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INTRODUCTION

Background

In real-world settings, from woking in manufacturing plants to self
driving on highway, robots empowered by Machine Learning (ML)
models are tasked with complex, dynamic tasks that demand high
levels of precision and adaptability. The reliability of these systems
hinges on the perception capabilities of ML model, making
uncertainty quantification methods vital. Conformal prediction is a
user-friendly paradigm for creating statistically rigorous uncertainty
sets/intervals for the predictions of such models. [1] It ensures that
robots can effectively assess and respond to varying conditions with
safe and trustworthy actions, reducing the risk of errors and
enhancing overall system performance.

Purpose

The purpose of this research project is to experimentally validate the
effectiveness conformal prediction in object detection of a control
algorithm on a ground robot platform.

PROBLEM STATEMENT

Given
« The physical environment distributed with objects.

« Arobot and its planned navigation control scheme.
Find

« Make safe, trustworthy actions based on result of object detection
and conformal prediction.

METHOD & PROCEDURE

"y EEEEEEEEEEEEDNEy

1. Setup : Environment

. We will use the Turtlebot 3 WafflePi, a  “"""""" 'I' lgiotie-
2-wheel ROS based ground robot Visual Perception
platform with build in camera, in the J
Gazebo simulated world.

2. Object Detection

 For the robot perception algorithm, we |
choose YOLOV7 object detection with Detection Results
pre-trained weights on the Microsoft ~1'
COCO (Common Objects in Context)
Dataset. [4]
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« State-of-the-art performance in real-

time object detection, capable of Trustwort!wy Results
identify and classify multiple objects in 4'

complex environments with minimal
latency and high precision.

Fig.1 a block diagram of the procedure
of solving the problem
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2. Object Detection (cont.)

« Assume two bounding boxes are over the same object if their

« Resulting in multiple bounding boxes with each labeled with

Common object detector assumes each bounding box
contains one instance of object class.

intersection over union (loU) is greater than 0.3.

multiple class instances and scores.

Algorithm 1 Merge Detections
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. for each bboxq in detections do
for each bboxs in detections do
Compute intersection over union
if tou > threshold then
r_min <—min(bboxr; — x_min, bbors — x_min)
r_max <min(bbox, — x_max,bboxrs — x_max)
y_min <min(bboxr; — y_min, bbors — y_min)
y_max <min(bbox; — y_mazx,bboxrs — y_max)
Append class, score of bbox1 and bboxs
end if
end for
. end for

3.

(1

softmax output

Conformal Prediction

Given each output (bounding box) of object detection that
contain K classes.
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Find conformal score (1 — score of true class):
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Construct empirical quantile g =

element of 5y, ..., s, from calibration set
Make the inference to choose form set of classes:

G (Xtest) o {y :f<Xtest)y > 1 - @}
That is granted to satisfy [1]:

1
1—a§P(Ytest€‘€(Xtest)) <l—a+

n+ 1

# 1: get conformal scores. n = calib_Y.shapel[O]

cal_smx = model(calib_X) .softmax(dim=1) .numpy ()
cal_scores = l-cal_smx[np.arange(n),cal_labels]

# 2: get adjusted quantile

g_level = np.ceil((n+1)*(1-alpha))/n

ghat = np.quantile(cal_scores, q_level, method='higher')
val_smx = model(val_X) .softmax(dim=1) .numpy ()

prediction_sets = val_smx >= (l-ghat) # 3: form prediction sets

) compute scores (2) get quantile (3) construct
on holdout data

true class

}:i Python code [1]
1 — s; =
______ @)
i é Fig. 2 illustration of
5
(/)]

class scores, {S;} class

prediction set Fig. 3 conformal prediction

conformal prediction [1]

RESULTS

We first tested the object detection with conformal prediction with
still images random selected COCO dataset:

person, couch, person, S
chair, couch, person,
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{person, car, bus, truck, stop sign, {cat, cup, toilet,  {person, bottle, knife, sandwich, pizza,
backpack, handbag, clocks} sink, book} donut, cake, chair, couch, dining table}
Fig. 4,5,6 bounding boxes, labels of detected objects with conformal prediction in random selected COCO dataset images

During our test in Gazebo simulator, With lack of custom trained
detection model, the algorithm performs sub-optimally in simulated
world. Which highlights the fact that conformal prediction can provide
statistically promising results when model predictions are inaccurate.
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Fig. 7 portion of the test simulated
world with random objects with
camera detection view on the side

CONCLUSION &
FUTURE DIRECTIONS

In this research project, we presented an experimental validation of
uncertainty quantification for robot perception.

Our results demonstrated that the proposed approach was effective in
generating detection results that contain the true label with high
probability. [2]

By validating the effectiveness of the conformal prediction in a
simulated setting with the specific model of robot, we can contribute to
the development of more safe and trustworthy robotic controls.

Future directions could be: implement classification with Adaptive
Prediction Sets[1]; train custom detection models; test the perception
method and analyze it's performance in physical lab setting; and
Integrate with existing navigation algorithms.
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