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THE VON NEUMANN INEQUALITY FOR 3× 3
MATRICES

GREG KNESE

Abstract. This note details how recent work of Kosiński on the
three point Pick interpolation problem on the polydisc can be used
to prove the von Neumann inequality for d-tuples of commuting
3× 3 contractive matrices.

1. Introduction

The purpose of this note is to explain how recent results of Kosiński
[14] provide a proof of the von Neumann inequality for d-tuples of 3×3
commuting contractive matrices.

Definition 1.1. A d-tuple of pairwise commuting contractive matrices
or operators T = (T1, . . . , Td) satisfies the von Neumann inequality if
for every p ∈ C[z1, . . . , zd]

‖p(T )‖ ≤ sup
z∈Td

|p(z)|.

Recall that contractive means the Hilbert space operator norm ‖Tj‖ ≤
1 and Td is the unit d-torus in Cd.

The von Neumann inequality holds for a single contractive operator—
von Neumann’s original result [16]—as well as for a pair of commuting
contractions—a result of Andô [2]. For d > 2 there are known examples
of d-tuples of commuting contractions for which the von Neumann in-
equality fails. Varopoulos [18] proved the existence of counterexamples
with a probabalistic argument and later Kaijser and Varopoulos (see
addendum to [18]) as well as Crabb and Davie [4] found explicit coun-
terexamples. These counterexamples were all given by finite matrices.
It turns out that the von Neumann inequality holds for d-tuples of 2×2
commuting contractive matrices; this result is essentially equivalent to
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2 GREG KNESE

the Schwarz lemma on the polydisc. On the other hand, Holbrook
[10] has found a 3-tuple of 4× 4 matrices which fail the von Neumann
inequality.

A great deal of effort has been expended to answer the following
question: Does the von Neumann inequality hold for d-tuples of 3 ×
3 commuting contractive matrices? For evidence of interest in this
question see [3, 10, 15]. See also the thesis [8] which addressed some
special cases of this question.

Recent work of Kosiński proves that the answer is yes.

Theorem 1.2. The von Neumann inequality holds for d-tuples of 3×3
commuting contractive matrices.

This is also interesting in light of the fact that there exists a 4-tuple
of 3× 3 commuting contractions that does not dilate to a commuting
4-tuple of unitary operators [3]. Possessing a unitary dilation is a much
stronger property than satisfying a von Neumann inequality; in fact,
it means that a von Neumann inequality holds for matrix-valued poly-
nomials of all matrix sizes. Indeed, the 4-tuple of 3× 3 matrices of [3]
fails the von Neumann inequality for 2× 1 matrix-valued polynomials.
This leaves the following question unresolved:

Does every 3-tuple T of 3×3 contractive matrices have a
unitary dilation? Equivalently, for every such T and ev-
ery matrix-valued polynomial P = (pj,k) ∈ CM×N [z1, z2, z3],
do we have

‖(pj,k(T ))j,k‖ ≤ sup{‖P (z)‖ : z ∈ D3}?
If not, what are the minimal matrix sizes M × N for
which this does hold?

For some context, we point out that many of the von Neumann in-
equalities cited above have dilation counterparts: the Sz.-Nagy dilation
theorem vis-à-vis von Neumann’s inequality, Andô’s dilation theorem
(Andô’s actual result in [2]), d-tuples of 2 × 2 commuting contractive
matrices always dilate [6, 11]. The situation of a von Neumann in-
equality without a dilation theorem is not uncommon though, and it
is closely related to the distinction between spectral sets and complete
spectral sets. See [5] for more information.

In the next two sections, we point out some known reductions and
then explain how Kosiński’s work proves Theorem 1.2. In the third
and final section, we explain some other operator theory related conse-
quences of [14]. Namely, solvable three-point Pick interpolation prob-
lems on the polydisc can always be solved with a rational inner function
in the Schur-Agler class.
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2. Reductions

Let T = (T1, . . . , Td) be a d-tuple of 3 × 3 commuting contractive
matrices. To start with, we can assume the matrices are strict con-
tractions (‖Tj‖ < 1, j = 1, . . . , d) and then the theorem will follow by
continuity. Next, a d-tuple of 3 × 3 commuting matrices can always
be perturbed to a simultaneously diagonalizable d-tuple of commuting
matrices. The reference [12] points out several places where this is
proven; see [7, 9, 15].

After adjusting our operators to be nicer, we will replace polynomials
with functions that are less nice. If T is now a d-tuple of commuting
simultaneously diagonalizable strictly contractive 3× 3 matrices, then
it suffices to prove

‖f(T )‖ ≤ 1

for all f : Dd → D holomorphic on the unit d-dimensional polydisc.
This follows from the fact that such holomorphic functions can be ap-
proximated locally uniformly on Dd by polynomials p ∈ C[z1, . . . , zd]
with supremum norm at most 1 on Dd (or Td by the maximum princi-
ple). See Rudin [17, pg. 126].

Using bounded holomorphic functions makes it possible to apply
Möbius transformations to the matrices T1, . . . , Td in order to force one
of the joint eigenvalues of T to be 0 ∈ Cd, while still maintaining all
other properties of T . We can also apply a Möbius transformation to
f : Dd → D and assume f(0) = 0.

Let 0, z, w ∈ Dd be the joint eigenvalues of T with corresponding
eigenvectors e, u, v ∈ C3. Then, f(T ) is the 3× 3 matrix with eigenval-
ues 0, σ = f(z), τ = f(w) ∈ D and eigenvectors e, u, v. It now becomes
of interest to understand all holomorphic functions g : Dd → D which
solve the following interpolation problem:

(2.1)

0 7→ 0

z 7→ σ

w 7→ τ

Theorem 1.2 will follow from the next result which is explained in
the next section.

Theorem 2.1 (Kosiński). If the interpolation problem (2.1) can be
solved with g : Dd → D holomorphic, then there exist holomorphic
F1, F2 : D2 → D such that (2.1) can be solved with a function of the
form

(2.2) F (z) = F1(F2(z1, z2), z3)

after possibly permuting the variables.
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Indeed, by Andô’s inequality S = F2(T1, T2) is a contraction com-
muting with T3 and therefore F (T ) = F1(S, T3) is a contraction equal
to f(T ) as above. This proves Theorem 1.2 given Theorem 2.1.

3. The three point Pick problem on the polydisc

Theorem 2.1 follows from work in [14] after making some further
reductions to put us in the most interesting situation (that of extremal
and non-degenerate interpolation problems).

First, it is worth pointing out that the two point Pick problem on
the polydisc is simple to analyze using one dimensional slices and the
Schwarz lemma. It is possible to solve

0 ∈ Dd 7→ 0 ∈ D
z ∈ Dd 7→ σ ∈ D

with an analytic f : Dd → D if and only if |σ| ≤ maxj |zj|. However,
even simple problems, such as (0, 0) 7→ 0 and (1

2
, 1

2
) 7→ 1

2
, will have

many interpolants f due to the geometry of the polydisc. See Section
11.6 of the book [1].

For these reasons, it is useful to perturb the nodes 0, z = (z1, . . . , zd), w =
(w1, . . . , wd) into a more generic position. Let ρ(a, b) =

∣∣ a−b
1−āb

∣∣ be the
pseudo-hyperbolic distance on the unit disk. Perturb z, w so that all
of the quantities below are distinct, yet T is still strictly contractive:

|z1|, . . . , |zd|, |w1|, . . . , |wd|, ρ(z1, w1), . . . , ρ(zd, wd).

Functions as in (2.2) form a normal family so we can approximate the
less generic interpolation problems by the generic ones.

The interpolation problem 2.1 is said to be extremal if it cannot be
solved with a holomorphic function g satisfying supDd |g| < 1. There is
no harm in multiplying σ, τ by r > 1 if necessary to force the problem
to be extremal.

The interpolation problem 2.1 is said to be non-degenerate if no two-
point subproblem is extremal. If a two point subproblem is extremal
(the degenerate case) then one of the following holds

|σ| = max
j=1,...,d

|zj| or |τ | = max
j=1,...,d

|wj| or ρ(σ, τ) = max
j=1,...,d

ρ(zj, wj).

By our genericity assumption, whichever maximum occurs above will
occur at a unique j and this forces the solution function to be unique
and to depend on one variable. We provide some details in Lemma 3.1
at the end of this section.
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Thus, in the degenerate case we can certainly solve with a function
of the form (2.2) and we may now assume our interpolation problem is
non-degenerate.

To finish, we may quote appropriate results from [14]. Lemma 3 of
[14] states that for d = 3, if the interpolation problem (2.1) is extremal,
non-degenerate, and strictly 3-dimensional, then it can be solved with
a function of the form (2.2). Strictly 3-dimensional means the problem
can be solved with a function depending on 3 variables but not with
a function only depending on 2 variables. We may certainly assume
that we are in the strictly 3-dimensional case since otherwise there is
nothing to prove.

For d > 3, Lemma 5 of [14] states that if (2.1) is extremal and non-
degenerate, then after permuting variables if necessary the problem
can be solved with a function of the form (2.2). This completes our
explanation of Kosiński’s Theorem 2.1.

We used the following fact above.

Lemma 3.1. Suppose f : Dd → D is holomorphic, f(0) = 0 and there
exists w ∈ Dd such that f(w) = w1 and |w1| > |wj| for all j 6= 1. Then,
f(z) ≡ z1 for all z ∈ Dd.

Proof. For ζ ∈ D, let h(ζ) = f( ζ
w1
w). Then, h(0) = 0, h(w1) = w1 and

therefore by the classical Schwarz lemma, h(ζ) ≡ ζ. This implies

d∑
j=1

∂f

∂zj
(0)

wj
w1

= 1.

By [17, pg. 179],
∑d

j=1

∣∣∣ ∂f∂zj (0)
∣∣∣ ≤ 1. Since |w1| > |wj| for j 6= 1, this

can only happen if ∂f
∂z1

(0) = 1. This implies f(ζ, 0, . . . , 0) ≡ ζ. By

Lemma 3.2 of [13], this implies f(z) ≡ z1. �

4. The Schur-Agler class

The Schur-Agler class on the polydisc Dd consists of holomorphic
functions f : Dd → D such that

‖f(T )‖ ≤ 1

for all d-tuples T of commuting strictly contractive operators. Func-
tions of the form (2.2) are certainly in the Schur-Agler class; indeed
the argument after the statement of Theorem 2.1 proves this.

Thus, three-point Pick interpolation problems on the polydisc can
be solved with functions in the Schur-Agler class. However, the Schur-
Agler class has a well-known interpolation theorem due to Agler; see
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[1, Thm 11.49, Thm 11.90]. Combining these observations we get the
following.

Theorem 4.1. Given z1, z2, z3 ∈ Dd and t1, t2, t3 ∈ D, there exists a
holomorphic function f : Dd → D satisfying f(zj) = tj for j = 1, 2, 3 if
and only if there exist positive semi-definite 3×3 matrices Γ1,Γ2, . . . ,Γd

such that

1− tjtk =
d∑

n=1

(1− znj znk )Γnj,k

for j, k = 1, 2, 3. Here superscripts are used to denote components of
zj ∈ Dd.

This result can be used to prove that every solvable 3-point Pick
problem can be solved with a rational inner function in the Schur-Agler
class. The paper [14] already proves this in the case of non-degenerate
extremal problems but then the above general machinery can be used
to show that every solvable problem, whether extremal or not, has a
rational inner solution.
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Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 375–386. MR1902811
(2003e:47016)

[11] , Inequalities of von Neumann type for small matrices, Function spaces
(Edwardsville, IL, 1990), Lecture Notes in Pure and Appl. Math., vol. 136,
Dekker, New York, 1992, pp. 189–193. MR1152347 (93d:47015)
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