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The Observables of Quantum Mechanics

Observables

Since a measuring apparatus behaves like a classical object, “observables” come from
classical mechanics: position, velocity, energy, angular momentum, . H

——

Observables are usually expressed in terms of canonically conjugate coordinates and mo-

memta, qi,...,4f,Ply-- -1 Pfs f = the number of degrees of freedom in the system.

Quantum mechanics associates with each classical observable

Pi I-)'2 .
ai, -'l": H=_+V(F), L=FXF,...
™m 2m

a linear operator A
I TR S,
qi, _t: H, L,...
m
with linearity meaning that

Alay+Bo)=cAp+BAd

for all numbers a, 8, vectors ¥, ¢.

Classical correspondence
How do we know what the operators are?

(1) Most observables have a classical analogue. In this case a formal rule for constructing

operators can be given:

Let the Poisson bracket of two functions A(p, g), B(p, ¢) be

f
def 0AOB O0Ad@B
A 5 ,B A = e
{_(p q) _‘(p q)} E:[Bpi o aq,-ap,-]

a—

i=1

a——

and the commutator of two operators A, B be

(4, B % AB-BA
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The rule is the correspondence

(4, B] +— —ii{A(p,q), B(p,q)}

A ;\’a between commutators and Poisson brackets.
P

399

» (2) This identification doesn’t work for quantities, such as the “intrinsic spin” of an ele-
mentary particle, for which there is no classical analogue. The spin operators are identi-

fied by invoking an “analogy” with normal angular momentum and by making suitable
“abstract extensions” of the quantum mechanical rules.

The algebraic representation

Only the commutator algebra is important. Since all observables can be built upon p, g, it
suffices to identify the commutators between the p and ¢ variables. Since

1, ifj=k,

{pjsoe} =0 {gj,q}=0; {pjiqx}=0s=
’ ! ’ *= Vo, ik

we have the abstract rules
(5, k) =G [3,0] =0;  [Bj, @l = —1h 851 (1)

The commutator of any other pair of operators can be deduced from these rules.

The simplest example

A one-dimensional harmonic oscillator has a Hamiltonian

_lra, 2239
H=- [P + méwq ] )
or, quantum mechanically,

o L o[22 2.2

H = — [ + m%%g. (2)
Insight into the algebraic structure of A comes from examining the operators

a déf D— zqu’ &1- déf p+zqu- @)
2mhw 2mhw
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These are just a linear transformation of  and §, so we only need to know & and al to fix

i
*=,/"‘2 @' +a) and g=-

and hence any other operator. A description of a system in terms of 4 and af operators is

" (af -a) @

equivalent to a description in terms of p and § operators.

Since
(plav) = @Told), allg,v,

the @, al are not Hermitian.*
Direct calculation gives
S | S N
hwala =5 (p+zqu) (D — imwq)

1 .
2m (p +m2w?@? + inw [, 'p])

1 -
and
ﬁw&&T=fI+%mui (6)
from which it follows that
a, af] = 1. )

Suppose that we know the ground state eigenvector ¢g and
H ¢g = Ey do. (8)

If

on & @hn g (©)

then
Htpn—hw(a a+2)tpn—hw(a a+ )a On-1

* In fact, al is the Hermitian conjugate of & (and vice versa).



operators in quantum mechanics 6 February 2013
But (7) =
1 1 3
@la+2)al = af (@al + 2) = ot @la + 2),
2 2 2
SO
T on = fwal (ata 4+ 3
Hopn =hwa' (a a+'2‘)‘Pn—1

=t (a1 (a%a + 3) na

=hw (@™ Gla +n+ %) @0

= @hy" (& + niw) g

= (a1)" (Eo + niw) gy

= (Ep + nhw) (aT)" ¢g

= (Eo + nhw) gn (10)

That is, ¢, is an eigenfunction of H with eigenvalue Ey + nfw. For this reason, al is often

called a raising operator or a creation (of an excitation) operator. Conversely, (6) =

R . H 1 E 1
aGPn = aaT(p -1= (?}E +§) Yn-1= (EO""” o "2') Pn-1, (11)

so a is a lowering, or destruction operator.

If (¢oldo) = 1,

Eg = {¢olH ¢o) = 5= [(D d0 | D do) + m2w? (@ o | § do)]

] \J
>0 20

ie, Eg > 0. If follows that the lowering operation cannot proceed indefinitely. Thus
& ¢g = 0. In this case (5) =

41 1
Hep = hw (aTa+§hw) b0 = 51 o

and ;
En=(n+§')ﬁw, n=1,2,-.--
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With this result, (11) =

aPn =N Pp-1

whence
n{n-1lpn—1) =(@pnlagn) = (pnlalapn)
~tonl (3 = 3 ) on) = n oulen (12)
I def 1
¢n = 7 (13)

then (12) gives
(¢nldn) = (#n-1ldn-1)-

All the ¢y, are normalized if ¢¢ is normalized.

These rules determine the results of any observation on the harmonic oscillator. If, for
example, we measure ¢ for a system in the state

1 » L
U(t) = 7 [¢0 eiEt/R _ 54 e 1E1t/h] , | r“;ﬁ}
(4) = we expect to see Q a¢

(@) =(T(t)lg ‘I’(t))

= = 21 (o BN gy e UM (ot — ) g e~/ iy iR/

=— —1/ (¢.0 —-iEgt/h _ id e lElt/ﬁI

¢1 e ‘I.Egt/ﬁ _ 1,\/_¢J2 e—iElt/ﬁ + Z¢0 e—iElt/h)

— i h . —iwt . _iwt
——E\’% [+ze + 1€ ]
/ h
=/ —— coswti
2muw
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Explicit representations
(1) Schrodinger’s original ‘correspondence’ was

. h 8 . .
pi:?éa, q = g, 7'=1:°°'af’

with the implicit assumption that the functions operated on are functions of g. Equation
(1) is satisfied since

27(0) = T5ela F@) — 0 5 2 5(0) = 370 = ~ih /(@)

1 0q
This representation corresponds to “wave mechanics”.

(2) A very similar representation is produced by

. . hd
P=n a= ; Op;

with operators operating on functions of p. This gives a “momentum representation” for
quantum mechanics.

(3) It is also possible to introduce matrices that satisfy (1). These are the most common
representations in practice. For the harmonic oscillator, for example, (11) =

dpn=tp_1 = adn=+ndy_1
whence

[a]mn =(¢mlé én) = V1 émn—1
“(&t ¢'m|¢n) — (¢n|a1‘ ¢m)* = [&T];m
(@ )mn =v/m 6,m-1

[fl]mn — &= i\f Epn“u: (\/T_n6n+m—1 - \/ﬁ‘sm,n—l) (14)
[Blmn ="1i'| “Tr%:"w" (\/ﬁan,m—l + ﬁfsm,n—l) (15)
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The identifications (14) and (15) satisfy (1). These can be used to calculate

1 . 1
imwz[q2]mn =1 [—\/m(m ~1) by 42 + (20 + 1)dmpn — y/n(n — 1) 5m+2,n:|
1 1
%lﬁz]mn =1 [\/ m(m — 1) b nt2 + (20 + 1)dmp + /n(n — 1) 5m+2,n]
- 1
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State space

The objects on which the ‘linear operators of quantum mechanics’ operate are vectors in
some vector space. The vector space is often oo-dimensional. Two general types of vectors
are used.

(1) Continuous vectors: #(gy,--.,gf).
For continuous vectors, an inner product is defined by

(olY) = f---qur-'dq,r &(a1,---,q5) (a1, -, qp),

normalization means

(Yly) =1,
and |¥(q1,...,q f)|2 gives the probability density for observing ‘gy, ..., gy’.

(2) Discrete vectors: Suppose
AUn(‘Ils---*Qf) = anvn(QI:-v-:Qf)s n=12,...

IfAis Hermitian, the {v,} can be chosen to form an orthonormal basis set, i.e.,

{(vm I'Un} = Omn,

and any continuous vector (g, ...,qy) can be represented
(v o}
(g1, ---»q5) = D envnlqy,-..,qf). (16)
n=1

This gives a matrix representation for ¥: cj, c,. .. are components in the directions

"M, U2, ...

IfY=3nchnvnand ¢ =3, dpvm,

(8l) = T;Ed?ncn {vm|vn) = ;d}ion

The inner product becomes a matrix product, the analogue of a ‘dot’ product in 3D. Nor-
malization now means

Y lenlf=1
mn
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and |cn|2 gives the probability that observation of A will yield a,.

Equation(16) is actually a rule for a changing from a discrete ¢, ¢9, . . . representation of
the state to a continuous (g1, ..., gs) a representation,

{en} = ¥(a,- .-, q5)

The inverse relation

en = (unlp) = [---[ dar - dagvnlan,- - q)lar, - ay), an

is the rule for transforming in the other direction.

The vp(q1,...,qy) in (16) may be thought of as the transforming matrix or linear opera-
torforan — q,...,gy transformation. In this spirit, the va{q1,...,gf)* in (17) repre-
sents the tranforming matrix for the g,...,gf — n transformation. In these cases the
transformation is between a continuous and a discrete representation. There are analo-
gous transformations between different continuous representations and between different

discrete representations.






	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 2-6-2013

	Operators in Quantum Machanics
	Ronald Lovett
	Recommended Citation


	tmp.1533838086.pdf.7R03v

