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ABSTRACT 

While few introduced exotic species become invasive, this small number of species poses 

serious threats to biodiversity, ecosystem function, and recreation, leading ecologists to study 

why certain species become invasive and why certain communities are prone to invasions. 

Several leading hypotheses seek to explain invasiveness, including the Enemy Release 

Hypothesis, the trait superiority hypothesis, and the Biotic Resistance Hypothesis, but none are 

consistently supported in the literature. We suggest that the lack of uniting hypothesis is a result 

of the inability to put multiple proposed mechanisms in the same framework, and suggest for a 

uniting framework Darwin’s Naturalization Hypothesis along with a mechanistic approach and a 

view of multiple spatial scales. We address this by conducting an experimental study seeking the 

response of the effect of a competitor reduction treatment to phylogenetic novelty for native and 

invasive species over local and regional scales. We address (1) whether phylogenetic novelty 

correlates with high competitive ability, (2) if and how this relationship differs when novelty is 

assessed at regional versus local spatial scales, and (3) how this mechanism differs between 

native and invasive species. We find a significant negative correlation between phylogenetic 

novelty and effect of competitor reduction at both spatial scales tested, indicating that novel 

species are better competitors, though the relationship is driven mostly by native rather than 

invasive species. Our results increase our understanding of Darwin’s Naturalization Hypothesis 

because we are the first to show that novel species are more successful due to increased 

competitive ability. These results are consistent with many other studies that find a correlation 

between phylogenetic novelty and spread of invasive species, tapping competition as an 

important mechanism in invasion.  
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INTRODUCTION 

The rapid spread of exotic species in our globalized society poses serious threats to 

biodiversity, ecosystem function, and recreation. Invasive exotic species are now considered to 

be the greatest global threat to biodiversity, after habitat loss (Wilcove 1998, Powell et al 2013). 

The total economic cost of these species in the US alone has been estimated at 120 billion dollars 

annually (Pimentel 2005). While many exotic species are introduced into new habitats, only 

about 10% are able to establish in their new environment, and only about 10% of those 

established will spread rapidly and become invasive (Williamson and Fitter 1996). Given the 

huge impact of this small number of species, two major goals of ecological research are to 

discover why certain species become invasive while others do not, and why certain communities 

are prone to invasions while others are not.  

Two of the most prominent hypotheses that address why certain plants become invasive 

are enemy release and trait superiority. The Enemy Release Hypothesis posits that exotic species 

leave their specialist enemies behind when they expand into a new range (Keane and Crawley 

2002, Liu and Stiling 2006). Thus they receive less pressure from specialist enemies than the 

native species in the communities they invade. While generalist enemies may attack them, these 

enemies attack all species similarly, so exotic species suffer less damage overall than their native 

competitors. This advantage allows them to outperform native species. Alternatively, the trait 

superiority hypothesis proposes that invasive species have superior traits to the native species in 

the range they are invading (Van Kleunen et al. 2010, Kolar and Lodge 2001). The advantage 

may come in many forms, for instance allelopathy which is the chemical suppression of other 

nearby vegetation, or the ability to fix nitrogen at faster rates (e.g., Vitousek and Walker 1989 ). 

However, studies investigating these two hypotheses have found mixed results, and no single 



	
  

	
   5	
  

hypothesis so far proposed is consistent with all plant invasions. Sometimes, invasive plants 

receive lower levels of enemy damage than native plants and exotic non-invasive plants (e.g. 

Mitchell and Power, 2003), while other times invasive plants have similar levels of damage or 

even more damage (e.g. Agrawal and Kotanen 2003, Funk and Throop 2010). Similarly invasive 

plants may sometimes have traits that differ from those of native plants and exotic non-invasive 

plants, while other times traits appear to explain little about invasiveness (Pysek and Richardson 

2007). 

It has long been thought that diverse ecological communities should resist invasion by 

exotic species. The Biotic Resistance Hypothesis posits that communities with more species are 

more resistant to biological invasion because they use more niche space, leaving less room for 

potential invaders (Elton 1958). However, the relationship between biodiversity and invasibility 

remains unclear. Some studies show that increasing biodiversity decreases invasibility (e.g. 

Maron and Marler 2007) while others show that more diverse habitats contain more exotic 

species (e.g. Stohlgren et al 2003).  

One reason that no uniting hypothesis explains all plant invasions may be because most 

studies consider only a single hypothesis, when in fact multiple mechanisms addressed in these 

hypotheses are at work (Lowry et al 2013). A prospective uniting hypothesis would place both 

species-based hypotheses like the Enemy Release Hypothesis and the superior traits hypothesis, 

with community-based hypotheses like the Biotic Resistance Hypothesis into the same 

framework. 

One framework that helps integrate the two perspectives is Darwin’s Naturalization 

Hypothesis, proposed back in 1859, which suggests that novel species should be more invasive 

than less novel species (Darwin 1859). Under this hypothesis, a species with traits allowing for 
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high competitive ability will be more invasive, but only if this trait is not already present in the 

target community. In this way, the hypothesis addresses simultaneously elements of the species-

based invasion hypotheses and of the community-based invasion hypotheses. While the 

connection to multiple invasion hypotheses is promising, Darwin’s Naturalization Hypothesis 

has also seen both support and contradiction. Many studies have sought a connection between 

phylogenetic novelty and invasiveness, but the results are mixed (Strauss et al 2006, Diez et al 

2008, Thuiller et al 2010). However, most studies consider only a single spatial scale, namely the 

phylogenetic novelty of a species compared to species in a large geographic region (e.g. Strauss 

et al 2006). At large spatial scales, environmental filtering might play a more important role than 

competition in determining which exotic species are successful (Pearse et al. 2013). Few studies 

consider the local scale, which is the scale most appropriate to test whether higher competitive 

abilities of exotic species result from their novel traits (but see Lim et al 2014). To fully 

understand Darwin’s Naturalization Hypothesis, we must investigate novelty at multiple spatial 

scales.  

Understanding the relationship between novelty and competitive ability has applicability 

beyond understanding biological invasions, and might explain why some native species become 

common in a community while other remain rare. Research considering the role of novelty for 

both exotic and native species will help clarify whether some exotic species become invasive for 

the same reasons some native species become common. Such research could also provide 

predictive power for which species might become invasive in the future. Many studies use native 

and invasive congeners to evaluate hypotheses about species invasion because such pairings 

control for evolutionary history (e.g. Kolb and Alpert 2003, Burns 2006). However we will use 
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con-familial species to achieve a wider range of phylogenetic distance between our native and 

invasive species while still controlling for evolutionary history.  

In order to synthesize the hypotheses for what causes plant invasions, this study will 

address (1) whether phylogenetic novelty correlates with high competitive ability, (2) if and how 

this relationship differs when novelty is assessed at regional versus local spatial scales, and (3) 

how this mechanism differs between native and invasive species.  

	
  

METHODS  

Study Area 

Our study was conducted at the Tyson Research Center, an 800-hectare site that is 

dedicated to ecological research. Owned by Washington University in St. Louis, the site is 

situated 35 kilometers southwest of the city of Saint Louis, Missouri. The area is dominated by 

oak-hickory forest, and interspersed with smaller grasslands, glades, old fields, and human-

disturbed open areas. The climate is temperate, with uniform average precipitation over the 

course of the year.  

 

Study Species 

 Study species were chosen based on their prevalence in the study area, and their 

phylogenetic diversity. Native species chosen were generally common in the area so that they 

would be comparable to successful exotic species. Exotic and native species pairs within each 

family were similar in their growth habit and preferred habitat. The study species are 

summarized in Table 1. 
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Site Preparation 

 Plots for native species were established during the spring of 2014. Plots for exotic 

species were established earlier during the spring and summer of 2013-2014, since these species’ 

plots were also part of a related study at Tyson Research Center relating phylogenetic novelty of 

invasive species to their population growth rate. Once an appropriate population of each focal 

species was identified, the plot size was determined such that each plot had at least 4 individuals 

and not more than 20 individuals (See Table 1 for plot size used for each species). Individual 

plots were established as squares on the ground with iron rebar installed at each corner. For each 

species, at least 15 plots were established, (more plots were established if necessary to achieve 

adequate sample size of each stage class), and the focal species within plots were thinned if the 

density was too high. Plots were randomly assigned via a random number generator to one of 

three treatments: competitor reduction, herbivore reduction, and control, however this study will 

focus only on the competitor reduction and the control treatment.  

 

Treatments 

 For the competitor reduction treatment, the aboveground portion of all plants that were in 

the plots, other than the study species, was removed. The biomass removed was collected and 

dried to provide a record of the amount of competition faced by the focal species. A border a 

quarter as long as the length of one of the plot’s sides was maintained free of competitors to 

avoid any edge effects. Competitor biomass was removed every other week during the growing 

season, or more often if competing plants grew back quickly. In forested plots, only competitors 

in the understory that were below breast height were removed since removing trees would have 

fundamentally changed the habitat type. The plants in the control plots were un-manipulated.  
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Demography Data Collection 

 Early in the season (May or June) of 2014 or in some cases 2013, initial plant size and 

stage was collected for each individual (methods for each species in Table 2). Individuals were 

mapped using a grid system so that they could be relocated later in the season. Later in the 

season, between July and September, data were collected on the second measure of plant fitness 

(Table 2). All data was matched to the individual so as to record individual growth over the 

course of a single season. The one species that was an exception to the single-season rule was 

Lonicera maackii, for which the first and second measure of plant size were taken in July 2013- 

July 2014. Effect sizes of the competitor reduction treatment were calculated by dividing the 

average growth of individuals in the competitor reduction treatment by the average growth of 

individuals in the control treatment. However, due to the intense deer herbivory on Cirsium 

discolor biased towards the competitive removal treatment, this species and the invasive thistle 

species, Carduus nutans were analyzed differently. Their growth was plotted against their level 

of herbivory for each treatment, and the ratio of their intercepts was taken to be the effect size. 

The intercepts represent the estimated growth rate individuals would have in each treatment in 

the absence of herbivory. 

 

Herbivory Data Collection 

Data on the herbivory level of each plant was collected and used as a covariate in cases in 

which herbivory differed significantly between the competitor reduction and control treatments. 

For each individual herbivory level was estimated at the end of the season at the same time late 

season demographic data was collected. Each leaf of each individual was visually scored for 
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percent insect herbivory using a categorical scale with nine categories (0, 1-5, 6-10, 11-25, 26-

50, 51-70, 71-80, 81-90, 91-100). The total average herbivory was calculated as the average of 

the mean values in each category weighted by the number of leaves in each category. For 

Cirsium discolor, which received significant deer herbivory, percent herbivory caused by deer 

was also estimated on for each plant. The total herbivory for this species was found to be the sum 

of the percent deer herbivory on the whole plant and the insect herbivory multiplied by the 

percent of the plant remaining after the deer herbivory. 

 

Community Data Collection 

 We collected data on the local community of each species to use in our phylogenetic 

analysis at the local scale. During the months of June and July, data was taken on the presence 

and abundance of species that co-occur in study plots with each focal species. For each focal 

species, every co-occurring plant within the marked plots was identified to species. Trees with 

canopies completely above breast-height were omitted. For each co-occurring plant species, its 

percent cover in each plot was estimated visually. Species that had a very small percent cover 

were recorded as having 1 percent cover. 

 

Phylogenetic data 

 To build a phylogeny for angiosperms at the Tyson Research Center and for each local 

community for each focal species, we used the super-tree of Soltis et al. (2011) as a phylogenetic 

constraint and source of dating information and phyloGenerator and willard packages in R 3.1.2 

(Pearse and Purvis 2013). Several measures of phylogenetic novelty were calculated for each 

species, using phylogenetic distance in units of branch length. These included the distance to the 
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closest relative at the Tyson Research Center, the average distance to each species in the local 

community, the average distance to each species in the local community weighted by percent 

cover, the distance to the closest relative in the local community, and also repeated the previous 

measures while excluding exotic species.  

 

Final Data Analysis 

 We used a randomization test in R 3.1.2 to determine the significance of the relationship 

between phylogenetic novelty and effect size of the competitive reduction treatment. This 

randomization test was used in addition to a simple linear regression because the effect size for 

each species had its own independent, asymmetric error bars. For each treatment for each 

species, we recorded the number of individuals within that treatment. Then, we drew a random 

population of the same size from that treatment pool with replacement. We calculated the 

random effect size for this treatment using the same method as described and tabulated in the 

Demography Data Collection section which differed as tabulated in Table 2. We then used linear 

regression to test for a relationship between the effect size of competition and each measure of 

phylogenetic novelty, and recorded the slope associated with the linear model. This 

randomization process was repeated 5000 times, and a set of randomly generated slopes was 

collected. These results were then compared to the linear regression of true effect size as related 

to a measure of phylogenetic novelty. The proportion of random slopes with the opposite sign 

from the true slope was interpreted as the probability that the slope we found had a negative sign 

by chance alone. The linear regression of true effect size as related to a measure of phylogenetic 

novelty was also used to find the adjusted R-squared value, which indicates how much variation 

in the data can be explained by the linear relationship.  
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RESULTS 

The effect size of the competitive removal treatment decreased with phylogenetic 

novelty; this relationship was true for measures of phylogenetic novelty at both spatial scales, 

measures that were unweighted and weighted by local species abundance, and measures that only 

considered the closest relative in the local community (Figure 1, Table 3). This means that more 

novel species perform similarly under differing levels of competition, so competition is not 

affecting them as much as phylogenetically less novel species. This implies that these more 

novel species are overall better competitors than less novel species compared to species with 

which they co-occur. The measure of phylogenetic distance that considered the nearest neighbor 

at the scale of the research center explained the most variance in the effect size of competition, 

and was very significant in our nonparametric randomization analysis (r2 = 0.2842, pregression = 

0.06491, prandomization=0.0042, Table 3). However, the native and invasive species showed 

different patterns in the relationship between the effect size of competition and phylogenetic 

distance. Exotic species had relatively high effect sizes for competition, but no relationship 

between the effect size of competition and phylogenetic distance whereas native species showed 

a negative trend between the effect size of competition and phylogenetic distance (Figures 2 and 

3). There was no relationship observed between the amount of biomass removed and the effect 

size (p=0.8047). 
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DISCUSSION  

To examine whether phylogenetic novelty correlates with high competitive ability, we 

determined the effect of a competitor reduction treatment for a native and an exotic species from 

each of 5 plant families. When considered all together, we observed that increased phylogenetic 

novelty correlates with decreased effect of competitor reduction treatment. This indicates that 

more phylogenetically novel species are already better competitors compared to other co-

occurring species, and therefore do not respond as strongly to competitor reduction. However, 

some of the small effect sizes we observed may be due to the relatively short time between the 

establishment of treatments and the collection of demographic data.  

In the future, we can address the short time scale of our study by using response of 

population growth rate lambda requiring us to maintain our experimental treatments for at least 

one year, and equalizing any bias that some species might have towards competition or growth in 

a certain season.  

Our results are consistent with many other studies that have reported that there is a 

correlation between plant success and phylogenetic novelty, though these studies typically 

examine exotic species only (e.g. Rejmanek 1996, Lockwood et al 2001, Ricciardi and Atkinson 

2004, Lambdon and Hulme 2006, Carboni et al 2013, but see Daehler 2001, Lim et al 2014). 

However our study is the first study to experimentally manipulate competition in the field and 

correlate the effect size to phylogenetic novelty. Thus, we are the first to show that novel species 

are more successful due to competitive ability. Though the studies differ in methodology, our 

results are similar to a greenhouse experiment that found native species to perform better when 

grown with distant rather than with close relatives in field soils (Burns and Strauss 2011). 
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We initially expected that the relationship we found between phylogenetic novelty and 

competitive ability might differ between a local scale versus a regional scale. While there is 

some quantitative difference in this relationship at these two scales, the same qualitative trend is 

seen for the regional and local scale. One reason for this may be that our regional scale, which is 

our 800 hectare research station, is not a large enough an area to see a qualitative difference in 

trend. Perhaps analyzing an even larger area, such as all of Missouri, would lead to a stronger 

environmental filtering effect whereby less novel species are more successful due to their lack of 

ability to survive in a certain environment.  

When we separate the native species from the invasive species in our study, we see a 

more negative relationship between phylogenetic novelty and effect of competitor reduction in 

native species than invasive species. One reason for this may have been the presence of Cirsium 

discolor on the side of the native species. C. discolor was strongly affected by the competitor 

reduction treatment and also had low phylogenetic novelty due to its native congener Cirsium 

altissumum, and its co-occurrence with several other species of Asteraceae which are common in 

its prairie habitat. If this species were to be removed from the analysis, the native species and the 

invasive species would have more similar relationships between novelty and competitive ability. 

Another reason for the difference between trends in response to competitor reduction in native 

and invasive species may be our small sample size, and the fact that no extremely novel invasive 

species are included in our sample. We are unable to determine whether a very novel invasive 

species would perhaps have a negative effect size due to competitor reduction, as was true with 

some of the native species. In the future, we would like to add more species to the study. 

Another explanation for why the invasive species all have similar and positive effect 

sizes may be because they have all adapted to a disturbance based growth strategy. There is often 
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a tradeoff between colonization ability and competitive ability whereby the traits that make 

species good colonizers (e.g., small seeds) are the same ones that make them poor competitors in 

benign (undisturbed) environments (Hastings 1980, Nee and May 1992, Tilman 1994, Calcagno 

et al 2006). These species might perform well for a window in time when newly disturbed 

habitats become available, but then have their fitness dramatically affected by competition as 

other species colonize and grow on these habitats. It is possible that we observed the latter half of 

this process for all of our exotic species since we located places where these species were already 

established in significant numbers, rather than as they were colonizing new areas. 

 Our research advances our understanding of Darwin’s Naturalization Hypothesis by 

considering both native and exotic species in the same study, directly measuring the importance 

of competition, and considering phylogenetic novelty at multiple spatial scales. Native species 

showed wider variation in their effect size of competition, with some species showing extreme 

benefits of competitor reduction treatments and other species seeming to benefit from the 

presence of their interspecies neighbors. Further, the effect of competition of native species 

decreased with the novelty of the species at both local and regional spatial scales. The exotic 

species in our study all showed strong effects of competitive removal treatments, suggesting that 

resident flora are strongly affecting the fitness of these species and perhaps restricting their 

distribution to more disturbed habitats. 
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TABLES AND FIGURES 

Family Exotic species Native Species Plot size 
Lamiaceae Perilla frutescens Teucrium canadense 

 
½m X ½m 

Asteraceae Carduus nutans Cirsium discolor 
 

1m X 1m 

Rosaceae Potentilla recta Geum canadense 
 

½m X ½m 

Caprifoliaceae Lonicera maackii Symphoricarpos 
orbiculata 
 

2m X 2m 

Fabaceae Lespedeza cuneata Desmodium perplexum Exotic: ½m X ½m 
Native: 1m X 1m 
 

 

Table 1: Basic information on selected study species. 
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Species Native/ 
Exotic 
status 

Early Season size 
measurement 

Late Season Fitness 
measurement 

Growth metric 

Perilla 
frutescens 

Exotic Height Number of fruits 
 

Number of 
fruits / Height 

Teucrium 
canadense 

Native Height Number of fruits 
 

Number of 
fruits / Height 

Carduus nutans Exotic Number of leaves for 
non-reproductive 
individuals 

Number of leaves for 
non-reproductive 
individuals 

Late season leaf 
number / Early 
season leaf 
number 

Cirsium discolor Native Number of leaves for 
non-reproductive 
individuals 

Number of leaves for 
non-reproductive 
individuals 

Late season leaf 
number / Early 
season leaf 
number 

Lonicera 
maackii 

Exotic Height for non-
reproductive 
individuals 

Height for non-
reproductive 
individuals 

Later year 
height – Earlier 
year height 

Symphoricarpos 
orbiculata 

Native Canopy volume Number of fruits Number of 
fruits / Canopy 
volume 

Lespedeza 
cuneata 

Exotic Height Height if reproductive Late season 
height / Early 
season height 

Desmodium 
perplexum 

Native Height Height Late season 
height / Early 
season height 

Potentilla recta Exotic Number of leaves Number of fruits Number of 
fruits / Number 
of leaves 

Geum 
canadense 

Native Number of leaves Number of fruits Number of 
fruits / Number 
of leaves 

 

Table 2- Species-specific information on demographic data collected. 
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Measure of Novelty Regression 
adjusted r2-value 

Regression p-
value 

Randomization p-
value 

Distance to closest relative 
at Tyson 
 

0.2842 0.06491 0.0042 

Distance to closest native 
relative at Tyson 
 

0.2689 0.07153 0.032 

Average pairwise distance 
to all local species 
 

0.1837 0.1201 0.0566 

Average pairwise distance 
to native local species 
 

0.1939 0.1131 0.0512 

Average pairwise distance 
to all local species 
weighted by percent cover 
 

-0.0009411 0.3485 0.0648 

Average pairwise distance 
to native local species 
weighted by percent cover 
 

0.04111 0.2729 0.0592 

Distance to closest local 
relative  
 

-0.1165 0.8118 0.4248 

Distance to closest native 
local relative 
 

0.06191 0.2423 0.0642 

 

Table 3- Summary of linear regression results for each measure of phylogenetic novelty tested. 

R-squared values are adjusted r-squared values, regression p-values are associated with the linear 

model for effect size as related to phylogenetic novelty, and randomized p-values are the number 

of randomized slopes that were greater than zero over the total number of randomized trials 

(N=5000). 
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Figure 1: Increased phylogenetic distance was related to decreased effect when removing 

competitors for all measures of phylogenetic distance calculated. Nearest neighbor means the 

distance to the most closely related species, native neighbor is the nearest neighbor among only 

native species. Pairwise distance is the average distance to all other species present, and native 

pairwise neighbor is the pairwise distance to only native species. Weighted distance is the 

pairwise distance, except weighted by percent cover, and native weighted distance is the 

weighted distance when considering only native species. R-squared values shown are the 

adjusted r-squared values. 
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Figure 2: The negative relationship between phylogenetic distance and effect size is present only 

for native species at the scale of Tyson Research Center. 
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Figure 3: The negative relationship between phylogenetic distance and effect size is present for 

both native and invasive species for 3 out of 6 of the measures of phylogenetic novelty at the 

local scale. 
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