
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: wucse-2009-4

2009

Achieving Coordination Through Dynamic Construction of Open Achieving Coordination Through Dynamic Construction of Open

Workflows ** PLEASE SEE WUCSE-2009-14 ** Workflows ** PLEASE SEE WUCSE-2009-14 **

Louis Thomas, Justin Luner, Grui-Catalin Roman, and Christopher Gill

Workflows, widely used on the Internet today, typically consist of a graph-like structure that

defines the orchestration rules for executing a set of tasks, each of which is matched at run-

rime to a corresponding service. The graph is static, specialized directories enable the discovery

of services, and the wired infrastructure supports routing of results among tasks. In this paper

we introduce a radically new paradigm for workflow construction and execution called open

workflow. It is motivated by the growing reliance on wireless ad hoc networks in settings such

as emergency response, field hospitals, and military operations. Open workflows facilitate...

Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Thomas, Louis; Luner, Justin; Roman, Grui-Catalin; and Gill, Christopher, "Achieving Coordination Through
Dynamic Construction of Open Workflows ** PLEASE SEE WUCSE-2009-14 **" Report Number:
wucse-2009-4 (2009). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/18

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/18?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/18

Achieving Coordination Through Dynamic Construction of Open Workflows ** Achieving Coordination Through Dynamic Construction of Open Workflows **
PLEASE SEE WUCSE-2009-14 ** PLEASE SEE WUCSE-2009-14 **

Louis Thomas, Justin Luner, Grui-Catalin Roman, and Christopher Gill

Complete Abstract: Complete Abstract:

Workflows, widely used on the Internet today, typically consist of a graph-like structure that defines the
orchestration rules for executing a set of tasks, each of which is matched at run-rime to a corresponding
service. The graph is static, specialized directories enable the discovery of services, and the wired
infrastructure supports routing of results among tasks. In this paper we introduce a radically new
paradigm for workflow construction and execution called open workflow. It is motivated by the growing
reliance on wireless ad hoc networks in settings such as emergency response, field hospitals, and military
operations. Open workflows facilitate goal-directed coordination among physically mobile agents (people
and host devices) that form a transient community over an ad hoc wireless network. The quintessential
feature of the open workflow paradigm is the ability to construct a custom context-specific workflow
specification on the fly in response to unpredictable and evolving circumstances by exploiting the
knowhow and services available within a given spatiotemporal context. This paper introduces the open
workflow approach and explores the technical challenges (algorithms and architecture) associated with
its first practical realization.

https://openscholarship.wustl.edu/cse_research/18?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/18?utm_source=openscholarship.wustl.edu%2Fcse_research%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2009-4

Achieving Coordination Through Dynamic Construction of Open
Workflows ** PLEASE SEE WUCSE-2009-14 **

Authors: Louis Thomas, Justin Luner, Gruia-Catalin Roman, and Christopher Gill

Corresponding Author: thomasl@cse.wustl.edu

Web Page: http://mobilab.cse.wustl.edu/Research/index.htm

Abstract: Workflows, widely used on the Internet today, typically consist of a graph-like structure that defines the
orchestration rules for executing a set of tasks, each of which is matched at run-rime to a corresponding service.
The graph is static, specialized directories enable the discovery of services, and the wired infrastructure
supports routing of results among tasks. In this paper we introduce a radically new paradigm for workflow
construction and execution called open workflow. It is motivated by the growing reliance on wireless ad hoc
networks in settings such as emergency response, field hospitals, and military operations. Open workflows
facilitate goal-directed coordination among physically mobile agents (people and host devices) that form a
transient community over an ad hoc wireless network. The quintessential feature of the open workflow paradigm
is the ability to construct a custom context-specific workflow specification on the fly in response to unpredictable
and evolving circumstances by exploiting the knowhow and services available within a given spatiotemporal
context. This paper introduces the open workflow approach and explores the technical challenges (algorithms
and architecture) associated with its first practical realization.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Achieving Coordination Through Dynamic
Construction of Open Workflows

Louis Thomas, Justin Luner, Gruia-Catalin Roman, and Christopher Gill

Department of Computer Science and Engineering
Washington University in St. Louis

{thomasl,jluner,roman,cdgill}@cse.wustl.edu

Abstract. Workflows, widely used on the Internet today, typically con-
sist of a graph-like structure that defines the orchestration rules for ex-
ecuting a set of tasks, each of which is matched at run-rime to a corre-
sponding service. The graph is static, specialized directories enable the
discovery of services, and the wired infrastructure supports routing of re-
sults among tasks. In this paper we introduce a radically new paradigm
for workflow construction and execution called open workflow. It is moti-
vated by the growing reliance on wireless ad hoc networks in settings such
as emergency response, field hospitals, and military operations. Open
workflows facilitate goal-directed coordination among physically mobile
agents (people and host devices) that form a transient community over an
ad hoc wireless network. The quintessential feature of the open workflow
paradigm is the ability to construct a custom context-specific workflow
specification on the fly in response to unpredictable and evolving cir-
cumstances by exploiting the knowhow and services available within a
given spatiotemporal context. This paper introduces the open workflow
approach and explores the technical challenges (algorithms and architec-
ture) associated with its first practical realization.

1 Introduction

As computing and communication are becoming more and more integrated into
the fabric of our society, new kinds of enterprises and new forms of social inter-
actions emerge. Workflow technology, for instance, allows end users to initiate
complex goal-oriented activities that leverage off services made available by a
wide range of enterprises that have a virtual presence on the Internet. The typ-
ical scenario is one in which a user employs a web interface to make a request
to a workflow engine responsible for executing a predefined workflow specifica-
tion that can satisfy the specific user need, e.g., print photos, reserve tickets,
or make a bid. The workflow specification takes the form of a directed acyclic
graph with vertices denoting tasks and edges defining an execution order along
with the flow of data and control. Each task is itself a specification for a service
to be discovered and invoked by the workflow engine. What makes the workflow
paradigm successful is the high degree of decoupling that it exhibits at multiple
levels: between the user need and the workflow required to satisfy it, between

the workflow specification and the services available to execute it, and between
the service invocations and their implementations.

Current workflow technology relies on servers, which manage service direc-
tories, store statically defined workflows, and host the workflow management
system or engine. Formal studies have led to a better understanding of the
range of constructs needed to support useful workflow specifications [1] and have
been complemented by efforts to develop industrial grade workflow specification
languages, such as BPEL [2], YAWL [3], WfXML [4], and XLANG [5]. Some
researchers also have considered the application of artificial intelligence tech-
niques to automatic construction of workflow specifications [6] from information
available in a centralized knowledgebase.

Despite being an established and mature technology, efforts toward using
workflow technology in ad hoc wireless environments are relatively new. They
include the development of workflow execution engines targeted to small portable
devices [7], and techniques for executing workflows in mobile wireless networks [8].
These studies reveal the need for a major reevaluation of the way one thinks
about workflow technology: hosts move, service availability depends upon which
hosts are within communication range, user needs tend to be situational, and one
cannot anticipate the range of responses demanded by changing circumstances.
These observations suggest that, in ad hoc wireless settings, it is desirable to tai-
lor or generate workflows dynamically so as to be responsive despite variability
in available resources and knowhow.

Starting with this premise, we pose the question of how workflow technology
might be reshaped for use in the absence of any wired connectivity. Application
domains that satisfy this assumption include low profile military operations,
emergency responses to major natural disasters, scientific expeditions in remote
parts of the globe, field hospitals, and large construction sites. These application
domains share several key features: ad hoc interactions among people, high levels
of mobility, the need to respond to unexpected developments, the use of locally
available resources, prescribed rules of operation, and specialized knowhow. For
instance, consider a construction worker discovering a mercury spill. While there
is a prescribed response, it is his supervisor who has the needed expertise and the
training. She can initiate the response, but access to the spill is made difficult by
a support structure whose dismantling requires some special intervention which
only the chief engineer can manage. The result is a series of frantic phone calls
and the dispatching of various workers and equipment to execute what might be
seen as a workflow that is reactive, opportunistic, composite, and constrained
by the set of participants present on the site along with their knowhow and
resources. Workflow, whether carried out by people or machines, thus becomes
a coordination vehicle for social and business activities. In this paper we explore
whether workflow technology can become a coordination mechanism for activities
that are carried out in an ad hoc setting.

We use the term open workflow to denote a workflow specification, construc-
tion, and execution paradigm that is shaped by the dynamics and constraints
of an enterprise whose underlying infrastructure is a mobile ad hoc wireless net-

work. We assume a system which evolves over time and consists of a set of par-
ticipants (host devices and the people who carry them) who move through space
and can interact with each other and with a real world environment. Changes
in the environment can trigger events that demand a system response that is
codified as a dynamically created workflow and is executed by the participants
in a distributed manner. The defining feature of the open workflow paradigm
is the workflow construction process: workflow fragments codifying individual
knowhow distributed across the set of participants are assembled into a cus-
tom workflow. In doing so, we also consider the available resources expressed as
services offered by the participants along with the mobility of the participants
and their willingness to commit to being present at a specific place and at a
predetermined time. The latter highlights another feature of the open workflow
paradigm, its spatiotemporal dimension.

The technical contributions of this investigation are quite broad. Our earlier
efforts to introduce workflow into the wireless ad hoc network setting are ex-
tended: the workflow is constructed dynamically in a manner that is sensitive to
the availability of resources and is based on knowledge held by colocated partic-
ipants. A first algorithm for incremental construction of workflows in a dynamic
setting is described. In doing so, we have affected a major paradigm shift in the
workflow technology. Open workflows are more than sophisticated scripts that
enable one to exploit available services — they have become a coordination ve-
hicle that allows cooperating participants to construct and execute a response
to a need identified by one of the participants. From a pragmatic point of view,
the notion of open workflow enables the development of an entirely new class
of enterprise systems that are nimble, mobile, and supportive of a new style of
coordination. Finally, it should be noted that the practical importance of this
paradigm is enhanced by the tight integration between people, machines, and
the physical environment.

The remainder of this paper is organized as follows: Section 2 defines the
issues and challenges associated with open workflow construction in dynamic en-
vironments. Section 3 explains our algorithm for the collaborative construction
of open workflows. Section 4 describes the process of allocation and execution of
open workflow tasks in a distributed manner. Section 5 highlights the architec-
ture of an open workflow management system we are currently implementing.
Section 6 highlights related research and contrasts it with this work. We provide
conclusions in Section 7.

2 Problem Definition

The motivation for this work rests with the idea of creating new coordination
modalities appropriate for mobile ad hoc settings. We assume a set of partic-
ipants who share a common space and sense of purpose. Each community is
transient because its members are mobile and it is formed by virtue of the fact
that each participant is colocated and has access to wireless communication —
for the sake of simplicity one can view a participant as an individual who carries

a mobile computing and communication device, which enables the formation of
a wireless ad hoc network. In our approach, one of the members of a community
identifies some need for action, which results in the automatic construction of
a workflow. The workflow is built by combining relevant task graphs1 known to
the community (henceforth called workflow fragments) that encode the collective
knowhow available to the community as a whole. Once constructed, the tasks in
the workflow are allocated to able participants and the workflow is executed in
a distributed and cooperative manner. A participant can commit to executing
a particular task in the workflow if they support the service required by that
specific task specification at a prescribed location and time and if they can de-
liver successfully the results to subsequent tasks that require them in order to
start execution. Building a workflow on the fly from available contextual knowl-
edge, i.e., the open workflow paradigm, is new and defines the core technical
contribution of this paper.

In order to focus on the essential features of the open workflow paradigm,
we start with the simplifying assumption that a workflow is a directed acyclic
graph in which nodes represent tasks and edges represent data dependencies. A
task can execute only when all necessary inputs are available. A disjunctive task
accepts multiple inputs but needs only one input in order to execute, while a
conjunctive task needs all of its inputs to execute. Execution of a task consists of
the invocation of a service satisfying the respective task specification, and upon
completion, a task generates data on all its outputs. As one might expect, the
type associated with data carried along each edge has to be compatible with
the type expected/generated by the tasks connected by that directed edge. If
type labels are attached to each edge, it becomes possible to splice two workflows
together in a manner that preserves the consistency of the data flow. This makes
workflow composition possible, a necessary requirement for the construction of a
new workflow from existing fragments. However, a limiting factor associated with
the reliance on edge typing is the fact that many edges may carry similarly typed
data in different stages of logical processing — semantic labels are thus needed in
order to differentiate identically typed edges referring to different logical results.
In our work, composition is based on matching output edges and input edges
that carry identical labels.

These observations led us to rethink the workflow as a directed acyclic bipar-
tite graph. Some nodes represent tasks while other nodes denote labels with the
additional constraints that (1) all sources (nodes without any incoming edges)
and all sinks (nodes without any outgoing edges) are labels, (2) no two nodes
carry the same label, and (3) a label can have at most one incoming edge. This
definition allows us to compose two workflows by merging (a) identically-named
sinks from one workflow with the corresponding sources from the other workflow
and (b) identically named sources in both workflows. Two workflows are com-
posable if and only if the result of matching sinks and sources is also a proper
workflow, i.e., no two nodes have the same label. For instance, a workflow W1

1 For this paper, we assume these are valid workflows in their own right, per the
formalization in this section.

with sources {a, b, c} and sinks {d, e, f} and a workflow W2 with sources {c, d, e}
and sinks {g, h} can be composed into a new workflow W with sources {a, b, c}
and sinks {f, g, h}.

At the abstract level, we build a new workflow on the fly by composing
workflow fragments that represent local knowledge held by various participants.
This is a goal-oriented process that demands a formal specification as its starting
point. Because of the semantics that we presume are associated with the labels,
it possible to think of a workflow as a semantic transformation captured by the
labels associated with its sources and sinks, henceforth called the inset and the
outset of the workflow. We can further generalize this notion by characterizing
a workflow in terms of properties of its inset and outset. We can say for instance
that a workflow W with inset W.in and outset W.out satisfies a specification S
if and only if S(W.in,W.out) holds, where

S ∈ P(Labels)× P(Labels) 7→ Boolean

When convenient, S(W) may be used as a shorthand for S(W.in,W.out).
The definition is general enough so as to allow us to express a wide range of
specifications. For instance, a specification of the form

S(W) = (W.in = ‘injured person’)

may be satisfied by a workflow whose source is labeled ‘injured person’ and
whose sink is labeled ‘hospitalized person,’ ‘treated person,’ or anything else.

Composing workflow fragments may produce a workflow that cannot satisfy
a specification S only because it has extra sinks or sources. We can prune a
workflow to remove unnecessary data flows, subject to these constraints which
ensure the result remains a proper workflow: (1) task outputs that are sinks can
be pruned so long as every task has at least one output, (2) task inputs that are
sources can be pruned for disjunctive tasks so long as every task has at least one
input, and (3) tasks can be pruned so long as any task inputs that are sources
and task outputs that are sinks are also pruned. For instance, a workflow W
consisting of one disjunctive task t1 having sources {a, b, c} and sinks {d, e} can
be pruned to produce the workflow W ′ containing task t1 with source {b} and
sink {d}.

The open workflow construction problem can be defined now as follows. Given
a workflow specification S and a set of workflow fragments KW , find a set of
workflow fragments in KW , which may be composed (subject to pruning) into a
workflow W that satisfies S — we say that W is feasible given S and KW . It is
important to note that the defining features of the open workflow paradigm rest
with the fact that the specification S can be generated dynamically in response
to a situation on the ground and that the set KW represents the combined
knowledge of the community as a whole. KW is distributed and dynamic. Dif-
ferent members of the community may carry different workflow fragments that
capture knowhow about how to perform specific activities, given certain assump-
tions expressed by the labels in the inset and guaranteed to achieve certain goals
captured by the labels in the outset. As participants move around in space, the

knowledge available to the community changes with its membership. For the
same specifications, different communities may respond differently or may be
unable to construct an appropriate workflow.

Even when a workflow satisfying the desired specification can be constructed,
one cannot guarantee that the needed services will be available at the prescribed
time and the required location and that reliable communication of the results
among various tasks is possible. As such, a practical solution to the open work-
flow problem requires three basic properties: the workflow being constructed
must be feasible, allocatable, and executable. A workflow can be allocated to a
community if each task can be serviced at the prescribed time and location. To
make this possible we assume that the mobile participants who are able to pro-
vide the services required by specific tasks are also willing to commit to being
at the right location at the right time. A workflow is executable if the partici-
pants supporting the execution of tasks that depend upon each other are able
to communicate the needed results in a timely fashion. This is easy to guarantee
if the community is stable and all participants are mutually reachable. More so-
phisticated routing techniques and analysis [9] may be needed if the movement
of participants results in temporary disconnections.

3 Collaborative Open Workflow Construction

In this section we introduce our first algorithm for constructing an open work-
flow. As before we assume KW is the set of all workflow fragments known to
the community and S is the specification we wish to satisfy. For the purpose of
illustration, we start with the simplifying assumption that S is of the form

W.in ⊆ ι ∧W.out = ω

where ι and ω are sets of labels with ι being the labels that represent the trig-
gering conditions and ω being the labels that represent the goal.

The approach we take is to assume a participant has identified a need for
action and generated a specification S of this form. The participant is in con-
tact with the other members of a community and collects from each a set of
workflow fragments which it combines to create the set KW . Using the gathered
information, the participant runs our algorithm to find a feasible workflow —
a workflow composed of fragments from KW (subject to pruning) that satisfies
S — if one exists. We only consider here the issue of generating one feasible
workflow, although there are potentially many ways of combining fragments in
KW to satisfy S.

Our general strategy is to initially combine all workflow fragments from KW
into one large graph, henceforth called the workflow supergraph G. The super-
graph represents a unified view of all possible actions represented in the set KW ,
however it is not necessarily a valid workflow since it may have cycles, outputs
produced by multiple tasks, unavailable inputs, or undesirable outputs. We use
a node coloring process on the supergraph G to identify one feasible workflow
within this graph. We start by coloring the nodes corresponding to set ι of the

specification S. Following the data flows, we explore the graph, growing the col-
ored section as we identify which tasks and labels are reachable from ι. We call a
label reachable when it is in ι or when it denotes the output of a reachable task;
a task is reachable when all necessary input labels are available for its execution
via some path starting from ι.

Once we have reached all the elements of set ω, we turn around and begin
to prune the reachable set down to a valid workflow. Working backwards with a
new color, we identify only those paths which are actually required to reach ω.
The pruning phase removes cycles, ensures only one task produces each output,
and excludes undesirable outputs. Once the second color has swept all the way
back to ι, we have fully identified W , a valid workflow that satisfies specification
S and is composed only of fragments in KW subject to some additional pruning
of outputs and unneeded paths.

With the general strategy in mind, we now delve into the specifics of how
each step is accomplished. Once the specification S has been created and the
set of fragments KW collected, we must create the supergraph. We combine the
fragments to form the workflow supergraph G as follows: starting with an empty
graph, every node and edge of every fragment in KW is considered sequentially
and added to G if that node or edge does not already exist in G. When this
process is complete, every fragment in KW is a subgraph of G and there are no
duplicate nodes or edges in G.

The supergraph G we constructed may have cycles, but cycles are not allowed
in our final workflow. During the forward exploration phase, cycles are easily
detected as producing a dead end path reaching only nodes already colored
by that phase. During the backward pruning phase, cycles are not detectable
with simple graph coloring because they are indistinguishable from the normal
merging of two paths. To guarantee that the pruning phase always identifies a
valid (cycle-free) workflow, we must be able to tell which paths lead back to set ι
and which paths lead back only to themselves. We therefore additionally assign
to each colored node in the supergraph G a number corresponding to the node’s
distance from set ι as we explore forward. Cycles are now immediately apparent
in the pruning phase as a positive jump in what should be a strictly decreasing
sequence of distances and thus can be avoided.

After constructing the supergraph G, we begin the exploration phase. During
this phase we color the nodes reachable from set ι green and record their distances
from ι. We start by coloring each label in set ι green and assigning it distance 0.
We then look at the child task nodes, color those that we can green and assign
them distance 1, and so forth, following the directed edges of the supergraph.

A node v cannot be colored green until all of the parent nodes that v is
dependent upon (v’s required inputs) are colored green. Similarly, the distance
assigned to v must be greater than the distance of any parent node that v is
dependent upon. If node v has only one parent then we can color v green once its
parent is colored, and v’s distance is simply one more than its parent’s (see Figure
1.a). If node v is disjunctive, then we can color v green as soon as any one of v’s
parents is green and we choose v’s distance to be one more than distance of the

parent with the shortest distance (Figure 1.b). Labels are treated as disjunctive,
since any one of multiple parent tasks is able to produce the output denoted
by the label. If node v is conjunctive, then we must wait until all of v’s parents
are green before coloring v and we choose v’s distance to be one more than the
distance of the parent with the longest distance (Figure 1.c).

⋀⋁

a. Simple b. Disjunctive c. Conjunctive

… …

…

5
…

…

5

⋀⋁

3

…

4 2

…

3
…

2

…

6
…

3

Fig. 1. Exploration Phase Coloring

As the set of green nodes grows, we continually check to see if all the nodes
in set ω have been colored green. If so, we will have shown that every node in ω
is reachable from set ι. If there are no further nodes we can color green and yet
there are non-green nodes in ω, we will have shown that it is impossible to create
a workflow composed of fragments currently known to the community that will
satisfy the specification S.

Once all the nodes in ω are green, we can begin the pruning phase. During
this phase, we color nodes and edges that are part of the final workflow blue. We
start by coloring all the nodes in ω blue. Coloring a node blue does not change
its distance number. We then work backward, selecting which edges and parent
nodes to color blue, until every blue node either has a blue parent or is a member
of set ι (and hence numbered with distance 0).

⋁0

6 5 4
ι ω

⋁

⋁

⋁

0
1 2 3

7

⋁

⋀

2
8

Fig. 2. Pruning Phase Coloring

For every blue node v which needs blue parents, we must select which of v’s
parent nodes will be used to reach v in the final workflow, and color the selected
parents and connecting edges blue. If node v is conjunctive, then all of its parents

are selected (see Figure 2, node 7). On the other hand, if node v is disjunctive,
then we must be more careful: we must chose a parent that is reachable from
ι (is colored) and that does not create a cycle (has a distance less than v’s).
We meet these requirements by selecting the parent with the shortest distance
number, breaking ties arbitrarily (in Figure 2, at node 1 and node 3). A green
selected parent is colored blue, while a blue selected parent simply remains blue;
the connecting edge is colored blue in all cases. A node v chooses its required
parents only once regardless of how many times v is itself identified as a required
parent during the pruning phase (e.g., in Figure 2, node 1). We must identify the
required edges because an edge between two required nodes may be unnecessary
and possibly even prohibited (in Figure 2, from node 6 to node 3). When every
blue node either has blue parents or is in set ι, the algorithm is complete and
the graph of blue nodes and blue edges is the desired workflow W .

Having described our algorithm in detail, we now offer a proof sketch of the
correctness of our algorithm by highlighting several key invariants. First, we
claim that every green node is reachable starting from ι, and all of its depen-
dencies have a lesser distance number. A node is reachable when it is in ι, or
when its dependencies are reachable. Because we start with the nodes in ι with
distance 0 and we work outward one edge at a time, coloring a node v green only
when v’s dependencies are already green (reachable) and assigning v a distance
greater than any of its dependencies, the invariant holds after every step of the
algorithm.

Second, we claim that, after ω is colored blue, after each pair of steps (coloring
a task and then its parent labels blue) the graph of blue nodes and blue edges
is a valid workflow. At each step we choose a node v which is in the inset of
the blue portion of the supergraph (as it has no blue parents). Once we color
the required parents of node v blue, v is no longer a member of the inset but
the required parents are now members, so v and thus v’s dependents are still
reachable from the inset. After each pair of steps, the sinks and sources of the
graph will be labels and the graph will be a valid workflow.

Finally, we claim that the coloring of blue nodes will eventually terminate,
and upon termination the graph formed by the blue nodes and edges will be
a workflow satisfying specification S. From the first invariant, every node v
with distance number greater than 0 must have required parents with distance
strictly less than v’s distance. Every time a node v in the inset is replaced with
its required parents, the distance number of the nodes added to the inset is
strictly less than the distance number of the node removed. Eventually the inset
will consist solely of nodes with distance 0 (thus nodes in ι) and the algorithm
will terminate. As the inset is a subset of ι and the outset is equal to ω, the
workflow consisting of the blue nodes and edges satisfies S.

To demonstrate our algorithm in action, we offer the following simple, con-
crete example. A new professor at a department meeting says he has a great idea
for a new class and asks how he can register a new course.

S(W) = (W.in ⊆ ‘Idea For Class’ ∧W.out = ‘Class Registered’)

The department chair and department librarian, who are also at the meeting,
contribute their knowhow in the form of workflow fragments (Figure 3). The
professor collects the fragments from the community and creates the supergraph
G. Next, the professor performs the exploration phase of the algorithm. Start-
ing from set ι, the professor starts coloring nodes green and assigning distance
numbers (Figure 4). Once all the nodes in set ω are green, it is time to per-
form the pruning phase. The professor colors all the nodes in ω blue and begins
working backward, coloring the required parents and edges (Figure 5). Finally,
the professor cannot color any more nodes blue. The blue nodes and edges are
the resulting workflow that will allow that professor to register a new course
(Figure 6). In this scenario, the branch that resulted in having a book on re-
serve (a potentially useful but not currently needed activity) was pruned from
the workflow because it did not contribute to satisfying the specification. When
a problem with a different specification is next posed to the community, this
branch may in turn be part of the resulting workflow while some other branch
may be pruned.

⋁

Class
Name

Professor
Class
Name

Syllabus

⋁

Approve
Class

⋀

Register
Class

Class
Approved

Class
Registered

Department Chair

Idea For
Class

⋁

Create
Class

Syllabus

Book
List

Class Approved

Book
List

⋁

Order
Book

Book On
Reserve

Dept. Librarian

Fig. 3. Workflow Fragments from a Community

⋁

Class
Name

⋁

⋀

Register
Class

Class
Registered

0 1

2

2 3
ι

ω
Idea For

Class

⋁

Create
Class

Syllabus

Book
List

⋁

Approve
Class

Class
Approved

⋁

Order
Book

Book On
Reserve

ω

Fig. 4. Exploring the Supergraph

⋁

Class
Name

⋁

⋀

Register
Class

Class
Registered

0 1

2

2 3
ι

ω

4

5 6

Idea For
Class

⋁

Create
Class

Syllabus

Book
List

⋁

Approve
Class

Class
Approved

⋁

Order
Book

Book On
Reserve

ω

2 3 4

Fig. 5. Pruning the Supergraph

⋁

Class
Name

⋁

⋀

Register
Class

Class
Registered

0 1

2

2 3
ι

ω

4

5 6

Idea For
Class

⋁

Create
Class

Syllabus

Book
List

⋁

Approve
Class

Class
Approved

⋁

Order
Book

Book On
Reserve

ω

2 3 4

Fig. 6. The Resulting Workflow

Our basic strategy can be extended to address additional challenges. We
started with the assumption that all of the workflow fragments are collected
from the community and combined to form the supergraph G before the coloring
process begins. Because the coloring of nodes only requires local knowledge, we
can relax this requirement and build the supergraph incrementally, drawing from
the community only the fragments that we need to extend the supergraph along
the boundaries of the colored region.

Our algorithm provides one feasible workflow W based upon the fragment set
KW and specification S, but does not guarantee that all the services required
to execute W are available within the community. We can make our algorithm
sensitive to service availability by first verifying that a service is available within
the community before coloring a task node as reachable from the set ι.

Similarly, while a participant in the community may nominally provide a
service required for a task in workflow W , scheduling conflicts may prevent that
task from being allocated to any participant and thus prevent the workflow
as a whole from being successfully executed. Even if a participant can be at
the right place at the right time, it might not be able to receive the necessary
inputs from or communicate the needed results to the appropriate members of
the community in a timely fashion. To address these challenges we modify our
algorithm to achieve a tighter integration with the corresponding allocation and
execution strategies.

4 Distributed Workflow Allocation and Execution

In this section we summarize the steps that follow open workflow construction,
i.e., allocation and execution. The approach we take here is similar to prior work
done for Collaboration in Ad hoc Networks (CiAN). A more in-depth discussion
may be found in [8].

The participant who initiates the construction of an open workflow is consid-
ered the coordinator. Once the open workflow has been constructed, the coordi-
nator is responsible for communicating with the community to allocate the tasks
of the workflow to members for execution and for providing message routing dur-
ing execution. For purposes of discussion, we make the simplifying assumption
that the location of the coordinator is known to the community and that it can
communicate with all participants.

The coordinator begins the allocation phase by computing metadata for each
task (such as utility measures and topological ordering) used in allocating and
executing the workflow. Next, the coordinator advertises task solicitations to
the workers (community members who agree to participate in the execution
of the workflow), who compare the task’s required time, location, and service
with their own capabilities and availability. If a worker finds a suitable task
solicitation, and would be willing to perform the task, it submits a bid on that
task to the coordinator. The bid includes information about how well the task fits
with that participant’s schedule, as well as the degree to which the participant
is specialized for the task in question. The coordinators uses this information
to select a best-suited worker to perform the task. Workers which provide fewer
services are preferred over hosts with a wider array of services, because attaching
a more generally capable host to a task removes a larger number of services from
the pool of available services to execute all of the tasks. Workers for whom the
task’s timing provides a tighter fit with their schedule are preferred because their
time is being used more efficiently. Workers also submit a deadline for a response
from the coordinator, based on their schedule.

The coordinator selects from among the bids received, and makes a provi-
sional task allocation to the participant whose bid best matches the selection cri-
terion. As new bids arrive, the provisional allocation is continually re-evaluated.
A final decision is made when (1) a minimum time period (either global, or
based upon travel time necessary to reach the location where the task must be
performed) before the task’s desired execution time is reached, or (2) the dead-
line given by the worker who has the current provisional allocation has arrived.
Thus, the coordinator waits as long as possible to assign a task to a worker in
order to obtain the best possible bid, but ensures that, once someone has been
found who can do a task, the task will certainly be allocated.

When a worker is allocated a task, it adds a commitment for that task to
its schedule. The worker begins the process of executing the task by acquiring
the necessary outputs of the preceding tasks. Because we assume a stable co-
ordinator, all task outputs can be routed through the coordinator for reliable
distribution to workers executing later tasks. Once the task has received suffi-
cient input values to satisfy its requirements, the worker invokes the appropriate

service and executes the task’s activity. When the activity is completed, the
worker in turn publishes the outputs of the task through the ad hoc network to
the coordinator for subsequent tasks to obtain.

This basic approach to allocation and execution can be extended to be more
distributed and dynamic, as was investigated in prior work [8]. The assumption
of a single coordinator during allocation was relaxed and the use of multiple co-
ordinators was investigated. The workflow can be subdivided amongst multiple
coordinators according to criteria such as temporal or spatial proximity, and the
coordinators can allocate their assigned tasks independently. The assumption
that the coordinator is always reachable was also relaxed. Instead using central-
ized communication, a publish / subscribe protocol for routing messages was
investigated. In this case, a participant issues subscriptions to the outputs of
preceding tasks and the published outputs of those preceding tasks are returned
to the host through the ad hoc network according to a scheme based on routing
identifiers derived by the coordinator from a topological ordering of the tasks in
the workflow. Both the number of coordinators and the routing mechanism used
were evaluated in order to understand the tradeoffs.

5 System Architecture

In this section we turn to the challenge of building a real system capable of
running on a physically mobile device, participating in a transient community
over an ad hoc wireless network, and responding to unpredictable circumstances
with the construction, allocation, and execution of an open workflow. We begin
by presenting our goals, our design principles, and then our resulting architecture
for an open workflow management system. We conclude with the status of our
current implementation.

As open workflows can potentially execute on and take advantage of mobile
devices with a great diversity of capabilities, our goal is a system that will
support the coordination and participation of a wide range of devices. Further,
we want to build a system robust enough and flexible enough to encourage rather
than hinder the changes and innovations of future research. Consideration of
these goals lead two the following two design principles.

First, the architecture should break apart the major responsibilities of the
system into independent components. Keeping the components independent al-
lows each host to provide only the components that are appropriate to the host’s
capabilities and to its involvement in each particular activity. While in general
it is expected that all hosts are peers and any host may be capable of fulfilling
any of the responsibilities in the system, this is not a requirement. For example,
highly constrained devices may only be able to provide one or two services and
may not be able to provide knowhow or construct a workflow. Keeping the ma-
jor responsibilities separate also allows the implementation of each component
to vary independently. Some component implementations can be common while
other components are customized to the requirements of a particular host. For

example, two hosts may share the same workflow construction component but
choose to maintain their schedules in different ways.

Second, the architecture should isolate and hide the highly variable details
of how communication between hosts is implemented by providing an abstract
communications layer. Passing messages through an intermediary ensures that
the components are decoupled and that all hosts are accessed uniformly. We do
not need to handle interaction with local components differently from interac-
tion with remote components. Using such a communications layer also allows the
interfaces between components to be kept simple and expressive of the intent
rather than be cluttered with details about the method of communication. The
communication layer translates the request to the form most appropriate to the
target host, and is free to use any transport, protocol, and caching scheme that
is compatible with the interface. The interfaces between components must be
written such that communication between the components has as little session
specific state as possible, which encourages robustness and gives the commu-
nications layer the most leeway in how it facilitates the communication. For
example, using a publish and subscribe style works well in many communication
scenarios because it defines a “request” that is durable in the face of dynamic
the appearance and disappearance of hosts on the network. Further, if session-
less communication methods are used, the system will never block waiting for a
particular host to reply and there is no dependence on the participation of any
particular host. When a communication interface can’t be completely session-
less, abstract events representing host arrival and departure can be passed from
the communications layer to the component to keep the component informed.

Based upon these design principles, we have identified the following major
responsibilities for the open workflow management system we are developing as
illustrated in Figure 7. We first observe that for a particular open workflow prob-
lem, one host acts as the coordinator while all hosts (including that coordinator)
may act as participants. We therefore split the system responsibilities into two
corresponding subsystems: the construction subsystem and the execution sub-
system. The construction subsystem is responsible for identifying the problem
to be solved, issuing queries to discover knowhow and capabilities, formulating
the plan of action, and assigning work. The execution subsystem is responsi-
ble for replying to knowhow and capability queries, accepting appropriate work
assignments, and actually doing the processing or communicating necessary to
complete the work.

We break the construction subsystem into the Workflow Initiator, the Work-
flow Manager, and the Auction Manager. The Workflow Initiator is responsible
for interacting with the user to define the trigger and goal conditions for the
new problem. The Workflow Manager is the core component of the construction
subsystem. The Workflow Manager creates and maintains a separate workspace
for each open workflow, allowing it to simultaneously work on multiple isolated
and independent problems. The Workflow Manager issues queries to discover
knowhow and capabilities, integrates the responses into the graph, and con-

Location

Schedule

Service

Execution

Fragment

Auction Participation

Service
Instances

UI

UI

UIUI

UI

Workflow
Initiator

Workflow

UI

UI
Workflow

Workspaces
Auction

Inter-service Messages

Execution Subsystem Construction Subsystem

Communications
Layer

Auction Messages

Fragment Messages

Service Feasibility Messages

Fig. 7. System Architecture

structs the open workflow. It then delegates to the Auction Manager the job of
allocating each task to a suitable host.

Separating the Workflow Initiator keeps the complexities of user interaction
out of the Workflow Manager. Similarly, the auction protocol is somewhat com-
plex and fairly orthogonal to the actual workflow construction, so we split out a
separate Auction Manager. Knowhow and capability queries are fairly simple in
our model, so the Workflow Manager delegates directly to the communication
layer. Any caching or other enhancements to knowhow queries can be treated
either as part of the communication layer, or an intermediate proxy component
can be introduced.

The responsibilities of the execution subsystem can be broken down into the
Fragment Manager, the Auction Participation Manager, the Schedule Manager,
the Execution Manager, and the Service Manager. The Fragment Manager is re-
sponsible for maintaining a host’s database of workflow fragments (its knowhow)
and responding to knowhow queries during workflow construction. The Auction
Participation Manager again encapsulates the interactional complexity and state
tracking needed for the host to bid in task auctions during the allocation phase.
The Schedule Manager is the keystone component of the execution subsystem.
It manages the host’s availability by tracking the host’s location, schedule, and
scheduling preferences. It maintains a database of all commitments, primarily
consisting of scheduled service invocations and their associated location and
travel time details, which is the key data structure for both allocation and ex-
ecution of an open workflow. The Schedule Manager also generates time based
and location based notifications (such as notifying a user that it is time to start
moving to a new location — important for helping the human participants in the

open workflow system keep their commitments). The Execution Manager moni-
tors the input message and time conditions required for each scheduled service
invocation during the execution phase. Once the necessary conditions are met,
it triggers service execution, and publishes any output messages. Finally, the
Service Manager maintains the list of services exposed by this host, responding
to capability queries from the Workflow Manager. It also provides a uniform
service invocation interface to the Execution Manager by handling parameter
marshaling and any other mechanics required to actually invoke a local service
during the execution phase.

The Fragment Manager is orthogonal to the rest of the execution subsystem.
The Auction Participation Manager is separated from the Schedule Manager
because it again encapsulates a fairly complex protocol. The managing of local
services is a well defined zone of responsibility appropriate for a single com-
ponent. The Execution Manager exists to pull the inter-service messaging and
condition monitoring responsibilities out of the Schedule Manager. The Schedule
Manager still has multiple responsibilities assigned to it, but these responsibil-
ities are thus more tightly interrelated. Simple hosts may find it convenient to
implement these responsibilities in a single component. For example, a minimal
host such as a remote sensing beacon might have limited to effectively nonexis-
tent mobility and very few service options. Such a host could have a scheduler
as simple as a bit array indicating which hours of the day the sensor should take
and report a measurement. A full featured host with a database of locations and
travel time, manually specified commitments, and manual intervention during
scheduling conflicts will probably choose to break the Schedule Manager down
into further subcomponents.

Each component we have described in the construction and execution sub-
systems makes a distinct and important contribution in moving an open work-
flow from the initial problem definition to an executed solution. The Schedule
Manager handles spatial-temporal information and constraints. The Fragment
Manager and Service Manager provide discovery of the knowhow and capabilities
available in the current environment. The auction components provide adaptive
allocation given these complex constraints. The communication layer abstracts
away the greatly varying reachability of hosts. The remaining few components
(the Workflow Initiator, Workflow Manager, and Execution Manager) provide
decoupling to make the architecture more robust and isolation to provide scala-
bility. The design of our architecture is deeply motivated by the challenges posed
by open workflows.

Our architecture permits multiple open workflows to be constructed and exe-
cuted concurrently within the same spatiotemporal context. The Workflow Man-
ager must maintain a separate workspace containing construction state informa-
tion for each open workflow. The remaining components (such as the Auction
Manager, Fragment Manager, Schedule Manager, etc.) act at task granularity
and thus handle two task-based requests from two separate workflows no differ-
ently than they handle two task-based requests from the same workflow. While
multiple workflows will necessarily compete for utilization of the same resources

(in the form of hosts, their capabilities, and other resources present in the en-
vironment), there is no impedance at an architectural level to constructing and
executing multiple open workflows.

Based upon this architecture, we have designed and implemented an initial
open workflow management system focused primarily on testing and simulation.
Our system is being evaluated and refined, but based informally on our experi-
ence so far the architecture appears sound. As our next step, we are working to
replace our simulation communications layer with a real ad hoc wireless network
communication layer and evaluate the otherwise identical system on real mobile
devices.

6 Related Work

In this paper, we have been focused on overcoming the challenges of bring-
ing workflows to transient communities connected by mobile ad hoc networks
and faced with unpredictable situations. Standard workflow management sys-
tems, such as ActiveBPEL [10], Oracle Workflow Engine [11], JBoss [12], and
BizTalk [13], are designed to work in fully wired environments, such as corporate
LANs or across the Internet. Reliance on centralized control and reliable commu-
nication mean such solutions cannot successfully operate under the constraints
of dynamic mobile environments.

Several workflow systems have been developed which extend the realms in
which workflows may operate. The work on federating separate execution engines
running independent workflows by Omicini, et al., [14] removes the requirement
for centralized control. Chafle, et al., [15], investigate decentralized orchestra-
tion of a single workflow by partitioning the workflow at build time and using
message passing at run time. Both approaches still assume reliable communica-
tion and a fixed group of participants. MoCA [16] uses proxies for distributed
control and has some design features that support mobile environments while
Exotica/FDMC [17] describes a scheme to handle disconnected mobile hosts.
In AWA/PDA [18], the authors adopt a mobile agent based approach based on
the GRASSHOPPER agent system. WORKPAD [19] is designed to meet the
challenges of collaboration in a peer-to-peer MANET involving multiple human
users, however WORKPAD retains the requirement that at least one member of
the MANET be connected with a central coordinating entity that orchestrates
the workflow and shoulders any heavy computational loads. Sliver [7] brings
a full BPEL execution engine to a single cell phone, however that phone still
acts as the sole coordinator. Finally, CiAN [8] presents a workflow management
system which eliminates the need for a central arbiter by distributing not only
service execution but also the task allocation problem across multiple hosts.

While our system builds upon CiAN’s model of distributed workflow alloca-
tion and execution, all these assume that a thoughtfully designed and fully spec-
ified workflow already exists. Open workflows are designed for settings where
the availability of resources and the range of responses demanded by chang-

ing circumstances cannot be anticipated. The workflow to be executed must be
generated on the fly to match the present situation.

The automatic composition of services has been explored using a variety of AI
planing engines, including Golog [20], Workflow Prolog [21], and PDDL [22]. A
review of further automated service composition methods may be found in [23].
Ponnekanti and Fox create workflows by rule-based chaining in SWORD [6], and
point out that the resulting workflows may not produce the desired results if the
preconditons and postconditions of each task are not sufficiently specified. Fan-
techi and Najm [24] present an approach for ensuring correct service composition
by using a more detailed formal specification of the service behavior. While the
initial open workflow construction algorithm we present is a simplification of the
powerful techniques presented in these papers, it also addresses a new problem
specific in the mobile ad hoc environment. All these systems assume that the
knowledge base from which to build the workflow already exists. We have built
upon their work by showing how to construct both the knowledge base and the
derived workflow on the fly based on the knowhow and capabilities available
within the community.

7 Conclusions

In this paper we introduced the open workflow paradigm and presented a first al-
gorithm for constructing open workflows in ad hoc wireless mobile environments.
An architecture supporting open workflow creation, allocation and execution has
been proposed and a first instantiation of this architecture has been built.

The approach is novel and makes possible the development of new classes of
applications that are designed to exploit community knowledge in solving real
world problems that arise unexpectedly and can be addressed only through the
coordinated exploitation of capabilities distributed among the members of the
community. The open workflow paradigm presents our research community with
significant new challenges in the technical, system, and application domains. The
work presented in this paper is only the first step towards characterizing and
addressing these concerns.

We have demonstrated the feasibility of building an open workflow frame-
work. While high impact practical solutions will require both further refinements
and the shaping of the paradigm to the needs of each particular application
domain, the more abstract formulation of the problem presented here opens in-
teresting opportunities for formal studies complementing the system design and
evaluation efforts.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

2. OASIS: Web Services Business Process Execution Language Version 2.0. http:

//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (April 2007)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow lan-
guage. Information Systems 30(4) (2005) 245–275

4. Swenson, K.D., Pradhan, S., Gilger, M.D.: WfXML 2.0: XML based protocol for
run-time integration of process engines. http://www.wfmc.org/standards/docs/

WfXML20-200410c.pdf (October 2004)

5. Thatte, S.: XLANG: Web services for business process design. http://www.

gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm (2001)

6. Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service composi-
tion. In: Proceedings of the 11th World Wide Web Conference, Honolulu, Hawaii,
USA (May 2002)

7. Hackmann, G., et al.: Sliver: A BPEL workflow process execution engine for mobile
devices. In: LNCS. Volume 4294. (2006) 503–508

8. Sen, R., Roman, G.C., Gill, C.D.: CiAN: A workflow engine for MANETs. [25]
280–295

9. Handorean, R., Gill, C.D., Roman, G.C.: Accommodating transient connectivity
in ad hoc and mobile settings. In Ferscha, A., Mattern, F., eds.: Pervasive. Volume
3001 of Lecture Notes in Computer Science., Springer (2004) 305–322

10. Active-Endpoints: ActiveBPEL engine. http://www.active-endpoints.com/

active-bpel-engine-overview.htm

11. Oracle Inc.: Oracle workflow. http://www.oracle.com/technology/products/

integration/workflow/workflow_fov.html

12. JBoss Labs: JBoss application server. http://www.jboss.com/docs/index

13. Microsoft Corp.: The BizTalk server. http://www.microsoft.com/biztalk/

14. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordi-
nation artifacts. In Ciancarini, P., Wiklicky, H., eds.: COORDINATION. Volume
4038 of Lecture Notes in Computer Science., Springer (2006) 228–246

15. Chafle, G., Chandra, S., Mann, V., Nanda, M.G.: Decentralized orchestration of
composite web services. In: Proc. of the 13th Intl. WWW Conference. (2004)
134–143

16. Sacramento, V., et al.: An architecture supporting the development of collaborative
applications for mobile users. In: Proc. of WETICE ’04. (2004) 109–114

17. Alonso, G., Gunthor, R., Kamath, M., Agrawal, D., Abbadi, A.E., Mohan, C.: Ex-
otica/FDMC: A workflow management system for mobile and disconnected clients.
Parallel and Distributed Databases 4(3) (1996)

18. Stormer, H., Knorr, K.: PDA- and agent-based execution of workflow tasks. In:
Proceedings of Informatik 2001. (2001) 968–973

19. Mecella, M., Angelaccio, M., Krek, A., Catarci, T., Buttarazzi, B., Dustdar, S.:
WORKPAD: an adaptive peer-to-peer software infrastructure for supporting col-
laborative work of human operators in emergency/disaster scenarios. Collaborative
Technologies and Systems, International Symposium on 0 (2006) 173–180

20. McIlraith, S., Son, T.C.: Adapting golog for composition of semantic web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning(KR2002). (2002) 482–493

21. Gregory, S., Paschali, M.: A prolog-based language for workflow programming. In
Murphy, A.L., Vitek, J., eds.: COORDINATION. Volume 4467 of Lecture Notes
in Computer Science., Springer (2007) 56–75

22. McDermott, D.: Estimated-regression planning for interactions with web services.
In: Proceedings of the 6th International Conference on AI Planning and Scheduling,
AAAI Press (2002) 204–211

23. Rao, J., Su, X.: A survey of automated web service composition methods. In: In
Proceedings of the First International Workshop on Semantic Web Services and
Web Process Composition, SWSWPC 2004, Springer-Verlag (2004) 43–54

24. Fantechi, A., Najm, E.: Session types for orchestration charts. [25] 117–134
25. Lea, D., Zavattaro, G., eds.: Coordination Models and Languages, 10th Interna-

tional Conference, COORDINATION 2008, Oslo, Norway, June 4-6, 2008. Proceed-
ings. In Lea, D., Zavattaro, G., eds.: COORDINATION. Volume 5052 of Lecture
Notes in Computer Science., Springer (2008)

	Achieving Coordination Through Dynamic Construction of Open Workflows ** PLEASE SEE WUCSE-2009-14 **
	Recommended Citation
	Achieving Coordination Through Dynamic Construction of Open Workflows ** PLEASE SEE WUCSE-2009-14 **

	tmp.1415131658.pdf.yvmkN

