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Abstract. Vertex-connectivity and edge-connectivity represent the extent to which a graph
is connected. Study of these key properties of graphs plays an important role in varieties of
computer science applications. Recent years have witnessed a number of linear time 3-edge-
connectivity algorithms - with increasing simplicity. In contrast, the state-of-the-art algorithm
for 3-vertex-connectivity due to Hopcroft and Tarjan lacks the simplicity in the sense of ease
of implementation as well as the number of passes over the graph although its time and space
complexity is theoretically linear. In this paper, we propose a linear time reduction from 3-
vertex-connectivity to 3-edge-connectivity of a multigraph. This reduction was previously un-
known, while the reduction in the opposite direction already exists. We apply an existing linear
time 3-edge-connectivity algorithm on the reduced graph for solving the 3-vertex-connectivity
problem of the original graph. Hence, for a graph with |V | vertices and |E| edges, the proposed
reduction turns into an O(|V |+ |E|) time and space algorithm for 3-vertex-connectivity while
enjoying the simplicity of the 3-edge-connectivity algorithms.

1 Introduction

The vertex-connectivity and edge-connectivity problems are fundamental in graph theory. These
properties measure the extent to which a graph is connected and have great importance in varieties
of computer science applications [1–4, 12–14,17–19, 21, 29]. The most direct applications arise in op-
eration research for scheduling problems [2] and performance analysis of telecommunication systems
and transportation networks [12, 14, 19]. An important criterion for performance analysis of a com-
munication network is its reliability in the presence of link or node failures. Determining the highly
connected subgraphs and partitioning the network into them is another important criterion for net-
work analysis. Furthermore, when the communication links are expensive, the properties of graph
connectivity play a vital role for minimizing the communication cost. The applications of graph
connectivity also arise in irreducibility analysis of Feynman diagrams in quantum physics and chem-
istry [17, 18]; analysis of protein-protein networks obtained from microarray data in computational
biology [21]; circuit lay-out problems [4]; and planarity testing [13].

Vertex-connectivity of a graph G is the smallest number of vertex deletions sufficient to discon-
nect G. Similarly, edge-connectivity of a graph G is the smallest number of edge deletions suffi-
cient to disconnect G. A minimal set of nodes (edges, respectively) whose absence disconnects the
graph is called a separation (cut, respectively). A separation containing only a pair of nodes (edges,
respectively) is a separation pair (cut pair, respectively). A 3-vertex-connected (3-edge-connected,
respectively) graph contains no separation pair (cut pair, respectively). That is, in order to discon-
nect a 3-vertex-connected (3-edge-connected, respectively) graph, we have to remove at least three
nodes (edges, respectively). The minimum vertex degree of a graph is an upper bound on both the
edge-connectivity and the vertex-connectivity of the graph, since deleting all neighbors of a vertex of
minimum degree disconnects that vertex from the rest of the graph. However, the vertex-connectivity
is always no greater than the edge-connectivity, since deleting one vertex incident on each edge in a
cut succeeds in disconnecting the graph. If a graph is not 3-edge-connected, then it is not 3-vertex-
connected as well. In other words, a 3-vertex-connected graph is always 3-edge-connected. There is



no straightforward way to derive the vertex-connectivity of a graph from its edge-connectivity and
vice versa.

Considering the degree of importance, much effort has been devoted to the study of graph
connectivity problems in graph theory. For a graph with |V | vertices and |E| edges, Tarjan [24]
proposed an O(|V | + |E|) time algorithm for 2-vertex-connectivity and 2-edge-connectivity based
on depth-first search. Gabow [6] also solved these problems in linear time by revisiting depth-first
search from a different perspective - the path-based view. For 3-vertex-connectivity, the algorithm
proposed by Hopcroft and Tarjan [11] runs in O(|V | + |E|) time and space. The literature of graph
theory is enriched with a number of O(|V |+|E|) time and space algorithms for 3-edge-connectivity as
well [7, 8, 16, 23, 26, 27]. Besides these, the linear time algorithm of Hsu et al. [22] can find a smallest
set of edges whose addition triconnects an undirected graph. Based on edge or node insertions, the
algorithm in [20] can answer, starting from an empty graph of n nodes, whether two nodes are
triconnected in O(n + m.α(m, n)) time, where m is the total number of queries and edge insertions,
and α is the inverse Ackermann function. The triconnectivity problem was solved by Miller et al. [15]
and Fussell et al. [5] for a parallel computer model.

The algorithm of Hopcroft and Tarjan [11] is currently, to the best of our knowledge, the only
sequential algorithm in the literature for finding the separations pairs and triconnected components.
Indeed the original version of this algorithm has a number of mistakes which have been identified
and corrected by Gutwenger and Mutzel [9]. The algorithm divides the separation pairs into two
types, Type-1 and Type-2, and needs no less than six passes over the graph for determining them.
The strategy involves a split operation that divides the input graph into different split components :
triple bonds, triangles, and triconnected graphs. The input graph G is first split into a set of triple
bonds and a graph G′. It then finds all the biconnected components of G′. On each biconnected
component the algorithm performs a depth-first search and, based on the results, it runs radix sort
with 2|V |+1 buckets to construct a new adjacency structure, called an acceptable adjacency structure,
for the graph. It performs a depth-first search again based on the new structure to generate a set of
paths. The algorithm runs recursively and each recursive call generates a cycle in the piece of the
graph to be tested for separation pairs. This cycle consists of a simple path of edges not in previously
found cycles plus a simple path of edges in old cycles. Actually two searches are required for finding
the paths. The paths are examined for separation pairs and split components by maintaining the
information on two stacks. This is followed by identifying the set of triple bonds and the set of
triangles. For each of these two sets the algorithm constructs an auxiliary graph whose vertices are
the elements of the set. Eventually, the triple bonds and the triangles are combined into bonds and
polygons by finding connected components of corresponding auxiliary graphs.

The triconnectivity algorithm of Hopcroft and Tarjan [11] lacks the simplicity and elegancy of
2-vertex-connectivity and 2-edge-connectivity algorithms [6, 24]. The algorithm is relatively hard
to understand. Although it runs with the optimal time and space, the number of passes over the
graph and the implementation overhead make the algorithm complicated. In contrast, the recently
developed linear time algorithms for 3-edge-connectivity are much simpler in the sense of ease of
implementation, number of passes over the graph, and computations involved [16, 23, 26, 27]. The
first linear time algorithm for 3-edge-connectivity that was given by Galil and Italiano [7] used
the triconnectivity solution of Hopcroft and Tarjan [11] after a linear time reduction from edge-
connectivity to vertex-connectivity. Later Taoka et al. [23], Nagamochi et al. [16], and Tsin [26, 27]
solved the 3-edge-connectivity problem - with increasing efficiency and simplicity - without using
any reduction.

The 3-edge-connectivity solution proposed by Taoka et al. [23] is based on depth-first search. It
classifies the cut pairs into two types: Type-1 which is a pair of a tree edge and a non-tree edge; and
Type-2 which is a pair of two tree edges of a depth-first search tree. First, all Type-1 cut pairs are
determined. This is followed by partitioning the graph into disjoint paths so that the edges in every
Type-2 cut pair lie on the same path. Once all Type-2 cut pairs are determined, the 3-edge-connected
components are computed by adding some new edges to the input graph. The taxonomy of cut pairs
by Nagamochi et al. [16] is similar to that by Taoka et al. [23]. Nagamochi et al. [16] performs a
depth-first search on the input graph and then counts, for each tree edge on the depth-first search
tree, the number of non-tree edges bypassing that tree edge. If a tree edge is bypassed by only one
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non-tree edge, then the pair of this tree edge and the bypassing non-tree edge is determined as a
Type-1 cut pair. Once all Type-1 cut pairs are determined, the given graph is transformed into a
smaller graph. The method is then applied recursively to every non-trivial connected component of
the latter which eventually converts all Type-2 cut pairs into Type-1. Both Taoka et al. [23] and
Nagamochi et al. [16] require more than one pass of depth-first search. The overall time and space
complexity of both of them is O(|V | + |E|).

Some more impressive solutions to the 3-edge-connectivity problem have been given by Tsin [26,
27] based on depth-first search. These algorithms do not even distinguish between Type-1 and Type-2
cut pairs and run in O(|V | + |E|) time and space. The algorithm in [26] can determine all 3-edge-
connected components using only one pass over the input graph. The strategy involves an operation,
called absorb-eject, to transform the input graph into an edgeless graph. Every node of the edgeless
graph corresponds to a 3-edge-connected component of the given graph. The most recent 3-edge-
connectivity algorithm due to Tsin [27] can determine all cut pairs using only one pass over the input
graph. This algorithm [27] does not use any transformation on the input graph and outperforms all
the previously known 3-edge-connectivity algorithms in determining cut pairs. The approach is
conceptually simpler and exhibits the simplicity and elegancy of existing depth-first search based
2-vertex-connectivity algorithms. Table 1 summarizes the algorithms for 3-vertex-connectivity and
3-edge-connectivity in chronological order.

Problem Algorithm due to Year Depends on Number of passes

over graph

Time & Space

Complexity

3-vertex-conn. Hopcroft and Tar. [11] 1973 None ≥ 6 O(|V | + |E|)
3-edge-conn. Galil and Italiano [7] 1991 Hopcroft and Tar. [11] ≥ 7 O(|V | + |E|)
3-edge-conn. Taoka et al. [23] 1992 None 4 O(|V | + |E|)
3-edge-conn. Nagamochi et al. [16] 1992 None ≥ 2 O(|V | + |E|)
3-edge-conn. Tsin [26] 2007 None 1 O(|V | + |E|)
3-edge-conn. Tsin [27] 2008 None 1 O(|V | + |E|)
3-vertex-conn. This paper 2008 Tsin [27] 2 O(|V | + |E|)

Table 1. 3-vertex-connectivity and 3-edge-connectivity algorithms

In this paper, we propose a simple 3-vertex-connectivity algorithm of a multigraph by taking
the advantage of the 3-edge-connectivity algorithm due to Tsin [27]. We propose a linear time
reduction from 3-vertex-connectivity to 3-edge-connectivity of a multigraph. This reduction was
previously unknown, while the reduction in the opposite direction already exists [7]. The 3-edge-
connectivity algorithm of Tsin [27] is applied on the reduced graph, thereby providing a solution
for the 3-vertex-connectivity of the original graph. Hence, for a graph with |V | vertices and |E|
edges, the proposed reduction turns into an O(|V | + |E|) time and space algorithm for 3-vertex-
connectivity. The algorithm first determines all separations pairs that are necessary and sufficient
for determining triconnected components. Upon detection of these separation pairs, finding the
triconnected components is trivial. In this way, our approach enjoys the simplicity of the 3-edge-
connectivity algorithm. Hence, unlike Hopcroft and Tarjan [11], our algorithm is simple and easy
to understand and implement. Furthermore, only a few new terminologies are used. The proposed
algorithm, in fact, is an alternative solution to Hopcroft and Tarjan [11], both having optimal time
and space.

2 Related Definitions and Notations

A connected undirected graph is denoted by G = (V, E), where V is the set of nodes (or vertices)
and E is the set of edges (or links) of G. The number of edges incident on a node v is called the
degree of v and is denoted by deg(v). A depth-first search over an undirected connected graph G
generates a spanning tree of G called a depth-first search tree. It labels every edge either as a
tree edge or as a non-tree edge. The search also assigns a distinct number to each node v, called
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depth-first search number of v, denoted by dfs(v), which is the order in which the node is
visited first time during the search. The root of the tree is denoted by r. The terms path, parent,
child, ancestor, descendant with respect to a depth-first search tree are very common in graph theory
and their definitions can be found in [10, 28].

In a depth-first search tree of G, denoted by T , the set of children of a node v ∈ V is denoted
by C(v). If C(v) = ∅, then v is a leaf node. Otherwise, v is a non-leaf node. A pair of nodes is
called a root leaf pair if one node is the root and the other is a leaf node. The set of ancestors
and the set of descendants of node v are denoted by A(v) and D(v), respectively. The sets
A(v) − {v} and D(v) − {v} are called the set of proper ancestors of v and the set of proper
descendants of v, respectively.

In T , a subtree rooted at a node u, denoted by T (u), is the subgraph of T induced by D(u).
The total number of descendants of u ∈ V in T is denoted by nu. An outgoing non-tree edge
of node v connects v to one of its proper ancestors. An incoming non-tree edge of v connects
v to one of its proper descendants. Out(v) and In(v) represent the set of outgoing non-tree
edges of v and the set of incoming non-tree edges of v, respectively. For a tree edge (u, v),
we shall assume that u is the parent of v, while for a non-tree edge (s, t), we shall assume that t
is an ancestor of s in the tree, throughout the paper, unless otherwise stated. A tree edge (u, v) is
called the parent link of v and a child link of u. The parent of node v is denoted by p(y). A
v− y tree-path is the path in T connecting node v to y. Tree edges will be shown by solid lines and
non-tree edges will be shown by dotted lines in the figures of the subsequent sections.

G − X represents the graph after removing X from graph G, where X can be a subset of
V or a subset of E or a subgraph of G. In G, a separation ( cut, respectively ) is a minimal
non-empty set of nodes (edges, respectively ) F ⊆ V (F ⊆ E, respectively ) such that the total
number of components in G − F is greater than that in G. If |F | = k, that is, the number of nodes
(edges, respectively) in F is k, then F is called a k-separation (k-cut, respectively). The only node
(edge, respectively) in a 1-separation ( 1-cut, respectively) is called an articulation point (a
bridge, respectively). A graph G is biconnected (bridge-connected, respectively) if there is no
articulation point (bridge, respectively) in G. A separation (cut, respectively) with two nodes (edges,
respectively) is called a separation pair (cut pair, respectively). A detailed characterization of
separation pairs is given in Section 3. A graph G is k-vertex-connected (k-edge-connected,
respectively) if every separation (cut, respectively) of G has at least k nodes (edges, respectively).
A k-vertex-connected component or a k-edge-connected component of G is similarly defined.
We use the terms triconnected and 3-vertex-connected interchangeably. A more detailed description
of these terms is available in [11]. A few more notations will be introduced in the order they appear
in the subsequent sections.
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Fig. 1. An illustration of low1(v) and low2(v) (the number beside each node u shows dfs(u))

4



3 Characterization of Separation Pairs

Let T be a depth-first search tree of an undirected biconnected graph G = (V, E). In T , for each node
v ∈ V , we define two terms: low1(v) and low2(v) that were introduced by Hopcroft and Tarjan [11].
For any node v, if S(v) is the set of the depth-first search numbers of v and all t where (s, t) is a
non-tree edge and s is a descendant of v and t is a proper ancestor of v, then low1(v) is the smallest
number in the set S(v) (Figure 1). The second smallest number in set S(v) will be called low2(v)
(Figure 1). These values can be recursively defined as follows.

Definition 1. low1(v) = min
(

{dfs(v)} ∪ {low1(x)|x ∈ C(v)} ∪ {dfs(s)|(v, s) ∈ Out(v)}
)

;

Definition 2. low2(v) = min
(

{dfs(v)}∪
(

({low1(x)|x ∈ C(v)}∪{low2(x)|x ∈ C(v)}∪{dfs(s)|(v, s) ∈

Out(v)}) − {low1(v)}
))

;

Let x, y ∈ V be any pair of nodes such that x is a proper ancestor of y in T . If y is a non-leaf
node, then for every v ∈ C(y), we use ∆v

x,y to denote a triple of subgraphs (T1, T2, T3) defined as
follows (Figure 2):

T3 = T (v);
T2 = T (u) − T3 − {y} − T (w)all;
T1 = T − T2 − T3 − {x, y};
where u ∈ C(x) ∩ A(y) and T (w)all represents all the subtrees T (w) such that w ∈ C(y) and

w 6= v and low1(w) < dfs(x);
If y is a leaf node, then (T1, T2, T3) is simply denoted by ∆x,y and T3 is a null graph with 0

nodes. Let the sets of vertices in subgraphs T1, T2, and T3 be denoted by V1, V2, and V3, respectively.
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Fig. 2. An illustration of Theorem 1

Theorem 1. Let T be a depth-first search tree of an undirected biconnected graph G = (V, E) and
Λ be the set of all separation pairs that are necessary and sufficient for determining the triconnected
components of G. A pair of nodes {x, y} such that x ∈ A(y)−{y} is in Λ if and only if the following
is true:

∆v
x,y ( if ∃v ∈ C(y) ) or ∆x,y ( if y has no child ) is (T1, T2, T3) and

(i) V3 6= ∅, V1 ∪ V2 6= ∅ and there is no non-tree edge (s, t) such that s ∈ V3 and t ∈ V1 ∪ V2 or
(ii) V2 6= ∅, V1 ∪ V3 6= ∅ and there is no non-tree edge (s, t) such that s ∈ V2 (s ∈ V3, respectively)

and t ∈ V1 (t ∈ V2, respectively) or
(iii) V1 6= ∅, V2 ∪ V3 6= ∅ and there is no non-tree edge (s, t) such that s ∈ V2 ∪ V3 and t ∈ V1.
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Proof. If statement (i) is true, then definitely T3 is disconnected from T1 and T2 in G − {x, y}
(Figure 2(a)). If statement (ii) is true then T2 is disconnected from T1 and T3 (Figure 2(b)) in
G−{x, y}. If statement (iii) is true then T1 is disconnected from T2 and T3 (Figure 2(c)) in G−{x, y}.
If any two of the three statements are true, then all T1, T2, and T3 are disconnected from each other
(Figure 2(d)) in G − {x, y}. Hence, {x, y} is a separation pair of G.

To prove in the opposite direction, we first examine which parts of graph G are unaffected by
the removal of x and y from G. We can classify all possible connected components of G−{x, y} into
following 3 groups:

(a) If y is a non-leaf node, then there must be a node v ∈ C(y) such that the part of G consisting
of T (v) and the nodes connected to some node of T (v) by some non-tree edge is unaffected by
the removal of x and y and hence remains as a connected component of G−{x, y}. Let us name
this part of the graph as L. L consists of one connected component. If y is a leaf node, then L
is a null graph with 0 nodes.

(b) Let u ∈ C(x) ∩ A(y). Then the part of G consisting of the nodes on u − p(y) tree path and all
nodes connected to some node on this path by some tree edge or non-tree edge is also unaffected
in G − {x, y} and remains as a connected component of G − {x, y}. Let this part of graph be
named as M1. If y has another child v′ 6= v such that the outgoing non-tree edges from the nodes
of T (v′) are incident only to x or y, then T (v′) is also unaffected in G−{x, y} and remains as a
connected component of G − {x, y}. Let M2 denotes the subgraph consisting of all such T (v′).
We call the subgraph consisting of M1 and M2 as M . If M2 does not exist, then M has only one
connected component. Otherwise, M consists of more than one connected component.

(c) Let r be the root of T . The part of the graph consisting of nodes on r − p(x) tree path and all
nodes connected to the nodes on this path by some tree-edge or non-tree edge are unaffected.
We call this part as U . U consists of one connected component.

If y is a leaf node then the triple (U, M, L) is unique for {x, y}, while {x, y} will have a triple
(U, M, L) for every child of y when y is a non-leaf node. Since {x, y} is a separation pair, there
must be a triple (U, M, L) for {x, y} for which the graph consisitng of L, M, U is disconnected. In
fact, combining L, M, and U , we get the graph G − {x, y}. G − {x, y} can be disconnected in two
cases: (1) At least one of L, M, U must be different and disconnected from remaining two; (2) M has
more than one component. For case (1), at least one of (T1, T2, T3) must be disconnected from the
remaining part of G − {x, y} since T1, T2, and T3 are subgraphs of U, M, and L, respectively, and,
hence, the theorem follows (Figure 2). For case (2), every v′ specified in (b) above can be used to
define ∆v′

x,y and then, according to (a), T (v′) will be L. This T (v′) (i.e. T3 defined by ∆v′

x,y ) must
be disconnected from the remaining part of G − {x, y}. Thus the scenario reduces to case (1). ⊓⊔

The separation pairs due to statement (i) of Theorem 1 are called Type-A separation pairs
and those due to statement (ii) or statement (iii) are of Type-B . The sets of Type-A and Type-B
separation pairs may not be disjoint. Note that this classification of separation pairs is different from
that (Type-1 and Type-2) done by Hopcroft and Tarjan [11].

4 The Algorithm

The proposed algorithm for triconnectivity uses a depth-first search on the input graph G = (V, E)
resulting into a depth-first search tree T . Any graph having articulation points is first divided
into biconnected components and then our algorithm is applied on each biconnected component to
find the separation pairs. However, for simplicity, we assume that G is biconnected. The algorithm
first determines all separations pairs that are necessary and sufficient for determining triconnected
components. Upon detection of these separation pairs, finding the triconnected components is trivial.

During the depth-first search, the algorithm determines Type-A separation pairs and performs
a reduction on the input graph. Type-B separation pairs are determined by applying an existing
3-edge-connectivity algorithm on the reduced graph.
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Lemma 1. Let T be a depth-first search tree of an undirected biconnected graph G = (V, E). Let
x, y ∈ V be a pair of nodes where x ∈ A(y) − {y} in T and ∃v ∈ C(y) such that ∆v

x,y = (T1, T2, T3)
with V3 6= ∅, V1∪V2 6= ∅ . Then {x, y} is a Type-A separation pair of G if and only if low1(v) = dfs(x)
and low2(v) ≥ dfs(y).

Proof. Let low1(v) = dfs(x) and low2(v) ≥ dfs(y). It suffices to show that there is no non-tree edge
(s, t) such that s ∈ V3 and t ∈ V1 ∪ V2. Let us assume that there is a non-tree edge (s, t) such that
s ∈ V3 and t ∈ V1 or t ∈ V2. If t ∈ V1, then dfs(t) < dfs(x) which contradicts that low1(v) = dfs(x).
If t ∈ V2, then low2(v) < dfs(y) which contradicts that low2(v) ≥ dfs(y). Therefore, the non-tree
edge (s, t) cannot exist (Figure 3(a)).

On the other hand, if {x, y} is a Type-A separation pair, then there is no non-tree edge (s, t)
such that s ∈ V3 and t ∈ V1 ∪ V2. But there must be some non-tree edge (p, x) such that p ∈ V3

since G is biconnected. Thus low1(v) = dfs(x) since there cannot be a non-tree edge (s, t) such
that s is a descendant of v and t is a proper ancestor of x. And low2(v) ≥ dfs(y) because t 6∈ V2

(Figure 3(a)). ⊓⊔

According to Lemma 1, all Type-A separation pairs can be detected while performing depth-first
search over the graph. Type-B separation pairs are determined by reducing this problem to the
problem of finding the pairs of tree edges that form cut pairs. Theorem 2 due to Tsin [25] specifies
the necessary and sufficient conditions for a pair of tree edges to be a cut pair (Figure 3(b)).

Theorem 2. In a depth-first search tree of an undirected connected graph G = (V, E), let two tree
edges e1 and e2 be such that e1 = (u, v) and e2 = (x, y), where v is an ancestor of x. Then {e1, e2}
is a cut pair in G if and only if there does not exist a non-tree edge (s, t) such that either s ∈ D(v)
but s /∈ D(y) and t ∈ A(u), or s ∈ D(y) and t ∈ A(x) but t /∈ A(u).

Corollary 1 follows from Theorem 1 and Theorem 2.

Corollary 1. Let T be a depth-first search tree of a biconnected graph G and two tree edges {e1, e2}
be a cut pair of G. Let ∆v

x,y ( if ∃v ∈ C(y) ) or ∆x,y ( if y has no child ) be (T1, T2, T3) where
x ∈ A(y) − {y} and V2 6= ∅ and {x, y} is not a root leaf pair. If x is an end node of e1 and y is an
end node of e2, then {x, y} is a separation pair in G.

For determining Type-B separation pairs, the reduction creates a depth-first search tree T ′ from
T . Let the resulting reduced graph of G = (V, E) be denoted by G′ = (V ′, E′). That is, T ′ is a
depth-first search tree of G′ while T being a depth-first search tree of G. Type-B separation pairs
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of G are detected after determining the cut pairs in G′. Detection of Type-A separation pairs and
reduction from G to G′ are done by performing a single pass of depth-first search on G.

The values of low1(v), low2(v), and nv (number of descendants of v in T ), for any node v ∈ V ,
can be computed in constant time and space while running depth-first search over G. This simple
mechanism is similar to Procedure 1 of Hopcroft and Tarjan [11]. When the search backtracks from a
node, we check for Type-A separation pairs and perform reduction for that node. The entire process
is illustrated as TRICONNECTIVITY Algorithm (Algorithm 1).

Input: A biconnected graph G = (V, E) represented by adjacency lists Adj(u), ∀u ∈ V ;
Output: Type-A separation pairs of G and a reduced depth-first search tree T ′;
begin

time := 0; /* initialize depth-first order */

for each u ∈ V do

dfs(u) := 0; /* initialize dfs(u) */

flag(u) := true; /* indicate that u has not yet been reached by the search */

end

Traverse(r, ⊥); /* search starts at node r, and ⊥ means r will have no parent */

end

Algorithm 1: TRICONNECTIVITY

In the algorithm, Procedure Traverse mimics depth-first search and examines for Type-A sep-
aration pairs based on Lemma 1 during the search. For every non-leaf node v, if there exists no
u ∈ C(v) such that low1(u) = low1(v) i.e. low1(v) is defined only by some outgoing non-tree edge of
v, then we create a fictitious child vc of v. The fictitious child vc becomes a leaf node and all outgoing
non-tree edges of v are now outgoing non-tree edges of vc and, after this, there remains no outgoing
non-tree edge of v (Figure 4(a)). The values of low1(vc) and dfs(vc) are copied from v. The fictitious
children are created so that all Type-B separation pairs due to statement (iii) of Theorem 1 (similar
to Figure 2(c)) can be treated like those due to statement (ii) of Theorem 1 (similar to Figure 2(b)).
For every node v (including the fictitious nodes), if v has at least two non-tree edges incident to it,

8



Traverse(v, y):
begin

time := time + 1; parent(v) := y; dfs(v) := time; /* set dfs(v) */

low1(v) := low2(v) := dfs(v); nv := 1; /* initialize low1, low2, and nv */

for each w ∈ Adj(v) do

if (dfs(w) = 0) then /* explore (v, w) */
label (v, w) as tree edge;
Traverse(w, v);
if (low1(w) < low1(v)) then /* update low1(v), low2(v) */

low2(v) := min(low1(v), low2(w)); low1(v) := low1(w);
end

else if (low1(w) = low1(v)) then low2(v) := min(low2(v), low2(w));
else

low2(v) := min(low2(v), low1(w));
end

nv := nv + nw; parent(w) := v;
end

else if ((dfs(w) < dfs(v)) ∧ (w 6= y ∨ flag(v) = false)) then
label (v, w) as non-tree edge;
if (dfs(w) < low1(v)) then /* update low1(v), low2(v) */

low2(v) := low1(v); low1(v) := dfs(w);
end

else if (dfs(w) > low1(v)) then low2(v) := min(low2(v), dfs(w));
end

if (w = y) then flag(v) := false; /* tree edge (y, v) is examined */

end

Let x be the node such that low1(v) = dfs(x);
if (x 6= y ∧ low2(v) ≥ dfs(y)) then

mark {x, y} as a Type-A separation pair ; /* by Lemma 1 */

if ((nv > 1) ∧ ( there exists no q ∈ C(v) such that low1(v) = low1(q))) then
Create fictitious child vc of v;
Out(vc) := Out(v); Out(v) := ∅; dfs(vc) := dfs(v); low1(vc) := low1(v);
Reduce(vc) ; /* perform reduction for vc */

end

if (|Out(v)| + |In(v)| > 1) then /* at least 2 non-tree edges are incident to v */

Reduce(v) ; /* perform reduction for v */

end

end

Procedure Traverse(v, y)

Procedure Traverse calls subroutine Reduce(v) that performs the following reduction to compute
final T ′:

Let u1, u2, · · · , uk be the sequence of k (k ≥ 0) nodes connected to v by some outgoing non-tree
edges of v such that dfs(ui) < dfs(ui+1), 1 ≤ i < k. Similarly, w1, w2, · · · , wl is the sequence of l
(l ≥ 0) nodes connected to v by some incoming non-tree edges of v such that dfs(wi) < dfs(wi+1),
1 ≤ i < l. Note that these orderings of neighbors are based on depth-first search order and can be
achieved while labelling the non-tree edges during the search. When the search backtracks from a
node, the relative orderings of the neighbors are available at that node. As a result, node v can have
the above sorted lists of non-tree edges in O(deg(v)) time by using a simple counting sort. Then
node v is replaced by a tree path vuk

− vuk−1
− · · · − vu2

− vu1
− vwl

− vwl−1
− · · · − vw2

− vw1

such that the non-tree edges between ui, 1 ≤ i ≤ k, (wi, 1 ≤ i ≤ l, respectively) and v are now
non-tree edges between ui (wi, respectively) and vui

(vwi
, respectively ) and the parent of v is now

the parent of vuk
while the children of v being the children of vw1

(Figure 4(b)). If v has only
outgoing non-tree edges then it is reduced only to vuk

− · · · − vu2
− vu1

and the children of v are
now children of vu1

(Figure 5(a)). Similarly, if it has only incoming non-tree edges then it is reduced
only to vwl

− vwl−1
− · · · − vw1

and the parent of v is now the parent of vwl
(Figure 5(b)). For every
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Reduce(v):
begin

Let u1, u2, · · ·uk (k ≥ 0) be the sequence of nodes such that ∃(v, ui) ∈ Out(v) and
dfs(ui) < dfs(ui+1), 1 ≤ i < k;

Let w1, w2, · · ·wl (l ≥ 0) be the sequence of nodes such that ∃(wi, v) ∈ In(v) and
dfs(wi) < dfs(wi+1), 1 ≤ i < l;

Replace v by a tree path vuk
− vuk−1

− · · · − vu2
− vu1

− vwl
− vwl−1

− · · · − vw2
− vw1

;

parent(vuk
) := parent(v); C(vw1

) := C(v);
if (k = 0) then parent(vwl

) := parent(v); /* if v has only incoming non-tree edges */

if (l = 0) then C(vu1
) := C(v); /* if v has only outgoing non-tree edges */

for (i := 1 to k) do

Out(vui
) := {(v, ui)|(v, ui) ∈ Out(v)}; /* non-tree edges (v, ui) become (vui

, ui) */

low1(vui
) := low1(v); dfs(vui

) := dfs(v); /* copy low1, dfs for vui
from v */

end

for (i := 1 to l) do

In(vwi
) := {(wi, v)|(wi, v) ∈ In(v)}; /* non-tree edges (wi, v) become (wi, vwi

) */

low1(vwi
) := low1(v); dfs(vwi

) := dfs(v); /* copy low1, dfs for vwi
from v */

end

end

Procedure Reduce(v)

case, the values low1 and dfs of every new node are copied from v. If {x, y} is a separation pair in
G, then, in T ′, some tree edge either incident to x or generated due to reduction of x will form a
separation pair with some tree edge either incident to y or generated due to reduction of y.

For a node x ∈ V having at least two non-tree edges incident to it in T , let x1 − x2 − · · · − xm

(m ≥ 1) be the tree path that replaces x in T ′, where xi is the parent of xi+1 (1 ≤ i < m). In T ′,
Px denotes a tree path a − x1 − x2 − · · · − xm − w, where a is the parent of x1, for every child w
of xm in T ′. If x ∈ V has less than two non-tree edges incident to it in T , then Px, in T ′, denotes a
tree path a − x − w, where a is the parent of x, for every child w of x. Note that any node x ∈ V
having less than two non-tree edges and any number of tree edges incident to it in T does not need
any reduction because x is already like a node in the reduced graph.

Lemma 2. Let T be a depth-first search tree of a biconnected graph G = (V, E) and ∆v
x,y ( if

∃v ∈ C(y) ) or ∆x,y ( if y has no child ) be (T1, T2, T3) where x ∈ A(y)−{y} and V2 6= ∅ and {x, y}
is not a root leaf pair. Let T ′ and G′ = (V ′, E′) be the reduced graphs of T and G, respectively, from
TRICONNECTIVITY Algorithm. Then {x, y} is a Type-B separation pair of G if and only if there
exist an edge e1 on some Px and an edge e2 on some Py such that {e1, e2} is a cut pair of G′.

Proof. Let {x, y} be a Type-B separation pair in G. Let, creating all fictitious children in T gives us
the depth-first search tree Tc. Let Tc be a depth-first search tree of graph Gc. In G − {x, y}, if T1

is disconnected from the rest of the graph, then, in T , low1(y) can be defined by (1) some v′ such
that v′ ∈ D(y) and v′ in T1 or (2) some outgoing non-tree edge of y, since G is biconnected.

Case (1) refers to statement (iii) of Theorem 1. But considering ∆v′

x,y, we will get a different
triple of subgraphs (T1, T2, T3) and this case will then refer to statement (ii) of Theorem 1. For
Case (2), y must have a fictitious child yc in Tc if y is a non-leaf node in T . Thus, the triple of
subgraphs (T1, T2, T3) of T can be restructured in Tc where yc will be the root of T3, and T2 will
be disconnected from T1 and T3 in Gc − {x, y}. Thus, all Type-B separation pairs of G due to
statement (iii) of Theorem 1 (similar to Figure 2(c)) can be treated like those due to statement (ii)
of Theorem 1 (similar to Figure 2(b)) in Gc. That is, any Type-B separation pair in G which is
identified using statement (ii) or (iii) of Theorem 1 ( like Figure 2(b) or 2(c) ) can be identified as
a Type-B separation pair in Gc by applying only statement (ii) of Theorem 1 ( like Figure 2(b) ).
Hence, without loss of generality, we can consider the triple of subgraphs (T1, T2, T3) in Gc and call
{x, y} a Type-B separation pair of Gc which can be identified using only statement (ii) of Theorem 1
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( like Figure 2(b) ). This implies that T2 is disconnected from T1 and T3 in Gc−{x, y}. That is, there
is no non-tree edge (s, t) such that s ∈ V2 (s ∈ V3, respectively) and t ∈ V1 (t ∈ V2, respectively).
Let the paths Px and Py be x1 −x2−· · ·−xk−1 −xk (k ≥ 2) and y1− y2−· · ·− yk′−1− yk′ (k′ ≥ 2),
respectively. Let, the nodes x1, x2, · · · , xl (0 ≤ l ≤ k) and the nodes yl′ , yl′+1, · · · , yk′ (0 ≤ l′ ≤ k′)
be connected to some ancestor of x1 or some descendant of y′

k by some non-tree edge. Now, the
nodes xl+1, xl+2, · · · , xk have incoming non-tree edges only from some non-descendant of of yl′ .
Similarly, the nodes yl′−1, yl′−2, · · · , y1 have outgoing non-tree edges only to the descendants of
xl+1. That is, there is no z ∈ V ′ such that z is a descendant of xl+1 but not a descendant of yl′ and z
is connected to an ancestor of xl or a descendant of yl′ by some non-tree edge in T ′. By Theorem 2,
the edges (xl, xl+1) and (yl′−1, yl′) form a cut pair in G′.

The proof of the opposite direction follows from Corollary 1. ⊓⊔

Once G′ is created, we run the 3-edge-connectivity algorithm of Tsin [27] over G′ for determining
the pairs of tree edges that are cut pairs in G′. The 3-edge-connectivity algorithm performs a single
pass of depth-first search. Once the cut pairs in G′ are determined, the separation pairs in G can
be detected based on Lemma 2. Let {e1, e2} be a pair of tree edges of T ′ that has been determined
as a cut pair of G′ and e1 and e2 lie on Px and Py, respectively, where {x, y} is not a root leaf
pair of T . Let ∆v

x,y be (T1, T2, T3) in T where v is the root of T3 and u is the root of T2. For every
node w ∈ V , we know nw (number of descendants of w in T ) from Procedure Traverse. |V3| = nv;
|V2| = nu −|V3|−1−

∑

nw, where w ∈ C(y)−{v} and low1(w) < dfs(x); |V1| = |V |− |V2|− |V3|−2.
If |V2| 6= 0, then {x, y} is a separation pair of G.

Example: Figure 6(a) shows a depth-first search tree T of graph G. The nodes in T are la-
belled with dfs numbers. In the figure, low1(4) = 1, low2(4) = 4; low1(5) = 1, low2(5) = 4;
low1(13) = 1, low2(13) = 13; low1(8) = 1, low2(8) = 8; low1(6) = 4, low2(6) = 5; low1(9) = 1,
low2(9) = 8; low1(10) = 8, low2(10) = 9 in T . TRICONNECTIVITY Algorithm determines
{1, 3}, {1, 4}, {1, 12}, {1, 5}, {4, 5}, {1, 8}, {8, 9} as Type-A separation pairs of G and reduces T to
T ′. The reduced depth-first search tree T ′ is shown in Figure 6(b). In T ′, following are the pairs
of tree edges that are cut pairs in G′: {(4′, 4′′), (5, 8′)}, {(8′′, 8′′′), (9, 11′)}, {(1′, 1′′), (12, 13)},
{(8′, 8′′), (11′, 11′′)}. By Lemma 2, {4, 8}, {4, 5}, {8, 11}, {8, 9}, {1, 12} are Type-B separation
pairs of G.
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Theorem 3. Based on TRICONNECTIVITY Algorithm, all separation pairs that are necessary
and sufficient for determining triconnected components of a biconnected graph G = (V, E) with |V |
vertices and |E| edges can be determined in O(|V | + |E|) time and space.

Proof. TRICONNECTIVITY Algorithm has been developed by adding extra instructions in the
depth-first search algorithm. Without these added instructions, the basic depth-first search algorithm
runs in O(|V | + |E|) time and space. In Procedure Traverse, all instructions other than calling
Procedure Reduce take constant time and space. For a node v that needs to be reduced during
the search, Procedure Reduce takes O(deg(v)) time and space for sorting the neighbors using a
simple counting sort and for reduction of v. Considering V = {v1, v2, · · · , v|V |}, the entire reduction
adds O(deg(v1) + deg(v2) + · · · + deg(v|V |)) = O(|E|) time and space complexity to the depth-first
search. Thus, the overall time and space complexity of TRICONNECTIVITY Algorithm becomes
O(|V |+ |E|). Since there are |E|− (|V |−1) non-tree edges in a depth-first search tree, the reduction
creates a total of O(|E| − |V | + 1) new vertices and edges. Hence, the size of the reduced graph is
O(|V | + |E|). The 3-edge-connectivity algorithm of Tsin [27] runs in linear time and space. Hence,
all separation pairs of G that are necessary and sufficient for determining triconnected components
can be determined in O(|V | + |E|) time and space. ⊓⊔

5 Conclusion

The proposed triconnectivity algorithm makes a total of two passes over the input graph. The first
pass performs a depth-first search and detects Type-A separation pairs and creates a reduced graph.
The second pass involves running the 3-edge-connectivity algorithm of Tsin [27] over the reduced
graph which performs a single depth-first search. Finding the cut pairs in the reduced graph gives us
the solution of Type-B separation pairs of the original graph. Since the algorithm of Tsin [27] solves
the 3-edge-connectivity problem while running depth-first search, it might be possible to perform the
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computations involved in that algorithm during the first pass of our algorithm which would provide
a solution of 3-vertex-connectivity using only one pass over the graph. We leave this as a future
work. Our algorithm can determine all the triconnected components by using one more pass over
the graph. As mentioned in Section 4, the algorithm, with slight modification, can handle the graphs
with articulation points within the same time and space bound. The optimality follows from [11].
Theoretically, both our algorithm and that of Hopcroft and Tarjan [11] have the same optimal time
and space complexity. Comparing the performances of these two algorithms in practice is also left
as a future work.
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