(∆Tlin(k) = ∆T̂ (k)+∆T (k)) is fed-back to the controller K(z) in order to guarantee stability.

This compensation is also known as anti-windup control. It is noted that the thermal model

of the processor is used here without considering dynamic of the utilization controller. This

is one of the benefits of nested control structure, that is, we can design the thermal and

utilization controller separately. In order to describe our implementation of the thermal

controller, as presented in Algorithm 1, we denote T̂idle as an estimate of the idle temperature

Tidle(t) and T̂o as either an estimate or measurement of ambient temperature To.

For thermal controller design, we rewrite the model (2.5) in a more compact form. Note

that the temperature T (k) depends ultimately on the ambient temperature To, the idle

temperature component Tidle which depends on the idle power component Pidle such that

Tidle = RthPidle, and the active power component ∆T (k), that is, T (t) = ∆T (t) + To + Tidle.

Then the model (2.5) could be rewritten as

∆T (k + 1) = Φ∆T (k) + ΓU(k) (2.6)

where Γ = kpRth(1 − Φ) and kp = (GaPa − Pidle). In model (2.6) uncertainty in Gp can be

expressed in terms of the following bounds on the actual power gain kp such that kp min ≤
kp ≤ kp max.

In z-domain the model (2.6) can be written as follows

H(z) =
∆T (z)

U(z)
=

Γ

z − Φ
. (2.7)
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To design the thermal controller with the proposed structure we follow two steps. First a

nominal linear controller K(z) ignoring the saturating limit is designed. In this work the

nominal linear controller is a PI-controller, K(s) = KP+KI
s+ωI

s
. The discrete time controller

K(z) is synthesized using the IPESH-transform from the continuous time controller model

K(s). The IPESH-transform, like the bilinear-transform, is both a passivity and stability

preserving transform which can be applied to any linear-time invariant model K(s) except

that it will not suffer from warping effects and therefore closely matches the magnitude

response up to the Nyquist frequency π
Ts

[48, 49]. The result discrete time controller is:

K(z) = KP + KI

(

1 +
ωITs

2

) z − 2−ωITs

2+ωITs

z − 1
.

Secondly, an anti-windup controller Ĥ(z) is designed to limit performance deterioration in

the event of a control constraints being encountered. The details of anti-windup controller

are presented in Section 2.5.3.

Algorithm 1 describes workflow of the thermal controller and the derivation of thermal

controller related parameters used in the algorithm are explained in Section 2.5.3.

2.5.3 Stability Analysis

The section analyzes the stability of the proposed control framework. For a real-time system

under thermal control, stability ensures that the processor temperature converges to the

temperature set-point. In order to discuss stability, we recall the following definition and

the Nyquist stability theorem.

Definition 1. A stable discrete-time linear time invariant (LTI) system is one in which all

poles are inside the unit circle.

For our control structure, it should be intuitive from viewing Fig. 2.2 that there are only

two cases to maintain stability. The first case, when the control input Umin ≤ u(k) ≤ Umax

(which implies that Ū(k) = 0) we want to enforce stability of the active closed-loop system

consisting of K(z) and H(z), and stability of Ĥ(z). For the second case, when the control
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Algorithm 1 Thermal Controller

T (k): temperature
Us(k): thermal-control Output
TR: temperature set point
T̂0, T̂idle : estimated environment and idle temperature
Umax, Umin: utilization bounds
Kp, KI , ω, Ts, Φ̂, Γ̂: controller parameters

1: Compute temperature difference set point ∆TR(k) = TR −
(

T̂0 + T̂idle

)

⊲ At the end of

the kth sampling period

2: The linearized temperature is computed by ∆Tlin(k) = T (k)−
(

T̂0 + T̂idle

)

+ ∆T̂ (k)

3: e(k) = (∆TR(k)−∆Tlin(k)) ⊲ PI controller

4: u(k) = u(k − 1) + KP (e(k)− e(k − 1)) + KI

(

1 + ωITs

2

)

(e(k)− 2−ωITs

2+ωITs
e(k − 1))

5: if Umin ≤ u(k) ≤ Umax then
6: Us(k) = u(k)
7: else
8: if u(k) < Umin then
9: Us(k) = Umin

10: else
11: Us(k) = Umax

12: end if
13: end if
14: Ū(k) = u(k)− Us(k)
15: ∆T̂ (k + 1) = Φ̂∆T̂ (k) + Γ̂Ū(k)
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input saturates u(k) < Umin or u(k) > Umax, we want to enforce stability of the active

closed-loop system consisting of K(z) and Ĥ(z), and stability of H(z).

Figure 2.3: Resulting feedback control structure when H(z) = Ĥ(z).

For the first case, as is assumed in [33,38], stability of this system will first be considered for

the special case in which Ĥ(z) = H(z). In such case it is straightforward to show that Fig. 2.2

can be drawn in the equivalent form as depicted in Fig. 2.3. The function dead(u, Umin, Umax)

is implemented as follows:

dead(u, Umin, Umax) =























(u− Umin), if u ≤ Umin

0, if Umin < u < Umax

(u− Umax), otherwise.

The verification of stability of the closed-loop system in Fig. 2.3 is based on the well-know

Nyquist stability criteria in frequency domain [75], from which and Fig. 2.3 we obtain The-

orem 1 to verify stability of the our proposed control structure (Fig. 2.2) directly.

Theorem 1. The closed-loop system depicted in Fig. 2.2 is stable if 1) K(z)H(z) satisfies

Nyquist stability criteria; 2) Ĥ(z) = H(z). In addition, if the output ∆T (k) is to reach a

steady-state output for a given input ∆TR, then Ĥ(z) should be stable.

For the second case, to avoid introducing additional terms and complexity, we simply note

that when Ĥ(z) = H(z)(1+∆(z)), Fig. 2.2 can be shown to be in the equivalent form depicted

in Fig. 2.4. Therefore, when checking for stability, one should verify whether K(z)Ĥ(z) also

satisfy the Nyquist stability criteria.

Nyquist stability criteria and Lemma 1 lead us to the following theorem:
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Figure 2.4: Equivalent control structure given that Ĥ(z) = (1 + ∆(z))H(z).

Theorem 2. The closed-loop system with controller

K(z) = KP + KI

(

1 +
ωITs

2

) z − 2−ωITs

2+ωITs

z − 1

depicted in Fig. 2.2 in which ∆TR is the input, and ∆Tlin is the output is stable if:

1. Ĥ(z) = Γ̂
z−Φ̂

, Γ̂ ≤ Γmax, Φ̂ ≤ Φmax

2. KP = KI = kGM
1+Φmax

2Γmax

in which kGM = 10−
GM

20 , Φmax = exp(− Ts

Rth maxCth
), Γmax = kp maxRth max(1 − Φmax) and ωI =

2(1−Φmax)
Ts(1+Φmax)

. where GM is the desired worst-case gain margin and , 0 ≤ GM <∞.

Proof. We show a brief proof of Theorem 2. Let us first consider the case of the closed

loop only with K(z) and H(z). The plant-controller loop-product can now be written in the

following form:

K(z)H(z) =
KPΓ

z − Φ
+ KI

(

1 +
ωITs

2

)

z − Φmax

z − Φ

Γ

z − 1
. (2.8)

The models of (2.8) and (2.5) indicate that no poles exist outside the unit circle for all

Ts <∞; therefore, Lemma 1 will always be satisfied if

|K(ejπ)H(ejπ)| ≤ 1, and Φmax = exp(− Ts

Rth maxCth

) ≥ Φ.
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These two conditions are sufficient that the phase margin will be greater than zero when ω =

π. In particular we note that if we assume that ωI = 2(1−Φmax)
Ts(1+Φmax)

then by cross multiplication

Φmax = 2−ωITs

2+ωITs
. Therefore, our proposed controller has the following form

K(z) = KP + KI
2

1 + Φmax

(

z − Φmax

z − 1

)

so that

K(z)H(z) =
KPΓ

z − Φ
+

2KI

1 + Φmax

(z − Φmax)Γ

(z − Φ)(z − 1)
=
(

Γ

1 + Φmax

) z − KP(1+Φmax)+Φmax2KI

KP(1+Φmax)+2KI

(z − 1)(z − Φ)

(2.9)

from the corresponding pole-zero plot, it is evident that the magnitude |K(ejω)H(ejω)| is a

smoothly decreasing function in which the phase ∠K(ejω)H(ejω) > −π for ω ∈ [0, π) if

Φ <
KP(1 + Φmax) + Φmax2KI

KP(1 + Φmax) + 2KI

< 1 holds.

Indeed, the above inequality will be shown to hold if Φmax > Φ. It is therefore sufficient

to let the magnitude of |K(ejπ)H(ejπ)| < 1 or the magnitude of the respective proportional

term (involving KP) and integral term (involving KI) to each be less than one-half when

ω = π and can indeed be readily verified from our first expression given for K(z)H(z), and

carefully noting the relationship between the ratio involving Φ and Γ in which

KP

kGM
<
|ejπ − Φ|

2Γ
≤ 1 + Φmax

2Γmax
,

KI

kGM
<

1 + Φmax

4Γ

|(ejπ − Φ)(ejπ − 1)|
|ejπ − Φmax|

≤ 1 + Φmax

2Γmax
.

We will always know what Umax will be as it is dictated by the scheduler chosen, however,

some uncertainty may remain on choosing the lower-limit Umin due to task execution time.

Therefore even choosing the ultimate lower-bound Umin = 0 can always be a safe choice

even if Umin > 0 in that it will result in a slight sub-optimal lag in allowing the controller

to increase the utilization levels due to a decrease in environmental temperature for exam-

ple. Considering that environmental temperature changes are fairly slow, this slight lag is

typically unnoticeable. For a more detailed discussion on anti-windup control, we refer the

reader to [33, 38].
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The Theorem 2 reveals the appealing feature of our thermal controller, that is, its robust-

ness under power change and thermal fault can be guaranteed analytically. Since kp involves

uncertainty of power change represented by Gp according its definition, kp = (GpPa − Pidle),

kp max corresponds to the maximum actual power changes that TCUB can cancel. For exam-

ple, if kp max = 510, Pa = 51.9W and Pidle = 13.3W , we can calculate that the upper limit

of Gp is 10.11, that is, even if the actual power is 10.11 times by the estimated power, the

thermal controller still can stabilize the system. Similarly, the capability of TCUB to handle

thermal fault (modeled by increased thermal resistance) is represented by Rth max. Note that

the Theorem 2 not only provides robustness guarantee but also design of the anti-windup

controller.

Moreover, another appealing property is isolation of varied ambient temperature in our

thermal controller. This property is provided by Lemma 1.

Lemma 1. If the processor’s temperature converges, it converges to the temperature set point

even the estimated ambient temperature, T̂o, and idle temperature T̂idle are employed.

Proof. The proof is straightforward. it is obvious that for the steady-state case when the

u(k) = Us(k) that ∆TR(k) = ∆Tlin(k) = ∆Tfb(k) due to the integrator term in K(z). There-

fore, from the following equation, ∆TR = TR − (T̂o + T̂idle) = T (k)− (T̂o + T̂idle) = ∆Tfb(k),

we have TR = T (k), that is, the processor’s temperature converges to the temperature set

point.

It is noted that due to the minimum task rate constraints, there exists a lower bound for

the feasible utilization, which in turn results in a lower bound for the feasible temperature.

The lower bounds for the utilization and temperature are related to the rate constraints, the

actual execution times, and the actual power consumption. TCUB can achieve satisfactory

thermal and real-time performance only if both the given temperature set-point and the

utilization bound are feasible under the task rate constraints.
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2.5.4 Sensitivity Analysis

In the preceding analysis we provided necessary and sufficient conditions for stability as-

suming that environmental temperature To and idle power Pidle (corresponding idle tem-

perature Tidle) remained constant. For simplicity of discussion, we will: i) further assume

that idle power is constant and equal to zero2; ii) we will treat environmental temperature

To(k) 6= To(k + 1) as a disturbance with the respective z-transform To(z); iii) assume that

saturation does not occur; iv) T̂o = 0, therefore ∆TR(k) = TR(k). Since Tidle = 0 then

∆T (k) = T (k) − To(k) as a result it is a straight forward exercise to show from (2.5) and

(2.7) that:

∆T (z) =
Γ

z − Φ
U(z) − z − 1

z − Φ
To(z), T (z) =

Γ

z − Φ
U(z) +

1− Φ

z − Φ
To(z). (2.10)

Using (2.5.4) we state Lemma 2.

Lemma 2. For the control system depicted in Fig. 2.1 in which u(k) = Us(k), TR(z) = 0

the sensitivity transfer function S(z) is S(z) = T (z)
To(z)

= 1−Φ
z−Φ+ΓK(z)

. Furthermore stability is

unaffected when To(k + 1) 6= To(k) and Pidle(k + 1) 6= Pidle(k).

Figure 2.5: Closed-Loop structure when studying sensitivity.

Proof. Fig. 2.5 depicts (2.5.4) and our proposed control structure when saturation is not

present. Therefore, using standard closed loop realizations we can show that

T (z) =
ΓK(z)

z − Φ + ΓK(z)
TR(z) +

1− Φ

z − Φ + ΓK(z)
To(z)

2Constant idle power has no effect on the sensitive function shown in Lemma 2.
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then setting TR(z) = 0 results in the standard sensitivity transfer function S(z) = 1−Φ
z−Φ+ΓK(z)

.

Note also that the sensitivity function has the same characteristic equation as the closed-loop

system ( ΓK(z)
z−Φ+ΓK(z)

) studied for closed-loop stability. Therefore it is obvious that dynamic

effects related to environmental temperature To have no effect on stability. An analogous

observation can be made if idle power is considered to be time-varying.

For an example system with parameters from Tab. 2.1 and Tab. 2.2, Fig. 2.6 plots the

magnitude of the sensitivity transfer function of the system with respect to frequency. Note

that in the whole range of frequency the magnitude is less than 0, which means the effect of

To converges to 0 in steady state and can not affect the temperature of closed loop system.
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Figure 2.6: Magnitude of sensitivity transfer function of the example system.

2.6 Evaluation

The simulation environment consists of two components: an event driven simulator imple-

mented in C++ and a Simulink c© model implemented in MATLAB (R2008a). The simulator

simulates a single processor real-time system controlled by TCUB and implements a utiliza-

tion monitor, a rate actuator and a utilization controller. The Simulink c© component imple-

ments the thermal controller and models thermal dynamics of the processor. The simulator

and the Simulink c© component communicate with each other through a TCP connection.
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In our simulation, the tasks set running on the processor consists of 10 periodic soft real-

time tasks. The Rate Monotonic (RM) scheduling algorithm [56] is employed to schedule all

tasks. Initially, the period of each task Ti is randomly generated in the range [100ms, 200ms].

Based on the initial tasks rate, the execution times of tasks are deliberately chosen in such

a way that the CPU utilization of each task are almost equal and the CPU utilizaiton of

all tasks is lower than schedulable CPU utilization bound. The minimum rate of one task

equals its execution time while the maximum rate equals 10 times of initial tasks rate. The

deadline of each task equals its period.

The processor simulated in our work is a 2.6GHz Pentium 4 (P4) processor with 130nm

Northwood core. All thermal related parameters except thermal capacitance shown in Table

2.1 are based on Intel technical specification [44]. The thermal capacitance is acquired based

on the parameters used for simulating P4 on Hotspot [41] , a widely used architecture level

simulator, .

Parameter Notation Value

Ambient temperature To 45◦C
Max case temperature Tc 75◦C

Estimated Active power Pa 51.9W
Idle power∗ Pi 13.3W

Thermal Capacitance Cth 295.7J/K
Thermal Resistance Rth 0.467K/W

Thermal Fault Resistance R′
th 2Rth

∗
Enhanced Halt Mode is available [86]

Table 2.1: Power and thermal parameters of simulated processor.

In the following simulations, we choose 70◦C as the set point of the processor’s temperature.

The set point is lower than the maximum case temperature 75◦C to avoid activation of

interal hardware regualtion which ends up unpredictable performance degradation. The

thermal fault resistance, R′
th, is based on the data reported in [23].

Table 2.2 shows the controller parameters of TCUB which are calculated using the methods

discussed in Section 2.5.
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Kp Ki ωi kp max Rth max Umax Umin TR Ts Kp Tu

0.0523 0.0523 0.0036 510 0.934 0.67 0.07 70 ◦C 10s 0.37 1s

Table 2.2: TCUB controller parameters

We compare TCUB against three baseline algorithms3, OPEN, TC and FC-U. OPEN has

no feedback thermal and utilization control loop and statically set task rates based on the

estimated execution times to achieve the schedulable utilization bound. OPEN represents a

static approach commonly used in practice. TC has the same thermal controller as TCUB,

but does not include the utilization controller. After the thermal controller outputs the

utilization set point, it sets the task rates based on the estimated execution times. FC-

U [60] is the same utilization control algorithm used in TCUB, but does not has the thermal

controller to manage temperature. As subsets of TCUB, TC and FC-U allow us to evaluate

the effectiveness of the integrated control approach of TCUB for both temperature and

utilization.

2.6.1 Power Deviation

This set of simulations is designed to evaluate TCUB when the processor’s active power devi-

ates from the estimate, which represents power phase change observed in previous empirical

studies [46]. We use different power ratios, i.e., the ratio between the actual active power to

the estimate, in different runs. In the first run the power ratio is 2, i.e., the actual active

power is twice the estimate; in the second run, the power ratio is 0.5, i.e., the actual power

is half of the estimate. The task execution times are the same as their estimate in this set

of experiments.

Fig. 2.7 shows the results when power ratio is 2. As shown in Fig. 2.7(a), the temperature of

the processor under TCUB converges to the temperature set point 70◦C while its utilization

remains below the utilization bound. Note that TCUB forces the CPU utilization to remain

lower than its utilization bound , which is needed in order to maintain the temperature set

3While several thermal-aware real-time scheduling algorithms exist in the literature [13, 42, 92, 93], they
rely on Dynamic Voltage and Frequency Scaling (DVFS) which is not required by TCUB. The only existing
feedback control algorithm for thermal control [27] also require on DVFS and hence will not provide a fair
comparison with TCUB. We discuss the related works in detail in Section 2.2.
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point due to the high active processor power when the power ratio is 2. In contrast, FC-U,

shown in Figure 2.7(d), reaches the utilization bound but it violates the temperature set-

point. OPEN behaves similarly to FC-U except its achieves slightly higher utilization and

temperature because the task rates are configured for the schedulable utilization bound which

is higher than the utilization set point of FC-U. TC performs similarly to TCUB. Because the

execution times are the same as their estimate in this experiment, the utilization controller

is not necessary. There is no deadline miss for all algorithms in this experiment. Note that

slight fluctuation of utilization in Fig. 2.7 casued by randomness of execution time of the

task set.

Fig. 2.8 illustrates the simulation results when power ratio is 0.5. TCUB undershoot the

temperature set point while the utilization bound is hit in this experiment. Due to the low

processor’s active power, the utilization bound constraint is activated before the temperature

reaches the set-point. As a result, TCUB stops increasing the utilization to enforce the

utilization bound. TC behaves similarly to TCUB because the task execution times conform

to the estimate. FC-U enforces the utilization bound, which results in a temperature lower

than the set-point. OPEN behaves similarly to FC-U.

In summary, this set of experiments demonstrate our thermal controller can effectively handle

uncertainties in power consumption, including the cases that either the temperature set point

or the utilization bound dominates the thermal control.

Since OPEN has no thermal and utilization control and statically set tasks rates, it can not

accommodate variation of system parameters as shown in this experiment and [60]. So in

following experiment the results of OPEN are not presented.

2.6.2 Execution Time Variation

This set of experiments is designed to evaluate TCUB under uncertainties in task execution

times. We use execution-time factor (etf) to denote the ratio between the actual and the

estimated execution times. For example, when etf = 2, the actual execution time is twice

the estimate. We simulate two cases with etf = 2 and etf = 0.5 in this set experiment

28



0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(a) TCUB

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(b) OPEN

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(c) TC

0 1000 2000 3000 4000

50

60

70

80

90

Time(s)

 

 

Temperature
Temp Setpoint

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Time(s)

 

 

Miss Ratio
Utilization
Util Setpoint

(d) FC-U

Figure 2.7: Performance comparison when power ratio is 2.
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Figure 2.8: Performance comparison when power ratio is 0.5.
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respectively. Meanwhile, in this experiment we set the power ratio as 1, i.e., the processor’s

active powers is the same as the estimate.

The results with etf = 2 are shown in Fig. 2.9. Although the actual execution times of tasks

exceed the estimate by 100%, TCUB successfully enforces the utilization bound. Since the

utilization bound is activated first, the processor’s temperature is still below the set point.

No deadline miss is observed under TCUB. This result demonstrates that TCUB effectively

handles uncertainties in task execution times through the utilization controller. Similarly,

FC-U enforces the utilization bound and achieves the temperature lower than the set point

also. In contrast, TC causes 100% CPU utilization and a significant number of deadline

misses since it adjusts task rates based on their estimated execution times.
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Figure 2.9: Performance comparison when etf is 2.

The results with etf = 0.5 are shown in Fig. 2.10. TCUB again successfully enforces the

utilization bound, while the processor temperature remains below the set point. FC-U, like

TCUB, enforces the utilization bound too. In contrast, TC significantly undershoots the

utilization bound while its temperature remains significantly lower than the set point. This

is caused by the fact that the task execution times are only half of the estimate. Note
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such CPU underutilization results in unnecessarily low task rates, which are undesirable to

applications.
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Figure 2.10: Performance comparison when etf is 0.5.

Experimental results in these two sections demonstrate that TCUB is the only algorithm

that can consistently maintain temperature set point and soft real-time performance under

uncertainties of power consumption or the task execution times.

2.6.3 Robustness of TCUB

This experiment is designed to stress-test the robustness of TCUB under uncertainties of

both the execution times and power consumption. For all experiments we plot the aver-

age temperature and utilization over the last 300 sampling period to exclude the transient

response in the beginning of the experiment.

Fig. 2.11 demonstrates the robustness of TCUB when both the execution time factor and the

power ratio vary in a wide region. The area full with circles labeled empirical represent the
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simulations in which TCUB maintains satisfactory average temperature (≤ 70.7◦C, 1.01TR)

and average utilization (≤ 67.7%, 1.01Umax). The theoretical bound for the execution time

factor is the maximum execution time factor below which the utilization controller maintains

stability based on the analysis presented in [96]. The theoretical bound for the power ratio is

the maximum power ratio under which the thermal controller can maintain stability based

on Theorem 2. The feasible bound is determined based on the minimum task rates of our

workload as discussed in Section 2.5.3. The area below both the theoretical bound and the

feasible bound is the stable area of TCUB by theoretical analysis presented in Section 2.5.3.

As shown in Fig. 2.11, the empirical area almost covers the analytical area. On the one

hand, the results demonstrate that TCUB can maintain desirable temperature and utilization

under considerable uncertainties in terms of both power consumption and execution times.

On the other hand, close match between the analytical stable region and the empirical area

demonstrate the effectiveness of our control model and analysis.
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Figure 2.11: TCUB performance with varying power ratio and etf

2.6.4 Thermal Fault

This experiment is designed to examine the capability of TCUB to deal with thermal faults

based on the empirical model presented in [23], we simulate the case fan failure by doubling

the thermal resistance, Rth, of the processor. As shown in Fig. 2.12, under TCUB the

temperature converges to 70◦C while the utilization is considerably lower than the utilization

set point. Since the thermal resistance doubles in this case, the processor generates more heat
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at the same utilization. Therefore TCUB enforces the temperature set point by regulating

the CPU utilization at a low level. TC performs similarly to TCUB as the utilization

bound is not activated when the temperature converges to the set point. In contrast, FC-U

significantly overshoots the temperature set point.
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Figure 2.12: Performance comparison with thermal fault

2.6.5 Ambient Temperature Variation

This experiment is designed to evaluate TCUB when the ambient temperature is higher than

the default setting. Specifically, in the simulation we set the ambient temperature to 55◦C

which is higher than default setting by 10◦C. The power ratio and etf is fixed at 1.0 As

shown in Fig. 2.13(a), TCUB tracks the temperature set point, while the utilization remains

below the utilization bound. To offset the increase in the ambient temperature, TCUB

lowers the CPU utilization so as to reduce the amount of heat generated by the processor.

TC behaves similarly to TCUB. In contrast, FC-U exceeds the temperature set point at

higher utilization.
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Figure 2.13: Performance comparison with different ambient temperature

As claimed in Lemma 1, our thermal controller is robust to the uncertainty in the ambient

temperature. The following experiment is designed to validate this claim by running a set

of simulations under different ambient temperature in the range [35, 55]. In this experiment

the power ratio and etf are preset to 1 and unchanged. Fig. 2.14 shows the experiments

results. The temperature shown in Fig. 2.14(a) is the average of the processor’s temperature

in last 300 seconds of each simulation. When ambient temperature is lower than 50◦C,

the steady state temperature of the processor stays below the temperature set point which

utilization maintains the utilization set point. This is because the processor can not generate

enough heat to surpass the temperature set point. In contrast when the ambient temperature

is greater than 50◦C, the steady state temperature of the processor stays at 70◦C while

the utilization is reduced below the utilization set point in order to compensate for the

higher ambient temperature. In both cases, the ambient temperature does not affect the

steady temperature under TCUB, demonstrating the robustness of the thermal controller

with regarding to ambient temperature.
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Figure 2.14: TCUB performance with varied ambient temperature

2.7 Summary

Many embedded systems face the critical challenge of managing both the processor tempera-

ture and software real-time performance in unpredictable environments. This paper presents

TCUB, a control-theoretic algorithm for managing both the processor temperature and soft

real-time performance. Rigorously modeled and designed based on control theory, TCUB

can avoid processor overheating and maintain soft real-time performance. A salient feature of

TCUB lies in its capability to handle different types of uncertainties in terms of (1) processor

power consumption, (2) task execution times, (3) ambient temperature, and (4) unexpected

thermal faults. The robustness of TCUB makes it particularly suitable for real-time em-

bedded systems that must deal with highly unpredictable environments. Moreover, TCUB

features a nested feedback control structure consisting of (1) a low-rate thermal controller

dealing with the slower thermal dynamics, and (2) a high-rate utilization controller handling

the faster CPU utilization dynamics caused by uncertainties in task execution times. The

nested control scheme is modular, efficient, and practical for embedded systems with tight

resource constraints. The advantages of TCUB have been demonstrated through extensive

simulations under a broad range of system and environmental conditions.
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Chapter 3

Feedback Thermal Control for

Real-time Systems on Mulitcore

Processors

3.1 Introduction

Embedded real-time systems face significant challenges in thermal management as they adopt

modern computing platforms with increasing power density. While traditional embedded

real-time systems typically run on single-core low-power microcontrollers, the increasing com-

plexity of real-time applications demands the adoption of modern multicore microprocessors

to leverage their computing power. Such systems must avoid processor overheating while

maintaining desired real-time performance. The need to enforce temperature bounds can

conflict with the need to meet real-time performance requirements, because thermal manage-

ment mechanisms such as Dynamic Voltage and Frequency Scaling (DVFS) reduce processor

speed resulting in prolonged execution times for real-time tasks. While modern processors

usually rely on hardware throttling mechanisms to prevent overheating, such mechanisms

can cause severe performance degradation unacceptable to real-time applications. Moreover,

modern processors can exhibit significant uncertainties in their power and thermal charac-

teristics. For instance, the power consumption of a processor may vary significantly when

running different applications due to the different sets of instructions executed [46].

In recent years, control-theoretic thermal management approaches have shown promise in

[20, 27, 28, 54, 99, 105, 106] handling uncertainties in thermal characteristics. In contrast to
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heuristic-based design relying on trial-and-error, control-theoretic approaches provide a sci-

entific framework for systematic design and analysis of thermal control algorithms. However,

previous research on feedback thermal control for embedded real-time systems focused on

single-core processors and cannot handle the practical limitations of multicore processors.

Thermal management mechanisms such as DVFS only support a finite set of states, leading

to discrete control variables that cannot be handled by standard linear control techniques.

Moreover, multicore processors require the temperatures and real-time performance of mul-

tiple cores to be controlled simultaneously, leading to multi-input-multi-output (MIMO)

control problems with inter-core thermal coupling.

We present Real-Time Multicore Thermal Control (RT-MTC), a novel feedback thermal

control algorithm specifically designed to meet the challenges posed by multicore processors.

RT-MTC employs a feedback control loop that enforces the desired temperature and CPU

utilization bounds of embedded real-time systems through DVFS. RT-MTC employs an

efficient and robust control design that integrates three components.

• a robust nonlinear proportional controller that deals with uncertainties in power con-

sumption;

• a saturation block for the controller output that enforces the schedulable utilization

bound;

• a Pulse Width Modulation (PWM) component that achieves desired control input by

dynamically switching between discrete voltage/frequency levels.

RT-MTC combines a control-theoretic approach and a practical design. In contrast to

heuristics-based solutions relying on extensive testing and hand tuning, we provide control-

theoretic analysis of the stability and robustness of RT-MTC under uncertainties in power

consumption. At the same time, RT-MTC employs a simple and efficient control algorithm

suitable for run-time execution. Moreover, RT-MTC can be easily implemented in the user

space without modification to the OS kernel which is usually required by traditional thermal-

aware real-time scheduling approaches. The robustness and advantages of RT-MTC over ex-

isting thermal control approaches are demonstrated through implementation on Linux and

experiments on an Intel Core 2 Dual processor as well as extensive simulations with varying

power consumption.
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The rest of the chapter is organized as follows. Section 3.2 formulates the problem of ther-

mal contorl for real-time systems on a multicore processor. Section 3.3 outlines the structure

of RT-MTC. Section 3.4 presents a model that characterizes the thermal dynamics of real-

time systems. Section 3.5 details the design and stability analysis of RT-MTC. Section 3.6

describes some detail to implement RT-MTC. Section 3.7 provides simulation results. Sec-

tion 3.8 introduces related work. Section 3.9 provide summary of the this chapter.

3.2 Problem Formulation

We assume a common embedded real-time system model where the workload consists of

real-time tasks released periodically. A embedded real-time system comprises a set of pe-

riodic real-time tasks running on a multicore processor with m homogeneous cores. The

processor supports Dynamic Voltage and Frequency Scaling (DVFS). We assume two com-

mon characteristics of DVFS in mainstream multicore processors (e.g., Intel Core2, i5, i7 and

Atom). First, the frequency and voltage of all the cores can only be scaled uniformly, i.e.,

all cores always share the same frequency and voltage. Second, the processor only supports

a discrete set of frequencies. New challenges are posed by The dicretization and nonlinearity

introduced by both assumptions pose key challenges to thermal control design that were not

addressed in previous works [71, 99, 104–106].

We assume partitioned multicore real-time scheduling, under which tasks are statically par-

titioned and bound to processor cores. There is a real-time tasks set S with n independent,

periodic real-time tasks for the processor. For core l, there is a task set Sl ⊆ S with nl

real-time tasks. Each task si in the task set Sl has a period pi, a soft deadline di, and a

worst-case execution time ci. The utilization of an individual core l is thus Ul =
∑

sj∈Sl

cj

pj
.

We assume the tasks on a core are scheduled locally based on a real-time scheduling policy

with a known schedulable utilization bound Ub, e.g., Rate Monotonic (RM) or Earliest

Deadline First (EDF) under certain conditions [56]. The tasks on a core l meet their deadlines
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Figure 3.1: Feedback control loop of RT-MTC

if Ul ≤ Ub. The system can therefore guarantee the schedulability of all the tasks on a core

by enforcing the schedulable utilization bound. 4

Given a embedded real-time system running on a multicore processor, our problem is to

control the temperature of the processor such that the maximum temperature among all the

cores tracks a temperature set point, ys, subject to the constraint of utilization bound Ub

on each processor core. The temperature set point ys is the desired temperature below the

maximum temperature tolerable by the processor. Our control problem formulation therefore

aims to meet both the thermal and real-time performance requirements of a embedded real-

time system.
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3.3 Overview of RT-MTC

The feedback control loop of RT-MTC, shown in Fig. 3.1, consists of a Temperature Sensor

(TS) for each core, a Proportional Controller with Saturation (PCS), Pulse Width Mod-

ulation (PWM), and a DVFS Actuator (DA). The user input to RT-MTC is the desired

temperature set point ys and the utilization bound Ub. The feedback control loop is invoked

periodically at the end of every sampling period. Specifically, at the end of kth sampling

period, RT-MTC performs the following operations:

1. The TS on each core measures the temperature of the core i, yi(k). The Max func-

tion calculates the maximum temperature among all cores and feeds the maximum

temperature ymax(k) among all the cores to the PCS.

2. The PCS computes the controller output u(k) as follows:

u(k) =























1, if kpe(k) > 1,

−1, if kpe(k) < −1,

kpe(k), otherwise;

(3.1)

where kp is the coefficient of proportional control and e(k) = ys− ymax(k). The output

of the controller is limited to the range [−1, 1]. The PCS design is discussed in more

details in Section 2.5.3.

3. The PWM receives the controller output u(k) and calculates a pair of frequencies

fhigh(k + 1), flow(k + 1) and the switching time Tsw(k + 1). Details of calculating

fhigh(k + 1), flow(k + 1), Tsw(k + 1) are presented in Section 3.4.2.

4. The DA adjusts the frequency of the multicore processor via the DVFS interface ac-

cording to the (fhigh(k + 1), flow(k + 1), Tsw(k + 1)) input from the PWM. Specifically,

at Tsw(k +1) seconds after the beginning of the current sampling period, the processor

switches its frequency from fhigh(k + 1) to flow(k + 1). The implementation of DA is

detailed in Section 3.6.

4Our approach can be extended to support a mixed task set containing periodic and soft real-
time aperiodic tasks via well known aperiodic server mechanisms [57] by enforcing appropriate
schedulable utilization bounds.
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3.4 Thermal Dynamic Model

As the first step of control design and analysis, we now present a difference equation model

to characterize the relationship between the frequency and the temperature. We construct

the model in three steps. We first caputre the power consumption. Based on a well known

power model, we then characterize the impact of PWM on the power consumption model.

Finally, we complete the system model by incorporating a widely used thermal RC model

that characterizes the relationship between power consumption and temperature.

We note that our system model is necessarily a simplification of the actual system’s thermal

behavior for the purpose of control-theoretic design and analysis. The inherent robustness

of feedback control enables our system to handle considerable modeling errors in model

parameters, as demonstrated in our evaluation (Sec. 3.7.1).

3.4.1 Power Model

As shown in [28], the average power P̄ (k) of a core in the kth sampling period can be modeled

as

P̄ (k) = U(k)Pact(k) + (1− U(k))Pidle(k)

where U(k) is the CPU utilization of the core, Pact(k) is the active power, and Pidle(k) is

the idle power in kth sampling period. Pidle(k) can be approximated by a piecewise linear

model Pidle = (C0(V (k))+C1(V (k))y(k))V (k) [77]. A well-known model of the active power

is Pact(k) = C2V
3(k), where C2 is a constant coefficient and V (k) is the supply voltage [79].

We can rewrite the average power as

P̄ (k) = P̄a(k) + Cyy(k) (3.2)

where P̄a(k) = U(k)C2V
3(k) + C0(V (k))V (k) and Cy = C1(V (k)). P̄a(k) and Cy can be

expressed in terms of the frequency, based on the relationship between supply voltage and

frequency, V (k) = Kf(k) + Vth [52] and U(k)
f(k)

= U0

f0
where U0 and f0 are the initial CPU

utilization and frequency. Note we assume that the processor utilization scales proportionally

with the frequency which usually hold for those CPU bound applications.

42



3.4.2 Pulse Width Modulation (PWM)

As each core of the multicore processor runs under a discrete set of frequencies, the power

P̄a(k) in equation (3.2) can only switch between discrete levels. To track the temperature

set point closely, PWM is employed to map desired average power in each sampling period

to the discrete frequency levels supported by the processor.

The continuous input to the PWM in the kth sampling period is u(k) ∈ [−1, 1]. The PWM

computes (fhigh(k +1), flow(k +1), Tsw(k +1)) based on u(k). The upper limit of the output

corresponds to the maximum frequency supported by the processor. The lower limit of

the output corresponds to the lowest frequency that satisfies the utilization bound or the

minimum frequency, whichever is higher. Let the frequency corresponding to the upper and

lower limit of u(k) be fmax, fmin, and let fu(k) = fmin + (fmax − fmin)
u(k)+1

2
. To minimize

the change in CPU speed, PWM first chooses a pair of consecutive frequency levels fi and

fi+1 which satisfy fi ≤ fu(k) ≤ fi+1 from the supported discrete frequency set; these are

designated flow(k + 1) and fhigh(k + 1) respectively. The time to switch from fhigh(k + 1) to

flow(k + 1) is computed as

Tsw =
fu(k)− flow(k + 1)

fhigh(k + 1)− flow(k + 1)
Ts,

where Ts is the sampling period. Note if fu(k) equals any frequency in the supported fre-

quency set, both fhigh(k + 1), flow(k + 1) will exactly equals that frequency and Tsw = 0.

Let P̄a,max, P̄a,min be the upper and lower bound of P̄a, which are the average power con-

sumption at fmax and fmin, respectively. We can rewrite the power model to incorporate

PWM based on (3.2) as

P̄ (k) = Gp(Papu(k) + Pam) + Cyy(k) (3.3)

where Pap = (P̄a,max − P̄a,min)/2, Pam = (P̄a,max + P̄a,min)/2, and Gp is the gain to represent

the uncertainty caused by power variation.

The power consumption model (3.3) approximates the power behavior of the processor,

since it derives the average power rather than actual power. However, as we shown in our

stability analysis (Section 2.5.3) and experiments (Section 3.7.1), the inherent robustness of
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our feedback control design can tolerate considerable modeling error without compromising

system stability.

3.4.3 Thermal Dynamic Model

Our control design is based on a well-established thermal RC model for multicore processors

with M cores and a heat sink [24]. Compared to architecture-level thermal models such as

Hotspot [41], the model presented here is simpler but more suitable for control design of

thermal management. The effectiveness of the model has been validated in [24, 79].

Symbol Meaning

Ri, Rh, Ra, Ri,j thermal resistance of the core i, the heat sink, environment and
thermal resistance between the core i and j

Ci, Ch thermal capacitance of the core i and the heat sink
y0, yi, yh temperature of environment, the core i and the heat sink

Pi power of the core i
Ni the set of cores adjacent the core i

Table 3.1: Symbols in thermal dynamic model

Based on the symbols listed in Tab. 3.1, the thermal dynamic model of the multicore pro-

cessor can be written in the following compact form:

Ẏ(t) = AY(t) + BPP(t) + Byy0 (3.4)

where Y(t) = [y1(t), . . . , yM(t), yh(t)]
T ∈ RM+1, P(t) = [P1(t), . . . , PM(t)]T ∈ RM and y0

is the ambient temperature, A ∈ R
(M+1)×(M+1), BP ∈ R

(M+1)×M and By ∈ R
(M+1). The
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matrices A, BP and By are computed as follows:

A(i, j) =



































































−1
Ci

(

1
Ri

+
∑

m∈Ni

1
Ri,m

)

, if i = j 6= (M + 1)

1
Ri,jCi

, if j ∈ Ni

1
RiCi

, if i 6= (M + 1) and j = (M + 1)

1
RjCh

, if i = (M + 1) and j 6= i

−1
Ch

(

1
Ra+Rh

+
∑M

m=1
1

Rm

)

if i = j = (M + 1)

0, otherwise.

,

BP (i, j) =











1
Ci

, if i = j

0, otherwise.
,

By(i) =











1
Ch(Ra+Rh)

, if i = M + 1

0, otherwise.
.

We use a Zero Order Hold (ZOH) equivalent model [25] in which the average power-model

for P̄ (k) is assumed to be held constant and the average environmental temperature is

y0(k) = 1
Ts

∫ (k+1)Ts

kTs
y0(t)dt during the kth sampling period. The ZOH equivalent of (3.4) is

Y(k + 1) = ΦoY(k) + ΨP P̄(k) + Ψyy0(k) (3.5)

where Φo = eATs, ΨP =
(

∫ Ts

0 eAτdτ
)

BP , Ψy =
(

∫ Ts

0 eAτdτ
)

By and P̄(k) = [P̄1(k), . . . , P̄M(k)]T ∈ RM . Substituting the power model (3.3)

for P̄ (k) in (3.5) results in:

Y(k + 1) = ΦY(k) + PapΨP Gpu(k) + Ψyy0(k) + PamΨP Gp (3.6)

in which Φ =
(

Φo + CyΨP

[

IM 0
])

where
[

IM 0
]

∈ RM×(M+1) and IM ∈ RM×M denotes the identity matrix. The term involving y0(k) relates

how environmental temperature changes can perturb the system. The last term represents

a fixed-disturbance due to the mean active power resulting from our proposed modulation

approach.
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In practice the model parameters can be estimated using well-known system identification

method. Essentially, there are two methods to acquire the parameters of the compact thermal

model. We can either extract the parameters based on fine grain thermal RC models, for

example Hotspot [41] or estimate the parameters using realistic operational data, which is

also the method we used in this paper. The detailed description of model identification is

presented in Section 3.7.1.

3.5 Control Design

We propose a low-complexity controller to tackle the problem of thermal management of

real-time systems on multicore processors. Our control design ensures that the maximum

temperature of the cores tracks the thermal set-point without violating the utilization con-

straints. Although the control structure shown in Fig. 3.1 only has single input, the PCS

must control the temperature of multiple cores simultaneously. Previous approaches to ther-

mal control for the single core processor [28] is not suitable to multicore thermal control

because their control design do not handle the interaction among the thermal dynamics of

different cores. In this section we present a control design which can handle not only thermal

coupling among cores but also other nonlinearities induced by the multicore processors.

3.5.1 Stability Analysis and Control Design

The PCS is designed based on passivity [76] and can accommodate the nonlinearities induced

by the Max function and the saturation. There are various precise mathematical definitions

for passive systems that essentially state that the output energy must be bounded so that

the system does not produce more energy than was initially stored. Under certain technical

conditions, strictly input and strictly output passive systems are Lyapunov stable [87]. In

this case, passivity offers advantages for computing a Lyapunov function that is used to

prove stability of the closed-loop system.

In order to analyze the stability of RT-MTC, we assume that the set-point Tb = 0 and we

consider the unperturbed system where y0 = 0, ΨP GP = 0 in (3.6). We provide sufficient
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conditions that ensure the existence of a Lyapunov function for the closed loop system, and

thus, stability of the RT-MTC. A detailed proof can be found in [29]. The disturbance in the

power model arises because of (1) the ambient temperature that can change but is measurable

and (2) the mean active power introduced by the PWM. We can minimize the steady-state

error by taking into account these terms in the set-point Tb (the detailed derivation of Tb

can be found in [29]).

Theorem 3. Consider the closed-loop system shown in Fig. 3.1 with Tb = 0 and assume

that the power model of the multicore processor is described by (3.6) with y0(k) = 0 and

PamΨPGP = 0. If there exists a matrix P = PT > 0 and −∞ < δ < 0 such that the

following LMI is satisfied:





ΦTPΦ− P ΦTPPapΨPGp − 1
2
CT

l
(

ΦTPPapΨP Gp − 1
2
CT

l

)T
δ + P 2

apG
T
p ΨT

P PΨPGp



 ≤ 0 (3.7)

for all l ∈ {1, . . . , M}, where Cl is the coefficient for the measured temperature of the core l,

then the closed-loop system is passive and stable.

By exploring the solution of the LMI (3.7) given in Theorem 3, we can acquire the stability

condition of the system under modeling error. Specifically, for items in the search space of

power gain, thermal resistance and capacitance, we can check whether the LMI is solvable

and then decide whether the closed-loop system is stable with the parameters. Accordingly

we derive robustness of the system in terms of the range of uncertain parameters, power gain

and thermal related parameters resulting in stable systems.

The above theorem can also be used for designing the controller. This is achieved by find-

ing the smallest value of δ that satisfies the LMI (3.7), The controller gain of the PCS

(equation (3.6)) is defined as k = −1
δ
. This is the highest proportional gain that guaran-

tees stability of the closed-loop system. In general, higher controller gain improves control

performance. If there is deviation from the set point, high gain controller ensures that the

system will converge to the set-point as fast as possible. The LMI shown in the theorem

can be solved efficiently using standard LMI tools such as the Matlab LMI toolbox and the

Scilab lmitool.
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3.6 Implementation of RT-MTC

We have implemented RT-MTC on top of Linux, using a combination of Python, MATLAB,

and C. The PCS, PWM, DVFS Actuator, and Max components shown in Fig. 3.1 are written

in Python.

All the components in the feedback control loop are implemented in one process assigned

the highest real-time process priority so that RT-MTC can be executed periodically with

minimum interference from real-time tasks.

Thermal Sensor: Most modern multicore processors are equipped with hardware thermal

sensors for each individual core, which are supported by the operating system or third-party

libraries. For example, the temperature of cores can be read from the interface provided

by lmsensor [3] via the coretemp driver (/sys/bus/platform/drivers/coretemp/) in Linux.

The thermal information can also be acquired from standard ACPI interfaces. For those

multicore processors without thermal sensors on each core, such as those used in embedded

systems, soft thermal sensors [51] can be employed to estimate the temperature of a single

core.

PCS and PWM: The implementations of PCS and PWM are straightforward, based on the

description in Sec. 3.5 and Sec. 3.4.2.

DVFS Actuator: We implemented the DVFS Actuator using the signal mechanism provided

by POSIX interface. First, an alarm is set to be fired at the switching time Tsw by using

the POSIX alarm function. When the alarm expires, a SIGALRM signal is sent to the

process’s signal handler set by the function sigact. The signal handler calls a procedure to

switch the frequency of the multicore processor from the high level fhigh to the low level

flow via a interface which can access the processor’s DVFS function, for examples, ACPI,

lmsensor or Machine Specific Register. The delay between PWM output switching time Tsw

and the time that the frequency is actually switched relies on the resolution of clock interrupt

of the underlying operating system. For example, the Linux kernel uses a configurable time

resolution (known as jiffy) which ranges from 1ms to 10ms. Even at a resolution of 10ms, the

delay has negligible effect on the control performance, since it is comparatively much shorter

than the sampling period. We choose 10s as the sampling period in our implementation
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because it is short enough to control the thermal behavior of the processor , which has time

constant greater than 100s, without imposing singnificant overhead from frequency switching

and computation.

3.7 Evaluation

We first evaluate RT-MTC through experiments based on above implementation and then

perform extensive simulations with parameters acquired from model identification experi-

ments. An Intel Core 2 Duo two core processor is used to run the experiments and be the

target of simulations as it provides discrete DVFS mechanism. Moreover thermal parame-

ters, especially thermal capacitance, of Intel Core2 Duo are acquired directly as shown later.

The simulations complement experimental results by allowing us to examine RT-MTC’s per-

formance under stress-test conditions (such as fan failure) which are difficult or dangerous

to run on real hardware.

3.7.1 Experiments

The hardware platform used for the experiments is a Lenovo W500 laptop with an Intel

T9400 Core 2 Duo dual core processor and the Linux kernel 2.6.32 distributed with Fedora

12.5 The T9400 processor has 2 digital thermal sensors located on each core and supports

processor-wide DVFS, that is, the two cores’ frequencies must be set uniformly. The DVFS

frequencies and the thermal properties of the T9400 are listed in Table 3.2.

Model Identification

To acquire the parameters of the thermal RC model, we first run a set of real-time workloads

to profile the processor’s thermal behavior. Then the thermal parameters is identified from

the experiments results by Matlab Model Identification Toolbox. The real-time workloads

5Although we only present the results of experiments for a dual core processor, the methodology
and implementation can be extended to the processor with more than two cores easily since control
design proposed in this paper is based on a general multicore processor model.
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Properties Value

Frequency 2.53, 1.6, 0.8 GHz
Voltage 1.175, 1.00, 0.900 V
Tjunc 105◦C

Thermal Design Power (TDP) 35W

Table 3.2: Frequencies and thermal properties of the T9400 processor.

used for model identification involves two micro benchmarks, CRC and Bzip2. CRC is a data

verification application chosen from Mibench [36], a test suite for embedded systems. Bzip2

is a data compression tool chosen from SPEC CPU 2006 [2], a standard benchmarks suite.

We implement three kinds of workloads: CRC alone, Bzip2 alone and a Mixed workload

containing both microbenchmarks. The workload for each core is identical and involves 5

periodic tasks which are either CRC or Bzip2 according to the type of the workload. The

deadlines of the tasks are set to the same as their periods. The periods and execution time

of the tasks are listed in Table 3.3.

Task 1 Task 2 Task 3 Task 4 Task 5

Period 250 300 450 500 1000
Execution Time 23 27 41 45 90

Table 3.3: Workload tasks period and execution time when frequency is 2.53GHz (ms).

Thermal parameters (Mixed, Fit∗: 82%)

R1(Ω) Ch(F ) R12(Ω) R2(Ω) C2(F ) C1(F ) Ra + Rh(Ω)
1.61 216.74 16.16 1.46 1.25 1.25 1.05

Thermal parameters (Bzip2, Fit:83%)

R1(Ω) Ch(F ) R12(Ω) R2(Ω) C2(F ) C1(F ) Ra + Rh(Ω)
1.35 263.02 15.23 1.13 1.61 1.61 1.35

Thermal parameters (CRC, Fit: 81%)

R1(Ω) Ch(F ) R12(Ω) R2(Ω) C2(F ) C1(F ) Ra + Rh(Ω)
1.78 242.23 16.83 1.56 1.35 1.35 1.08
∗: the accuracy index in Matlab model identification Toolbox.

Table 3.4: Results of model identification

50



To capture the comprehensive thermal behavior for different frequencies, we employ a pseudo-

sequence of frequency as input, where frequency switches between 2.53GHz and 0.8GHz.

Considering the large time constant of the processor’s thermal behavior, we run each work-

load for 5400s. Table 3.4 shows the results of the model identification via Matlab Model

Identification Toolbox. Fig. 3.2 illustrates the temperature and frequency of the Mixed

workload; the other two workloads are omitted here due to space constraints.

There are two important observations from Table 3.4. First, it indicates the efficacy of the

thermal dynamic model, as the estimated model parameters result in fitness levels above 80%

for all three workloads. Second, the model parameters estimated under different workload

differ considerably. This entails that thermal control must be robust against uncertainties

of model parameters caused by different workloads since it is unrealistic to expect users

to re-estimate the parameters via system identification for every workload. Such robust-

ness against modeling errors is an important advantage of RT-MTC, as shown in both the

empirical results and the simulation study presented below.
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Figure 3.2: Model identification data (mixed workload)

Experiment Results

In this section we present the experimental results of RT-MTC on the real hardware platform.

We run RT-MTC under the workload of the CRC and the Mixed for 10 minutes each. The

controller parameters of RT-MTC are computed using the thermal RC model parameters of

the Mixed workload. In this experiment we choose the temperature set point as 60◦C to
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ensure that internal thermal throttling circuit is not activated even when there is overshoot

during temperature adjustment.
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Figure 3.3: Experimental results of RT-MTC

Two important observations can be made from the results plotted in Fig. 3.3. First, RT-MTC

enforces both the temperature set point and the utilization bound. As seen in Fig. 3.3(b),

after 280s the temperature is steady at the temperature set point, 60◦C. The average

upper limit of the utilization is 74%, which is below the utilization bound. Second, RT-

MTC (with the same control parameters) can control the thermal behavior of the processor

effectively under both test workloads. As shown in Table 3.4, there is difference between

the parameters identified by the Mixed and the CRC workloads, which induces modeling

52



error. Ensuring temperature set point in both cases shows RT-MTC robustness against

modeling error induced by different workloads. Although there are spikes in temperature

during the CRC workload caused by background services (which cannot be manipulated by

our user-space implementation), RT-MTC quickly counteracts these spikes.

3.7.2 Simulation

We perform extensive simulations based on the model parameters identified from the exper-

iments in Sec. 3.7.1. Although we wish to explore the performance of RT-MTC in extreme

scenarios, it is often impractical to carry such experiments out on real hardware. For ex-

ample, an experiment int RT-MTC’s performance in the face of fan failure would be likely

to damage the processor. For this reason, we stress-test the performance of RT-MTC under

simulation, as discussed in this section.

Simulation Setup

There are two components in our simulation environment: an event driven simulator im-

plemented in C++ and a Simulink module implemented in MATLAB (R2008a). The C++

simulator simulates embedded real-time systems over multicore processors and calculates

the processor utilization according to the frequency output by the controller. The Simulink

module performs the controller’s computation. And the Simulink module also calculates the

temperatures of multicore processors based on the utilization generated by the C++ simu-

lator. The C++ simulator and the Simulink module communicate with each other through

a TCP connection.

The target multicore processor in our simulation is the dual core processor, Intel Core 2 Duo

T7200 [1]. The power and thermal related parameters of T7200 are shown in Table 3.5. The

parameters of the leakage power model are acquired by linear approximation of an accurate

leakage power model [58]. The active power and available frequencies are obtained from

Intel T7200 data sheet [1]. Note that although the evaluation is only preformed on the dual-

core processor, our approach for thermal management is developed for general multicore

processors and therefore can handle the processors with more cores.
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We use the same methodology and tools for model identification as described in Sec. 3.7.1.

The acquired thermal parameters are listed in Table 3.5. As thermal design is different

between manufacturers, it is reasonable that these parameters identified vary significantly

from those identified for the T9400.

Power Parameters

f(GHz) 0.8, 1.2, 1.6, 2.0
C0 -0.3638, -0.3687, 0.1071, 2.3367
C1 0.0191, 0.0342, 0.0608, 0.1066
C2 7.7378

Thermal Parameters

R1(Ω) 0.53 Ch(F ) 390 R12(Ω) 5.5
R2(Ω) 0.57 C2(F ) 39.14 C1(F ) 50.38
Ra + Rh 0.2

Table 3.5: Simulation parameters

In the simulations we use a fine-grained workload which runs 10 periodic soft real-time

tasks on each core. We assume partitioned scheduling for the multicore embedded real-time

systems. The Rate Monotonic (RM) scheduling algorithm [56] is employed to schedule all

tasks on each core. The utilization bound is set to 0.71. At the beginning of the experiment,

the period of each task Ti is randomly generated in the range [100ms, 200ms]. The execution

time of each task is generated to keep each task’s utilization nearly equal and the sum of all

tasks’ utilization at 0.7, just below the utilization bound.

In the following simulations, we set the temperature bound to 60◦C, below the temperature

achieved by the Thermal Design Power (TDP) of T7200 so as not to activate the internal

hardware thermal regulation. Note that the effectiveness of our approach does not rely on

the specific temperature bound.

We compare RT-MTC against four other baseline algorithms, OPEN, Reactive, MPC-QUAN

and MPC-PWM. The algorithm OPEN statically sets the processors’ frequency at beginning

of the simulation and does not change it while the simulation runs.

MPC-QUAN and MPC-PWM are control-theoretic approaches and based on the algorithm

proposed in [106]. The control algorithms of both baselines are the solutions of the following
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constraint optimizing problem with the optimizing objective as follows:

J(k) =
Hp
∑

i=1

|ymax(k + i)− ys|2 (3.8)

where Hp is the prediction horizon and ys is the temperature set point. The solution of the

optimizing problem also needs to satisfy the constraints of the utilization bound, the thermal

bound, and the frequency limit. Note that T (k) must follow the thermal model (3.5). The

solution of the constraint optimizing problem (3.8) is a vector with length of Hp. The

first element of the solution is employed as control output. The pulse width modulation

transforms the control output of the power to the duty cycle of the power signal. MPC-

QUAN rounds off the control output, aforementioned as the final output while MPC-PWM

employs a PWM mechanism described in the previous section to approximate the control

output.

The baseline Reactive (Reactive Thermal Control) is a modified version of reactive speed

control of embedded real-time systems [95]. The key design point of Reactive is that when-

ever the thermal threshold is hit, the frequency corresponding to equilibrium temperature

(thermal bound in our case) is applied. Otherwise, the highest available frequency is ap-

plied. The original version of reactive speed control works at the level of tasks, that is, the

frequency changes during the duration of one task running. Reactive, however, only changes

frequency at the end of a sampling period. If all the parameters, both power and thermal

related, are accurate, Reactive can enforce the thermal threshold effectively. However if

there are uncertainties of parameters, the equilibrium temperature cannot precisely enforce

the temperature bound.

Constant Power Variation

This set of simulations is designed to evaluate the performance of RT-MTC when there is

constant deviation between the estimated and the real tasks power. In these simulations,

we compare RT-MTC to the other baselines when the power ratio of all tasks running on

the target multicore processor is 4.0, that is, the real power of the tasks is 4 times that of

the estimated power. The value of power ratio is chosen intentionally to show the capability

of RT-MTC to counteract heavy disturbances, a major benefit of control-theoretic thermal
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control. In this simulation, we expect RT-MTC to work resiliently under constant power

variation.

Fig. 3.4 compares the performance of RT-MTC, Reactive, MPC-QUAN, and MPC-PWM

when the power ratio is 4. We exclude OPEN from the comparison intentionally because

it violates the thermal bound during the experiment. Without thermal management, the

processor cannot handle the thermal bound violation, and the steady temperature of the two

cores reaches 84◦C; this significantly exceeds the 60◦C temperature threshold and likely to

trigger the internal hardware thermal control.

As shown in the top figure in Fig. 3.4(a), the temperature under RT-MTC converges to the

temperature set point 60◦C. The slight oscillation in converged temperature, which can be

seen in Fig. 3.4(d), is caused by the sampling period. If the temperature surpasses the bound

within the sampling period (10s in this experiment) RT-MTC cannot respond to enforce the

thermal bound. Meanwhile, we also observe the frequency switches between 3 levels guided

by PWM according to RT-MTC’s output.

The bottom half of Fig. 3.4(a) shows the utilization of the multicore processor. As seen in

the figure, the utilization is always below the utilization bound, validating that RT-MTC

can enforce the real-time utilization bound. Because of RT-MTC saturation component, the

frequency never switches to the lowest level, which confines utilization under the real-time

bound.

Fig. 3.4(b) illustrates the simulation results under Reactive. After two frequency switches,

Reactive forces the frequency to stay at 1.6GHz even though the temperature violates the

thermal bound. Recall the algorithm of Reactive: if the thermal bound is hit, the frequency

will change to the predefined level to enforce the equilibrium temperature, which, otherwise,

is calculated based on the nominal model. In this case, the predefined frequency level is

1.6GHz. However, in this simulation, the power ratio is 4.0 rather than 1.0 used by Reactive.

Hence, at the same frequency, more power is generated and the predefined frequency level

in Reactive cannot prohibit the temperature from surpassing the bound. This experiment

shows clearly that Reactive is not able to handle thermal management accurately under

power uncertainty.
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(a) RT-MTC
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(b) Reactive
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(c) MPC-QUAN
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(d) MPC-PWM

Figure 3.4: Constant power variation when power ratio is 4.
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Compared to Reactive, RT-MTC follows the temperature set point more precisely under

power uncertainty. When the power generated by the processor is overestimated, the proces-

sor runs at higher frequency in RT-MTC than Reactive, so that throughput of the systems

is improved. When the power is underestimated, likewise, RT-MTC adjusts the processor

frequency to consume less power than Reactive, which can not only save power consumption

of the workload but also reduce power consumed by the cooling system. Moreover, in this

case, Reactive is more likely to trigger internal thermal throttling.

Fig. 3.4(c) and 3.4(d) show the simulation results of MPC-QUAN and MPC-PWM. Both

baselines can ensure the temperature set point. However, there is oscillation in both cases.

For MPC-QUAN, because of the effect of quantization, the temperature frequently violates

the bound slightly. Although MPC-PWM can alleviate the effect of quantization by PWM,

the sampling period that we analyzed in RT-MTC also induce oscillation around the thermal

bound. Moreover, since MPC works on the margin of constraints, it behaves in a complex,

nonlinear way. That makes the oscillation of MPC-PWM greater than that of RT-MTC.

On the other hand, MPC can handle effectively the real-time constraints embedded in the

constrain optimizing problem (3.8), which then enforces the real-time constraints, that is,

the utilization bound.

The major advantage of RT-MTC over MPC-like methods is the reduction of running over-

head and implementation complexity. When employing MPC, the controller must solve

online the constrained optimization problem, which is notably computation intensive [62].

In contrast, RT-MTC only involves computation of a linear function. Moreover, although

there are a few of commercial or open source optimization solver, porting them to solve MPC

is still a difficult task.

Dynamic Power Variation

This set of simulations is designed to evaluate the case when the power ratio of tasks deviate

from the estimation dynamically. Since tasks often experience different stages of processing,

the power of tasks changes frequently. Thus, dynamic power variation is a common source of

uncertainty for thermal management. In this simulation, we also assume asymmetric power

ratio variation: that is, cores consuming different power when running. For the simulations
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in this section, we assume the power ratio of Core 1 rises to 4.0 at 200s and then decreases

to 0.5 at 300s while Core 2 keeps the power unchanged.

Similarly to the case of constant power variation, OPEN violates the thermal bound under

dynamic power variation. However, since only the power of core 1 increases, the temperature

of both cores rises less than if the power of both cores varied.

Fig. 3.5 shows the simulation results of different algorithms under dynamic power variation.

Fig 3.5(a) shows that the temperature of core 1 is below the temperature bound under RT-

MTC, validating that RT-MTC is able to ensure the thermal bound under dynamic power

variation. We observe that RT-MTC responds to the abrupt temperature increase from 200s

to 300s. So when power decreases, the temperature is still able to stay near the temperature

bound.

Unlike the previous experiments, Reactive has no steady temperature error in the simulation,

as shown in Fig. 3.5(b). As only one core’s power rises, the heat generated by the processor

is less than that when both cores’ power rise; hence the predefined frequency level can

enforce the thermal bound. However, we observes spikes in temperature which violates

the thermal bound. These spikes occur because the reactive mechanism only responds to

thermal violation passively, compared to RT-MTC where the feedback controller is designed

intentionally to accommodate a temperature variation so as to offset thermal violation.

Fig. 3.5(c) and 3.5(d) show the results under MPC-QUAN and MPC-PWM, respectively.

When subjected to dynamic power variation, both MPC baselines can keep the temper-

ature around the thermal bound. But similarly to the case of constant power variation,

quantization and nonlinear control behavior cause oscillation.

To explore the limits of robustness of RT-MTC, we also perform additional simulation ex-

periments under wider uncertainty than the two simulations discussed here. The results also

indicate that RT-MTC is more robust than other algorithms when subjected to uncertainties.

More details on these experiments may be found in [29].
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(b) Reactive
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(c) MPC-QUAN
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(d) MPC-PWM

Figure 3.5: Dynamic power variation
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3.8 Related Work

There has been significant work on thermal aware real-time scheduling for both single-core

processors [14, 95] and multicore processors [13, 15, 24]. Those algorithms rely on accurate

models about the thermal characteristics of the processors, and hence cannot effectively

deal with uncertainties in thermal characteristics such as power consumption and ambient

temperature. Moreover, they usually require fine-grained scheduling decisions that require

kernel-level implementations. In contrast, our feedback control approach is implemented

in user space without modifications to the kernel and therefore can be easily deployed in

existing systems.

Control-theoretic thermal management has been explored for non-real-time systems. Donald

and Martonosi present a general framework of dynamic thermal management for multicore

processors [20]. Essentially, the proposed framework is a hierarchical feedback control loop

with PI controllers, but it does not provide real-time performance guarantees. Several pa-

pers [71,99,104–106] have adopted model predictive control or online convex optimization for

dynamic thermal management. None of these works is concerned with maintaining real-time

performance. In addition, control approaches based on model predictive control and convex

optimization has higher computation complexity than our efficient proportional control ap-

proach. Moreover, our approach deals with discrete voltage/frequency levels, a practical issue

associated with DVFS which is ignored by the aforementioned control solutions [71,105,106].

Control-theoretic approaches have recently been proposed for thermal management of real-

time systems [28, 54]. Our previous work [28] proposed a feedback control algorithm that

enforces thermal and real-time constraints simultaneously. That work adjusts the rate of

periodic real-time tasks as the control knob, whereas RT-MTC employs DVFS that does not

require applications to support variable rates. Lindberg [54] proposed a feedback control

framework to manage both temperature and media performance. Both algorithms [28, 54]

are designed for single-core processors and cannot deal with multicore processors as they are

not cognizant of inter-core thermal coupling in multicore processors.

Different from prior research handle thermal management on hardware level [11, 40, 81, 82],

RT-MTC mainly focus on system level thermal management of multicore processors. Two
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aspects differentiate hardware and system level thermal management. First, thermal dy-

namics on hardware level is faster, with time constant at milliseconds [11]. In contrast at

system level thermal dynamics of the processor is relative slow and with time constant in

seconds [37]. Second, hardware thermal management usually adopt low level control knobs,

e.g., clock gating or pipeline throttling, which can not be exposed as system level interfaces.

In contrast, system level thermal management employs high-level knobs, e.g., DVFS, that

are supported by most operating systems.

3.9 Summary

Embedded real-time systems face significant challenges in thermal management with their

adoption of multicore processors of increasing power density. Such systems require the

temperatures and real-time performance of multiple cores to be controlled simultaneously,

leading to multi-input-multi-output control problems with inter-core thermal coupling. This

paper presents Real-Time Multicore Thermal Control (RT-MTC), the first feedback thermal

control algorithm specifically designed for multicore embedded real-time systems. RT-MTC

dynamically enforces both the temperature and the CPU utilization bounds of a multicore

processor through DVFS. The strength of RT-MTC lies in both its control-theoretic approach

and its practical design. RT-MTC employs a highly efficient controller that integrates satu-

ration and proportional control components rigorously designed to enforce the desired core

temperature and CPU utilization bounds. Moreover, It handles discrete frequencies through

Pulse Width Modulation (PWM) that enables RT-MTC to achieve effective thermal control

with only a small number of frequencies typical in current processors. The robustness and

advantages of RT-MTC over existing thermal control approaches are demonstrated through

extensive simulations under a wide range of power consumptions.
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Chapter 4

Robust Control-theoretic Thermal

Balancing for Server Clusters

4.1 Introduction

Unlike thermal throttling on individual processor, thermal balancing aims to balance the

temperatures of different processors through dynamic load distrbution in a server cluster.

Thermal balancing is an attractive approach to thermal management in server clusters for

three imporant reasons. First, thermal balancing can effectively mitigates hotspots in a

cluster and hence effectively reduce the cooling cost for data centers. For example, a study

of a real data center showed that reducing the temperature difference from 10◦C to 2◦C

could result in close to a 25% reduction in total energy costs associated with the cooling

infrastructure [67]. Second, in contrast to other thermal management mechanisms such as

throttling and dynamic voltage scaling, thermal balancing can prevent server overheating

without causing performance degradation. Finally, thermal balancing can be applied to

heterogeneous server clusters including legacy processors that do not support throttling or

dynamic voltage scaling.

To implement thermal balancing, a thermal balancer may be implemented on the gateway of

a server cluster that provide a same set of services on multiple servers. The thermal balancer

intercepts service requests from clients and then dynamically forwards them to appropriate

servers based on online temperature measurement. While thermal balancing shares similar-

ities with load balancing, it faces several unique challenges. First, while a load balancer is

designed to balance the load on different servers, a thermal balancer aims to balance the
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temperatures of different servers. While the temperature of a server is related to its load,

the thermal dynamics of a server are inherently more complex than system load, because

the temperature not only depends on the current load but also its history. It is therefore

important to incorporate the thermal dynamics in the design of the thermal balancing al-

gorithm. Finally, thermal balancing must handle uncertain thermal characteristics, such as

varying power consumption, thermal faults, and varying ambient temperature.

To tackle these challenges, we present Control-theoretic Thermal Balancing (CTB), a novel

thermal balancing approach based on a control-theoretic underpinning. CTB employs a

feedback control loop that periodically monitors the temperature and CPU utilization of

different servers in a cluster, and redistributes clients’ service requests among different pro-

cessors to dynamically balance their temperature. CTB features control algorithms that are

rigorously designed and analyzed based on optimal control theory. Specifically, this paper

makes the following main contributions.

• We derive a difference equation model that characterizes the thermal dynamics of server

clusters as a foundation for control designs and analysis of thermal balancing.

• We present the design and stability analysis of two CTB algorithms analytically de-

signed based on optimal control theory. CTB-T uses processor temperature as feedback

while CTB-UT uses both processor temperature and CPU utilization to significantly

reduce task reallocation cost.

• We provide simulation results that demonstrate CTB algorithms can deliver robust

thermal balancing in face of a wide range of uncertainties, including different power

consumption incurred by different tasks, different ambient temperatures of different

servers, and thermal faults.

In the rest of this chapter, Section 4.2 formulates the thermal balancing problem from a

control perspective. Section 4.3 details the design of CTB algorithms. Section 4.4 provides

the simulation results. Section 4.5 introduces related works. Section 4.6 summarizes this

chapter.
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4.2 Problem Formulation

In this section we first describe the system and thermal models and then formulate the

thermal balancing problem.

4.2.1 System model

A cluster consists of n homogeneous single-processor servers {Si|1 ≤ i ≤ n} connected by

networks. All servers host a same set of services. A client may periodically invoke a service

hosted by a server, where the periodic processing of the request corresponds to a periodic

task Ti on the server. Let the execution time and the period of Ti are ci and pi, respectively.

Then the (CPU) utilization of Ti is Ui = ci

pi
.

As managing the temperature of processors is a major concern in server cluster, we focus

on the thermal and power properties of processors. Extending our work to thermal control

for the other system components is part of our future work. The processor of each server

has estimated active power Pa (e.g., the active power in the specification of the processor)

when it is executing tasks. It is important to note that the actual active power of a pro-

cessor may deviate from the estimated at run time and different tasks may incur different

power consumption [11, 45]. For example, an earlier study showed that the active power

consumption of different applications may differ by as much as 35% [11]. In earlier literature

some researchers [46] referred to such significant power variation during run time as power

phase behavior. At the instruction level, different instruction types, inter-instruction over-

head, memory system state and pipeline related effects cause fluctuation of task powers [85].

When the processor is idle, the processor switches to a low power mode and consumes power

of Pidle.

We employ a widely adopted thermal model [5, 41, 81] for the processor Pri as follows.

dTi(t)

dt
= −ci,2(Ti(t)− T0) + ci,1Pi(t) (4.1)

where T ′
i (t) is the temperature of processor Pri, ci,1, ci,2 are the constant pertained to the

thermal characteristics of the processor and T0 is ambient temperature. Let T ′
i (t) = Ti(t)−T0.
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We can write equation (4.1) in a more compact form

dT ′
i (t)

dt
= −ci,2T

′
i (t) + ci,1Pi(t).

For the whole system with n homogeneous processors, the thermal model is the aggregation

of the individual processor’s thermal model,

Ṫ′(t) = AT′(t) + BP(t)

where

T′(t) = [T ′
1(t), T

′
2(t), ..., T

′
n(t)]T

and

P(t) = [P1(t), P2(t), ...., Pn(t)]
T

while the constant matrices are

A=











−c1,2 0
. . .

0 −cn,2











,B=











c1,1 0
. . .

0 cn,1











.

Thus, the thermal model of the cluster can be written as

dT′(t)

dt
= AT′(t) + BP(t) (4.2)

Our thermal model does not consider the correlation of the temperatures of different servers

based on recent studies that showed the thermal correlation between severs is insignificant

in a commercial server cluster [16].

4.2.2 Dynamic Model for Thermal Balancing

As our CTB algorithms are designed to control the processors’ temperatures through load

redistribution, we need to establish a difference equation model to characterize their dynamic

relationship between the processors’ temperature and their CPU utilization, where the CPU

utilization is the fraction of time when the CPU is running tasks. For the purpose of control
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design. As the feedback control loops of CTB are invoked once every sampling period W ,

we first discretize the continuous thermal model. Let P (k) and T ′(k) denote the discretized

power and temperature, respectively, which are measured at sampling time kW .

By bilinear transformation [26], the continuous form of the thermal model (4.2) is discretized

as

T′(k + 1) = ΦT′(k) + Γ′P(k) (4.3)

where Φ = (I + AW

2
)(I− AW

2
)
−1

and Γ′ = (I− AW

2
)−1B

√
W and W is the length of sampling

interval.

Next we characterize the relationship between the CPU utilization and the power consump-

tion of a processor. Let Ui(k) denote the CPU utilization of the processor Pri in the kth

sampling period. Then the average power of the processor in kth sampling period, P̄i(k), can

be written as

P̄i(k) = GiPaUi(k) + Pidle(1− Ui(k)) (4.4)

= Gi(Pa − Pidle)Ui(k) + Pidle.

where Gi is the ratio between the average actual and estimated active power of the processor.

Note that Gi is unknown at design time. An important goal of the our work is to design a

control algorithm for thermal balancing that can tolerate a wide range of variations in Gi.

For the thermal control analysis we need to derive a discrete-time model to approximate this

system. As the thermal-time constant is large, the effects of transients of power consumption

within a sampling period is negligible. Therefore, we substitute average power P̄(k) =

[P̄1, P̄2, ...., P̄n]T with discrete power P(k) in (4.3). Combining (4.3) and (4.4) and considering

all processors in the server cluster, we get the following dynamic model for the server cluster:

T′(k + 1)=ΦT′(k) + Γ′G(Pa −Pidle)U(k) + Γ′Pidle (4.5)

where G is defined as diag(G1, G2, ..., Gn), Pa = [Pa, Pa, ...., Pa]
T and Pidle = [Pidle, Pidle, ..., Pidle]

T .

Let T(k) = T′(k) − T̃, where T̃ = Γ′Pidle(Φ− I)−1, the thermal model of the system can

be rewritten as

T(k + 1) = ΦT(k) + ΓU(k) (4.6)
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where Γ = G(Pa −Pidle)Γ
′.

It is noted that our model ignores the discrete nature of task utilizations and thus more

suitable for servers with a large number tasks each consuming a small fraction of the CPU

cycles. This liquid model is a reasonable approximation of many high-performance servers.

Extending our work to deal with servers with non-negligible discrete utilization changes is

part of our future work.

4.2.3 Thermal Balancing Objective

The objective of thermal balancing is,

min
k→∞

n
∑

i=1

(Ti(k)− T̄ (k))2 + ρ
n
∑

i=1

∆U2
i (k) (4.7)

where T̄ (k) is the average temperature, defined as T̄ (k) =
∑n

i=1
Ti(k)

n
, ∆Ui(k) is the change to

the utilization of processor Pri, i.e., the difference between the total utilization of the tasks

moved to processor Pri and that of the tasks moved from processor Pri.

The first term of the objective function aims to reduce the differences among the temper-

atures of different processors. The second term of the objective function aims at reducing

control cost, i.e., the number of tasks redirected. This is important because redirecting a

tasks can incur non-negligible performance penalty and overhead , e.g., due to loss of cache

states or reestablishing the HTTP session.

4.3 CTB Design and Analysis

In this section we first provide an overview of the Control-theoretic Thermal Balancing

(CTB) approach. We then present the difference equation model that characterizes the

thermal dynamics of a servers cluster. Based on the dynamic model we detail the design

and stability analysis of two CTB algorithms.
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4.3.1 Overview of CTB

CTB uses online feedback for thermal balancing. A natural choice of feedback is temperature

(the controlled variable). However, as temperature responds slowly to load redistribution,

thermal balancing solely based on temperature feedback may not be able to regulate tem-

perature quickly. To deal with the problem, the thermal balancer may also employ CPU

utilization as feedback. In this work we develop two control algorithms for thermal balanc-

ing. CTB-T only uses the temperature as feedback while CTB-UT employs both utilization

and temperature as feedback.

As shown in Figure 4.1, CTB employs a distributed feedback control loop consisting of

a controller and a balancer on the gateway for the cluster, and monitors located on the

servers. For the CTB-T algorithm, the controller input is a vector, T(k), which includes

the temperature of each processor at the end of the kth sampling period. The output of the

controller is a vector of utilization change, ∆U(k), which indicates the requested change to

each processor’s utilization. According to the output of the controller, the balancer computes

the clients’ service requests invocations that should be redirected among different servers in

the following sample period.

Specifically, CTB-T algorithm works as follows. At the end of the kth sampling period, the

feedback loop is invoked and executes the following steps:

1. Each temperature monitor sends the temperature in the end of the last sampling period

to the controller. Most modern processors integrates on-chip temperature sensors.

Alternatively, software techniques based on event counters can be used to estimate

processor temperature [5].

2. The controller calculates the change to the CPU utilization of every processor, ∆U(k),

based on the temperature vector T(k). Then ∆U(k) is sent to centralized balancer.

3. The balancer reallocates tasks among different servers to accommodate the requested

utilization change ∆U(k). The Balancer first divides all processors into three sets,

the receivers, the senders, and the neutral according to the controller output ∆U(k).

The processors in the receivers set have positive utilization changes; the processors in

the senders set have negative utilization changes; and the processors in the neutral
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set have zero utilization change and hence are not involved in task reallocation in the

following sampling period. The Balancer then reallocate tasks from processors in the

senders set to processors in the receivers set to accommodate the requested utilization

changes specified in ∆U(k). In the following sampling period, the Balancer directs

clients’ service invocations to appropriate servers according to the new task allocation.

BalancerController
U(K)T(k)

Clients

Servers

Gateway Service Invocation

monitor

Services

monitor

Services

monitor

Services

monitor

Services

Service Redirection

Figure 4.1: The feedback control loop of CTB-T

CTB-UT works in the same way as CTB-T except that it employs a different control algo-

rithm that utilizes both the CPU utilization vector U(k) and the temperature vector T(k)

as control inputs. Each processor hence runs a utilization monitor in addition to the temper-

ature monitor. The utilization monitor measures the CPU utilization in the last sampling

period and sends it to the controller. For example, in Linux, the utilization monitor can use

/proc/statfile to estimate the CPU utilization in each sampling period. The /proc/statfile

records the number of jiffies since the system start time, when the CPU is in user mode,

user mode with low priority (nice), system mode, and when used by the idle tasks. At the

end of each sampling period, the utilization monitor reads the counters, and estimates CPU

utilization by dividing the number of jiffies used by the idle tasks in the last sampling period

by the total number of jiffies in the same period [97].
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4.3.2 Control Design of CTB-T

The core of the CTB algrithm is the controller. Recall the control design has two objectives:

(1) to reduce the differences among the temperature of different processors, and (2) to reduce

the number of reallocated tasks to reduce overhead. The first goal aims at thermal balancing,

while the second goal aims at reducing the control cost. To address both objectives, we choose

to design a Linear Quadratic Regulator (LQR) based on optimal control theory. The LQR

controller is designed for the following optimization objective.

min
k→∞

∑

k

[X(k)TQX(k)] + ∆ρU(k)T ∆U(k)]. (4.8)

where Q are weight matrix respectively and ∆X(k) is the state of the thermal model (4.6),

i.e., X(k) = T(k). If we denote

L =

















1− 1
n
− 1

n
. . . − 1

n

− 1
n

1− 1
n

. . . − 1
n

...
. . . . . . − 1

n

− 1
n

. . . . . . 1− 1
n

















and then Q = LTL, the thermal balancing objective (4.7) can be transformed to the LQR

controller with objectives 4.8. In fact because the difference between processor Pri’s tem-

perature and the average temperature of all processors is

∆Ti(t) = Ti(t)−
∑

1<k<n Tk(t)

n

= (1− 1

n
)Ti(t)−

1

n
T1(t) . . .− 1

n
Tn(t)

(4.9)

The optimization objectives of our LQR controller 4.8 clearly match the thermal balancing

and the control cost objectives 4.7.
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4.3.3 Control Design of CTB-UT

There is a significant delay between the change in the CPU utilization and the resultant

change in the processor temperature due to slow thermal dynamics. To improve the re-

sponsiveness of thermal balancer, CTB-UT employs both temperature and utilization as

feedback for thermal balancing. CTB-UT also employs an LQR controller, but its state

variables include temperatures and utilization.

The dynamics of utilization can be modeled as [61]

U(k + 1) = U(k) + ∆U(k). (4.10)

Combining 4.10 and thermal model (4.6), we can model the relationship between the tem-

peratures and the utilization





T(k + 1)

U(k + 1)



 =





Φ Γ

0 I









T(k)

U(k)



+





0

I



∆U(k)

=ΦUT





T(k)

U(k)



+ ΓUT∆U(k)

(4.11)

The LQR controller of CTB-UT has the form as follows

∆U(k) = −
[

KT KU

]





T(k)

U(k)



 (4.12)

The optimization objective of the LQR controller of CTB-UT is:

min
k→∞

∑

k















T(k)

U(k)





T

QUT





T(k)

U(k)



+ ∆UT (k)RUT∆U(k)











(4.13)

where QUT =





L 0

0 λ





T 



L 0

0 λ



, RUT = ρI and λ is a tunable parameter. The first

term of optimization objective is responsible for balancing both temperature and utilization.

Through tuning λ, we can adjust the weight between temperature balancing and utilization

balancing. If λ < 1, the controller is biased for thermal balancing. If λ > 1 the controller
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is biased for load balancing which responds quickly to load change. With an appropriate λ,

CTB-UT can combine the benefits of thermal balancing and load balancing.

4.3.4 Stability and Robustness

The stability of a server cluster with CBT is defined as convergence of the temperatures

of all processors to their average temperatures. We design the LQR controllers based on a

nominal system with G = I, that is, the power and utilization equals their estimation. It is

important to derive the region of G where the system remains stable.

Theorem 4. The stable range of the G in CTB-T is

diag

(

1

1 +
√

α

)

< G < diag

(

1

1−√α

)

, (4.14)

where

α =
R

R + WΓTSΓ
.

and W is the sampling period and S is the solution of Algebraic Riccati Equation (ARE) [26],

S = ΦT [S − SΓR−1ΓT S]Φ + Q.

The proof of Theorem 4 can be derived directly from Corollary 11.4.1 in [65]. It is noted

that since R = ρI the robust stable region of CTB-T varies with ρ.

Note this approach to robustness analysis is not applicable to CTB-UT. When power gain

G varies, ΦUT also changes. Thus we cannot use Theorem 4 to derive the stability region

since the ARE does not have a fixed solution like the case of CTB-T. Instead, we develop a

numerical solution to calculate the stability region.

First we derive the closed-loop systems based on thermal model of CTB-UT (4.11) and the

optimal controller (4.12). The closed-loop system has the form





T (k + 1)

U(k + 1)



 =(ΦUT −
[

KT KU

]

ΓUT )





T (k)

U(k)





=ΦC





T (k)

U(k)





(4.15)
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Figure 4.2: Analytical Power Gain Stable Region of CTB-T and CTB-UT

For a fixed ρ, ΦC characterizes dynamics of the closed-loop system. According to control

theory, if the eigenvalues of ΦC is in the unit circle the dynamical system is stable. We can

acquire the stable region of G based on the eigenvalues of ΦC under different values of G.

Figure 4.2 illustrates the stable region of CTB-T and CTB-UT derived analytically. Both

CTB algorithms can maintain stability under a wide range of power gains G. For example,

when ρ = 1 the stable gain margin range of CTB-T and CTB-UT are [0.50, 1474.30] and

[0.51, 42.91] respectively. CTB-UT has a smaller stability region than CTB-T. Therefore

the choice between the them should consider the tradeoff between their responsiveness to

variations and their robustness with regard to varying power consumptions. Another trends

is that the stable region of both CTB-T and CTB-UT increases with ρ, the relative weight

of the control cost and the temperature difference in the optimization objective. A higher

ρ, leads to lower control cost and hence a higher degree of robustness against high power

consumption.

4.4 Evaluation

We evaluate our CTB algorithms using simulations. We first describe the simulation setup

and three baseline algorithms for comparison. We then presents simulation results with

varying power consumption, thermal faults, and varying ambient temperatures.

74



4.4.1 Simulation Setup

To evaluate the CTB algorithms we develop an event-driven simulator which simulates a

cluster consisting of 16 servers. The CTB algorithms are implemented using the Optimal

Control Toolbox of MATLAB.

The task set running on each processor consists of 50 periodic soft real-time tasks. The

Eearlies Deadline First (EDF) scheduling algorithm [55] is employed to schedule all these

tasks. The period pi of each task Ti is chosen randomly with a uniform distribution in the

range [900ms, 1100ms]. The deadline of each task equals its period.

Each processor simulated is a 2.6GHz Pentium 4 (P4) processor with 130nm Northwood

core. All thermal related parameters except thermal capacitance shown in Table 4.1 are based

on the Intel technical specification [44]. The thermal capacitance is acquired by simulating

P4 on Hotspot [41], an architecture level simulator.

Parameter Notation Value

Ambient temperature T0 45◦C
Max case temperature Tc 75◦C
Estimated active power Pa 51.9W
Idle power∗ Pi 13.3W
Thermal capacitance Cth 295.7J/K
Thermal resistance Rth 0.467K/W

∗ Enhanced Halt Mode is available [86]

Table 4.1: Power and thermal parameters

4.4.2 Baseline Algorithms

We use three baseline algorithms as baselines for comparison in our simulations: an OPEN-

loop algorithm (OPEN), a Load Balancing (LB) algorithm and a Heuristic Thermal Balanc-

ing (HTB) algorithm. OPEN does not perform any thermal or load balancing. Tasks are

always executed on their initial processors.
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The LB algorithm is designed to dynamically balance the CPU utilization of different proces-

sors. The invocation period of the LB algorithm is the same as the sampling period of CTB.

In the end of each period, LB measures the utilization of every processor in the last sampling

period and then redistributes the tasks to balance the utilization of different processors.

Like the CTB algorithms, the HTB algorithm is designed to balance the temperatures of dif-

ferent processors based on temperature feedback. In contrast to the optimal control approach

adopted by CTB, HTB employs a simple heuristic algorithm to reallocate tasks among the

processors. The heuristics is based on the observation that the steady-state temperature is

proportional to the utilization of the processor. In the end of each sampling period, HTB

changes the utilization of a processor proportionally to the difference between its tempera-

ture and the average temperature of all processors, i.e., δui = ft ∗ [T1

n
+ ...(1 − Ti

n
)... + Tn

n
].

ft is the ratio between the steady temperature and the utilization, deriving by setting that

T(k + 1) = T(k) in thermal dynamic equation (4.6). Note that the HTB algorithm has

two key differences from the CTB algorithms: (1) it is not designed to reduce the number

of tasks redistribution (i.e., control cost); and (2) it ignores the thermal dynamics of the

system which may influence the transient response to system variations.

4.4.3 Effect of Thermal Balancing

The first set of simulations evaluates the capability of the CTB algorithms to achieve thermal

balance. Each simulation run lasts for 3000s. At starting time, the utilization of each

processor is assigned randomly in the range [0.5, 0.7]. The power ratio of tasks are randomly

selected in the range [0.6, 1]. We set the tunable parameter ρ = 1.0 for CTB, and ρ = 1, λ =

0.005 for CTB-UT.

The comparison between CTB and the baseline algorithms are illustrated in Figure 4.3. Since

no temperature balancing is applied under OPEN, the maximum temperature difference

between processors is 11.8◦C as shown in Figure 4.3(a). While LB effectively balances the

utilization of the processors, the maximum temperature difference is reduced only slightly

to 9.9◦C. This results shows that load balancing is not effective in balancing temperature

in server clusters due to the varying power consumption among different tasks. In contrast,
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Figure 4.3: Temperatures and CPU utilization of all processors under CTB and baseline
algorithms
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the feedback-based thermal balancing algorithms, CTB-T, CTB-UT and HTB, effectively

balance the temperatures reducing the temperature difference within 9.9◦C in steady states.

The comparison between LB and the thermal balancing algorithms indicates inherent tradeoff

between performance and temperature in server clusters. LB results in more balanced CPU

utilization among processors which may lead to higher average performance. The thermal

balancing algorithms, on the other hand, results in more balanced temperature at the cost

of different CPU utilization among servers. Thermal management has become increasingly

important due to the extremely high cooling cost in data centers today [67]. Note the

reduction of the maximum temperature difference from 9.9◦C (under LB) to 0.2◦C (under

CTB algorithms) can have a significant impact on the cooling cost of server clusters. For

example, previous work showed that reducing the temperature difference from 10.0◦C to

2◦C will result in close to a 25% reduction in total energy costs associated with the cooling

infrastructure [67].

4.4.4 Comparison of Thermal Balancing Algorithms

While HTB and both CTB algorithms balance temperatures effectively, there are two im-

portant differences in their performance. First, the CTB algorithms, particularly CTB-UT,

converges to a steady state with balanced temperature significantly faster than HTB. Ta-

ble 4.2 compares the convergence time, i.e., the time from beginning of the run to the time

instant when the last task reallocation is completed. The convergence time of CTB-UT is

only one quarter of CTB-T and one sixth of HTB. This result shows that CTB-UT is the

most responsive to system variation. As discussed earlier, the responsiveness of CTB-UT

results from its design that uses utilization in addition to temperature as feedback.

Algorithm Type OPEN LB HTB CTB-T CTB-UT

Converge Time(s) N/A 10 1540 870 260
Max Temperature Difference(◦C) 11.9 9.9 0.2 0.2 0.2

Table 4.2: Comparison of different algorithms

Second, the overhead of CTB-UT is also lower than HTB and CTB-T. As shown in Figure 4.4,

on average HTB and CTB-T reallocated 7.8 and 11.0 tasks, respectively, per processor
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before converging to steady states. In comparison, CTB-UT converges to the steady state

after reallocating only 5 tasks per processor. This result demonstrates the effectiveness of

incorporating control cost in the optimal control design, especially when combined with both

utilization and temperature as feedbacks.
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Figure 4.4: Comparison of overhead due to tasks reallocation

To compare the algorithms with a wide range of power consumption, we rerun the simu-

lation with different power distributions for the task set. As shown in Figure 4.5, all the

thermal balancing algorithms (HTB, CTB-T, and CTB-UT) effectively maintains temper-

ature balance under the wide range of power ratios used in the simulations, while LB and

OPEN result in significant differences in temperatures. Moreover, CTB-UT consistently

outperforms CTB-T and HTB in term of reallocation cost.

Figure 4.5 shows the temperature difference and overhead of different algorithms when power

distribution of tasks changed. The horizontal axis of the figure is the lower bound of power

range, for example, 0.8 means the power ratio of tasks distributes in the range [0.8, 1]. In

all power distribution, CTB achieves the equivalent temperature difference of HTB and has

significant overhead reduction.
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Figure 4.5: Comparison of algorithms with different range of power ratio. The x axis rep-
resents the lower bound of the power ratio. For each data point shown in this figure, the
power ratio of tasks are randomly chosen in the range [x, 1].

4.4.5 Thermal Fault

This set of simulations test the system’s capability to handle thermal faults in servers such

as the failure of their cooling system. In this case a robust thermal balancing algorithm

should dynamically reallocate tasks from the servers with thermal faults to other servers to

maintain thermal balance in the cluster when possible. We simulate the failure of a fan in a

server by doubling its thermal resistance, Rth [23], in the beginning of the run.

Figure 4.6 shows the simulation results. As expected, OPEN and LB cannot deal with the

temperature increase in the server with thermal fault. In contrast, the thermal balancing

algorithms effectively maintain the thermal balance by reducing the utilization of the server

with thermal fault. This result demonstrates the robustness of the feedback-based thermal

balancing algorithms. As shown in Figures 4.7, CTB-UT induces significantly lower cost

than CTB-T and HTB for task reallocation.

4.4.6 Robustness against Different Ambient Temperatures

We now evaluate the algorithms’ capability to handle the case where different processors

experience varying ambient temperatures. In each run the difference of ambient temperature

of processors is distributed uniformly in the rang [40◦C, 50◦C]
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(e) CTB-UT

Figure 4.6: Temperatures and CPU utilization of all processors under CTB and baseline
algorithms
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Figure 4.7: Comparison of overhead due to tasks reallocation.

As shown in Figure 4.8, all thermal balancing algorithms effectively balances the tempera-

tures despite varying ambient temperatures among processors, while LB results in significant

differences in processor temperatures. Furthermore, CTB-UT incurs the lowest cost in term

of task reallocations among the thermal balancing algorithms as shown in Figure 4.9.

To further test the robustness of the algorithms against variations in ambient temperatures,

we repeat the simulations with ambient temperatures varying in different ranges. As shown

in Figure 4.10, all thermal balancing algorithms maintain thermal balance even when the

ambient temperatures od different processors vary by as much as 20◦C. CTB-UT consistently

leads to significantly fewer task reallocations than CTB-T and HTB. These results show the

robustness and efficiency of CTB-UT under varying ambient temperatures.

4.5 Related Work

Feedback-based thermal management has been applied at different levels of computer sys-

tems. At the architecture level, the authors of [81] employ feedback control to regulate the

instruction fetch rate to control the temperature of the processor. Feedback control is also

used to manipulate clock gating for mitigating the thermal pressure [11]. Heat-and-Run [31]

balances the temperature of different cores in a multicore processor through instruction

migration.
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Figure 4.8: Temperatures and CPU utilization of all processors under CTB and baseline
algorithms
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Figure 4.9: Comparison of Overhead due to Tasks Reallocation
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Figure 4.10: Comparison of Algorithms with Different Ambient Temperature. The x axis
represents the range of ambient temperatures of processors. For each data point shown in this
figure, the ambient temperatures of processors are in the range [(45−x/2)◦C, (45+x/2)◦C].

At the single-node system level, a predictive dynamic thermal management method [82] has

been proposed to regulate the temperature generated by multimedia applications. At the

distributed system level, Weatherman [68] adopts a data-driven method to derive the heat

distribution in data centers and then use this distribution to adjust workload in the data

centers.

The work most closed related to this paper is Power Balancing [64]. It used an event

counter to estimate the power of tasks on at run time and then performs thermal balancing

through task migration in a multi-processor system. However, this work performs thermal

balancing based on power estimation instead of direct temperature measurement. Thus

different applications need different parameters that need to be calibrated. Furthermore,

their algorithms are not analytically designed based on a control-theoretic approach, which

is a key contribution of this work.

4.6 Summary

This paper proposes a control-theoretic approach to thermal balancing in server clusters.

Our work has the following key contributions: (1) a formulation of thermal balancing as

an optimal control problem; (2) a difference equation model that characterizes the thermal
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dynamics for thermal balancing in server clusters; (3) two thermal balancing algorithms an-

alytically designed based on optimal control theory; and (4) control analysis that establishes

the stability and robustness of the control algorithms under system uncertainties in system

power consumption. Simulation results demonstrate the capability of our control-theoretic

approach to achieve thermal balancing under a wide range of uncertainties in terms of power

consumption, ambient temperature, and thermal fault. By employing both temperature and

CPU utilization feedbacks in its optimal control design, the CTB-UT algorithm provides a

particularly attractive solution for server clusters, as it introduces low control cost for task

reallocations and converges quickly to balanced temperatures.
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Chapter 5

CloudPowerCap: Integrating Power

Budget and Resource Management

across a Virtualized Server Cluster

5.1 Introduction

In many datacenters, server racks are as much as 40 percent underutilized [30]. Rack slots

are intentionally left empty to keep the sum of the servers’ nameplate power below the power

provisioned to the rack. And the servers placed in the rack cannot make full use of the rack’s

provisioned power. The root cause of this rack underutilization is that a server’s peak power

consumption is in practice often 40 percent lower than its nameplate power [22].

To address rack underutilization, server vendors have introduced support for per-host power

caps, which provide a hardware or firmware-enforced limit on the amount of power that the

server can draw [19, 39, 43]. These caps work by changing processor p-states or by using

processor clock throttling, which is effective since the processor is the largest consumer

of power in a server and its activity is highly correlated with the server’s dynamic power

consumption [22, 39]. Using per-host power caps, data center operators can set the caps

on the servers in the rack to ensure that the sum of those caps does not exceed the rack’s

provisioned power. While this approach improves rack utilization, it burdens the operator

with managing the rack power budget across the hosts. In addition, it does not lend itself

to flexible allocation of power to handle workload spikes or to respond to the addition or

removal of a rack’s powered-on server capacity.
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Many datacenters use their racked servers to run virtual machines (VMs). Several research

projects have investigated power cap management for virtualized infrastructure [18, 53, 72,

73, 78, 98]. While this prior work has considered aspects of VM Quality-of-Service (QoS) in

allocating the power budget, it has not explored a holistic power cap management framework

to coordinate with a comprehensive production-quality resource management system for

virtualized infrastructure. Such systems provide admission-controlled resource reservations,

resource entitlements based on fair-share scheduling, load-balancing to maintain normalized

host resource headroom for demand bursts, and respect for constraints to handle system

heterogeneity and the user’s business rules [34].

The operation of virtualized infrastructure resource management can be compromised if

power cap budget management is not tightly coordinated with it. 1) Host power cap changes

may cause the violation of VMs’ resource reservations, impacting end-users’ Service-Level

Agreements (SLAs). 2) Host power cap changes may interfere with the delivery of VMs’

resource entitlements, impacting resource fairness among VMs. 3) Host power cap changes

may lead to imbalanced resource headroom across hosts, impacting peak performance and

robustness in accommodating VM demand bursts. 4) Power cap settings can may limit

the ability of the infrastructure to respect constraints, impacting infrastructure usability.

5) Resource management systems may support power proportionality via powering hosts

off and on along with changing the level of VM consolidation. A discrepancy between the

operation of power budget management and power proportionality may lead to the power

budget being inefficiently allocated to hosts, impacting the amount of powered-on computing

capacity available for a given power budget.

In this paper we present CloudPowerCap, a holistic and adaptive solution for power budget

management in a virtualized environment. CloudPowerCap manages the power budget for

a cluster of virtualized servers, dynamically resetting the per-host power caps for hosts in

the cluster. The key of CloudPowerCap is to treat and manage the power cap in close co-

ordination with resource management system. CloudPowerCap maps each host’s power cap

into resources capacity, by which CloudPowerCap can interoperate with a sophisticated re-

source management system of cloud datacenters, allowing it to manage power caps through

the VM resource controls supported by resource management systems. CloudPowerCap
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provides global fairness on dynamical power caps distribution with robustness for unpre-

dictable workload variation, preventing hosts from gaining unfair entitlement of power caps

and enhancing the system’s capability to enforce VM placement constraints.

To the best of our knowledge, CloudPowerCap as proposed in this paper is the first holistic

framework to provide dynamic power budget management in coordination with a cloud

resource management system. The contributions of this paper are in four areas:

• We introduced the idea of converting a host’s power cap to its CPU capacity, which

is in turn managed as a first class computing resource by the cloud resource man-

agement system. This facilitates interoperability between power budget and resource

management systems.

• We developed a mechanism to reallocate host power caps to satisfy constraints, includ-

ing resource reservations and business rules.

• We designed power cap balancing among servers to provide fairness in terms of robust-

ness to accomodate demand fluctuation. Power cap balancing can reduce or eliminate

the need for moving VMs for load balancing, reducing the associated VM migration

overhead.

• We designed power cap redistribution among servers to handle server power state

changes caused by dynamic power management. Power cap redistribution reallocates

the power budget freed up by powered-off hosts, while reclaiming budget to power-on

those hosts when needed.

The rest of the chapter is organized as follows. Section 5.2 motivates the problem Cloud-

PowerCap is addressing. Section 5.3 presents an overview of the CloudPowerCap design.

Section 5.4 describes an implementation of CloudPowerCap. Section 5.5 shows experimen-

tal results for CloudPowerCap. Section 5.6 discusses related work. Section 5.7 provides

summary of this chapter.
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5.2 Motivation

In this section, we motivate the problem CloudPowerCap is intended to solve. We first

discuss the trade-offs in managing a rack power budget. We then provide several examples

of the value of combining dynamic rack power budget management with a cloud resource

management system.

5.2.1 Managing a Rack Power Budget

To illustrate the problem of managing a rack power budget, we consider the case of a rack

with a budget of 8 KWatt, to be populated by a set of servers. The server has 34.8 GHz

CPU capacity comprising 12 CPUs, each running at 2.9 GHz and other parameters shown

in Table 5.1. We note that server power consumption Pconsumed is commonly estimated by

CPU(GHz) Memory(GB) Nameplate(W) Peak(W) Idle(W)

34.8 96 400 320 160

Table 5.1: The configuration of the server in the rack.

a linear function of CPU utilization U and idle Pidle and peak Ppeak power consumption of

the host [22, 66] as

Pconsumed = Pidle + (Ppeak − Pidle)U. (5.1)

For a host power cap Pcap below its peak power, Equation (5.1) can be used to solve the CPU

capacity Ccap reached at the power cap, i.e., the host’s effective CPU capacity limit which

we refer to as the power-capped capacity, given the peak CPU capacity Cpeak corresponding

to the peak power:

Ccapped = Cpeak(Pcap − Pidle)/(Ppeak − Pidle). (5.2)

Given the above equation and the servers in Table 5.1, the rack’s 8 KWatt power budget can

accomodate various deployments including those shown in Table 5.2. Based on nameplate

power, only 20 servers can be placed in the rack. Instead setting each server’s power cap to

its peak attainable power draw allows 25 percent more servers to be placed in the rack. This

choice maximizes the amount of CPU capacity available for the rack power budget, since it

best amortizes the overhead of the servers’ powered-on idle power consumption. However, if

89



memory may sometimes become the more constrained resource, the memory made available

by placing additional servers in the rack may be critical. Setting each server’s power cap

to 250 Watts allows 32 hosts to be placed in the rack, significantly increasing the memory

available for the given power budget. By dynamically managing the host power cap values,

CloudPowerCap allows trade-offs between CPU and memory capacity to be made at runtime

according to the VMs’ needs.

Power
Cap(W)

Count
CPU Memory

Capa(GHz) Ratio Size(GB) Ratio

400 20 696 1.00 1920 1.00
320 25 870 1.25 2400 1.25
285 28 761 1.09 2688 1.40
250 32 626 0.90 3072 1.60

Table 5.2: Server deployments in a rack with 8 KWatt power budget with different power
caps

5.2.2 Powercap Distribution Examples

We use several scenarios to illustrate how CloudPowerCap can redistribute host power caps to

support cloud resource management, including enabling VM migration to correct constraint

violations, providing spare resource headroom for robustness in handling bursts, and avoiding

migrations during load balancing. In these scenarios, we assume a simple example of a cluster

with two hosts. Each host has an uncapped capacity of 2x3GHz (two CPUs, each with a

3GHz capacity) with a corresponding peak power consumption of 600W (values chosen for

ease of presentation).
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ness after powering off a host
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(e) Power cap redistribution balances robustness

after powering on a host

Figure 5.1: Power cap distribution scenarios. Left-hand figures correspond to hosts status

before distribution; right-hand figures show hosts status after. Power-capped capacity is not

shown when the power cap of the host equals its peak power. (CC: Power-capped capacity)
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Enforcing constraints: The host power caps should be redistributed when VMs are placed

initially or relocated, to respect constraints and to allow resolution of constraint violations.

For example, a cloud resource management system would move VM(s) from a host violating

affinity constraints to a target host with sufficient capacity. However, in the case of static

power cap management, this VM movement may not be feasible because of a mismatch

between the VM reservations and the host capacity. As shown in Figure 5.1(a), host A and

B have the same power cap of 480 W, which corresponds to a power-capped capacity of 4.8

GHz. Host A runs two VMs, VM 1 with reservation 2.4 GHz and VM 2 with reservation

1.2 GHz. And host B runs only one 3 GHz reservation VM. When VM 1 needs to be

colocated with VM 3 due to a new VM-VM affinity rule between the two VMs, no target host

in the cluster has sufficient power-capped capacity to respect their combined reservations.

However, if CloudPowerCap redistributes the power cap of host A and B as 3.6 GHz and 6

GHz respectively, then VM 1 can successfully be moved by the cloud resource management

system to host B to resolve the rule violation in the cluster. Note that host A’s capacity

cannot be reduced below 3.6 GHz until VM 1’s migration to host B is complete or else the

reservations on host A would be violated.

Enhancing robustness to demand bursts: Even when VM moves do not require changes

in the host power caps, redistributing the power caps can still benefit the robustness of the

hosts to handling VM demand bursts. For example, as shown in Figure 5.1(b), suppose as in

the previous example that VM 1 needs to move from host A to host B because of a rule. In

this case, a cloud resource management system can move VM 1 to host B while respecting

the VMs’ reservations. However, after the migration of VM 1, the headroom between the

power capped capacity and VMs’ reservations is only 0.6 GHz, compared with 2.4 GHz on

host A. Hence, host B can only accommodate as high as a 15% workload burst without

hitting the power cap while host A can accommodate 100%, that is, host B is more likely

to introduce a performance bottleneck than host A. To handle this imbalance of robustness

between two hosts, CloudPowerCap can redistribute the power caps of host A and B as 3.6

GHz and 6 GHz respectively. Now both hosts have essentially the same robustness in term

of headroom to accommodate workload bursts.

Balancing load without VM migration: Before load balancing, power caps should be

redistributed to reduce the need for VM migrations. Load balancing of the resources to

which the VMs on a host are entitled is a core component of cloud resource managment
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since it can avoid performance bottlenecks and improve system-wide throughput. However,

some recommendations to migrate VMs for load balancing among hosts are unnecessary,

given that power caps can be redistributed to balance workload, as shown in Fig 5.1(c). In

this example, the VM on Host A has an entitlement of 1.8 GHz while the VMs on host B

have a total entitlement of 3.6 GHz. The difference in entitlements between host A and B

are high enough to trigger load balancing, in which VM 3 is moved from host B to host A.

After load balancing, host A and B have entitlements of 3 GHz and 2.4 GHz respectively,

that is, the workloads of both hosts are more balanced. However, VM migration has an

overhead cost and latency related to copying the VM’s CPU context and in-memory state

between the hosts involved [84], whereas changing a host power cap involves issuing a simple

baseboard management system command which completes in less than one millisecond [39].

CloudPowerCap can perform the cheaper action of redistributing the power caps of hosts A

and B, increasing host B’s power capped capacity to 6 GHz after decreasing host A’s power

capped capacity to 3.6 GHz, which also results in more balanced entitlements for host A

and B. The redistribution of power cap before load balancing, called powercap balancing, can

reduce or eliminate the overhead associated with VM migration for load balancing, while

introducing no compromise in the ability of the hosts involved to satisfy the VMs’ resource

entitlements. We note that the goal of load balancing is not absolute balance of workload

among hosts, which may not be possible or even worthwhile given VM demand variability,

but rather reducing the imbalance of hosts’ entitlements below a predefined threshold [34].

Adapting to host power on/off: Power caps should be redistributed when cloud re-

source management powers on/off host(s) to improve cluster efficiency. A cloud resource

management system detects when there is ongoing under-utilization of cluster host resources

leading to power-inefficiency due to the high host idle power consumption, and it consoli-

dates workloads onto fewer hosts and powers the excess hosts off. In the example shown in

Figure 5.1(d), host B can be powered off after VM 2 is migrated to host A. However, after

host B is powered-off, it does not consume power and hence not need its power cap. And

the utilization of host A is increased due to migrated VM 2, which impacts the capacity

headroom of host A. Power cap redistribution after powering off host B can increase the

power cap of host A to 6 GHz, allowing the headroom of host A to increase to 3 GHz and

hence increase system robustness and reduce the likelihood of resource throttling.
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On the other hand, if there are overloaded hosts in the cluster, cloud resource management

powers on stand-by hosts to avoid performance bottleneck as seen in Figure 5.1(e). Due

to dynamic power cap management, active hosts can fully utilize the cluster power cap for

robustness. So a host being powered-on may not have enough power cap to run VMs migrated

to it with suitable robustness. CloudPowerCap can handle this issue by redistributing the

power cap among the active hosts and the host exiting standby appropriately. For example,

as shown in Figure 5.1(e), host B is powered on because of the high utilization of host A,

and can only acquire 3.6 GHz power-capped capacity due to the limit of the cluster power

budget. If VM 2 migrates to the host B to offload the heavy usage of host A, the headroom of

the host B will only be 1.2 GHz, contrasting to the headroom of host A, 3.6 GHz. However,

after power cap redistribution, the power caps of host A and B can be assigned to 4.8 GHz

respectively, balancing the robustness of both hosts.

5.3 CloudPowerCap Design

In this section, we first introduces how CloudPowerCap maps a power cap to CPU capacity.

Then the principles of CloudPowerCap design are presented. Finally we briefly describe

overview structure and the components in CloudPowerCap .

5.3.1 CloudPowerCap Power Model

The power model adopted by CloudPowerCap maps the power cap of the host to the CPU

capacity of the host, which is in turn managed by a resource management system directly. To

efficiently and conservatively calculate the mapping between host capacity and power con-

sumption, CloudPowerCap employs a linear power model between CPU utilization and host

power consumption as shown in Figure 5.2. The power Pidle represents the power consump-

tion of the host when the CPU is idle. Pidle intentionally includes the power consumption

of the non-CPU components, such as memory and spinning disk, since their power draw

does not vary significantly with utilization. System platforms often report Pidle or it can be

collected via a one-time calibration step. The power Ppeak represents the power consumption

of the host when the CPU is 100% utilized at its peak GHz rating. Again, this value may
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be collected during a one-time calibration step (if it can be attained given the host’s power

cap) or it may be estimated based on power consumption measurements taken at operating

points in the attainable CPU GHz range. Using the line defined by these two values and

the model that the power consumption of the host tracks CPU utilization, we estimate the

CPU capacity associated with a host power cap value.

We note that since Ppeak is measured when CPU is running at full speed and given power

saving features such as P-states (DVFS), the model shown in Figure 5.2 can be a under-

estimation of the CPU capacity associated with a particular level of power consumption. A

more accurate CPU power model [22] could be integrated into CloudPowerCap to reduce its

conservativeness.

PpeakPcapPidle

Capacity

0
Power

Cpeak

Ccapped

Figure 5.2: Mapping a power cap (Pcap) to capped capacity (Ccapped). Pidle and Ppeak are the
idle and peak power of a host respectively. Cpeak and Ccapped are the uncapped and capped
raw capacity respectively.

When computing power-capped capacity of a host based on the power model shown in

Fig. 5.2, it is important to ensure that the capacity reserved by the hypervisor on the host

is fully respected. Hence, the power-capped capacity Cmcapped managed by the resource

management system, i.e., managed capacity, is computed as:

Cmcapped = Ccapped − CH , (5.3)

where the power-capped raw capacity Ccapped is computed using Equation (5.1) and CH is the

capacity reserved by the hypervisor. In later sections we always refer power-capped capacity

as the manageable power-capped capacity Cmcapped.
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5.3.2 CloudPowerCap Design Priciples

The primary goal of CloudPowerCap is to provide dynamic power caps management of vir-

tualized servers with an existing resource management system, delivering efficient resources

usage, performance isolation and respecting the cluster power budget. The existing resource

management systems in virtualized environment is dedicated to solve the problem how to

assign and dynamically scheduling VMs over hosts with fixed capacity. The concept of

power caps adds another dimension to the solution of this problem, i.e., changing capacity

of hosts rather than allocating VMs over hosts to satisfied performance and other conditions

of cloud infrastructure. Extra capacity induced by power cpas can be used as to accom-

modate transient workload bursts without involving expensive VM migration. Although an

overhaul of existing resource management system implemented on hosts with fixed capacity

to understand and leverage poewr caps may be preferable to provide a holistic approach to

manage resources with power caps, this approach is, if not impossible, at least significantly

difficult to apply due to the cost of redesign and implementation of a production system.

Hence we adopt an approach with a more practical and efficient manner. In CloudPowerCap

we separate the problem of resource management with power cap into two parts : 1) re-

sources management on hosts with fixed capacity, handled by updated DRS with awareness

of power caps; 2) power cap management to redistribute power caps over hosts, performed

by CloudPowerCap in coordination with DRS.

5.3.3 CloudPowerCap Overview

The resource management systems of virtualized server clusters are designed to achieve

service performance objectives by properly allocating resources to virtual machines under

multi-tenancy environment. The major functions of resource management systems are the

following:

VMs Placement: VMs placement involves initial placement of VMs and relocation of VMs

for constraints correction to respect user defined or business rules. During initial placement,

the proper physical hosts are selected to launch newly generated VMs. The user defined and

business rules restrict VMs locations on physical hosts.

96



Load Balancing: Load balancing continuously responds to workload imbalance by migrat-

ing VMs between hosts to alleviate potential performance bottleneck.

Power Management: To improve power efficiency, the workload distributed over hosts

may be consolidated on a subset hosts while remaining hosts are turned off to save energy.

On the other hand, hosts may be turned on at run time to handle workload bursts.

Sanity Check: During invocation of resource management, the status of cluster’s resources

may be changed due to hosts failure or maintenance. To provide a clean ground for other

functions, the sanity check function checks status of hosts and updates resources associated

with hosts.

Some commercial cloud resources management systems, for examples, VMware Distributed

Resource Scheduler (DRS) and Microsoft Virtual Machine Manager (VMM), implemented all

above functions. Although most open-source resource management systems currently only

equip with simple mechanism for initial VMs placement, extension including load balancing

and power management are proposed in previous research [6, 101].

Since the aim of CloudPowerCap is to enforce the cluster power budget while dynamically

managing power caps of hosts by closely coordinating with a cloud resource management

system, the structure of CloudPowerCap consists of four components, as shown in Figure 5.3,

corresponding to the four major functions of the resources management systems.

Powercap Allocation: During the CloudPowerCap power cap allocation phase, potential

resource management constraint correction moves may require redistribution of host power

caps. Note that because CloudPowerCap can redistribute the host power caps, the cloud

resource management system can correct more constraint violations than would be possible

with statically-set host power caps.

Powercap Balancing: During the load-balance analysis stage, if the resource management

system detects load imbalance over the user-set threshold, Powercap balancing first tries

to reduce the imbalance. Powercap balancing can lower load imbalance by redistributing

power caps without needing to migrate VMs between hosts. This is valuable because VM

live migration engenders CPU and memory overhead on both the source and target hosts

to send the VM’s virtual device state, to update its external device connections, to copy its
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memory one or more times to the target host while tracing the memory to detect any writes

requiring recopy, and to make the final switchover [90]. While the migration cost may be

transparent to the VMs if there is sufficient host headroom, reducing or avoiding the cost

when possible increases efficiency. Powercap Balancing may not be able to fully address

imbalance due to inherent physical host power consumption limits. If power cap balancing

is not able to reduce the imbalance below the specified imbalance threshold, the resource

management load balancing function of the resource management can address the remaining

imbalance by VM migration.

During CloudPowerCap initialization, for each host, the mapping between its current power

cap and its effective capacity is established by the mechanisms described in Section 5.3.1.

For a powered-on host, the power cap value should be in the range between the host’s idle

and peak power.

Powercap Redistribution: If the cloud resource management system considers powering

on a host to match a change in workload demands or other requirements, CloudPowerCap

performs a two-pass power cap redistribution. First it attempts to re-allocate sufficient

power cap for that host to power-on. If that is successful and if the system selects the

host in question after its what-if power-on evaluation, then CloudPowerCap redistributes

the cluster power cap across the updated hosts, to address any unfairness in the resulting

power cap distribution. Similarly, if the system considers powering off a host, its power cap

can be redistributed fairly to the remaining hosts after the completion of the host power-off

operation.

Powercap Check: Corresponding to Sanity Check in resource management, during the

CloudPowerCap check phase, CloudPowerCap distributes unallocated cluster power due to

hosts in failure or maintenance to hosts whose power caps are less than the peak power.

We note that CloudPowerCap can be used with various cloud resource management systems.

As discussed in the next section, we have implemented and integrated CloudPowerCap with

VMware Distributed Resource Scheduler (DRS) [88] and VMware Distributed Power Man-

agement (DPM) [89], but the general strategy of CloudPowerCap can complement other

distributed resource management systems for virtualization environments. For example, the

OpenStack computing nodes scheduler [74] assigns VMs to hosts considering constraints

during its filtering step and memory footprint during its weight and cost step. Although
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OpenStack does not support CPU reservations or the notion of estimating and satisfying

CPU demand, it does track a vCPU overcommitment ratio, defined to be the number of

vCPUs per pCPU. CloudPowerCap could interoperate positively with OpenStack by redis-

tributing the rack power budget across a set of hosts in accordance with the degree of vCPU

overcommitment. This is particularly beneficial for OpenStack environments, which do not

use automatic live migration for load-balancing.

5.4 CloudPowerCap Implementation

We implemented CloudPowerCap to work with the DRS cloud resource management system.

Figure 5.3 shows the high-level structure of CloudPowerCap working with DRS. In this sec-

tion, we first present an overview of DRS and then detail the design of each CloudPowerCap

component and its interaction with its corresponding DRS component.

5.4.1 DRS Overview

VMware DRS performs resource management for a cluster of ESX hypervisor hosts. It sup-

ports a rich set of controls for efficient multi-resource management to provide differentiated

QoS to VMs. The basic resource controls in DRS (listed below) allow users to express re-

source allocation in terms of guaranteed service-rate and/or relative importance assuming a

mapping between service level and resources.

Reservation: A reservation specifies the minimum amount of CPU or memory resources

guaranteed, even if the cluster is over-committed.

Limit: A limit specifies the upper bound of CPU or memory resources allocated, even if the

cluster is under-committed.

Shares: Shares express relative importance and represent weights of resouce allocation used

if there is resource contention.
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Figure 5.3: Structure of CloudPowerCap working with DRS. Italic texts indicate correspond-
ing components in general resource management systems.
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The DRS resource controls can be set on an individual VM or on a resource pool, an ag-

gregation of resources allowing performance isolation and resource sharing between a set of

VMs. Resource entitlements are computed according to these resource controls along with

an estimate of VM CPU and memory resource demand, a key metric intended to capture

the amount of CPU and memory the VM would use to satisfy its workload if there were no

contention. The demand that DRS works with is smoothed over an extended period given

the relatively coarse granularity at which DRS runs.

By default, DRS is invoked every five minutes. It evaluates the state of the cluster and

considers recommendations to improve that state by executing those recommendations in a

what-if mode on an internal representation of the cluster. At the end of each invocation,

DRS issues zero or more recommendations for execution on the actual cluster.

At the beginning of each DRS invocation, DRS executes resource sanity check code to detect

any inconsistencies between admitted resource reservations and current cluster capacity.

Next, DRS corrects any cluster constraint violations by migrating VMs between hosts. Ex-

amples of such corrections include evacuating hosts that the user has requested to enter main-

tenance or standby mode and ensuring VMs respect user-defined affinity and anti-affinity

rules. Both sanity check and constraint correction aim to create a constraint compliant snap-

shot of the cluster for further DRS processing. We note that choosing a host on which to

power-on a VM is treated as a special-case constraint violation.

DRS next performs entitlement balancing. DRS employs normalized entitlement as the load

metric of each host. Denoted by Nh, normalized entitlement is defined as the sum of the

per-VM entitlements Ei for each VM running on the host h, divided by the capacity of the

host, Ch, i.e., Nh =
∑

Ei

Ch
. DRS’s entitlement balancing algorithm uses a greedy hill-climbing

technique with the aim of minimizing the overall cluster load imbalance (i.e., the standard

deviation of the hosts’ normalized entitlements). DRS chooses as each successive move the

one that reduces load imbalance most, subject to a risk-cost-benefit filter which considers

workload stability risk and VM migration cost versus the increased balance benefit. The

move-selection step repeats until either the load imbalance is below a user-set threshold,

no beneficial moves remain, or the number of moves generated in the current pass hits a

configurable limit based on an estimate of how many can be executed in five minutes.
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DRS then optionally runs DPM, which opportunistically saves power by dynamically right-

sizing cluster capacity to match recent workload demand, while respecting the cluster con-

straints and resource controls. DPM recommends evacuating and powering off host(s) if the

cluster contains sufficient spare resources, and powering on host(s) if either resource demand

increases appropriately or more resources are needed to meet cluster constraints.

5.4.2 Powercap Check

Powercap Check generates recommendations to distribute any unallocated cluster power

budget among powered-on hosts whose power caps are less than their peak capacity. The

unallocated cluster power budget may change in several cases : 1) immediately after the

initial setup of the host power caps and the cluster power budget; 2) hosts are placed in

standby or removed from the rack; 3) cluster power budget is increased by clients. Each

powered-on host below peak capacity is given an increase in power cap proportional to the

ratio of the unallocated cluster power budget to the amount needed by all powered-on hosts

until it reaches peak capacity. The purpose of the Powercap Check step is to use excess

cluster power budget to increase the effective capacity of the powered-on hosts.

5.4.3 Powercap Allocation

After the unallocated power budget has been distributed, Powercap Allocation redistributes

power caps if needed to allow DRS to correct constraint violations.

DRS hard constraints include evacuating VMs from hosts that the user has requested to

enter maintenance or standby mode, complying with mandatory VM-to-VM or VM-to-Host

affinity and anti-affinity rules, and ensuring VM CPU and memory reservations are met.

DRS’s ability to correct constraint violations is impacted by host power caps , which can limit

the available capacity on target hosts. However, as shown in Fig 5.1(a), by increasing the

host power cap, the DRS algorithm can be more effective in correcting constraint violations.

Hence to aid DRS constraint correction, Powercap Allocation supports redistributing the

cluster’s unreserved power budget , i.e., the amount of power not needed to support running

VMs’ CPU and memory reservations. The unreserved power budget represents the maximum
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amount of power cap that can be redistributed to correct violations; insufficient unreserved

power budget prevents the correction of constraint violations.

Constraints
Correction

Powercap
Allocation

DRS CloudPowerCap

Cluster Snapshot

1
GetFlexiblePower

2
ConstraintsCorrection3

MigrateVMs

4
RedivvyPowerCap

5
SetPowerCap

Figure 5.4: Coordination between CloudPowerCap and DRS to correct constraints. Solid
arrow indicates invocations of CloudPowerCap functions while dashed arrow indicates invo-
cations of DRS functions.

CloudPowerCap and DRS works in coordination, as shown in Figure 5.4, to enhance the

system’s capability to correct constraints violations.

1) Powercap Allocation first calls GetFlexiblePower to get flexiblePower, which is a special

clone of the current cluster snapshot in which each host’s host power cap is set to

its reserved power cap, i.e., the minimum power cap needed to support the capacity

corresponding to the reservations of the VMs currently running on that host.

2) The flexiblePower is used as a parameter to call ConstraintsCorrection function in

DRS, which recommends VM migrations to enforce constraints and update hosts’ re-

served power caps for the new VM placements after the recommended migrations.

Then DRS generates an action plan for migrating VMs.

3) After performing ConstraintsCorrection, DRS generates VM migration actions to cor-

rect constraints. Note when applying VMs migration actions on hosts in the cluster,

precedence requisites are followed between these actions and power cap setting actions.

103



4) If some constraints are corrected by DRS, the power caps of source and target hosts

need reallocated to ensure fairness. For this case, RedivvyPowerCap of CloudPowerCap

is called to redistribute the power cap.

5) Finally Powercap Allocation generates actions to set power cap of hosts in the cluster

according to the results of RedivvyPowerCap.

The key function in Powercap Allocation is Powercap Redivvy, in which the unreserved power

budget is redistributed after the operations for constraint violation correction. An algorithm

used for Powercap Redivvy is presented in Algorithm 2. The input to this step are S, the

current snapshots of the cluster and updated snapshot F, in which the cluster power budget

has been distributed according to proportional resource sharing [91] to maintain fairness

of unreserved power budget distribution across hosts. The actions to change host power

cap on hosts are also generated if the hosts need more power cap than those in S or less

power cap without violating VM reservation. Note these sets of power cap changes are made

appropriately dependent of the actions generated by DRS to correct the constraint violations.

Algorithm 2 Powercap Allocation
S,F : cluster snapshots before and after constraints correction;
Ci,S, Ci,F power cap of the host hi in S and F ;

1: function RedivvyPowerCap(S,F )
2: Cneeded ← 0, Cexcess ← 0
3: for each host hi in the cluster do
4: if Ci,F > Ci,S then
5: SetPowerCap(hi, Ci,F )
6: Cneeded ← Cneeded + (Ci,F − Ci,S)
7: else
8: Cexcess ← Cexcess + (Ci,S − Ci,F )
9: end if

10: end for
11: if Cneeded > 0 then
12: r← Cneeded/Cexcess

13: for each host hi in the cluster do
14: if Ci,F ≤ Ci,S then
15: Ci,F ← Ci,F + r(Ci,S − Ci,F ) ⊲ Proportional sharing

16: SetPowerCap(hi, Ci,F )
17: end if
18: end for
19: end if

20: end function
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5.4.4 Powercap Balancing

Load balancing is critical for systems managing distributed resources, to maintain fairness

and to improve the responsiveness to bursts in resource demand and achieved by migrating

workload between hosts. For resource management system without concept of power caps,

like DRS, load balancing achieves both of these goals by reducing imbalance via migrating

VMs between hosts. However, with dynamic power cap management, CloudPowerCap can

alleviate imbalance by increasing the power caps of heavy loaded hosts while reducing the

power caps of lightly loaded hosts rather than migrating VMs migration between those hosts

as shown in Figure 5.1(c). Considering almost negligible overhead of power cap reconfigu-

ration comparing to VMs migration, Powercap Balancing is preferred to DRS entitlement

balancing once workload of the cluster is imbalanced. Nevertheless, because of limitation of

power cap adjustment, Powercap Balancing may not eliminate all imbalance of the cluster.

But the amount of VMs migration involved in subsequent load balancing can be reduced

significantly.

Entitlement
Balancing

Powercap
Balancing

DRS CloudPowerCap

Cluster Snapshot

1
GetBalanceMetric 2

BalancePowerCap

3
SetPowerCap

4
EntitlementBalancing

5
MigrateVMs

Figure 5.5: Work flow of Powercap Balancing and its interaction with DRS load balanc-
ing. Solid arrow indicates to invocations of CloudPowerCap functions while dashed arrow
indicates to invoke DRS functions.

The process of powercap balancing and its interaction with DRS load balancing are shown

in Figure 5.5.
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1) To acquire the status of entitlement imbalance of the cluster, Powercap Balancing first

calculates balance index defined in DRS of the cluster (i.e., the standard deviation of

the hosts normalized entitlements).

2) Then Powercap Balancing tries to reduce the entitlement imbalance among hosts by

adjusting their power caps of hosts in accordance with their entitlement.

3) If Powercap Balancing is able to impact cluster imbalance, its host power cap redistri-

bution actions are added to the list, with the host power cap reduction actions being

prerequisites of the increase actions.

4) If Powercap Balancing has not fully balanced the entitlement among the hosts, DRS

entitlement balancing is invoked on the results of Powercap Balancing to reduce enti-

tlement imbalance further.

5) DRS generate actions to migrate VMs.

The sketch of the key function BalancePowerCap in Powercap Balancing is shown in Al-

gorithm 3, which was developed along the lines of progressive filling to achieve max-min

fairness [8]. The algorithm progressively increases the host power cap of the host(s) with

highest normalized entitlement while progressively reducing the host power cap of the host(s)

with lowest normalized entitlement . This process is repeated until either the DRS imbalance

metric crosses the balance threshold or any of the host(s) with highest normalized entitle-

ment reach their peak capacity and hence further reduction in overall imbalance is limited

by those hosts.

5.4.5 Powercap Redistribution

Powercap Redistribution is used to in response to DPM dynamically powering on/off hosts.

When CPU or memory utilization becomes high, DPM recommends powering on hosts and

redistributing the VMs across the hosts to reduce per-host load. Before the host is powered

on, Powercap Redistribution ensures that sufficient power cap is assigned to the power-on

host. On the other hand, when both CPU and memory utilization are low for a sustained

period, DPM may recommend consolidating VMs onto fewer hosts and powering off the

remaining hosts to save energy. In this case Power Redistribution distributes the power cap

of the powered-off hosts among the active hosts to increase their capacity.
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Algorithm 3 Powercap Balancing
S,F : cluster snapshot before and after Powercap Balancing
h, l: hosts with highest and lowest normalized entitlement
Ĉi: peak capacity of the host i
C̄i : capacity of the host i corresponding to average normalized entitlement of the cluster

1: function BalancePowerCap(S)
2: F ← S, pcBal ← false
3: while Cluster is imbalanced do
4: Choose h and l from the cluster
5: Cneeded ← min(Ĉh, C̄h)− Ch

6: Cavail ← Cl − C̄l

7: if Cneeded = 0 or Cavail = 0 then
8: break ⊲ Then invoke DRS load balancing

9: else
10: pcBal ← true
11: end if
12: Add Cavail to h and reduce Cneeded from l
13: Recompute cluster balance metric on F
14: end while
15: if pcBal = true then
16: Set power cap of hosts according to F
17: end if
18: return F

19: end function
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Figure 5.6: Coordination between CloudPowerCap and DRS and DPM in response to power

on/off hosts. Solid arrow indicates to invoke CloudPowerCap functions while dashed arrow

indicates to invoke DRS functions.

The coordination between Powercap Redistribution and DPM when DPM attempts to power

on a host is depicted in Figure 5.6.

1) If there is sufficient unreserved cluster power budget to set the target host’s power cap

to peak, the host obtains its peak host power cap from the unreserved cluster power

budget and no power cap redistribution is needed.

2) If the current unreserved cluster power budget is not sufficient, RedistributePowerCap

is invoked to allow the power-on host acquiring more power caps from those hosts with

low CPU utilization.

3) DPM decides whether to power on the host given its updated power cap after redistri-

bution.

4) If the host is chosen for power-on, the normal DPM function is invoked to generate the

action plan for powering on the host.

5) If DPM decides to recommend the candidate power-on, the host power cap changes

are recommended as prerequisites to the host power-on.
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The algorithm of redistributing power caps is straightforward. To acquire sufficient power

caps to power on a host, the hosts with low utilization suppress their power caps under the

constraint of not causing those hosts to enter the high utilization range that would trigger

DPM to power on another host.

Algorithm 4 Powercap Redistribution for DPM power-on
S,F : cluster snapshots before and after Powercap Redistribution
p: standby host
Cu: capacity corresponding to unreserved cluster budget
Ci, Ci,on : current capacity and capacity corresponding to the threshold of power-on of the host
i
Ĉi : peak capacity of the host i

1: function RedistributePowerCap(S, hsb)
2: F ← S, Cneeded ← Ĉp − Cp

3: Cp ← Cp + Cu, Cu ← 0, Cneeded ← Cneeded − Cu

4: for host i with utilization less than to power-on do
5: Cu ← Cu + Ci − Ci,on

6: if Cu ≥ Cneeded then
7: break
8: end if
9: end for

10: if Cu −Cneeded ≥ 0 then
11: Cp ← Cp + Cneeded, Cu ← Cu − Cneeded

12: else
13: Cp ← Cp + Cu, Cu ← 0
14: end if
15: return F

16: end function

When a host is being considered for power-off, the portion of its host power cap currently

above its utilization could be made available for redistribution to other powered-on hosts

whose host power caps are below peak, to provide more target capacity for evacuating VMs.

5.4.6 Implementation Details

We implemented CloudPowerCap on top of VMware’s production version of DRS. Like DRS,

CloudPowerCap is written in C++. The entire implementation of CloudPowerCap comprises

less than 500 lines of C++ code, which demonstrates the advantage of instantiating power
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budget management as a separate module that coordinates with an existing resource manager

through well defined interfaces.

As described previously in this section, DRS operates on a snapshot of the VM and host

inventory it is managing. The main change we made for DRS to interface with CloudPow-

erCap was to enhace the DRS method for determining a host’s CPU capacity to reflect the

host’s current power cap setting in the snapshot. Other small changes were made to support

the CloudPowerCap functionality, including specifying the power budget, introducing a new

action that DRS could issue for changing a host’s power cap, and providing support for

testability.

The implementation of power cap check was straightforward and only involved adding a

new method called at the beginning of each DRS invocation to redistribute any unallocated

power budget among the powered-on hosts by increasing their power caps in the snapshot.

Powercap allocation entailed updating corresponding DRS methods to understand that a

host’s effective capacity available for constraint correction could be increased using the un-

reserved power budget, and adding a powercap redivvy step optionally run at the end of

the constraint correction step. Powercap balancing, which leverages elements of the power-

cap redivvying code, involved creating a new method to be called before the DRS balancing

method. Powercap redistribution changed DPM functions to consider whether to turn on/off

hosts based not only on utilization but also on the available power budget.

5.5 Evaluation

In this section, we evaluate CloudPowerCap in the DRS simulator under three interesting

scenarios. The first experiments evaluate CloudPowerCap ’s capability to rebalance normal-

ized entitlement among hosts while avoiding the overhead of VM migration. The second

experiment shows CloudPowerCap reallocates the power budget of a powered-off host to

allow hosts to handle demand bursts. The third experiment shows how CloudPowerCap

supports CPU and memory capacity trade-offs to be made at runtime. This experiment

includes a relatively large host inventory to show the capacity trade-offs at scale.
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In these experiments, we compare CloudPowerCap against two baseline approaches of power

cap management: StaticHigh and Static. Both approaches assign equal power cap to each

host in the cluster at the beginning and maintain the power cap during the cluster running.

StaticHigh sets power cap of the host as its peak power, maximizing throughput of CPU

intensive applications. However for applications in which memory or storage become con-

strained resources, it can be beneficial to support more servers to provision more memory

and storage. Hence in Static, the power cap of a host is intentionally assigned lower than the

peak power of the host. Comparing StaticHigh, more servers are placed in Static to enhance

the throughput of applications with memory or storage as constrained resources. However

both approaches lack the ability of flexible allocation of power caps and can not respond to

workload spikes and demand variation.

5.5.1 DRS Simulator

The DRS simulator is used in developing and testing all DRS algorithm features. It provides

a realistic execution environment, while allowing much more flexibility and precision in

specifying VM demand workloads and obtaining repeatable results than running on real

hardware. The simulator is described in detail in Section 5.1.1 of [35]; we include an overview

of its key features here.

The DRS simulator simulates a cluster of ESX hosts and VMs. It supports defining different

host and VM profiles in order to experiment with different configurations. A host can be

defined using parameters including number of physical cores, CPU capacity per core, total

memory size, and power consumption at idle and peak. A VM can be defined in terms of

number of configured virtual CPUs (vCPUs) and memory size. Each VM’s workload can

be described by an arbitrary function over time, with the simulator generating CPU and

memory demand for that VM based on the specification.

Given the input characteristics of ESX hosts and the VMs’ resource demands and speci-

fications, the simulator mimics ESX CPU and memory schedulers, allocating resources to

the VMs in a manner consistent with the behavior of ESX hosts in a real DRS cluster.

The simulator supports all the resource controls supported by the real ESX hosts, including

reservation, limit and shares for each VM along with the resource pools.
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The simulator determines the allocation each VM receives, whenever there is any change

in demand by any of the VMs on the host. The simulator supports vMotion of VMs, and

models the cost of vMotion and its impact on the workload running in the VM, based on how

vMotion works in a physical ESX host. The simulator also takes into account the resource

settings for the resource pool trees on the host when resources are divvyed out, similar to

how the real ESX host divvies out the host resources based on the host-level resource pool

hierarchy. The simulator models the ESX hypervisor CPU and memory overheads.

The simulator also estimates power consumption of the ESX hosts based on the power model

given in Equation (5.1) in Section 5.2.1. For this work, the simulator was updated to respect

the CPU capacity impact associated with a host’s power cap.

5.5.2 Headroom Rebalancing

CloudPowerCap can reassign power caps to balance headroom for bursts, providing a quick

response to workload imbalance due to VM demand changes. Such reassignment of power

caps can improve robustness of the cluster and reduce or avoid the overhead of VM migra-

tion for load balancing. To evaluate impact of CloudPowerCap on headroom balancing, we

perform an experiment in which 30 VMs with 1vCPU and 8GB memory run 3 hosts with

configuration shown in Table 5.1. Figures 5.7(a) and 5.7(b) plot the simulation results under

CloudPowerCap and Static with a static power cap allocation of 250W per host, respec-

tively. Initially, at time 0 seconds, the VMs are each executing similar workloads of 1 GHz

CPU and 2 GB memory demand, and are evenly distributed across the hosts. At time 750

seconds, the VMs on one host spike to 2.4 GHz demand, thereby increasing the demand on

that host above its power-capped capacity. When DRS is next invoked at time 900 seconds

(running every 300 seconds by default), its goal is to rebalance the hosts’ normalized enti-

tlements. Under the static power cap, DRS migrates the VMs to balance the normalized

entitlements. In contrast, CloudPowerCap reassigns the hosts’ power caps to reduce the caps

on the light-loaded hosts (to 215W) and increase them on the heavy-loaded host (to 320W).

This addresses the host overutilization and imbalance without requiring vMotion latency and

overhead, which is particularly important in this case, since the overhead further impacts the

workloads running on the overutilized host. At time 1400, the 2.4 GHz VM demand spike

ceases, and those VMs resume running at their original 1 GHz demand until the experiment
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ends at time 2100. Again, CloudPowerCap avoids the need for migrations by reassigning

the host power caps to their original values. In contrast, Static performs two entitlement

balancing and migrates several VMS at time 900 and 1500.
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Figure 5.7: Headroom balancing on a group of 3 hosts. Hosts are gouped at each event time.

CPU Payload Ratio vMotion

CPC 0.99 0
Static 0.89 7

StaticHigh 1.00 0

Table 5.3: CloudPowerCap (CPC) rebalancing without migration overhead

Table 5.3 compares the CPU payload delivered to the VMs under CloudPowerCap , Static

using 250W static host power caps, as well as StaticHigh using the power caps equivalent

to the peak capacity of the host. For Static, the vMotion CPU overhead has a significant

overall impact on the CPU payload delivered to the VMs because the host is overutilized

during the burst and the cycles needed for vMotion directly impact those available for VM

use. For CloudPowerCap , there is a relatively small impact to performance after the burst

and before DRS can run CloudPowerCap to reallocate the host power caps. The power cap

setting operation itself can be executed by the host within 1 millisecond and introduce minor

payload overhead.
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5.5.3 Standby Host Power Reallocation

CloudPowerCap can reallocate standby hosts’ power cap to increase the capacity of powered-

on hosts and thereby their efficiency and ability to handle bursts. To demonstrate this, we

consider the same initial setup in terms of hosts and VMs as in the previous experiment. In

this case, all VMs are running a similar workload of 1.2 GHz and 2 GB memory demand.

At time 750, each VM’s demand reduces to 400 MHz, and when DRS is next invoked at

time 900, DPM recommends that the VMs be consolidated onto two hosts and that the

remaining host be powered-off. After the host has been evacuated and powered-off at time

1200, CloudPowerCap reassigns its power cap to 0 and reallocates the rack power budget

to the two remaining hosts, setting their power caps to 320W each. At time 1400, there

is an unexpected spike. In the case of statically-assigned power caps, the host that was

powered-off is powered back on to handle the spike, but in the CloudPowerCap case, the

additional CPU capacity available on the 2 remaining hosts given their 320 W power caps

are sufficient to handle this spike and the powered-off host is not needed.

CPU Payload Ratio vMotion Power Ratio

CPC 1.00 10 1.00
Static 0.98 19 1.36

StaticHigh 1.00 10 1.00

Table 5.4: CloudPowerCap (CPC) reallocating standby host power

Table 5.4 compares the CPU payload in cycles delivered to the VMs CloudPowerCap , Static

and StaticHigh. In this case, a number of additional vMotions are needed for Static, but

the overhead of these vMotions does not significantly impact the CPU payload, because

there is plenty of headroom to handle this overhead. However, Static consumes much more

power than the other 2 cases, since powering the additional host back on and repopulating

it consumes significant power. In contrast, CloudPowerCap is able to match the power

efficiency of the baseline, by being able to use peak capacity of the powered-on hosts.
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5.5.4 Flexible Resource Capacity

CloudPowerCap supports flexible use of power to allow trade-offs between resource capacities

to be made dynamically. To illustrate such a trade-off at scale, we consider a cluster of hosts

as described in Section 2.1. The cluster is used to run both production trading VMs and

production hadoop compute VMs. The trading VMs are configured with 2 vCPUs and 8 GB

and they are idle half the day (off-prime time), and they run heavy workloads of 2x2.6 GHz

and 7 GB demand the other half of the day (prime time). They access high-performance

shared storage and hence are constrained to run on hosts with access to that storage, which

is only mounted on 8 hosts in the cluster. The hadoop compute VMs are configured with 2

vCPUs and 16 GB and each runs a steady workload of 2x1.25 GHz and 14 GB demand. They

access local storage and hence are constrained to run on their current hosts and cannot be

vMotioned. During prime time, the 8 servers running the trading VMs do not receive tasks

for the hadoop VMs running on those servers; this is accomplished via an elastic scheduling

response to the reduced available resources [100]. Figure 5.8 shows the simulation results

of the cluster under CloudPowerCap and Static configuration of power caps.
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Figure 5.8: Trade-offs between dynamical resource capacities. Trading indicates a group of
servers running production trading while Hadoop represents servers run production Hapdoop.

Table 5.5 compares the CPU and memory payload delivered for three scenarios. The

staticHigh scenario involves deploying 25 servers with power cpas of 320 W, which immedi-

ately and fully supports the trading VMs prime time demand but limits the overall available
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memory and local disks in the cluster associated with the 25 servers. The Static senario

instead involves deploying 32 servers with each host power cap statically set to 250 Watts.

This scenario allows more memory and local disks to be accessed, increasing the overall CPU

and memory payload delivered because more hadoop work can be accomplished, but limits

the peak CPU capacity of each host, meaning that the trading VMs run at only 62 percent

of their prime time demand. With CloudPowerCap, the benefits to the hadoop workload of

the static scenario are retained, but the power caps of the hosts running the trading VMs

can be dynamically increased, allowing those VMs’ full prime time demand to be satisfied.

CPU Payload Ratio Mem Ratio Trading Demand Ratio

CPC 1.24 1.28 1.00
Static 1.21 1.28 0.62

StaticHigh 1.00 1.00 1.00

Table 5.5: CloudPowerCap (CPC) enabling flexible resource capacity

5.6 Related Work

Several research projects have considered power cap managment for virtualized infrastruc-

ture [53,72,73,78,98]. Among them, the research mostly related to our work is [73], in which

authors proposed VPM tokens, an abstraction of changeable weights, to support power bud-

geting in virtualized environment. Like our work, VPM tokens enables shifting power budget

slack, corresponding headroom in this paper, between hosts. However VPM tokens are in-

dependent to resource management system and may generate conflicting actions without

coordination mechanisms.

Interoperating with a cloud resource management system like DRS also allows CloudPower-

Cap to support interesting additional features: 1) CloudPowerCap accomodates consolida-

tion of physical servers caused by dynamic power management while previous work assumed

a fixed working server set, 2) CloudPowerCap is able to handle and facilitate VM migration

caused by correcting constraints imposed on physical servers and VMs, 3) CloudPowerCap

can also deal with and enhance power cap management in the presence of load balancing

which is not considered in the previous papers.
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The authors of [78] describe managing performance and power management goals at server,

enclosure, and data center level and propose handling the power cap hierarchically across

multiple levels. Optimzation and feedback control algorithms are employed to coordinate the

power management and performance indices for entire clusters. In [98], the authors build a

framework to coordinate power and performance via Model Predictive Control through DVFS

(Dynamic Voltage and Frequency Scaling). To provide power cap management through the

VMs management layer, [72] proposed throttling VM CPU usage to respect the power cap.

In their approach, feedback control is also used to enforce the power cap while maintaining

system performance. Similarly, the authors in [53] also discussed data center level power cap

management by throttling VM resource allocation. Like [78], they also adopted a hierachical

approach to coordinate power cap and performance goals.

While all of these techniques attempt to manage both power and performance goals, their

resource models for the performance goals are incomplete in various ways. For examples, none

of the techniques support guaranteed SLAs (reservations) and fair share scheduling (shares).

Some build a feedback model needing application-level performance metrics acquired from

cooperative clients, which is rare especially in public clouds [7].

5.7 Summary

Many modern data centers have underutilized racks. Server vendors have recently intro-

duced support for per-host power caps, which provide a server-enforced limit on the amount

of power that the server can draw, improving rack utilization. However, this approach is

tedious and inflexible because it needs involvement of human operators and does not adapt

in accordance with workload variation. This paper presents CloudPowerCap to manage a

cluster power budget for a virtualized infrastructure. In coordination with resource manage-

ment, CloudPowerCap provides holistic and adaptive power budget management framework

to support service level agreements, fairness in spare power allocation, entitlement balancing

and constraint enforcement.
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Chapter 6

Conclusion

This dissertation focus on development of dynamic thermal and power management of com-

puter systems. This dissertation reserach comprises two parts. The first part develops

dynamic thermal management for real-time systems running on different types of computing

platforms. To meet the challenges posed by uncertainties in the thermal and power char-

acteristics of computing systems, we employ feedback control-theoretic approaches to meet

both the thermal and real-time performance requirements on single-core and multicore hosts.

To improve performance of thermal management on distributed real-time systems, an control-

theoretic approach for real-time clusters is also developed in this part, which relies on thermal

balancing rather than throttling to redistribute workload and reduce hot spots in the cluster.

The second part of the dissertation studies the problem of dynamic power cap management

for cloud computing infrastructure. We developed, CloudPowerCap, a power cap manage-

ment framework fro virtualized server clusters. The key of CloudPowerCap is to treat and

manage the power cap in close coordination with resource management system so that no

compromise on performance due to conflicting actions generated between CloudPowerCap

and the resource management system.
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