
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

Electrical and Systems Engineering 
Undergraduate and Graduate Research Electrical & Systems Engineering 

12-8-2023 

Experimental Validation of Uncertainty Quantification Methods for Experimental Validation of Uncertainty Quantification Methods for 

Robot Perception Robot Perception 

Yifei Li 
Washington University in St. Louis, liyifei@wustl.edu 

Follow this and additional works at: https://openscholarship.wustl.edu/eseundergraduate_research 

Recommended Citation Recommended Citation 
Li, Yifei, "Experimental Validation of Uncertainty Quantification Methods for Robot Perception" (2023). 
Electrical and Systems Engineering Undergraduate and Graduate Research. 21. 
https://openscholarship.wustl.edu/eseundergraduate_research/21 

This Article is brought to you for free and open access by the Electrical & Systems Engineering at Washington 
University Open Scholarship. It has been accepted for inclusion in Electrical and Systems Engineering 
Undergraduate and Graduate Research by an authorized administrator of Washington University Open Scholarship. 
For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eseundergraduate_research
https://openscholarship.wustl.edu/eseundergraduate_research
https://openscholarship.wustl.edu/ese
https://openscholarship.wustl.edu/eseundergraduate_research?utm_source=openscholarship.wustl.edu%2Feseundergraduate_research%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eseundergraduate_research/21?utm_source=openscholarship.wustl.edu%2Feseundergraduate_research%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


3. Conformal Prediction 
Given each output (bounding box) of object detection that 
contain  classes. 

 
Find conformal score ( ): 

 

Construct empirical quantile -th 

element of  from calibration set 
Make the inference to choose form set of classes: 

 

That is granted to satisfy [1]: 

K
̂f(x) ∈ [0,1]K

1 − score of true class
si = 1 − ̂f (Xi)Yi

̂q =
⌈(n + 1)(1 − α)⌉

n
s1, …, sn

𝒞 (Xtest) = {y : ̂f (Xtest)y
≥ 1 − ̂q}

1 − α ≤ ℙ (Ytest ∈ 𝒞 (Xtest)) ≤ 1 − α +
1

n + 1
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Background 
In real-world settings, from woking in manufacturing plants to self 
driving on highway, robots empowered by Machine Learning (ML) 
models are tasked with complex, dynamic tasks that demand high 
levels of precision and adaptability. The reliability of these systems 
hinges on the perception capabilities of ML model, making 
uncertainty quantification methods vital. Conformal prediction is a 
user-friendly paradigm for creating statistically rigorous uncertainty 
sets/intervals for the predictions of such models. [1] It ensures that 
robots can effectively assess and respond to varying conditions with 
safe and trustworthy actions, reducing the risk of errors and 
enhancing overall system performance. 

INTRODUCTION

Given 
• The physical environment distributed with objects. 
• A robot and its planned navigation control scheme. 

Find 
• Make safe, trustworthy actions based on result of object detection 

and conformal prediction.

PROBLEM STATEMENT

Purpose 
The purpose of this research project is to experimentally validate the 
effectiveness conformal prediction in object detection of a control 
algorithm on a ground robot platform. 

METHOD & PROCEDURE

RESULTS2. Object Detection (cont.) 
• Common object detector assumes each bounding box 

contains one instance of object class. 
• Assume two bounding boxes are over the same object if their 

intersection over union (IoU) is greater than 0.3. 
• Resulting in multiple bounding boxes with each labeled with 

multiple class instances and scores. 

1. Setup 
• We will use the Turtlebot 3 Waffle Pi,  a 

2-wheel ROS based ground robot 
platform with build in camera, in the 
Gazebo simulated world. 

CONCLUSION & 
FUTURE DIRECTIONS
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Fig. 1  a block diagram of the procedure 
of solving the problem

Fig. 4,5,6 bounding boxes, labels of detected objects with conformal prediction in random selected COCO dataset images 

During our test in Gazebo simulator, With lack of custom trained 
detection model, the algorithm performs sub-optimally in simulated 
world. Which highlights the fact that conformal prediction can provide 
statistically promising results when model predictions are inaccurate.

[1] A. N. Angelopoulos and S. Bates, A Gentle Introduction to Conformal Prediction and Distribution- 
Free Uncertainty Quantification. 2022. 

[2] S. Li, S. Park, X. Ji, I. Lee, and O. Bastani, Towards PAC Multi-Object Detection and Tracking. 2022. 
[3] L. Andéol, T. Fel, F. D. Grancey, and L. Mossina, Confident Object Detection via Conformal  

Prediction and Conformal Risk Control: an Application to Railway Signaling. 2023. 
[4]C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new  

state-of-the-art for real-time object detectors,” 2023.

In this research project, we presented an experimental validation of 
uncertainty quantification for robot perception. 
Our results demonstrated that the proposed approach was effective in 
generating detection results that contain the true label with high 
probability. [2] 
By validating the effectiveness of the conformal prediction in a 
simulated setting with the specific model of robot, we can contribute to 
the development of more safe and trustworthy robotic controls. 
Future directions could be: implement classification with Adaptive 
Prediction Sets[1]; train custom detection models; test the perception 
method and analyze it’s performance in physical lab setting; and 
integrate with existing navigation algorithms.

2. Object Detection 
• For the robot perception algorithm, we 

choose YOLOv7 object detection with 
pre-trained weights on the Microsoft 
COCO (Common Objects in Context) 
Dataset. [4] 

• State-of-the-art performance in real-
time object detection, capable of 
identify and classify multiple objects in 
complex environments with minimal 
latency and high precision.

Algorithm 1 Merge Detections
1: for each bbox1 in detections do
2: for each bbox2 in detections do
3: Compute intersection over union
4: if iou > threshold then
5: x min min(bbox1 ! x min, bbox2 ! x min)
6: x max min(bbox1 ! x max, bbox2 ! x max)
7: y min min(bbox1 ! y min, bbox2 ! y min)
8: y max min(bbox1 ! y max, bbox2 ! y max)
9: Append class, score of bbox1 and bbox2

10: end if
11: end for
12: end for
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Figure 1: Prediction set examples on Imagenet. We show three progressively more di�cult examples
of the class fox squirrel and the prediction sets (i.e., C(Xtest)) generated by conformal prediction.

1 Conformal Prediction
Conformal prediction [1–3] (a.k.a. conformal inference) is a straightforward way to generate prediction sets
for any model. We will introduce it with a short, pragmatic image classification example, and follow up in
later paragraphs with a general explanation. The high-level outline of conformal prediction is as follows.
First, we begin with a fitted predicted model (such as a neural network classifier) which we will call f̂ . Then,
we will create prediction sets (a set of possible labels) for this classifier using a small amount of additional
calibration data—we will sometimes call this the calibration step.

Formally, suppose we have images as input and they each contain one of K classes. We begin with
a classifier that outputs estimated probabilities (softmax scores) for each class: f̂(x) 2 [0, 1]K . Then, we
reserve a moderate number (e.g., 500) of fresh i.i.d. pairs of images and classes unseen during training,
(X1, Y1), . . . , (Xn, Yn), for use as calibration data. Using f̂ and the calibration data, we seek to construct a
prediction set of possible labels C(Xtest) ⇢ {1, . . . ,K} that is valid in the following sense:

1� ↵  P(Ytest 2 C(Xtest))  1� ↵+
1

n+ 1
, (1)

where (Xtest, Ytest) is a fresh test point from the same distribution, and ↵ 2 [0, 1] is a user-chosen error rate.
In words, the probability that the prediction set contains the correct label is almost exactly 1 � ↵; we call
this property marginal coverage, since the probability is marginal (averaged) over the randomness in the
calibration and test points. See Figure 1 for examples of prediction sets on the Imagenet dataset.

To construct C from f̂ and the calibration data, we will perform a simple calibration step that requires
only a few lines of code; see the right panel of Figure 2. We now describe the calibration step in more detail,
introducing some terms that will be helpful later on. First, we set the conformal score si = 1� f̂(Xi)Yi to be
one minus the softmax output of the true class. The score is high when the softmax output of the true class
is low, i.e., when the model is badly wrong. Next comes the critical step: define q̂ to be the d(n+1)(1�↵)e/n
empirical quantile of s1, ..., sn, where d·e is the ceiling function (q̂ is essentially the 1� ↵ quantile, but with
a small correction). Finally, for a new test data point (where Xtest is known but Ytest is not), create a
prediction set C(Xtest) = {y : f̂(Xtest)y � 1� q̂} that includes all classes with a high enough softmax output
(see Figure 2). Remarkably, this algorithm gives prediction sets that are guaranteed to satisfy (1), no matter
what (possibly incorrect) model is used or what the (unknown) distribution of the data is.
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# 1: get conformal scores. n = calib_Y.shape[0]
cal_smx = model(calib_X).softmax(dim=1).numpy()
cal_scores = 1-cal_smx[np.arange(n),cal_labels]
# 2: get adjusted quantile
q_level = np.ceil((n+1)*(1-alpha))/n
qhat = np.quantile(cal_scores, q_level, method='higher')
val_smx = model(val_X).softmax(dim=1).numpy()
prediction_sets = val_smx >= (1-qhat) # 3: form prediction sets

Figure 2: Illustration of conformal prediction with matching Python code.
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Fig. 2  illustration of 

conformal prediction [1]

Figure 1: Prediction set examples on Imagenet. We show three progressively more di�cult examples
of the class fox squirrel and the prediction sets (i.e., C(Xtest)) generated by conformal prediction.

1 Conformal Prediction
Conformal prediction [1–3] (a.k.a. conformal inference) is a straightforward way to generate prediction sets
for any model. We will introduce it with a short, pragmatic image classification example, and follow up in
later paragraphs with a general explanation. The high-level outline of conformal prediction is as follows.
First, we begin with a fitted predicted model (such as a neural network classifier) which we will call f̂ . Then,
we will create prediction sets (a set of possible labels) for this classifier using a small amount of additional
calibration data—we will sometimes call this the calibration step.

Formally, suppose we have images as input and they each contain one of K classes. We begin with
a classifier that outputs estimated probabilities (softmax scores) for each class: f̂(x) 2 [0, 1]K . Then, we
reserve a moderate number (e.g., 500) of fresh i.i.d. pairs of images and classes unseen during training,
(X1, Y1), . . . , (Xn, Yn), for use as calibration data. Using f̂ and the calibration data, we seek to construct a
prediction set of possible labels C(Xtest) ⇢ {1, . . . ,K} that is valid in the following sense:

1� ↵  P(Ytest 2 C(Xtest))  1� ↵+
1

n+ 1
, (1)

where (Xtest, Ytest) is a fresh test point from the same distribution, and ↵ 2 [0, 1] is a user-chosen error rate.
In words, the probability that the prediction set contains the correct label is almost exactly 1 � ↵; we call
this property marginal coverage, since the probability is marginal (averaged) over the randomness in the
calibration and test points. See Figure 1 for examples of prediction sets on the Imagenet dataset.

To construct C from f̂ and the calibration data, we will perform a simple calibration step that requires
only a few lines of code; see the right panel of Figure 2. We now describe the calibration step in more detail,
introducing some terms that will be helpful later on. First, we set the conformal score si = 1� f̂(Xi)Yi to be
one minus the softmax output of the true class. The score is high when the softmax output of the true class
is low, i.e., when the model is badly wrong. Next comes the critical step: define q̂ to be the d(n+1)(1�↵)e/n
empirical quantile of s1, ..., sn, where d·e is the ceiling function (q̂ is essentially the 1� ↵ quantile, but with
a small correction). Finally, for a new test data point (where Xtest is known but Ytest is not), create a
prediction set C(Xtest) = {y : f̂(Xtest)y � 1� q̂} that includes all classes with a high enough softmax output
(see Figure 2). Remarkably, this algorithm gives prediction sets that are guaranteed to satisfy (1), no matter
what (possibly incorrect) model is used or what the (unknown) distribution of the data is.
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# 1: get conformal scores. n = calib_Y.shape[0]
cal_smx = model(calib_X).softmax(dim=1).numpy()
cal_scores = 1-cal_smx[np.arange(n),cal_labels]
# 2: get adjusted quantile
q_level = np.ceil((n+1)*(1-alpha))/n
qhat = np.quantile(cal_scores, q_level, method='higher')
val_smx = model(val_X).softmax(dim=1).numpy()
prediction_sets = val_smx >= (1-qhat) # 3: form prediction sets

Figure 2: Illustration of conformal prediction with matching Python code.
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Fig. 3  conformal prediction 
Python code [1]

{person, car, bus, truck, stop sign, 
backpack, handbag, clocks}

{cat, cup, toilet, 
sink, book}

{person, bottle, knife, sandwich, pizza, 
donut, cake, chair, couch, dining table}

{book, truck, donut, apple, cake, 
keyboard, traffic light, bottle, person}

We first tested the object detection with conformal prediction with 
still images random selected COCO dataset:
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