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Abstract

This Dissertation explores the physics underlying the propagation of ultrasonic

waves in bone and in heart tissue through the use of Bayesian probability theory.

Quantitative ultrasound is a noninvasive modality used for clinical detection, char-

acterization, and evaluation of bone quality and cardiovascular disease. Approaches

that extend the state of knowledge of the physics underpinning the interaction of

ultrasound with inherently inhomogeneous and isotropic tissue have the potential to

enhance its clinical utility.

Simulations of fast and slow compressional wave propagation in cancellous bone

were carried out to demonstrate the plausibility of a proposed explanation for the

widely reported anomalous negative dispersion in cancellous bone. The results showed

that negative dispersion could arise from analysis that proceeded under the assump-

tion that the data consist of only a single ultrasonic wave, when in fact two overlapping

and interfering waves are present.

The confounding effect of overlapping fast and slow waves was addressed by apply-

ing Bayesian parameter estimation to simulated data, to experimental data acquired

on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The

ii



Bayesian approach successfully estimated the properties of the individual fast and

slow waves even when they strongly overlapped in the acquired data.

The Bayesian parameter estimation technique was further applied to an investi-

gation of the anisotropy of ultrasonic properties in cancellous bone. The degree to

which fast and slow waves overlap is partially determined by the angle of insonation

of ultrasound relative to the predominant direction of trabecular orientation. In the

past, studies of anisotropy have been limited by interference between fast and slow

waves over a portion of the range of insonation angles. Bayesian analysis estimated

attenuation, velocity, and amplitude parameters over the entire range of insonation

angles, allowing a more complete characterization of anisotropy.

A novel piecewise linear model for the cyclic variation of ultrasonic backscatter

from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes

patients and 43 normal control subjects were constructed using Bayesian parameter

estimation. Parameters determined from the model, specifically rise time and slew

rate, were found to be more reliable in differentiating between subject groups than

the previously employed magnitude parameter.
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Chapter 1

Introduction

1.1 Background and Motivation

The broad theme of this Dissertation is the application of Bayesian probability

theory to the physics underlying ultrasonic wave propagation in bone and heart tissue.

Ultrasound is a modality that is well-suited for characterizing tissue because of its

sensitivity to the mechanical properties of the medium in which it propagates. Con-

sequently, analyses of ultrasonic data acquired on tissue may provide a non-invasive

way to highlight subtle abnormalities before they are manifested symptomatically.

An improved understanding of the physics underlying the propagation of ultrasonic

waves in biological tissues can therefore lead to an improved ability detect, charac-

terize, and diagnose pathologies. Specific pathologies pertinent to this Dissertation

are osteoporosis and type 2 diabetes.
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1.1 Background and Motivation

Osteoporosis is a disease characterized by a decrease in bone mass and an over-

all deterioration of bone structure, leading to increased fracture risk. Quantitative

ultrasound is a tool for identifying the changes in bone quality that appear as the

disease progresses (Njeh et al., 1999; Hans et al., 1999; Hans and Krieg, 2008; Bon-

nick, 2004). However, despite its potential advantages over X-ray based methods

(described in Chapter 2), ultrasound has not proven to be superior to X-ray-based

measurements of bone density. An incomplete understanding of the physics of ultra-

sonic wave propagation in bone may be a partial explanation for this failure of bone

sonometry to live up to its clinical potential. In particular, an apparent conflict exists

between measured phase velocities in cancellous bone and the dispersion predicted

by the Kramers-Kronig relations (Waters and Hoffmeister, 2005; Wear, 2007). A por-

tion of this Dissertation is dedicated to a proposed explanation for this phenomenon,

and applying Bayesian methods to ultrasonic data acquired on bone to overcome the

consequences of the apparent contradiction.

Type 2 diabetes is a risk factor for cardiovascular disease, including diabetic car-

diomyopathy (Fang et al., 2004; Hamby et al., 1974; Kannel et al., 1974; Rijzewijk

et al., 2008; Witteles and Fowler, 2008). Previous studies have indicated that param-

eters derived from analysis of the cyclic variation of backscatter from myocardium

over the heart cycle could be early indicators of diabetic cardiomyopathy (Gibson

et al., 2009; Pérez et al., 1992; Wagner et al., 1995). A goal of this Dissertation is

to extend such analyses by invoking a novel method for modeling cyclic variation of

backscatter so that parameters potentially more sensitive to diastolic dysfunction can
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1.2 Overview of the Dissertation

be examined. Bayesian probability theory is used to estimate the model parameters.

1.2 Overview of the Dissertation

The first portion of this Dissertation is focussed on ultrasonic wave propagation

in cancellous bone, especially the relationships between dispersion and the frequency

dependence of the attenuation coefficient. Chapter 2 provides a more extensive back-

ground on osteoporosis and bone ultrasonography, as well as an overview of studies

of negative dispersion and multiple-mode wave propagation in cancellous bone.

The discussion of dispersion in bone is continued in Chapter 3, where simulated

wave propagation is used to show that the negative dispersion observed in bone by

many investigators can arise when data composed of multiple interfering compres-

sional wave modes is analyzed as if only one wave is present.

Chapter 4 is a summary of Bayesian probability theory and the Markov chain

Monte Carlo methods used in later chapters. The calculations used for Bayesian

parameter estimation are presented, along with explanations of simulated annealing

and nested sampling algorithms.

In Chapter 5, Bayesian probability theory is applied to simulated data, to data

acquired on bone-mimicking phantoms, and to data acquired on excised cancellous

bone specimens. Parameters that characterize frequency-independent signal loss, at-

tenuation coefficient, and speed of sound for interfering fast and slow waves present

in the data are estimated. Results suggest that data analyzed in this manner might

3



1.2 Overview of the Dissertation

aid in eliminating artifacts in conventionally obtained phase velocity measurements.

A further application and extension of the methods used in Chapter 5 is pre-

sented in Chapter 6. The anisotropic structure of cancellous bone results in ultra-

sonic properties that also exhibit anisotropy. However, measurements exhibiting this

anisotropy often cannot be carried out because of significant overlap between fast and

slow waves. Bayesian analysis is applied to such data in an effort to fully characterize

the anisotropy of several ultrasonic parameters in bovine femur.

Chapter 7 presents an application of Bayesian parameter estimation to a novel

model of cyclic variation of myocardial backscatter in type 2 diabetes patients. Pa-

rameters derived from the model appear to provide improved approaches for identi-

fying hearts at potentially greater risk.

Chapter 8 contains a summary and concluding remarks.
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Chapter 2

Clinical Applications of

Ultrasonic Wave Propagation in

Bone

2.1 Preface

This Chapter contains an overview of bone anatomy and bone physiology, and

osteoporosis. The relevance of quantitative ultrasound to the diagnosis and monitor-

ing of osteoporosis, as well as improvements that may be achieved through a greater

understanding of ultrasonic wave propagation in bone, are also discussed.
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2.2 Introduction

2.2 Introduction

2.2.1 Bone anatomy and physiology

Bone is living tissue that provides bodily structure and support. There are two

bone tissue types that are primarily important to clinical ultrasound applications.

The first is cortical bone, also known as compact bone, a relatively solid material

that comprises the exterior shell of bones. The second is cancellous or trabecular

bone, a highly porous material found primarily in bone interiors, especially in the

spine, hip, heel, wrist, and at the the ends of long bones. These two tissue types

have remarkably different architectures and mechanical properties. Cortical bone has

an intricate microstructure of tiny canals and tunnels through which the circulatory

and lymphatic system distribute nutrients, but the porosity is generally low enough,

about 4-10 percent (Laval-Jeantet et al., 1983), that cortical bone can be assumed

to be a homogeneous and isotropic solid for typical clinical ultrasound frequencies

(∼200-1000 kHz). In contrast, cancellous bone is a complex lattice-like structure

composed of hard rod-shaped and plate-shaped elements (trabeculae) interspersed

with soft bone marrow. The porosity of human cancellous bone ranges from 60

percent to above 95 percent (Hodgskinson et al., 1996; Wear, 2005; Lee et al., 2003;

Hosokawa and Otani, 1998). Typical trabeculae can range from approximately 50-

170 µm in thickness and are spaced 700-2000 µm apart (Thomsen et al., 2002; Ulrich

et al., 1999). An example of cancellous bone is shown in the sagittal cross section of

an excised human calcaneus (heel bone) specimen displayed in Fig. 2.1. The bone
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2.2 Introduction

marrow has been removed, exposing the trabecular network (cancellous bone) that

dominates the interior. A thin outer boundary of cortical bone and overlying soft

tissue are also visible.

Bone structure is continuously influenced by remodeling, a process in which old

cancellous bone is discarded and replaced (Njeh et al., 1999; Manolagas and Jilka,

1995; Parfitt, 1994). Remodeling is a complex process regulated by several hormones

and growth factors (Manolagas and Jilka, 1995; Canalis et al., 1988). Briefly, the re-

modeling process occurs as specialized cells known as osteoclasts resorb the bone ma-

trix at discrete micro-damaged sites. The cavity left by resorption is then filled with

replacement osteoid (collagen and other proteins) by other cells called osteoblasts,

eventually leading to full remineralization. In healthy bone, a dynamic balance is

maintained between osteoclast and osteoblast activity such that the volume fraction

of bone is approximately constant on a global scale. Although the remodeling process

is fundamentally the same in both cancellous and cortical bone, cancellous bone has a

higher rate of turnover; approximately 25 percent of cancellous bone is resorbed and

replaced annually in healthy adults, compared to approximately 3 percent of cortical

bone (Manolagas and Jilka, 1995).

2.2.2 Osteoporosis

A negative imbalance in remodeling (more resorption than formation) results in

a net bone loss. The bone loss results in thinner trabeculae and fewer trabecular

connections in cancellous bone, and thinner and more porous cortical bone. Over
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2.2 Introduction

Cancellous Bone

Soft Tissue

Cortical Shell

1 cm

Figure 2.1: A sagittal cross section of an ex vivo human calcaneus (heel bone)
specimen harvested from a cadaver donor. The bone marrow that normally fills the
porous spaces within the cancellous bone has been removed. The complex trabecular
structure of cancellous bone is surrounded by a thin layer of cortical bone and a
residual amount of soft tissue. (Photo by Christian C. Anderson)
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2.2 Introduction

time, the degradation of bone quality leads to compromised skeletal strength and an

increased risk of fragility-related fracture, especially at sites dominated by cancellous

bone, such as the spine, hip, and wrist. This condition is a disease known as osteo-

porosis (WHO, 2004; NIH, 2001). Osteoporosis is a serious condition that currently

affects over 10 million Americans, and the number of people at risk continues to rise

as the population ages. Osteoporotic fractures are associated with high degrees of

morbidity and mortality. Approximately one-fourth of subjects that suffer a hip frac-

ture die within a year of the event due to resulting complications, and about one-half

of those that remain are unable to live independently (Hans and Krieg, 2008; Langton

and Njeh, 2008).

There are no current accurate explicit measures of in vivo bone strength. The

current clinical gold standard for assessment of bone quality is bone mineral den-

sity (BMD), an X-ray based metric that provides a measure of the amount of bone

present within a projected area, and hence acts as a proxy measure of bone strength

(Cummings and Black, 1995; Johnell et al., 2005; Kanis, 2002; Kanis et al., 2007).

BMD is measured by Dual Energy X-ray Absorptiometry (DEXA), a technique in

which X-rays with two distinct energy peaks are used to distinguish calcified bone

tissue from soft tissue in an areal projection (Bonnick, 2004). DEXA measurements

are typically made at the hip and spine using large devices. These machine generally

consist of a table for the subject to lie on combined with a scanning arm and some

apparatus for X-ray generation, detection, and analysis.

The World Heath Organization (WHO) has defined categories for bone quality
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2.3 Quantitative ultrasound

based on BMD relative to a reference population of young, healthy, white women

(WHO, 1994; Kanis, 1994, 2002). The WHO committee responsible for these classi-

fications did not have enough data to designate appropriate definitions for men and

other ethnic groups. Osteopenia is defined as a BMD one standard deviation below

the mean of the reference population, and osteoporosis is defined as a BMD more

than 2.5 standard deviations below the mean. Severe or established osteoporosis

is defined as osteoporosis in conjunction with a fragility fracture. Thus, by defini-

tion, approximately 15% of young white women have osteopenia, and approximately

0.6% have osteoporosis. Conventionally, the number of standard deviations below the

mean of the reference population is reported as a T-score; thus, a T-score between

-1 and -2.5 is classified as osteopenic, and a T-score less than or equal to -2.5 is

osteoporotic (NIH, 2001; Kanis, 2002). An approximate histogram of bone mineral

density for young white women (i.e., the reference population) is shown in Fig. 2.2.

The osteopenic range of BMD is shaded gray, and the osteoporotic range is shaded

black.

2.3 Quantitative ultrasound

An alternative modality for evaluating bone quality is quantitative ultrasound,

often abbreviated QUS (Njeh et al., 1999; Hans and Krieg, 2008; Hans et al., 1996;

Bonnick, 2004; Garnero et al., 1998). This method typically involves the transmis-

sion of ultrasonic waves along a surface of cortical bone, or through cancellous bone
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Normal

Osteoporosis

Osteopenia

Figure 2.2: Diagnostic classification categories for bone quality based on bone
mineral density (BMD) as defined by the World Health Organization. The normal
distribution is an approximation of a histogram of bone mineral density for young
white women; the abscissa indicates the number of standard deviations from the mean,
or T-score. A BMD measurement between 1 and 2.5 standard deviations below the
mean is defined as osteopenia (shaded gray region); a BMD lower than 2.5 standard
deviations below the mean is defined as osteoporosis (shaded black region).
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2.3 Quantitative ultrasound

located at a peripheral skeletal site, such as the calcaneus (heel) bone. The pri-

mary wave phenomena of interest are signal velocity and attenuation. Ultrasound

velocity is usually calculated using time-of-flight measurements through a sample of

known or assumed thickness, and is reported in the research literature and by clinical

devices as speed of sound (SOS) (Barkmann et al., 2008; Goossens et al., 2008; at

et al., 2005; Strelitzki et al., 1997; Wear, 2007a). Attenuation is usually expressed as

the slope of a linear fit to the frequency-dependent signal loss, a parameter known

as “Broadband Ultrasound Attenuation” (BUA) (Langton et al., 1984; Langton and

Njeh, 2008; Langton and Hodgskinson, 1997; Petley et al., 1995; Strelitzki et al., 1999;

Wear, 2008). Occasionally, BUA is normalized by the bone thickness, in which case

the parameter reported is “normalized Broadband Ultrasonic Attenuation” (nBUA).

Clinical bone sonometry devices often combine velocity and BUA measurements into

a single index of bone quality, but these indeces vary across manufacturers (Bonnick,

2004). Bone sonometers enjoy some advantages over DEXA devices due to their high

portability, relatively low cost, and zero risk of exposure to ionizing radiation. How-

ever, quantitative ultrasound suffers from an inability to directly measure sites of

particular importance to osteoporotic fracture risk, the spine and hip. The locations

of these bones make non-invasive transmission measurements difficult due to the large

amounts of nearby overlying soft tissue, and their irregular surfaces generate compli-

cations involving scattering and refraction. Transmission bone sonometry therefore is

typically performed at peripheral sites, especially the heel bone, under the assumption

that osteoporosis is a systemic disease and should present at peripheral sits as well as
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at the hip and spine. Devices designed for heel ultrasonography consist of a housing

for the subject’s foot and heel to rest, with a transmitting transducer and a receiving

transducer on either side of the heel. A typical image of such a device, the General

Electric (GE) Achilles InsightTM (General Electric Medical Systems, Waukesha, WI,

USA) is shown in Fig. 2.3. In the Achilles InsightTM, the receiver is a two-dimensional

array of transducer elements. A broadband signal is propagated through the heel,

and velocity and BUA measurements are made by comparing the acquired signal to

a stored reference waveform via time-of-flight measurement and a log spectral sub-

traction algorithm, respectively. The velocity and BUA results are combined into a

proprietary index of bone quality and displayed to the user. Overall, the body of

evidence from studies indicates that heel quantitative ultrasound is approximately as

reliable as DEXA for predicting hip and spine fracture (Hans and Krieg, 2008).

Ultrasound modalities should, in theory, provide more information about bone

quality than DEXA due to its greater sensitivity to physical properties. DEXA mea-

sures areal bone content, but does not provide direct measurements of resistance to

fracure (e.g., elasticity). In contrast, the velocity of an acoustic wave has a physical

relationship to both density and elasticity of the medium in which it propagates,

namely

v =

√
E

ρ
, (2.1)

where v is velocity, E is elastic modulus, and ρ is mass density. Despite this theoretical

advantage, quantitative ultrasound has not yet reached its full clinical potential. The

ability of ultrasound to predict fractures approaches or equals the that of DEXA
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LCD Screen

Transducer Housings

Calf StabilizerFoot Rest

Figure 2.3: An image of the General Electric Achilles InsightTM device used for
heel quantitative ultrasound. The subject’s foot is placed in the device such that
the heel is oriented between the two transducer housings, and ultrasonic signals are
propagated through the calcaneus bone. Configuration settings and results of the test
are displayed on the LCD screen. (Photo by Christian C. Anderson)
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instead of surpassing it, and DEXA remains the clinical gold standard. Moreover,

although studies of ultrasonic wave propagation in bone date to at least the 1970s,

the phenomenon remains incompletely understood, and an improved understanding

of the physics involved may lead to better clinical diagnostic performance. For this

reason, ultrasonic wave propagation in bone is an active research area.

2.4 Ultrasonic phase velocity in bone

In the context of ultrasonic wave propagation in bone, phase velocity and disper-

sion are particular areas of interest. Along with other frequency-dependent effects,

such as attenuation and phase cancellation at the face of a phase sensitive piezoelec-

tric receiver, dispersion is known to influence measurements of group velocity such as

those made by clinical ultrasound devices (Wear, 2009b, 2007a; Häıat et al., 2006).

Such effects cause the received signal to be markedly different from the transmitted

signal, complicating time-of-flight measurements used in group velocity calculation.

In addition, reporting only the group velocity excludes any information about bone

quality that might be inferred from the dispersion itself. Thus, a better understand-

ing of phase velocity might aid in addressing frequency-dependent sources of error in

group velocity measurements, as well as provide additional diagnostic criteria.

Dispersion is not believed to be incorporated into any clinical device technology;

the current literature consists almost exclusively of in vitro studies, although at least

one in vivo study exists (Wear, 2007b). Phase velocity is typically calculated by
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2.4 Ultrasonic phase velocity in bone

comparing the unwrapped phase of a signal transmitted through bone to that of a

signal that has propagated through a non-dispersive reference medium, such as water.

Using this phase spectroscopy approach, the phase velocity is given by

vp(f) = vh

[
1− vh

d

∆φ(f)

2πf

]−1

, (2.2)

where vp(f) is the phase velocity at frequency f , vh is the velocity in the host medium,

d is the sample thickness, and ∆φ(f) is the difference in phase between the two signal

spectra.

Despite the straightforward nature of computing phase velocity, its use in practice

is complicated by a poor understanding of the physics that give rise to the dispersion

observed in cancellous bone. One notable example is the conflict between experimen-

tally observed dispersions and dispersions predicted by the Kramers-Kronig relations.

2.4.1 Negative dispersion

The Kramers-Kronig (KK) relations mathematically connect the real and imagi-

nary parts of causal and square-integrable transfer functions, and can be applied to

the complex wave number in ultrasonic wave propagation. The result is that phase

velocity c(f) can be derived from knowledge of the attenuation coefficient α(f) and

vice versa. The so-called nearly-local approximation to the integral acoustic Kramers-

Kronig relations is given by (O’Donnell et al., 1981; Waters et al., 2003, 2005; Mobley

et al., 2005)

α(f)− α(f0) ≈ −
π

2
(2πf)2 d

df

(
1

c(f)

)
. (2.3)
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This approximation has been shown to be valid for media with an attenuation coef-

ficient that increases linearly with frequency; that is,

α(f) = βf, (2.4)

where β is the slope of the attenuation coefficient. The parameter β is analogous to

normalized Broadband Ultrasound Attenuation in the bone sonometry community.

In cases of small dispersion, Eq. (2.3) can be further simplified to

c(f) ≈ c(f0) +
1

π2
c(f0)

2β ln

(
f

f0

)
, (2.5)

where f0 is a chosen reference frequency. Thus, for media that exhibit a linear relation-

ship between attenuation and phase velocity, the dispersion is predicted to increase

logarithmically; that is, the dispersion is expected to be positive. The attenuation

coefficient of cancellous bone is well established to have a linear dependence on fre-

quency; the reliance on BUA as a clinically relevant parameter testifies to this fact.

Nevertheless, many studies of cancellous bone have found that phase velocity de-

creases with increasing frequency, a phenomenon first described by our Laboratory as

anomalous negative dispersion (Droin et al., 1998; Wear, 2005, 2007b, 2009a; Häıat

et al., 2006; Marutyan et al., 2006; Pakula et al., 2009). An illustration of the incon-

sistency between the Kramers-Kronig predictions and experimental measurements is

depicted in Fig. 2.4, where attenuation coefficient and phase velocity measurements

for a human calcaneus specimen prepared in our Laboratory are displayed. The

attenuation coefficient (Panel A) rises linearly with frequency over the experimen-

tal bandwidth. The dispersion predicted by the Kramers-Kronig relations using the
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2.4 Ultrasonic phase velocity in bone

attenuation coefficient (Panel B, gray line) has a markedly different frequency depen-

dence from the measured dispersion (Panel B, black circles). It is on this basis of

results such as these that negative dispersion in bone is referred to as “anomalous”.

2.4.2 Theoretical explanations for negative dispersion

The apparent contradiction between the Kramers-Kronig relations and experimen-

tal measurements has led to several proposals to resolve the conflict. As yet, there

is no consensus on which, if any, of the proposed solutions contribute significantly to

the observed effect. One approach is to modify or extend the way that the Kramers-

Kronig relations apply to data acquired on cancellous bone. Waters and Hoffmeister

(2005) suggested an extension of the Kramers-Kronig relations using the method of

subtractions. The twice-subtracted Kramers-Kronig relations can predict negative

dispersion, but this technique requires the introduction of additional adjustable pa-

rameters into the formalism. The physical role of the additional parameters is unclear.

Other approaches involve more sophisticated physical theories of ultrasonic wave

propagation in porous media to predict negative dispersion. Häıat et al. showed that

multiple scattering from trabeculae coupled with absorption mechanisms could result

in negative dispersion (Häıat et al., 2008a), and Chakraborty suggested a non-local

modification to the widely-used Biot theory for wave propagation in poroelastic media

that also predicts a decrease in phase velocity with frequency (Chakraborty, 2008).

Still another explanation, described in detail in this Dissertation, is that negative

dispersion can result from analyzing data acquired on cancellous bone as if only one
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Dispersion Predicted 

by KK relations

Measured

Dispersion

A.

B.

Figure 2.4: Attenuation coefficient (Panel A) and phase velocity (Panel B) as
for an excised human calcaneus specimen. Measurements were performed in the
Laboratory for Ultrasonics. The attenuation coefficient is approximately linear with
frequency. According to the Kramers-Kronig relations, the phase velocity should
rise logarithmically with frequency (gray curve); however, the measured dispersion is
negative (black circles).
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compressional wave is present, when in fact multiple overlapping waves comprise the

acquired signal (Marutyan et al., 2006; Anderson et al., 2008). More information on

this proposal is given in the following section and in Chapter 3.

2.4.3 Fast and slow compressional waves in bone

Multiple compressional acoustic wave modes have been known to propagate in

porous media for several decades. The theory of Biot was formulated in the early

1950s in a geophysical context to describe acoustic wave propagation in fluid-saturated

porous rock (Biot, 1956a,b). The theory predicts the existence of two compressional

waves, which Biot referred to as a “wave of the first kind” and a “wave of the second

kind” but have in recent times often been referred to as “fast” and “slow”. Biot theory

was first applied to cancellous bone by McKelvie and Palmer (McKelvie and Palmer,

1991), and has since been used extensively to model bone (Pakula et al., 2008; Sebaa

et al., 2008; Fellah et al., 2008; Wear et al., 2005; Haire and Langton, 1999; Hosokawa

and Otani, 1998; Williams, 1992). A modified Biot-Attenborough (MBA) model has

also been developed for a medium with cylindrical pores and applied to bone (Lee

et al., 2003, 2007). Mathematical details of Biot theory and the MBA model are

presented in Chapter 3.

Schoenberg introduced an alternative theory applicable to a periodic layered fluid-

solid structure (Schoenberg, 1984; Plona et al., 1987). This theory also predicts the

existence of two compressional waves, and has also been shown to predict negative

dispersion (Wear, 2001). Schoenberg theory has been successfully applied to cancel-
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2.4 Ultrasonic phase velocity in bone

lous bone independently and in conjunction with Biot theory (Hughes et al., 1999;

Wear, 2001; Hughes et al., 2007; Lee et al., 2007), but the ability to accurately model

the complex architecture of cancellous bone as a rigorous periodic layered structure

is somewhat limited for most experimental circumstances.

Fast and slow waves were first observed in cortical bone by Lakes et al. (1983).

Subsequently, fast and slow waves were reported in transmission studies of cancellous

bone by Hosokawa and Otani (1997) and later by other investigators (Mizuno et al.,

2009; Häıat et al., 2008b; Padilla and Laugier, 2000; Lee et al., 2007). In some

experiments, the fast and slow waves are separated in time and are individually

discernible in the acquired signal. In other cases, the two waves overlap in the time-

domain data. The consequences of overlapping fast and slow waves to calculations of

phase velocity are discussed in the following Chapter.
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Chapter 3

The Effect of Interfering Fast

and Slow Waves on Dispersion in

Cancellous Bone

3.1 Preface

This Chapter is based on the peer-reviewed journal article “Interference between

wave modes may contribute to the apparent negative dispersion observed in cancellous

bone” written by Christian C. Anderson, Karen R. Marutyan, Mark R. Holland, Keith

A. Wear, and James G. Miller and published in The Journal of the Acoustical Society

of America, Vol. 124, No. 3, pp. 1781-89.

30



3.2 Abstract

3.2 Abstract

Previous work has shown that ultrasonic waves propagating through cancellous

bone often exhibit a linear-with-frequency attenuation coefficient, but a decrease

in phase velocity with frequency (negative dispersion) that is inconsistent with the

causality-imposed Kramers-Kronig relations. In the current study, interfering wave

modes similar to those observed in bone are shown to potentially contribute to the

observed negative dispersion. Biot theory, the Modified Biot-Attenborogh model,

and experimental results are used to aid in simulating multiple-mode wave propaga-

tion through cancellous bone. Simulations entail constructing individual wave modes

exhibiting a positive dispersion using plausible velocities and amplitudes, and then

summing the individual modes to create mixed-mode output waveforms. Results of

the simulations indicate that mixed-mode waveforms can exhibit negative dispersion

when analyzed conventionally under the assumption that only one wave is present,

even when the individual interfering waves exhibit positive dispersions in accordance

with the Kramers-Kronig relations. Furthermore, negative dispersion is observed

when little or no visual evidence of interference exists in the time-domian data. Un-

derstanding the mechanisms responsible for the observed negative dispersion could

aid in determining the true material properties of cancellous bone, as opposed to the

apparent properties measured using conventional data analysis techniques.
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3.3 Introduction

There is considerable interest in the use of ultrasound to evaluate bone quality,

with investigations of cancellous (trabecular) bone playing a prominent role. Cancel-

lous bone consists of a network of (hard) calcified strands (trabeculae) through which

courses (soft) bone marrow. Methods for characterizing bone tissue using ultrasound

often consist of measurements of the velocity and attenuation properties of ultrasonic

waves transmitted through the trabecular network (Droin et al., 1998; Wear, 2000;

Hoffmeister et al., 2000; Wear, 2007; Apostolopoulos and Deligianni, 2008).

The intricate structure of cancellous bone tissue can complicate measurements.

The material architecture is anisotropic, with the trabeculae predominantly oriented

along the direction of stresses experienced by the bone. Consequently, acquired ultra-

sonic data depend on the angle of insonification relative to the predominant trabeular

orientation (Hosokawa and Otani, 1998; Lee et al., 2007a; Hughes et al., 2007). A

large number of ultrasonic investigations of cancellous bone reported in the literature

are performed on bovine leg bones or on human calcanei. In bovine leg bones, insoni-

fication is approximately perpendicular to the trabeculae in the medial-lateral (ML)

and anterior-posterior (AP) directions, and approximately parallel in the superior-

inferior (SI) direction. Human calcanei are typically insonified in the ML direction,

corresponding to the perpendicular orientation.

The porous structure of cancellous bone supports the propagation of two com-

pressional ultrasonic waves, often denoted as a fast wave and a slow wave (Hosokawa
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and Otani, 1998; Padilla and Laugier, 2000; Lee et al., 2003). Depending on exper-

imental circumstances, such as the porosity and thickness of the bone sample and

the insonification angle relative to the predominant trabecular orientation, the two

waves are sometimes separate and visibly distinct in the time-domain radiofrequency

(RF) data; in other instances, only one wave is observed. One possible contributing

factor for the observation of a single wave in certain cases is that the difference in

the arrival times of the fast and slow waves is small compared to the temporal extent

of the ultrasonic pulse, resulting in an RF trace that appears to be that of a single

wave but is in fact the sum of interfering fast and slow waves. In their investigations

of anisotropy in bovine cancellous bone, Hosokawa and Otani noted that the prop-

agation speeds of the fast and slow waves converge as the incident ultrasonic field

becomes aligned perpendicular to the predominant trabecular orientation, resulting

in overlap of the fast and slow waves in the received RF trace (Hosokawa and Otani,

1998). Padilla and Laugier identified the overlap of fast and slow waves as a compli-

cating factor in their study of a stratified model for bone (Padilla and Laugier, 2000).

Lee et al. reported that in the medial-lateral (ML) direction, fast and slow waves in

bovine tibia overlap and ”are observed as if one longitudinal wave propagates” (Lee

et al., 2003). Haiat et al. also noted the difficulties associated with multiple-mode

propagation (Haiat et al., 2008).

In general, investigators have found that the attenuation coefficient of bone varies

linearly or quasi-linearly with frequency, and typically report attenuation measure-

ments as the rate of change in attenuation coefficient with frequency (Droin et al.,
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1998; Waters and Hoffmeister, 2005). This parameter is known as Broadband Ultra-

sound Attenuation (BUA) or, if normalized by sample thickness, as normalized Broad-

band Ultrasound Attenuation (nBUA), also known as slope of attenuation. However,

despite the consensus on the frequency dependence of attenuation coefficient, there is

considerable variation in measurements of the frequency dependence of phase velocity.

Many laboratories report that on average, the phase velocity of ultrasonic waves prop-

agating through cancellous bone decreases with increasing frequency, a phenomenon

known as negative dispersion (Droin et al., 1998; Wear, 2000, 2007; Nicholson et al.,

1996). However, an increase in phase velocity with frequency (positive dispersion) is

observed in 10 to 20 percent of investigated sites (Wear, 2000; Droin et al., 1998).

The observed negative dispersion in the majority of bone samples analyzed is fur-

ther confounded when one considers the apparent inconsistencies with the causality-

imposed Kramers-Kronig (KK) relations that relate attenuation to dispersion (O’Donnell

et al., 1981; Waters et al., 2000, 2005; Waters and Hoffmeister, 2005; Mobley et al.,

2005). According to the nearly-local approximation to the KK relations with one

subtraction, an increase in phase velocity with frequency is expected for samples

exhibiting an approximately linear-with-frequency attenuation coefficient. If the at-

tenuation coefficient varied strictly linearly with frequency, the dispersion curve would

be positive and logarithmic (Waters and Hoffmeister, 2005; Waters et al., 2000, 2005).

The inconsistencies with the KK relations are especially troubling in light of evidence

that they are valid even under conditions in which the attenuation coefficient and

phase velocity exhibit complicated behavior (Bauer et al., 2007).
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Currently, dispersion is not a widely used metric for clinical bone quality analysis.

However, the negative dispersion measured in cancellous bone suggests that evalu-

ating the material properties of bone using current data analysis techniques may be

compromised because they result in the measurement of ”apparent” material prop-

erties instead of the underlying ”true” material properties. Consequently, a better

understanding of the dispersion characteristics of cancellous bone, including the mech-

anisms responsible for the observed negative dispersion, could aid in determining the

true material properties of cancellous bone, as opposed to the apparent properties

measured using conventional data analysis techniques.

In a previous Letter, our laboratory proposed that negative dispersion in cancel-

lous bone can arise when radiofrequency (RF) signals consisting of overlapped fast

and slow waves are analyzed as if they are a single longitudinal wave (Marutyan

et al., 2006). In the current investigation, this proposed mechanism is extended and

enhanced by using theoretical and experimental results of ultrasonic wave propaga-

tion in bone obtained by previous investigators as a basis to generate simulated fast

and slow waves that are consistent with the nearly-local approximation to the KK

relations. The simulated fast and slow waves are then used to create a ”mixed” wave-

form consisting of overlapping fast and slow waves, and it is then demonstrated that

analyzing the mixed waveforms may contribute to the observed negative dispersion

in cancellous bone.
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3.4 Theory

Theories of wave propagation in bone were considered to aid in determining appro-

priate input values for the parameters used in the simulations. Ultrasonic wave veloc-

ity in bone has been extensively modeled using Biot theory (Biot, 1956a,b; Haire and

Langton, 1999; Fellah et al., 2004; Sebaa et al., 2006; Hughes et al., 2007; Wear et al.,

2005; Williams, 1992; Hosokawa and Otani, 1997; Lee et al., 2007a; Chakraborty,

2008), Modified Biot-Attenborough theory (Roh and Yoon, 2004; Lee et al., 2003,

2007a,b), and stratified media theory (Hughes et al., 1999; Wear, 2001; Lin et al.,

2001; Padilla and Laugier, 2000; Plona et al., 1987; Lee et al., 2007a). Each of these

models predicts the existence of fast and slow waves; however, the stratified model

predicts that only the fast wave propagates at perpendicular insonification. Because

the simulations involve two propagating compressional waves, the stratified model was

not explored in this study. It should be noted, however, that actual bone structures

are unlikely to be rigorously perpendicular to ultrasound wave propagation at any ori-

entation, resulting in the presence of multiple modes even for nominally perpendicular

orientations.

The Biot and Modified Biot-Attenborough models are typically used to predict

the phase velocities of fast and slow waves as functions of porosity, defined as (1 -

volume fraction of bone). Each model has been empirically extended to include angle-

dependent parameters to account for the anisotropy of cancellous bone (Lee et al.,

2007a). Because the existing literature includes slightly different implementations of
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Table 3.1: Biot theory and modified Biot theory parameters used to compute the
velocities used in the simulations of wave propagation. The calculated velocities are
displayed as a function of porosity in Fig. 3.1.

Parameter Biot Modified Biot

Solid density (ρs) 1960 kg/m3 1960 kg/m3

Fluid density (ρf ) 1000 kg/m3 1000 kg/m3

Young’s modulus of solid (Es) 20 GPa

Bulk modulus of fluid (Kf ) 2.28 GPa

Poisson’s ratio for solid (νs) 0.32

Poisson’s ratio for skeletal frame (νb) 0.32

Tortuosity (αtort) Equation 3.7 1

Fluid viscosity (η) 10−3 Pa s

Viscous characteristic length (Λ) 5 µm

Exponent (n) 1.23 (parallel)

2.35 (perpendicular)

Fluid compressional speed (cf ) 1500 m/s

Solid compressional speed (cs) 3800 m/s

Kinematic viscosity of fluid (ν) 1×10−6 m2/s

Specific heat ratio of fluid (γ) 1.004

Prandtl number of fluid (NPr) 7

Pore radius (a) 0.5 mm

Boundary condition parameter (s1) 1.5

Phase velocity parameter (s2) 0.5 (parallel)

1.7 (perpendicular)
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each theory, details of the theoretical formalisms used to calculate phase velocities

are included below.

3.4.1 Biot theory

Biot theory considers the motions of the fluid and solid components of a porous

material. Input parameters consist of physical and mechanical properties of the fluid

and solid components of the propagation medium. The input parameters are used to

predict fast and slow compressional waves corresponding to in-phase and out-of-phase

motion between the fluid and solid. Energy losses are due to viscous interactions at

interfaces.

Biot theory gives rise to three elastic parameters P , Q, and R given by

P =
βpor

(
Ks

Kf
− 1
)
Kb + β2

porKs + (1− 2βpor) (Ks −Kb)

D
+

4µb
3

(3.1a)

Q =
(1− βpor − Kb

Ks
)βporKs

D
(3.1b)

R =
Ksβ

2
por

D
(3.1c)

where D = 1− βpor − Kb

Ks
+ βpor

Ks

Kf
and Ks is the bulk modulus of the solid material,

Kf is the bulk modulus of the fluid, Kb is the bulk modulus of the elastic frame, µb is

the shear modulus of the elastic frame, and βpor is porosity (volume fraction of fluid).

If the solid material is assumed to be isotropic, the bulk modulus Ks can be related

to the intrinsic elastic parameters of the solid by

Ks =
Es

3(1− 2νs)
(3.2)
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where Es and νs are the Young’s modulus and Poisson’s ratio for the solid. The

Young’s modulus of the elastic frame of the porous structure Eb is determined from

the porosity and Es through the power law relationship

Eb = Es(1− βpor)n. (3.3)

If the frame is assumed to be isotropic, its bulk and shear moduli Kb and µb can be

written as

Kb =
Eb

3(1− 2νb)
(3.4)

µb =
Eb

2(1 + νb)
(3.5)

where νb is Poisson’s ratio for the frame.

Although Biot theory assumes an isotropic medium, it has been empirically ex-

tended to apply to anisotropic porous materials through exploitation of the power law

relationship between Eb and Es. The exponent n in Eq. (3.3) depends on the angle of

insonification relative to trabecular alignment. Hosokawa and Otani found n = 1.46

in the parallel orientation, and n = 2.14 in the perpendicular direction (Hosokawa

and Otani, 1998). Williams found that n has a value of 1.23 when cancellous bone

is insonified parallel to the trabeculae, and a value of 2.35 when insonification is per-

pendicular to the trabeculae (Williams, 1992). Those values for n were adopted by

Lee et al. to construct an angle-dependent Biot model (Lee et al., 2007a). In the

current study, the values established by Williams and later employed by Lee et al.

were used in the Biot theory calculations.

Biot theory also includes mass coefficients to allow for viscous and inertial drag
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effects. These coefficients are given by

ρ11 + ρ12 = (1− βpor)ρs (3.6a)

ρ22 + ρ12 = βporρf (3.6b)

ρ12 = −(αtort(ω)− 1)βporρf (3.6c)

where ρf and ρs are the densities of the fluid and solid components, and αtort(ω)

is a structural factor known as the dynamic tortuosity. The subscript tort is used

to distinguish the tortuosity (αtort(ω)) from the attenuation coefficient (α(ω)). The

dynamic tortuosity was introduced by Johnson, Koplik, and Dashen as

αtort(ω) = α∞

[
1 +

2

Λ

(
iη

ωρf

)1/2
]

(3.7)

in which Λ is the viscous characteristic length and η is the fluid viscosity (Johnson

et al., 1987). The tortuosity parameter α∞ is given by

α∞ = 1− s(1− 1/βpor) (3.8)

where s is a parameter derived from a microscopic model of a frame moving in a

fluid. Other investigators have consistently let s = 0.25 (Williams, 1992; Hosokawa

and Otani, 1998; Wear et al., 2005; Lee et al., 2007a).

The elastic parameters and mass coefficients are used to construct a characteristic

equation given by ∣∣∣∣∣∣∣∣∣∣
ω2ρ11 − k2P ω2ρ12 − k2Q

ω2ρ12 − k2Q ω2ρ22 − k2R

∣∣∣∣∣∣∣∣∣∣
= 0 (3.9)
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whose roots are the wavenumbers of the fast and slow waves. The solutions are

k2 = ω2

(
B ±

√
B2 − 4AC

2A

)
(3.10)

where

A = PR−Q2 (3.11a)

B = Rρ11 + Pρ22 − 2Qρ12 (3.11b)

C = ρ11ρ22 − ρ2
12. (3.11c)

The phase velocities for the fast and slow waves are then calculated by vphase =

Re(ω/k), resulting in

vfast = Re

[(
2A

B −
√
B2 − 4AC

)1/2
]

(3.12a)

vslow = Re

[(
2A

B +
√
B2 − 4AC

)1/2
]

(3.12b)

where Re() returns the real component of a complex number.

3.4.2 Modified Biot-Attenborough model

The Modified Biot-Attenborough model, proposed by Roh and Yoon, is a phe-

nomenological approach for modeling wave propagation through a medium with cylin-

drical pores (Roh and Yoon, 2004; Lee et al., 2003, 2007a,b). It allows for both viscous

and thermal energy dissipation, but requires empirically-determined input parame-

ters. Following the formulation given by Lee et al. (Lee et al., 2007a), the equation of

continuity for one-dimensional wave propagation through a circular cylindrical pore

41



3.4 Theory

is

− ρf
∂〈v〉
∂x

=
∂ρ

∂t
(3.13)

where ρf is the fluid density and 〈v〉 is the average particle velocity over the cross

section of the pore. The equation of motion is given by

∂p

∂x
= ρc(ω)

∂〈v〉
∂t

(3.14)

where p is the acoustic pressure and ρc(ω) is the complex density given by

ρc(ω) = ρf [1− 2(λeiπ/2)−1T ′(λeiπ/2)]−1 (3.15)

where

T ′(λeiπ/2) =
J1(λe

iπ/2)

J0(λeiπ/2)
(3.16)

in which J0 and J1 are the zero-order and first-order cylindrical Bessel functions. The

dimensionless parameter λ is related to the size of the viscous boundary layer at the

pore wall and may be written

λ(ω) = as1(ω/ν)1/2 (3.17)

where a is the pore radius, ν is the kinematic viscosity of the fluid, and s1 is a

boundary condition parameter representing the pore frame rigidity.

When thermal effects are considered, the complex compressibility of the fluid

Cc(ω) is given by

Cc(ω) =
(
γρfc

2
f

)−1
[1 + 2(γ − 1)(N

1/2
Pr λe

iπ/2)−1T ′(N
1/2
Pr λe

iπ/2)] (3.18)
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where cf , γ, and NPr are the compressional speed, specific heat ratio, and Prandtl

number of the fluid, respectively. When the model is extended to a material consisting

of an ensemble of cylindrical pores, the wavenumber for the fast wave is given by

kfast = αtort

[
k2
ck

2
s

(1− βpor)s2k2
c + βs2pork2

s

]1/2

(3.19)

where αtort is tortuosity, βpor is porosity, ks = ω/cs is the wavenumber of the pore

frame, s2 is a phase velocity parameter, and kc is the complex frequency-dependent

wavenumber of the pore fluid given by

kc(ω) = ω[Cc(ω)ρc(ω)]1/2 (3.20)

The wavenumber for the slow wave is constructed in a similar fashion, under the as-

sumption that the slow wave velocity tends to zero at low porosities. This wavenumber

is given by

kslow = αtort

[
k2
ck

2
g

(1− βpor)s2k2
c + βs2pork2

g

]1/2

(3.21)

where kg = ω/cg is the wavenumber of a hypothetical fluid with an extremely low

(approaching zero) wave velocity. The phase velocities for the fast and slow waves

are found using vphase = Re(ω/k), resulting in

vfast = Re

(
ω

αtort

[
(1− βpor)s2k2

c + βs2pork
2
s)

k2
ck

2
s

]1/2
)

(3.22a)

vslow = Re

(
ω

αtort

[
(1− βpor)s2k2

c + βs2pork
2
g)

k2
ck

2
g

]1/2
)

(3.22b)

The phase velocity parameter s2 in Eqs. (3.19) and (3.21) determines the functional

form of the phase velocity as a function of porosity. Lee et al. introduced an empirical

43



3.4 Theory

anisotropy to this parameter and found that s2 = 0.5 at parallel insonification and

1.7 at perpendicular insonification (Lee et al., 2007a). These values for s2 are used

in the current study.

3.4.3 Biot and Modified Biot-Attenborough model predic-

tions

The input parameter values for each model are listed in Table 3.1, and the resultant

phase velocities at 500 kHz for the fast and slow waves as functions of porosity for

both perpendicular and parallel insonification are shown in Fig. 3.1.

As indicated in Fig. 3.1, the angle-dependent Biot and Modified Biot models pre-

dict that when insonification is parallel to the trabecular orientation, corresponding

to the superior-inferior (SI) direction in bovine leg bones, the velocities of the fast and

slow waves remain distinct and moderately different over a wide range of porosities,

including those within physiological ranges, and eventually converge toward the same

value only at extremely high porosities. At a porosity of 0.85, Biot theory predicts

that in the parallel orientation the difference in the velocities of the fast and slow

waves is about 1180 m/s, whereas the Modified Biot model predicts a difference of

approximately 1320 m/s. Experimentally, the velocities at parallel insonification were

sufficiently different to permit Hosokawa and Otani to observe and measure the veloc-

ities of distinct fast and slow waves at porosities above 0.8 in samples approximately

9 mm thick (Hosokawa and Otani, 1998).
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Figure 3.1: Predictions of Biot theory (dashed lines) and Modified Biot-
Attenborough model (solid lines) for fast and slow wave velocities at 500 kHz as
functions of porosity. The top panel shows predictions at parallel insonification,
and the bottom panel shows predictions at perpendicular insonification. The shaded
regions indicate the approximate range of physiological porosities for bovine and hu-
man cancellous bone measured by other investigators (Hosokawa and Otani, 1998;
Lee et al., 2003; Wear et al., 2005).
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The Biot and Modified Biot model predictions differ for the porosity-dependent

behavior of the velocities when bone is insonified in the clinically relevant perpendic-

ular direction. In that orientation, and at a porosity of 0.85, Biot theory predicts a

velocity difference of 865 m/s, whereas the Modified Biot model predicts a difference

of about 200 m/s. Experiments performed while insonifying in the perpendicular

orientation have generally not resulted in the observation of distinct fast and slow

waves. Investigations of the anisotropy of cancellous bone have demonstrated that

the fast and slow waves become more and more overlapped as the angle of insonifi-

cation proceeds from parallel to perpendicular (Hosokawa and Otani, 1998).

3.5 Simulated Wave Propagation in Bone

The propagation of ultrasound through bone was simulated by generating fast

waves and slow waves independently using phase velocity and attenuation coefficient

parameters, and then combined the two waves to form a simulated received signal.

The input to the simulation consisted of a simulated broadband reference pulse with

a center frequency of 550 kHz and a -6 dB bandwidth of approximately 250-850 kHz

(see Fig. 3.2). An output waveform corresponding to ultrasonic wave propagation

through bone was produced by applying linear transfer functions to the input

Output(ω) = Input(ω) [Hfast(ω) +Hslow(ω)] (3.23)

where Output(ω) and Input(ω) are the complex frequency-domain representations

of the input reference waveform and output mixed waveform. Wave propagation
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Figure 3.2: The time-domain representation of the artificially generated reference
pulse used as input to the simulations is displayed in the upper panel, and the power
spectrum of the pulse is shown in the lower panel.
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through bone and bone-like materials is assumed to be linear, with speeds of sound

and attenuation coefficients independent of amplitude. Hfast(ω) and Hslow(ω) are the

transfer functions for the individual fast and slow waves given by

Hfast(ω) = Afast exp [−αfast(ω)l] exp

[
iω

l

vfast(ω)

]
(3.24a)

Hslow(ω) = Aslow exp [−αslow(ω)l] exp

[
iω

l

vslow(ω)

]
(3.24b)

in which Afast and Aslow are frequency-independent amplitude compensation factors

that correspond to relative initial amplitudes of the fast and slow waves upon encoun-

tering the sample; l is the sample thickness; αfast(ω) and αslow(ω) are the attenuation

coefficients given by

αfast(ω) = βfast
ω

2π
(3.25a)

αslow(ω) = βslow
ω

2π
(3.25b)

where βfast and βslow are the values for nBUA. The phase velocities vfast(ω) and

vslow(ω) are given by

vfast(ω) = vfast(ω0) + vfast(ω0)
2βfast
π2

ln

(
ω

ω0

)
(3.26a)

vslow(ω) = vslow(ω0) + vslow(ω0)
2βslow
π2

ln

(
ω

ω0

)
(3.26b)

where ω0 is a chosen reference frequency of interest. The linear-with-frequency func-

tional form of the attenuation coefficients (Eq. (3.25)) is taken from the consensus of

the published literature. The phase velocities (Eq. (3.26)) are obtained by applying

the nearly-local form of the KK relations to the linear-with-frequency attenuation

coefficients (Eq. (3.25)), under the assumption that this form of the KK relations is
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3.5 Simulated Wave Propagation in Bone

valid for the fast and slow waves. These expressions for the phase velocities are valid

for small dispersions.

In all simulations, the parameter l was set at 1 cm, a typical thickness of bone sam-

ples investigated in vitro. The value for the reference frequency ω0

2π
was set to 300 kHz,

and vslow(ω0) was held constant at 1500 m/s, a velocity near that of sound in wa-

ter. Based on measurements by Waters and Hoffmeister, the input values for βfast

and βslow were set to 20 dB/cm/MHz and 6.9 dB/cm/MHz, respectively (Waters and

Hoffmeister, 2005). Input values for vfast(ω0), Afast, and Aslow were systematically

varied. Based on the theoretical predictions displayed in Fig. 3.1, and the experi-

mental observations of overlapping fast and slow wave modes, vfast(ω0) was varied

between 1550 m/s and 2100 m/s, covering a wide range of velocities that result in

the overlap of the fast and slow waves. When vfast was varied, Afast and Aslow were

held constant at 0.3 and 0.7, respectively, so that the relative amplitudes of the fast

and slow waves were comparable to those observed by other investigators (Hosokawa

and Otani, 1998; Waters and Hoffmeister, 2005). Determining appropriate values for

Afast and Aslow is challenging, given the complexity involved in calculating transmis-

sion coefficients specific to individual fast and slow waves. Therefore, a second set of

simulations was created in which vfast(ω0) was held constant at 1600 m/s and Afast

and Aslow were varied between 0 and 1 to determine the effects of those parameters

on the resultant mixed waveform.

Phase velocities were calculated using a phase unwrapping algorithm previously

shown to be valid for experimental data (Trousil et al., 2001).
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3.6 Results

The resulting attenuation coefficients and phase velocities when vfast(ω0) was var-

ied between 1550 m/s and 2100 m/s are shown in Fig. 3.3. The relative contributions

of the fast and slow waves, Afast and Aslow, were held constant at 0.3 and 0.7, re-

spectively. The left column of Fig. 3.3 was created with vfast(ω0) set at 1550 m/s,

a velocity only 50 m/s faster than that of the slow wave. Under such conditions, a

visual inspection of the RF signal reveals no explicit evidence of the presence of a

second wave; furthermore, the attenuation coefficient and phase velocities do not ex-

hibit suspicious behavior, despite interference taking place in the simulated ultrasonic

field. However, as the difference in vfast and vslow becomes more pronounced, as in

the remaining columns of Fig. 3.3, a negative dispersion becomes apparent, in spite of

the fact that the frequency-dependent behavior of the attenuation coefficient could be

approximated by a linear-with-frequency fit. When vfast(ω0) = 1600 m/s, the mag-

nitude of dispersion (difference in phase velocity) for a two-fold increase in frequency

is approximately -4 m/s, based on a linear least squares fit over the bandwidth from

400-800 kHz. , as in the second column of Fig. 3.3. When vfast(ω0) = 1700 m/s,

the dispersion magnitude is approximately -15 m/s over the same bandwidth, with a

local minimum in phase velocity appearing around 650 kHz. Additionally, the mixed

waveform begins to show some evidence of interference under visual inspection. By

the time the fast wave velocity reaches 2100 m/s (right panel), the fast and slow

waves are sufficiently separated in time that the dispersion curve obtained by analyz-
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ing the mixed waveform using a conventional phase spectroscopy algorithm has large

fluctuations, with analogous behavior appearing in the attenuation coefficient.

Results for varying Afast and Aslow are shown in Fig. 3.4. In the leftmost panel, the

only contribution to the mixed waveform is the slow wave, and the resulting attenua-

tion coefficient and phase velocity corresponding to this waveform are representative

of the slow wave input parameters with positive dispersion. As the contribution of the

fast wave increases (that is, Afast becomes proportionally more important compared

to Aslow), the behavior of the phase velocity changes, and begins to decrease with fre-

quency (demonstrates a negative dispersion) over portions of the bandwidth. When

(Afast, Aslow) = (0.3, 0.7), the magnitude of dispersion is -4 m/s over the 400-800 kHz

bandwidth, but the attenuation coefficient can still be described as reasonably lin-

ear. The dispersion becomes approximately -11 m/s over the same bandwidth when

(Afast, Aslow) = (0.4, 0.6), with the attenuation coefficient beginning to exhibit a

modest degree of not-linear-with-frequency behavior. In each case, the individual

fast and slow waves each exhibit a logarithmically-increasing (positive) dispersion

and a linear-with-frequency attenuation coefficient. Furthermore, the time-domain

RF data (top panels) do not show explicit evidence of two-wave interference upon

visual inspection. The far right column of Fig. 3.4 shows the resultant mixed wave

and its properties when (Afast, Aslow) = (1, 0), corresponding to only fast wave prop-

agation. As expected, the phase velocity and attenuation coefficient of the mixed

waveform return to mimicking those of the fast wave with positive dispersion.
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Figure 3.3: Results of independent fast and slow wave propagation when the ve-
locity of the fast wave is varied. The velocity of the fast wave increases from the left
column to the right column. The top panels display the resultant mixed RF wave-
forms, and the center and bottom panels show the corresponding dispersion curves
and attenuation coefficients obtained when the mixed waveform is analyzed as if it
contained only one wave. When vfast is only 50 m/s greater than vslow (far left panels),
the mixed waveform exhibits positive dispersion and a nearly linear attenuation coeffi-
cient. As vfast becomes increasingly greater than vslow (middle panels), the dispersion
becomes negative. When vfast is significantly larger than vslow (far right panels), the
dispersion curve and attenuation coefficient have complicated frequency-dependent
behavior.
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Figure 3.4: Results of independent fast and slow wave propagation when the rel-
ative contributions of the fast and slow wave are varied. The contribution of the
fast wave increases from the left column to the right column. The top panels display
the resultant mixed RF waveforms, and the center and bottom panels show the cor-
responding dispersion curves and attenuation coefficients obtained when the mixed
waveform is analyzed as if it contained only one wave. The far left-hand panels display
only slow wave propagation (Afast = 0, Aslow = 1), resulting in a positive dispersion
and a strictly linear attenuation coefficient. The far right-hand panels show only fast
wave propagation (Afast = 1, Aslow = 0), again corresponding to a positive disper-
sion and linear attenuation coefficient. The middle panels represent mixed waveforms
(non-zero amplitudes for both fast and slow waves) that exhibit negative dispersions
while maintaining an approximately linear attenuation coefficient.
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3.7 Discussion

This study uses a linear systems approach, in conjunction with established exper-

imental and theoretical evidence for multiple-wave propagation in cancellous bone, to

generate a phenomenological model capable of producing simulated signals that ex-

hibit negative dispersions similar to those observed in cancellous bone. The frequency-

domain linear systems model has the advantage of simplicity and ease of computation,

but this heuristic approach may not adequately account for all features of ultrasonic

propagation through cancellous bone. Alternative approaches, including those that

take advantage of finite difference time-domain techniques, may prove better for re-

lating the fast and slow waves to the material properties of bone.

The parameter space for this model has been examined, specifically the relative

amplitudes and velocities of the fast and slow waves, in the limited manner outlined

in Figs. 3.3 and 3.4. The dispersions become more extreme, and more negative, as

the fast and slow waves become closer in magnitude and more disparate in velocity.

The detailed nature of the dispersion, however, depends on complicated interdepen-

dencies among all the parameters in the model, and a rigorous determination of what

regions of the parameter space generate negative dispersion is beyond the scope of

this preliminary study.

It has been assumed that the attenuation coefficients of cancellous bone rise lin-

early with frequency. This approximation appears to be adequate for frequencies in

the hundreds of kilohertz range currently employed in many clinical devices, and is
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consistent with the general consensus in the published literature. However, this model

may not be rigorously valid for bandwidths extending far into the megahertz range,

especially if longitudinal-to-longitudinal scattering becomes a significant contributor

to the attenuation coefficient at higher frequencies.

The primary focus of this study is simulated propagation of multiple longitudinal

waves through cancellous bone. Experimental confirmation of the results presented

here would presumably involve analyzing data from bone samples that exhibit a neg-

ative dispersion when analyzed under the assumption that one wave was present, and

recovering two waves when the data is analyzed in a way that permits distinguishing

between fast and slow waves. However, differentiating the fast and slow waves can be

difficult when they are strongly overlapped temporally. Our Laboratory has proposed

a Bayesian approach for recovering the properties of each wave and has experimentally

confirmed that negative dispersion can arise from two-mode propagation in a simple

phantom (Marutyan et al., 2007; Bauer et al., 2008). A better understanding of the

physical properties of cancellous bone that contribute to the attenuation and velocity

properties of the fast and slow waves may also prove advantageous in predicting the

degree of overlap of the two signals, which in turn could provide insight about the

dispersion properties of a signal analyzed as if only one wave were present. To that

end, Haiat et al. have investigated the effects of anisotropy and bone volume fraction

on the degree of separation between the fast and slow waves (Haiat et al., 2008).
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3.8 Conclusion

Simulated ultrasonic wave propagation of fast and slow waves with phase veloc-

ities and attenuation coefficients, similar to those predicted and observed in bone,

yielded resultant waveforms consisting of interfering waves that exhibited a decrease

in phase velocity with frequency when analyzed conventionally under the assumption

that only one wave was present. The underlying ”true” ultrasonic characteristics of

the fast and slow waves were obscured when analyzed in such a manner. Although

the individual wave modes exhibited strictly linear-with-frequency attenuation coeffi-

cients and positive logarithmic-with-frequency phase velocities, conventional analysis

of the mixed waveforms frequently resulted in complex frequency-dependencies of at-

tenuation coefficient and dispersion. In fact, the two-independent mode model used

in these simulations produced resultant mixed waveforms characterized by negative

dispersion despite the the fact that the individual fast and slow waves exhibit posi-

tive dispersions in accordance with the Kramers-Kronig relations for attenuation and

dispersion. In some simulations, negative dispersion was produced without substan-

tially changing the coarse visual characteristics of either the time-domain signal or

the linear-with-frequency behavior of the attenuation coefficient. Although further

study is required to determine the validity and role of independent mode simulations

for characterizing bone, the interference of multiple waves appears to be a possible

source for an apparent negative dispersion of the kind observed in cancellous bone.

If the material and structural properties of cancellous bone give rise to multiple in-
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terfering wave modes, recovering the ultrasonic characteristics of the individual wave

modes, instead of those of the mixed waveform, could provide more robust ultrasonic

determinations of bone quality.
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Chapter 4

Bayesian Probability Theory and

Markov Chain Monte Carlo

4.1 Preface

This Chapter provides background information on Bayesian probability theory

and the use of Markov chain Monte Carlo (MCMC) in Bayesian applications. The

particular algorithms discussed are simulated annealing and nested sampling.
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4.2 Abstract

4.2 Abstract

Bayesian probability theory is a powerful inference tool with extensive applications

in the natural sciences. Many applications of Bayesian probability, including the pa-

rameter estimation problems addressed in later Chapters of this Dissertation, require

advanced computational algorithms to approximate the Bayesian posterior proba-

bilities. In this Chapter, a brief historical context for Bayesian probability theory is

provided, followed by a summary of Bayesian calculations used in later Chapters. The

Markov chain Monte Carlo methods, used to carry out these calculations, simulated

annealing and nested sampling, are then discussed.

4.3 Bayesian probability theory

4.3.1 Historical perspective

Bayesian probability theory is an extension of logic that permits reasoning when

the available information is not sufficient to determine facts with certainty. Its valid-

ity as an inductive inference tool makes it ideal for use in the natural sciences, where

knowledge is always incomplete. The word “Bayesian” is derived from the name

of Rev. Thomas Bayes, whose ideas on probability were published posthumously in

1763 (Bayes, 1763). Laplace independently rediscovered and formalized the approach,

applying it to problems in celestial mechanics (Laplace, 1812, 1814). However, the

formalism fell out of favor as the frequentist interpretation of probability dominated
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statistical inference. Bayesian ideas remained popular among a minority of investiga-

tors in the twentieth century, notably Jeffreys (1939), Cox (1946), and Jaynes (1986,

2003).

In the Bayesian interpretation, probabilities represent states of knowledge; they

are “degrees of belief” conditional on the information at hand (Jaynes, 2003; Sivia,

2006; Gregory, 2005; Stauffer, 2008). Notationally, probabilities are written in the

form P (X|I), which should be understood to mean “the probability for a proposition

X given I”, where I is available background information. To emphasize that all

probabilities in the Bayesian approach are conditional, the probabilities are always

dependent on I.

The Bayesian interpretation of probability has historically been a minority position

within the probability and statistics community. A common perception was that the

definition of probability as a degree of belief was too subjective; furthermore, Bayesian

analysis was difficult from a practical perspective because of the intense computational

power required to solve complex problems. However, in recent years, advantages

of Bayesian probability theory over alternative interpretations of probability have

been highlighted (Jaynes, 2003; Stauffer, 2008). In addition, the development of fast

computing technologies and advanced computational algorithms, especially Markov

chain Monte Carlo (MCMC), has made Bayesian analysis much more efficient and

convenient, leading to increased interest in Bayesian probability (Stauffer, 2008).
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4.3 Bayesian probability theory

4.3.2 Bayes’ Theorem

Cox found that a logical and consistent system of reasoning must obey two rules

(Cox, 1946). The first is the sum rule,

P (X|I) + P (X̄|I) = 1, (4.1)

where X̄ is the probability that X is not true. The second is the product rule,

P (XY |I) = P (X|Y I)P (Y |I) (4.2)

where X and Y are separate propositions. The product rule can be used to derive

Bayes’ Theorem (Bayes, 1763; Jaynes, 2003),

P (X|Y I) =
P (Y |XI)P (X|I)

P (Y |I)
. (4.3)

The term P (X|Y I) is known as the posterior probability for X given Y and I, and

P (Y |XI) called the likelihood. P (X|I) is the prior probability for X, which is con-

ditional only on the background information (i.e., what is known about X prior to

obtaining information about Y ). The term in the denominator of Eq. (4.3) has been

referred to by several different names. Some examples are marginal likelihood, prior

predictive, and evidence.

The sum rule and product rules can used to derive a more generalized expression

of Eq. (4.1),

P (X|I) = P (XY |I) + P (XȲ |I), (4.4)

where an expression for P (X|I) has been obtained by marginalizing over possible

values for Y . If there exists a set of N propositions {Y1, Y2, . . . , YN}, Eq. (4.4) can be
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recast as

P (X|I) =
N∑
k=1

P (XYk|I) (4.5)

provided that the set of Yk form a mutually exclusive and exhaustive set of possibili-

ties.

It is useful to consider further generalization to the continuum limit (N →∞), as

when (for example) the Yk constitute values of some continuous parameter. Eq. (4.5)

becomes

P (X|I) =

∫ ∞
−∞

P (XY |I)dY. (4.6)

It must be noted that in Eq.(4.6), the integrand P (XY |I) is a probability density

rather than a probability. Eq. (4.6) is especially useful for eliminating nuisance pa-

rameters in many calculations.

4.4 Bayesian calculations

Common tasks in probability theory are estimation of the values of unknown

parameters (parameter estimation) and determining the best model for a data set from

a number of candidate models (model selection). Bayesian applications addressed

in this Dissertation pertain to parameter estimation in ultrasonic measurements on

cancellous bone and heart tissue, and this section describes how these parameters are

estimated. The calculations parallel those reported by Bretthorst et al. (2005b,a).

In parameter estimation problems, the model and its corresponding parameters

are known. Suppose that a generic model for an acquired data set of N data points
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is given by

Dj = Mj(Θ) + nj, (4.7)

where Dj is the jth point in the data vector D, Mj(Θ) is the corresponding point

in the vector M that models the data, Θ is the parameter vector to be estimated,

and nj is the jth point in the residual vector n (the difference between the data and

the model), often referred to as noise. The dimensionality of the parameter vector

Θ can be arbitrarily large. For the purpose of illustration, suppose there are three

parameters in M , such that Θ is three-dimensional; that is, Θ ≡ {θ1, θ2, θ3}. The

goal is to estimate the values of {θ1, θ2, θ3} given the data. Symbolically, then, the

task is to determine the marginal posterior probabilities P (θ1|DI), P (θ2|DI), and

P (θ3|DI).

The calculation begins by considering the joint posterior probability for all the

parameters together, P (Θ|DI) ≡ P (θ1θ2θ3|DI), and applying Bayes’ Theorem,

P (Θ|DI) =
P (D|ΘI)P (Θ|I)

P (D|I)
. (4.8)

In parameter estimation problems, the term P (D|I) can be considered a normalization

constant and can be ignored provided we normalize these probabilities at the end of

the calculations. Thus, Eq. (4.8) becomes

P (Θ|DI) ∝ P (D|ΘI)P (Θ|I). (4.9)

The joint prior, P (Θ|I), can be written as the product of priors for the individual

parameters,

P (Θ|I) = P (θ1|I)P (θ2|I)P (θ3|I), (4.10)
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under the assumption that the parameters are logically independent. Logical inde-

pendence means that knowledge about the value of θ1 has no influence on knowledge

about the value of θ2 or θ3, etc. The factors on the right-hand side of Eq. (4.10) can

be assigned based on prior information about the individual parameters. If the prior

information is vague, common choices for these priors are flat (uniform) functions or

broad Gaussian functions.

The remaining term in Eq. (4.9) is the likelihood, or the direct probability for

the data given the parameters, P (D|ΘI). Assignment of this probability requires

reintroducing the characteristics of the residuals, the nj in Eq. (4.7). The symbol n

does not appear in P (D|ΘI) because this term is a marginal probability; information

about the residuals has been removed by marginalization. The quantities of interest

are the set of noise parameters n and the standard deviation of the prior probability

for n, denoted by σ. We can reintroduce these quantities by writing

P (D|ΘI) =

∫∫
dσdnP (Dnσ|ΘI). (4.11)

Factoring the integrand of Eq. (4.11) using the sum and product rules of probability

theory (Eqs. (4.1) and (4.2)) gives

P (D|ΘI) =

∫∫
dσdnP (σ|I)P (n|σ)P (D|σnΘI). (4.12)

The terms P (σ|I) and P (n|σ) are the prior probability for the standard deviation

of the noise and the probability for the noise values given the standard deviation,

respectively. The remaining term, P (D|σnΘI), is the direct probability for the data

given the parameters, standard deviation, and n. This direct probability must be a
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delta function, because the sum of n and the model at any given data point either

equals the data (probability = 1) or does not (probability = 0). This situation is

expressed by

P (D|σnΘI) =
∏
j

δ [(Dj −Mj(Θ))− nj)] . (4.13)

The prior probability P (n|σ) can now be assigned. The principle of maximum entropy

can be used to assign this prior probability as a zero-mean Gaussian function of

standard deviation σ,

P (n|σ) = (2πσ2)−
N
2 exp

[
−
∑
j

n2
j

2σ2

]
. (4.14)

The prior probability for σ is assigned as a Jeffreys prior (Jeffreys, 1939),

P (σ|I) ∝ 1

σ
(4.15)

In general, care must be taken when using a Jeffreys prior because it is not nor-

malizable and hence not a proper probability distribution. Its use in the problems

described in this Dissertation is justified because the bounded prior probabilities used

for the parameters Θ, as well as the digital limit of the computing platform, provide

effective bounds that prevent the calculation from approaching an infinity provided

that there is noise in the data, a realistic expectation in any experimental setting.

Substituting Eqs. (4.13-4.15) into Eq. (4.12),

P (D|ΘI) ∝
∫∫

dσdn

(
1

σ

)
(2πσ2)−

N
2 exp

[
−
∑
j

n2
j

2σ2

]

×
∏
j

δ [(Dj −Mj(Θ))− nj)] . (4.16)
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After simplification and evaluation of the integral over n,

P (D|ΘI) ∝
∫
dσσ−N−1 exp

[
−
∑

j(Dj −Mj(Θ))2

2σ2

]
. (4.17)

The integral over σ in Eq. (4.17) can be transformed into a Gamma function integral

and evaluated, yielding

P (D|ΘI) ∝

(∑
j(D −M(Θ))2

2

)−N
2

, (4.18)

an expression in the form of Student’s t-distribution.

Substitution of Eqs. (4.10) and (4.18) into Eq. (4.9) yields

P (Θ|DI) ∝

(∑
j(D −M(Θ))2

2

)−N
2

P (θ1|I)P (θ2|I)P (θ3|I), (4.19)

the final expression for the joint posterior probability for the parameters.

The marginal posterior probability densities for each parameter can be obtained

from the joint posterior probability by using the marginalization equation to remove

the parameters except the one of interest. For example, the marginal posterior prob-

ability for θ1 is computed by integrating Eq. (4.19) over θ2 and θ3,

P (θ1|DI) =

∫∫
dθ2dθ3P (Θ|DI). (4.20)

Note that for a model with m parameters, an (m − 1)-dimensional integral must be

performed m times to obtain marginal posterior probabilities for all parameters.

4.5 Markov chain Monte Carlo

If the model M(Θ) is complex or high-dimensional, an analytic solution to ex-

pressions like that of Eq. (4.20) may be difficult or impossible to achieve. Markov
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chain Monte Carlo methods are a class of algorithms designed to sample from the

posterior probabilities, thus eliminating the need to compute analytical solutions to

the complex integrals by obtaining an approximate numerical solution (Gelfand and

Smith, 1990; Tierney, 1994).

4.5.1 Markov chains

A Markov chain is a discrete stochastic process in which samples are drawn from

a state space, and the ith state depends only on the (i − 1)th state . In Bayesian

applications, a Markov chain is initialized at some arbitrary location in the param-

eter space, usually by sampling from the prior probability density. By undergoing

successive transitions within the parameter space, the chain eventually converges to

the desired target posterior probability density. The samples generated by the loca-

tions visited by the chain can be analyzed and/or parameterized to form an empirical

picture of the posterior probability (Bretthorst et al., 2005b; Sivia, 2006).

To ensure proper convergence, the Markov chain must satisfy certain properties

(Gilks et al., 1996; Madras, 2002; Behrends, 2000; Stauffer, 2008). First, the chain

must be irreducible, meaning that there must be a non-zero probability of reaching

each point in the parameter space from any other location in the space. The second

requirement is that the chain must be aperiodic. It must not oscillate between some

set of states, or repeat some fixed sequence of states visited, even if that sequence

includes every state in the space. The last required property is that the Markov chain

must be positive recurrent, meaning that the expected time for the chain to return
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to a visited state is finite. A Markov chain satisfying all three of these properties is

said to be ergodic (Gregory, 2005; Stauffer, 2008).

4.5.2 The Metropolis-Hastings algorithm

The Monte Carlo method was envisioned by Stanislaw Ulam in 1946 while he was

contemplating the chances of winning a game of Canfield solitaire (Eckhardt, 1987).

The name “Monte Carlo” was suggested by Ulam’s colleague Nicholas Metropolis,

who was inspired by an uncle of Ulam’s who had a habit of borrowing money because

he “just had to go to Monte Carlo” (Metropolis, 1987). It was published by Metropolis

and Ulam (1949) and shortly thereafter by Metropolis et al. (1953), who were inter-

ested in performing calculations related to neutron diffusion in fissionable material

(Metropolis, 1987). Rather than calculate probabilities for all possible particle config-

urations, Metropolis et al. devised a method to simulate particle movement subject to

a minimum energy criterion, allowing the system of particles to stochastically “walk”

to highly probable states. Hastings (1970) subsequently generalized this approach,

and it became known as the Metropolis-Hastings algorithm. The Metropolis-Hastings

algorithm is now a widely-used technique for sampling from probability densities.

Given a posterior density P (x|DI) for a parameter x, the algorithm is as follows.

1. Initialize a starting point x0.

2. At the ith iteration, given xi−1,

(a) Determine a candidate new location x′i from a proposal distribution q(x′i|xi−1).
The support of q(x′i|xi−1) must include the support of P (x|DI).
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(b) Calculate the acceptance ratio

r =
P (x′i|DI)q(x′i|xi−1)

P (xi−1|DI)q(xi−1|x′i)
. (4.21)

(c) Sample a real number U in the interval (0,1) from a uniform density.

(d) Set

xi =

{
x′i if U ≤ r

xi−1 otherwise
. (4.22)

3. Increment i and move on to the next iteration beginning at step 2.

The proposal distribution q(x′i|xi−1) can have almost any form, but a popular

choice is a multivariate Gaussian centered on xi−1. The width of the Gaussian can be

varied according to the proportion of accepted proposed moves. If too many proposals

are accepted, the width of the proposal distribution is too small; if the opposite is

true, the width is too large. For a parameter space of three or more dimensions, a

theoretically optimal acceptance rate is 0.234 (Roberts et al., 1997).

The Metropolis-Hastings algorithm works by proposing a move within some neigh-

borhood of the current location (xi−1 → x′i). The move is always accepted (xi = x′i)

if the probability at the new location is higher than the probability at the current

one. However, even if the proposed location is “downhill” in probability from the

current location, the move is still accepted with probability prob(new location)
prob(old locaation)

. In this

manner, some downhill moves are permitted, although “small” downhill moves are

more favorable than “large” ones. The sequence of xi in the Metropolis-Hastings al-

gorithm forms a Markov chain. A schematic of an example Markov chain trajectory

in a hypothetical two-dimensional parameter space is shown in Fig. 4.1.
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Probability Contours

Y

X
Figure 4.1: Schematic of the beginning of a Markov chain trajectory in a hypo-
thetical two-dimensional parameter space. The dashed lines represent probability
contours, and the black dots are locations visited by the Markov chain. The neigh-
borhood of the peak of the target probability density (center contours) will be more
finely sampled than the outlying areas.
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4.5.3 Simulated annealing

One could, of course, initialize a single Markov chain and allow it to explore the

parameter space using the Metropolis-Hastings method until it converges to the target

distribution. However, this approach can be problematic if the posterior density is

multimodal. In such cases, the chain can become stuck in a local maximum and fail

to explore the other modes. Furthermore, it can be difficult to determine if and when

the chain has converged to the posterior density.

One solution to these concerns is simulated annealing, introduced by Kirkpatrick

et al. (1983). Annealing in metallurgy and materials science is a process in which a

material is heated above its melting temperature and then slowly cooled, allowing the

constituent atoms to arrive at a low-energy configuration as the material solidifies.

If the material is cooled too quickly, the atoms become fixed in a high-energy state.

Simulated annealing works analogously in a computational context. To help prevent

the Markov chains from becoming stuck in a local maximum of the target distribution,

the chains are allowed to explore a series of intermediate probability densities that

smoothly transition from the joint prior to the target joint posterior probability. In

parameter estimation problems, the task is accomplished by introducing an annealing

parameter β ∈ [0, 1] to Bayes’ Theorem (Eq. (4.9)),

P (Θ|DI) ∝ [P (D|ΘI)]βP (Θ|I). (4.23)

The annealing parameter acts as the inverse of temperature. At the start of the calcu-

lation, β is initialized at zero (high temperature) and increases to 1 (low temperature)
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in a series of steps as the simulation progresses. The manner and rate at which β

moves from 0 to 1 is known as the annealing schedule, which can be expressed as the

series {β0, β1, . . . , βj} after j steps. The annealing schedule can be adjusted to fit

the needs of the particular problem. A long schedule costs computation time, but a

schedule that is too short increases the risk of the chain producing a local maximum.

When simulated annealing is applied to problems described in this Dissertation, the

annealing schedule is designed so that β increases linearly from 0 to 1 in 101 or 201

iterations.

After j iterations, the series of intermediate target distributions can be written

{Pβ0 , Pβ1 , . . . , Pβj
}, where Pβj

is shorthand for [P (D|ΘI)]βP (Θ|I) at the jth itera-

tion. Each time β is incremented, the Markov chain is allowed to sample from the

intermediate distribution for a sufficient number of Metropolis-Hastings steps that

the samples reflect Pβj
. Using this approach, the samples reflect the prior at the start

of the calculation (β = 0) and transition smoothly to reflect the target posterior at

the end of the calculation (β = 1). An illustration of how changing β affects the

target distribution is shown in a one-dimensional example in Fig. 4.2.

An advantage of simulated annealing is that it can naturally be parallelized. Mul-

tiple independent Markov chains can be run simultaneously and in parallel using

modern computing technology. The use of multiple chains permits more efficient

exploration of the parameter space and ensures that the samples drawn from the

collection of chains are more independent than those originating from a single chain.

Furthermore, it provides another measure of protection against exploration of a local

75



4.5 Markov chain Monte Carlo

30

20

10

0

P
ro

b
a
b
ili

ty
 D

e
n
s
it

y
 x

1
0

-3
 

40200-20-40
Value of Parameter X

30

20

10

0

P
ro

b
a
b
ili

ty
 D

e
n
s
it

y
 x

1
0

-3
 

40200-20-40
Value of Parameter X

30

20

10

0

P
ro

b
a
b
ili

ty
 D

e
n
s
it

y
 x

1
0

-3
 

40200-20-40
Value of Parameter X

30

20

10

0

P
ro

b
a
b
ili

ty
 D

e
n
s
it

y
 x

1
0

-3
 

40200-20-40
Value of Parameter X

! = 1.0

! = 0.6

! = 0.2

! = 0.0

Figure 4.2: One-dimensional illustration of the effect of the annealing parameter β
on a hypothetical target distribution of a parameter X. When β = 0, the target dis-
tribution is a smooth Gaussian prior. As β increases, the target distribution begins to
resemble the multimodal posterior, and eventually becomes the posterior itself when
β = 1. Allowing the Markov chains to converge to each intermediate distribution
decreases the chance of one or more chains becoming stuck on a local maximum.

76



4.5 Markov chain Monte Carlo

maximum because low-probability chains can be “killed” and replaced by higher-

probability chains. When this method is employed, the chains are sorted by probabil-

ity at each β step, and some number of the lowest probability chains are eliminated.

A corresponding number of surviving chains are selected at random to be duplicated,

thus replacing the killed chains with chains more likely to find the global maximum

in probability. When the calculation resumes, the duplicated chains wander apart

stochastically by the Metropolis-Hastings algorithm, and can eventually be consid-

ered independent.

Still another advantage of multiple chains is the enhanced ability to better evaluate

convergence of the Markov chains. There is currently no known test that guarantees

convergence. However, the trajectories of many Markov chains with the same target

distribution can be used to gather evidence of whether they have collectively not

converged. If all chains are found to be systematically sampling from approximately

the same neighborhood in the parameter space at the end of the calculation, with

normally distributed variations in the sampled probabilities, it may be inferred that

each chain has converged to the target. If the trajectories of some chains differ

substantially from the others, or there are systematic increases in the probabilities

of the samples, then the chains have not yet converged. A plot of the trajectories of

several Markov chains obtained in a calculation described in Chapter 5 is shown in

Fig. 4.3. The samples obtained from the chains in Fig. 4.3 are well-mixed, indicating

an absence of evidence against convergence (but not proof of convergence).

The simulated annealing algorithm can be summarized as follows.
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Figure 4.3: In this typical example from results of a simulation described in Chap-
ter 5, 64 Markov chains each drew 64 samples from the joint posterior probability for
a group of parameters Θ. The logarithm of the posterior probability for each of the
64 chains is plotted against the sample repeat number. The trajectories of the chains
are well-mixed, suggesting an absence of evidence against convergence.
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1. Initialize the Markov chains within the parameter space by sampling from the
prior probability densities.

2. While the annealing parameter is less than 1,

(a) Increase the annealing parameter according to the schedule.

(b) Kill and replace low-probability Markov chains.

(c) Allow the Markov chains to explore the parameter space using the Metropolis-
Hastings algorithm.

3. While there are fewer samples of the posterior than the desired number,

(a) Save the current samples stored in the active Markov chains

(b) Allow the Markov chains to explore the parameter space using the Metropolis-
Hastings algorithm.

An application of simulated annealing to Bayesian parameter estimation in ultra-

sonic wave propagation in cancellous bone is described in Chapter 5

4.5.4 Nested sampling

Nested sampling, introduced by Skilling (2006), is an alternative technique for

Bayesian computation. Skilling’s motivation is to directly compute P (D|I), the term

in the denominator of Bayes’ Theorem in Eq. 4.3. This term is known as the evidence,

represented by Z. The evidence can be written

Z =

∫
P (D|ΘI)P (Θ|I)dΘ, (4.24)

where P (D|ΘI) is the likelihood and P (Θ|I)dΘ is the prior mass element for data D

and parameters Θ. Eq. (4.24) can be rewritten in the one-dimensional form

Z =

∫
L(X)dX, (4.25)
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where L = P (D|ΘI) and dX = P (Θ|I)dΘ. Nested sampling obtains an approxima-

tion to Eq. (4.25) by systematically tabulating the integrand, starting with the lowest

contribution to Z and working upwards in likelihood. The process may be conceptu-

alized by imagining a series of nested probability contours within a parameter space.

The outermost contour is sampled first, and its contribution to the evidence is com-

puted and added to the total. The next innermost contour then is sampled, then the

next, and so on, working upwards in probability until the bulk of the joint posterior

density has been found. Numerically, this iterative approach begins by initializing

N samples from the prior. The sample with the lowest probability is identified, and

its likelihood is temporarily stored as the likelihood constraint for that iteration, de-

noted L∗. The sample is then stored, and its contribution to the total evidence Z is

calculated. The simplest way of computing this quantity at iteration k is

∆Zk = L∗k(Xk−1 −Xk), (4.26)

where ∆Zk is the new component of Z and Xk is given by

Xk = exp

(
− k

N

)
. (4.27)

Eq. (4.27) is obtained by calculating the expectation value for the amount of prior

mass enclosed by probability contours defined by the lowest-probability samples in

consecutive iterations. Eq. (4.26) shows that the integral of Eq. (4.25) is evaluated

by adding a series of rectangles in the space defined by L and X.

After adding the new component of Z to the running total, the sample with likeli-

hood L∗ is eliminated, and one of the surviving N − 1 chains is duplicated to replace
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it. The new, replacement sample is allowed to move within the parameter space via

Markov chain Monte Carlo exploration for a number of steps sufficient to distance

itself from its parent. However, this exploration is subject to the constraint that the

chain’s final location must have a probability greater than L∗; in other words, the new

sample must be drawn from the region of the parameter space inside the likelihood

contour defined by the previous low-probability sample. Once a suitable new loca-

tion has been selected, a new iteration begins. Due to the restriction on movement

imposed by L∗ updating at every step, the subset of the parameter space sampled

by the N objects gradually shrinks. Eventually, the bulk of the posterior density is

sufficiently sampled, so that new contributions to Z are miniscule. At this point, the

iterations can be terminated, and parameter estimates are determined directly from

the stored Monte Carlo samples. A schematic of a simple one-dimensional example

of nested sampling is shown in Fig. 4.4. Note how the portion of the parameter space

accessible to replacement samples decreases (subject to L∗) as the iteration number

increases. In higher dimensions, the constraint imposed by L∗ takes the form of a

contour rather than a horizontal line.

In summary, the algorithm proceeds by

1. Sample N points from the prior probability. Initialize Z = 0 and X0 = 1.

2. While the number of iterations is less than the desired stopping point,

(a) Find the sample with the lowest probability and store its likelihood as L∗.

(b) Set Xk = exp(−k/N).

(c) Increment Z by L∗(Xk−1 −Xk).

(d) Draw a new sample within the contour defined by L∗ using MCMC.
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Figure 4.4: Schematic of nested sampling acting on a one-dimensional target distri-
bution (black lines). The live samples are represented by gray circles. The likelihood
constraint L∗ defined by the lowest-probability sample (horizontal dashed line) moves
upward at each iteration, compressing the subset of the parameter space where the
samples are allowed to exist into the high-probability region.
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4.5 Markov chain Monte Carlo

Nested sampling has the advantage of direct computation of the evidence Z, if

desired; this feature is particularly useful for model selection problems. However, a

drawback is that parallelization, while possible, is less natural and therefore more

difficult than other MCMC algorithms. Nested sampling is used in the calculations

described in Chapter 7 of this Dissertation.
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Chapter 5

Estimating Fast and Slow Wave

Ultrasonic Properties in Bone

Using Bayesian Probability

Theory

5.1 Preface

This Chapter is based on the manuscript “Inverse problems in cancellous bone:

estimation of the ultrasonic properties of fast and slow waves using Bayesian proba-

bility theory” written by Christian C. Anderson, Adam Q. Bauer, Mark R. Holland,

Michal Pakula, Pascal Laugier, G. Larry Bretthorst, and James G. Miller. It is

currently under review for publication in a peer-reviewed journal.
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5.2 Abstract

Quantitative ultrasonic characterization of cancellous bone can be complicated by

artifacts introduced by analyzing acquired data consisting of two propagating waves

(a fast wave and a slow wave) as if only one wave were present. Recovering the

ultrasonic properties of overlapping fast and slow waves could therefore lead to en-

hancement of bone quality assessment. The current study uses Bayesian probability

theory to estimate phase velocity and normalized broadband ultrasonic attenuation

(nBUA) parameters in a model of fast and slow wave propagation. Calculations are

carried out using Markov chain Monte Carlo with simulated annealing to approxi-

mate the marginal posterior probability densities for parameters in the model. The

technique is applied to simulated data, to data acquired on two phantoms capable

of generating two waves in acquired signals, and to data acquired on a human femur

condyle specimen. The models are in good agreement with both the simulated and

experimental data, and the values of the estimated ultrasonic parameters fall within

expected ranges.

5.3 Introduction

Quantitative ultrasound is a modality for evaluating changes in bone quality asso-

ciated with osteoporosis (Barkmann et al., 2008; Droin et al., 1998; Häıat et al., 2006;

NIH, 2001; Padilla and Laugier, 2000; Pakula et al., 2009; Petley et al., 1995; Stre-

litzki and Evans, 1996; Wear et al., 2000; Williams, 1992). Quantitative ultrasound
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parameters, such as speed of sound and broadband ultrasonic attenuation (BUA),

have been shown to correlate with bone mineral density (BMD) (Häıat et al., 2006;

Langton and Langton, 2000; Njeh et al., 1997). The frequency dependence of phase

velocity (i.e., dispersion) may also contain relevant clinical information, but it has

not yet been demonstrated as a reliable indicator of bone quality.

Cancellous (trabecular) bone is a porous material found within the cavities of

long bones and vertebrae. It consists of a complex matrix of hard spicules (trabecu-

lae) interspersed with soft bone marrow. The complicated microstructure is known

to support the propagation of multiple compressional ultrasonic wave modes, often

referred to as fast waves and slow waves (Hosokawa, 2010; Fellah et al., 2008; Häıat

et al., 2008; Hosokawa and Otani, 1997, 1998; Lee et al., 2007; Mizuno et al., 2009).

When cancellous bone samples are insonified in through-transmission studies, the two

waves occasionally are separated and clearly distinct in the radiofrequency (rf) data.

However, in some circumstances, the two waves can strongly overlap during the time

period over which the rf data are acquired, resulting in interference and difficulties in

distinguishing between the two waves (Padilla and Laugier, 2000; Häıat et al., 2008;

Hosokawa and Otani, 1998; Lee et al., 2007; Anderson et al., 2008; Marutyan et al.,

2006).

Ultrasonic measurements from many laboratories have revealed that cancellous

bone exhibits a linear or nearly-linear increase in attenuation coefficient with fre-

quency (Barkmann et al., 2008; Droin et al., 1998; Waters and Hoffmeister, 2005;

Wear, 2007a, 2008). According to some forms of the causality-imposed Kramers-
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Kronig (KK) relations that relate the frequency dependence of the phase velocity to

the attenuation coefficient, materials that exhibit a linear-with-frequency increase in

attenuation coefficient are expected to exhibit a logarithmic-with-frequency increase

in phase velocity (Waters and Hoffmeister, 2005; Bauer et al., 2007; O’Donnell et al.,

1978, 1981; Toll, 1956; Waters et al., 2000b, 2003, 2005, 2000a). However, many

laboratories report phase velocity measurements that decrease with frequency, a phe-

nomenon known as anomalous negative dispersion (Droin et al., 1998; Pakula et al.,

2009; Strelitzki and Evans, 1996; Anderson et al., 2008; Marutyan et al., 2006; Waters

and Hoffmeister, 2005; Bauer et al., 2008b; Nicholson et al., 1996; Wear, 2000, 2007b,

2009). In an effort to explain the observed phase velocity dispersion, our Laboratory

proposed that conventional phase spectroscopy analysis of acquired radiofrequency

data might be influenced by the presence of multiple interfering compressional wave

modes. In instances where fast and slow waves are overlapped, anomalous dispersion

measurements could result from analyzing the interfering waves as if only one wave

were present (Anderson et al., 2008; Marutyan et al., 2006). Numerical simulations

demonstrated that when interference between a fast wave and a slow wave occurs, the

acquired waveform exhibits apparent ultrasonic properties that differ from the true

properties of the individual fast and slow waves (Anderson et al., 2008; Marutyan

et al., 2006). Solving the inverse problem—that is, reconstructing the ultrasonic

properties of the interfering fast and slow waves—could provide more reliable infor-

mation about the medium under study. Studies undertaken by Sebaa et al. (2008),

our Laboratory (Anderson et al., 2007, 2009; Marutyan et al., 2007b,a), and Wear
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(2010) have addressed various ways of addressing inverse problems in the ultrasonic

investigation of cancellous bone to accomplish these goals. The objective of the cur-

rent study is to extend and enhance our Laboratory’s proposed technique of using

Bayesian probability theory to recover the properties of individual interfering waves

in data acquired on bone and bone-mimicking phantoms.

5.4 Methods

5.4.1 Ultrasonic data acquisition

Two phantoms capable of producing two overlapping waves in acquired ultrasonic

data were constructed from plastics. One phantom was constructed by machining a

step discontinuity into a previously flat and parallel block of Lexan (polycarbonate

thermoplastic resin). The thick portion of the block was 8.5 mm, and the thin portion

of the block was 8.1 mm thick. Upon insonation , approximately half the ultrasonic

beam propagates through the thick portion of the block, and half propagates through

the thin side of the block. The difference in sample lengths for the two portions of the

beam leads to two apparently independent waves in the acquired data. The size of

the step discontinuity was chosen so that the fast and slow wave components would

be approximately 180 degrees out of phase. Data were acquired on this phantom

in a water tank using matched broadband 5 MHz center-frequency transducers in a

through-transmission arrangement. The transducers were planar and had a diameter

of 1.3 cm.
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A second phantom was constructed from rectangular blocks of Plexiglas (poly-

methyl methacrylate) and Lexan (polycarbonate thermoplastic resin). These blocks

were bonded with Acrylic cement (IPS Corporation, Gardena, CA, USA) and ma-

chined so that the bonded material was flat and parallel, with a thickness of 1.1 cm.

When this phantom is insonified near the boundary between the plastics, half of the

ultrasonic beam travels through Lexan, and the other half travels through Plexiglas.

Two waves arise in the acquired data because the speed of sound in Plexiglas is faster

than the speed of sound in Lexan. To better approximate the conditions used in data

acquisition on cancellous bone, especially the high kilohertz frequency range, data

were acquired on this phantom using matched broadband 500 kHz center-frequency

transducers in a through-transmission arrangement. These transducers were also pla-

nar and had a diameter of 2.9 cm. Schematics of the acquisition arrangement are

shown in Fig. 5.1. Additionally, a human femur condyle specimen was prepared by

machining the anterior and posterior sides of the condyle so that they were flat and

parallel, with the trabecular structure exposed. The marrow was removed, and the

sample was saturated with water. Data were acquired in a water tank at several

spatial sites on the sample using a matched pair of 1 cm diameter, planar, 500 kHz

center-frequency broadband transducers in a through transmission arrangement sim-

ilar to the one used for data acquisition on the plastic bone-mimicking phantoms.

The data acquired on the plastic phantoms and on the human bone sample served as

input to a Bayesian program that estimated the ultrasonic parameters of a fast wave

and a slow wave.
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A.

B.

Figure 5.1: Data acquisition arrangement for the Lexan phantom with a step dis-
continuity (top, Panel A) and the phantom made from bonded Lexan and Plexiglas
(bottom, Panel B).
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5.4.2 Model of ultrasonic wave propagation

Time-domain ultrasonic data can be modeled as

output(f) = input(f) [Hfast +Hslow] + n (5.1)

where output(f) and input(f) are the complex Fourier spectra of the model waveform

and incident ultrasonic pulse, respectively, Hfast(f) and Hslow(f) are the transfer

functions for the fast and slow waves, and n is an additive noise vector. When

calculations were performed on the simulated input data, a simulated incident pulse

was used to generate input(f). When experimentally acquired data were used as input

the calculations, a reference water-path signal was used as the source for input(f).

The transfer functions are given by

Hfast(f) = Afast exp (−βfastfd) exp

(
i2πfd

cfast(f)

)
(5.2)

Hslow(f) = Aslow exp (−βslowfd) exp

(
i2πfd

cslow(f)

)
(5.3)

where Afast and Aslow are parameters that account for frequency-independent signal

loss, such as transmission losses that might occur at interfaces between different

media. The parameters βfast and βslow are the slopes of attenuation (nBUA) for the

fast and slow waves, d is the thickness of the bone sample, and cfast and cslow are the

phase velocities for the fast and slow waves. To ensure agreement with the Kramers-

Kronig relations, the phase velocities are related to the attenuation coefficients by

cfast = cfast(f0) + [cfast(f0)]
2 βfast
π2

loge

(
f

f0

)
(5.4)
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cslow = cslow(f0) + [cslow(f0)]
2 βfast
π2

loge

(
f

f0

)
(5.5)

where f0 is a reference frequency chosen from within the experimental bandwidth and

loge denotes the natural logarithm. In all calculations, f0 was set at or near the middle

of the experimental bandwidth, typically corresponding to a frequency near the center

frequency of the transducer (either 500 kHz or 5 MHz for the experimentally acquired

data).

In Eqs. (5.2-5.5), the nBUAs, βfast and βslow, are expressed in natural (i.e., base

e) units (e.g. cm−1MHz−1). However, a common convention is to report nBUA in

units of dB/cm/MHz. To avoid confusion, the notation βdBfast and βdBslow is used when

referring to logarithmic values of nBUA, and βfast and βslow (without the superscript)

is used when referring to natural units, with the understanding that

βdBfast =
20

loge (10)
βfast ≈ 8.69× βfast (5.6)

and that a similar relationship exists between βslow and βdBslow.

5.4.3 Bayesian calculations

Bayesian probability theory (Sivia and Skilling, 2006) is used to estimate all of

the parameters appearing in Eqs. (5.1-5.5). Bretthorst et al. (2005b) gives a detailed

example of a calculation similar to the one carried out here. In Bayesian probability

theory, everything known about a parameter is summarized by a probability density

function. For example, the probability for cslow(f0) is represented symbolically as

P (cslow(f0)|DI), where this notation should be understood as the posterior probabil-
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ity for the parameter cslow(f0) given the data D and the prior information I. The

posterior probabilities for each individual parameter can all be computed from the

joint posterior probability for all of the parameters by a process called marginaliza-

tion, in which an integral over the joint posterior probability is performed over the

uninteresting parameters. For example, if all of the parameters are represented as

Θ = {Afast, βfast, cfast(f0), Aslow, βslow, cslow(f0)}, then the posterior probability for

cslow(f0) is computed as:

P (cslow(f0)) =

∫∫∫∫∫
P (Θ|DI) dAfastdβfastdcfast(f0)dAslowdβslow, (5.7)

where P (Θ|DI) is the joint posterior probability for all of the parameters. In a

similar fashion, the posterior probabilities for the other parameters can be obtained

by marginalizing over all of the parameters except the parameter of interest.

The joint posterior probability for all of the parameters is obtained by applying

Bayes theorem,

P (Θ|DI) =
P (Θ|I)P (D|ΘI)

P (D|I)
, (5.8)

where P (Θ|I) is the prior probability for Θ given only I, P (D|ΘI) is the likelihood

or the direct probability for the data given the parameters and the prior information,

and P (D|I) is a normalization constant.

Using the product rule of probability theory, the prior probability for the param-

eters can be factored,

P (Θ|I) = P (Afast|I)P (βfast|I)P (cfast(f0)|I)×

P (Aslow|I)P (βslow|I)P (cslow(f0)|I) . (5.9)
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Table 5.1: Prior probabilities for each model parameter. The means and standard
deviations define Gaussian probability density functions that are bounded by the low
and high values.

Parameter

Afast Aslow βdBfast βdBslow cfast(f0) cslow(f0)

(dB/cm/MHz) (m/s)

Low 0 0 0 0 1000 1000

Mean 0.5 0.5 43.4 43.4 2000 2000

High 1 1 86.8 86.8 3000 3000

Standard Deviation 0.5 0.5 43.4 43.4 1000 1000

To make this factorization, it has been assumed that each parameter is logically in-

dependent; i.e., each prior probability depends only on the parameter in question.

For example, it has been assumed that what is known about Afast does not depend

on cslow(f0), etc. In the calculation reported in this paper, it has been assumed that

only vague prior information is available about each parameter. Because the prior

information is vague, the functional form used to represent each prior probability is

found to make very little difference in the resulting posterior probabilities. Conse-

quently, these prior probabilities were assigned using bounded Gaussian distributions

that provide order-of-magnitude estimates of each parameter. A summary of these

order of magnitude estimates is given in Table 5.1.

Finally, the likelihood, P (D|ΘI) was assigned using a Gaussian prior probability

to represent what was known about the noise. The standard deviation of this Gaussian

was removed using marginalization with a Jeffreys prior (Jeffreys, 1961).

The calculation represented symbolically by Eq. (5.7) is a complicated five dimen-
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sional integral that must be repeated six times, once for each parameter appearing

in the model. Such multi-dimensional integrals are difficult or impossible to solve

analytically. Consequently, a Markov chain Monte Carlo simulation with simulated

annealing was used to approximate these integrals. More details on Bayesian prob-

ability theory are given by Sivia and Skilling (2006) and Bretthorst et al. (2005b),

and further information on how Markov chain Monte Carlo is used in Bayesian prob-

ability theory is available in the literature (Bretthorst et al., 2005a; Hastings, 1970;

Metropolis et al., 1953; Neal, 1993).

5.5 Results

5.5.1 Simulated data

As a preliminary investigation, simulated ultrasonic data were prepared using the

model described in Eqs. (5.1-5.5), with varying levels of Gaussian noise added to the

simulated signal to create three different simulated data sets with peak signal-to-noise

ratios of 50:1, 100:1, and 250:1. In each case, the parameters used to create the simu-

lated data were {Afast, βdBfast, cfast(f0), Aslow, βdBslow, cslow(f0)} = {0.4, 20 dB/cm/MHz,

1600 m/s, 0.6, 6.9 dB/cm/MHz, 1500 m/s}, values previously shown to generate a

negative dispersion using this model for acoustic wave propagation in bone (Anderson

et al., 2008). The value of f0 was set at 300 kHz, and the propagation distance was

set at 1 cm.

A comparison of the input fast and slow waves to the estimated fast and slow
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Table 5.2: The input values of the model parameters used to construct simulated
data sets are compared to the output means and standard deviations of the Monte
Carlo samples computed using Bayesian probability theory.

Parameter

Afast Aslow βdBfast βdBslow cfast(f0) cslow(f0)

(dB/cm/MHz) (m/s)

Input Value 0.40 0.60 20 6.9 1600 1500

SNR 50:1 0.38 ± 0.03 0.62 ± 0.02 19.2 ± 1.3 7.2 ± 0.3 1605 ± 7 1500 ± 0.4

SNR 100:1 0.38 ± 0.02 0.61 ± 0.01 19.0 ± 0.7 7.1 ± 0.2 1605 ± 3 1500 ± 0.2

SNR 250:1 0.38 ± 0.01 0.61 ± 0.005 19.4 ± 0.3 7.1 ± 0.1 1603 ± 2 1500 ± 0.1

waves is shown in Fig. 5.2. The simulated data used in this example had a signal-

to-noise ratio of 50:1, and the estimated fast and slow waves were generated from

the parameters that had maximum posterior probability. The agreement between

the simulated input and model output waves is excellent. In addition, the estimated

parameters are in good agreement with the input values. The marginal distributions

for each parameter in the model are shown in Fig. 5.3. Even when the signal-to-noise

ratio is relatively poor, Bayesian probability theory successfully estimates the true

input parameter values; the peak values of the marginal distributions do not change

appreciably as signal quality changes. However, the benefit of high quality data is

evident in that the widths of the marginal posterior probability density functions are

reduced as the signal-to-noise ratio improves. A numerical summary of these results

is presented in Table 5.2.
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Figure 5.2: Input data to the Bayesian calculations (top panel, solid black circles)
consisting of the sum of a simulated fast wave (middle panel, black squares) and
slow wave (bottom panel, black circles). The output of the Bayesian calculations
corresponding to each portion of the data is shown superimposed in a gray line. The
signal-to-noise ratio in the input data is 50:1.
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Figure 5.3: Marginal posterior probability density functions for the three sets of
simulated data at varying signal-to-noise ratio (SNR) levels. All distributions inte-
grate to 1. SNRs of 50:1, 100:1, and 250:1 are shown in circles, squares, and triangles,
respectively. As the signal quality improves, the width of the distributions decreases,
indicating increased confidence in the parameter value. However, the mean and peak
parameter values do not change appreciably.

100



5.5 Results

5.5.2 Phantom data

Ultrasonic data acquired on the Lexan phantom with a step discontinuity are

shown in the top panel of Fig. 5.4, with the model constructed from the parameters

that maximized the posterior probability shown superimposed on the data. In these

calculations, the value of f0 was set at 5 MHz and the distances of propagation for

the fast and slow waves were set to the distances corresponding to the thick and

thin portions of the Lexan phantom as measured with calipers. The individual fast

and slow waves that comprise the model are shown in the corresponding lower panel.

The qualitative agreement between the input data and the model constructed using

Bayesian probability theory is excellent despite the large difference in the phases of

the fast and slow waves. Moreover, as shown in Fig. 5.5, a conventional analysis of

the acquired data in Fig. 5.4 yields large artifacts near 5 MHz in both the attenua-

tion coefficient and phase velocity. In contrast, the attenuation coefficients and phase

velocities of the fast and slow waves obtained with Bayesian probability theory do

not exhibit such anomalous behavior, and are consistent with the expected values

for Lexan. A summary of the parameter estimates (the means and standard de-

viations of the Monte Carlo samples), is given in Table 5.3. The properties of the

fast and slow waves are similar because the medium under investigation in each case

is Lexan. Similar results for the bonded Lexan and Plexiglas phantom are shown in

Fig. 5.6. For these calculations, f0 was set at 500 kHz and the propagation distance

for each wave was set at 1.1 cm, the thickness of the phantom as measured with
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Figure 5.4: Data acquired at 5 MHz on a Lexan phantom with a step discontinuity
(top panel, dark circles) with the model constructed from the parameters that max-
imized the joint posterior probability superimposed (top panel, gray line). The fast
and slow waves that comprise the model are displayed in the bottom panel.
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Figure 5.5: Conventional analysis of the data from a Lexan phantom with a step
discontinuity yields significant artifacts in the attenuation coefficient and phase ve-
locity near band center. In contrast, the curves for the fast and slow waves obtained
using Bayesian probability theory are smoothly varying and consistent with a flat and
parallel block of Lexan.

calipers. Each of these plastics has relatively low internal losses at frequencies in the

300-700 kHz bandwidth compared to those in the 3-7 MHz bandwidth. This effect

is especially notable for Plexiglas, which has a relatively low nBUA even over mega-

hertz bandwiths (on the order of 0.7 dB/cm/MHz from 3-7 MHz). Consequently,

the frequency-dependent attenuation coefficient is more difficult to estimate in the

hundreds of kilohertz frequency range, because energy loss is dominated by (approxi-

mately frequency-independent) reflection losses at the interfaces between the plastics

and water. Nevertheless, the qualitative agreement between the model and the data

remains quite good, and the ability of the Bayesian approach to estimate the fast and

slow wave phase velocities is preserved despite the difficulties in estimating nBUA

for the fast and slow waves. These additional complexities are not likely to persist in
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Table 5.3: The expected values of the model parameters are taken from ultrasonic
measurements performed on a flat and parallel block of Lexan. These expected values
are compared to the means and standard deviations of the Monte Carlo samples
computed using Bayesian probability theory for the data acquired on a block of Lexan
with a step discontinuity.

Parameter

Afast Aslow βdBfast βdBslow cfast(f0) cslow(f0)

(dB/cm/MHz) (m/s)

Expected – – 4.2 4.2 2250 2250

Bayesian 0.43 ± 0.01 0.44 ± 0.01 4.0 ± 0.1 4.3 ± 0.1 2259 ± 1 2257 ± 1

estimate

data acquired on cancellous bone because the attenuation coefficients are much larger

than those in plastics (see Discussion section).

A summary of the parameter estimates for the velocity parameters in this data set

is given in Table 5.4, with comparisons to approximate expected phase velocities at

band center for individual Lexan and Plexiglas samples. Here, Plexiglas corresponds

to the fast wave and Lexan corresponds to the slow wave.

5.5.3 Cancellous bone data

Acquired ultrasonic data and the corresponding Bayesian model for a single site

on a human femur condyle are shown in Fig. 5.7, with the fast and slow waves

generated using the parameters that had maximum posterior probability displayed

in the lower panel. The calculations were performed with f0 set to 500 kHz and the

propagation distance set to 1.68 cm, the thickness of the bone sample. The complex
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Figure 5.6: Data acquired at 500 kHz on a phantom constructed from bonded blocks
of Lexan and Plexiglas (top panel, dark circles) with the model constructed from the
parameters that maximized the joint posterior probability superimposed (top panel,
gray line). The fast and slow waves that comprise the model are displayed in the
bottom panel.
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Table 5.4: The expected values of the model velocity parameters are taken from
separate ultrasonic measurements performed on flat and parallel blocks of Lexan and
Plexiglas. These expected values are compared to the means and standard deviations
of the Monte Carlo samples computed using Bayesian probability theory for the data
acquired on a phantom constructed by bonding blocks of Lexan and Plexiglas.

Parameter

cfast(f0) cslow(f0)

(m/s)

Expected 2735 2185

Bayesian 2765 ± 1 2192 ± 1

estimate

structure of cancellous bone results in data that are less clean than the data acquired

on flat and parallel blocks of plastic. In turn, the anticipated agreement between

the data and model is lessened because the attenuation coefficients for the fast and

slow waves may deviate from strict linearity, and thus the phase velocities become

less logarithmic in nature. However, in spite of these anticipated challenges, the data

and model for this site are in good agreement. Additionally, as shown in Fig. 5.8,

the phase velocities for the fast and slow waves recovered using Bayesian methods

are causally consistent. The conventionally measured dispersion for this site is shown

in the left panel of Fig. 5.8 (black circles), and a negative dispersion is evident. The

frequency dependence of this curve contrasts with that of the dispersion predicted

by the Kramers-Kronig relations, given the nBUA at this site. However, the right

panel of Fig. 5.8 shows that the dispersions for the fast and slow waves are positive

and increasing, as required by the model. A summary of the parameter estimates for
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Table 5.5: Means and standard deviations of the Monte Carlo samples computed
using Bayesian probability theory for the data acquired on a human cancellous bone
specimen taken from a femur condyle.

Parameter

Afast Aslow βdBfast βdBslow cfast(f0) cslow(f0)

(dB/cm/MHz) (m/s)

Bayesian 0.82 ± 0.05 0.23 ± 0.01 42.8 ± 1.2 5.2 ± 0.3 2036 ± 5 1511 ± 1

estimate

these data is given in Table 5.5.

The analysis was performed at nine different sites on the same femur condyle

to verify that it could be applied to a variety of data acquired on cancellous bone.

The peak values of βdBfast, β
dB
slow, cfast(500 kHz), and cslow(500 kHz) were recorded at

each location and averaged to obtain mean values for each parameter across the nine

spatial sites. The results are displayed in Fig. 5.9, with the error bars representing

the standard deviation in the most probable values for the parameter estimates across

all of the nine spatial locations. There is relatively little variance in cfast(500 kHz)

and cslow(500 kHz) over the spatial sites, but there is considerably more variation in

βdBfast and βdBslow over the same locations.

5.6 Discussion

Analysis of ultrasonic data acquired on cancellous bone is often performed by us-

ing time-of-flight or phase spectroscopy methods to determine speeds of sound, and

applying log spectral subtraction methods to obtain values for BUA or nBUA. Some
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Figure 5.7: Data acquired at 500 kHz at one site on a human femur condyle
specimen (top panel, dark circles) with the model constructed from the parameters
that maximized the joint posterior probability superimposed (top panel, gray line).
The fast and slow waves that comprise the model are displayed in the bottom panel.
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Figure 5.8: The conventionally measured phase velocity for the data acquired on
a human femur condyle (left panel, dark circles) exhibits an anomalous negative
dispersion, in contrast with the dispersion predicted by the Kramers-Kronig relations
(left panel, gray curve). The fast and slow wave dispersions obtained using Bayesian
probability theory (right panel) do not exhibit anomalous behavior.

 

 

 

 

 

Figure 5.9: Values for nBUA and phase velocity at band center inferred by Bayesian
probability theory for nine spatial locations within the same human femur condyle
specimen. The phase velocities do not vary substantially over the nine sites, but there
is considerable variation in nBUA.
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assumptions underlying these approaches—namely, that the signal loss and attenua-

tion coefficient of cancellous bone can be approximated by a linear relationship with

frequency—have been explicitly incorporated into the model for ultrasonic wave prop-

agation in bone used in the current study. Because the attenuation coefficient rises

linearly with frequency, this model employs a dispersion that rises logarithmically

with frequency as determined by the Kramers-Kronig relations. The heterogeneity

and general complexity of cancellous bone structure appears to result in some devia-

tion from these strict frequency dependences. Indeed, results presented above suggest

that as analysis is performed on data obtained from specimens ranging from computer

simulation, to homogeneous plastics, and to cancellous bone, these approximations

become less satisfying. In spite of this trend, the fast and slow wave estimated

parameters appear to be plausible and might in future studies be shown to be of

diagnostic value. Furthermore, somewhat more sophisticated models for ultrasonic

wave propagation can easily be incorporated into the Bayesian analysis introduced

here if appropriate.

Other potential complicating experimental factors not directly accounted for in

the model described here are the effects of diffraction and phase cancellation at the

face of a piezoelectric receiver (Bauer et al., 2008a, 2009). Because the model does

not currently include a mechanism for these effects, systematic errors are introduced

that could influence the parameter estimates, especially those that govern signal loss

(Afast, Aslow, βfast, βslow). It is challenging to determine how much, or in what ca-

pacity, these parameter estimates are affected. Interpretation of the estimated values
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of Afast and Aslow is particularly difficult, since these parameters presumably include

contributions from insertion losses, diffraction, phase cancellation, and the distribu-

tion of energy among the fast and slow wave modes. These complicating factors are

one of the reasons why, in Tables 3-5, no expected value for Afast or Aslow is given.

The nBUA parameters βfast and βslow can also suffer from a similar ambiguity in their

interpretation in some circumstances. However, if the internal losses in the sample

under investigation are large, nBUA parameters are dominated by the contributions

of the attenuation coefficient; hence, the other complicating experimental factors can

sometimes be ignored. This reasoning provides an explanation for the fact that the

use of this model resulted in an accurate determination of nBUA for plastic phan-

toms over an experimental bandwidth of 3-7 MHz, where attenuation coefficients are

relatively large, but failed to do so over an experimental bandwidth of 300-700 kHz,

where attenuation coefficients are relatively small.

The results presented show that Bayesian probability theory can be used to de-

termine the individual properties of overlapping and interfering fast and slow waves

that are not obtained with more conventional analysis techniques. Direct computa-

tion of posterior probability density functions for each parameter, as approximated by

Markov chain Monte Carlo simulations, provide an easily interpreted representation

of all information about a given parameter. Traditionally, Bayesian analysis has been

limited by the large computational resources needed to solve complicated problems.

However, advances in computing technology have resulted in the ability to apply

Bayesian probability theory to problems with high dimensionality and complexity
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with reasonably short calculation times and at relatively low cost.

5.7 Conclusion

Bayesian probability theory has been applied to simulated ultrasonic data, to data

acquired on two different plastic bone-mimicking phantoms, and to data from a hu-

man femur condyle specimen. Agreement between the models and data ranges from

good to excellent. Marginal posterior probability densities for the model parameters

accurately reflect true input values in simulated data and provide good estimates for

the ultrasonic characteristics of the plastic bone-mimicking phantoms, although the

analysis performs less well when the medium under study exhibits a small attenuation

coefficient. Artifacts present in conventionally obtained phase velocities and attenu-

ation coefficients are replaced by smoothly varying curves determined by probability

theory.
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Häıat, G., Padilla, F., Cleveland, R. O., and Laugier, P. (2006). “Effects of frequency-
dependent attenuation and velocity dispersion on in vitro ultrasound velocity mea-
surements in intact human femur specimens”, IEEE Trans Ultrason Ferroelectr
Freq Control 53, 39–51.
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Chapter 6

Anisotropy of Ultrasonic

Properties in Cancellous Bone

6.1 Preface

The material presented in this Chapter is the result of a collaborative effort with

Professor Mami Matsukawa and her co-investigators at Doshisha University in Kyoto,

Japan, who prepared bone specimens and acquired the data used in this investigation.

The author is grateful for their assistance.
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6.2 Introduction

Bone growth and remodeling is sensitive to mechanical stimulation (Njeh et al.,

1999). In cancellous bone, this manner of growth causes the trabeculae to tend to be

aligned along the major stress axes. During standing or walking, the long bones of the

leg experience stresses that tend to be oriented along the major axis of the bone. Thus,

the trabecular structure in these bones usually has a preferred orientation parallel

to the long axis, and is anisotropic. It should be noted, however, that although the

trabeculae have a preferred orientation, the natural complexity of cancellous bone and

the many interconnected trabeculae practically guarantee that no single direction can

rigorously be defined as “parallel to the aligned trabeculae”. Because the mechanical

properties of an anisotropic material are directionally dependent, it naturally follows

that the ultrasonic properties are also dependent on the angle of insonation relative

to the predominant orientation of the trabeculae.

In clinical bone sonometry of the heel, the ultrasonic waves usually propagate in

the medial-lateral direction across the heel bone. In this geometry, the signals travel

in a direction perpendicular to the predominant trabecular orientation. The potential

for future devices to test bone quality along multiple axes provides motivation for a

deeper understanding of the anisotropy of the measured ultrasonic parameters in

bone. In vitro studies have examined the anisotropy of velocity in cancellous bone

specimens (Mizuno et al., 2009, 2008; Häıat et al., 2008; Hosokawa and Otani, 1998).

As discussed in Chapters 3 and 5, the propagation of fast and slow waves in
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cancellous bone can complicate measurements of velocity and attenuation properties.

The same effects can complicate investigations of anisotropy in bone. Hosokawa and

Otani (1998) were unable to measure distinct fast and slow wave velocities when the

insonation angle was larger than approximately 40 degrees because the fast and slow

waves became strongly overlapped as the insonation angle increased. Thus, methods

for separating fast and slow waves from data in which they strongly overlap would

benefit studies of anisotropy in cancellous bone. The method described in Chapter 5

is suitable for addressing this task.

6.3 Methods

6.3.1 Data acquisition

At Doshisha University in Kyoto, Japan, a spherical specimen approximately

12 mm in diameter was drawn from the distal epiphysis of a bovine femur. The

specimen was defatted and mounted in a water tank. In the same water tank, a trans-

mitting transducer with a focal length of 40 mm and a planar receiving transducer

were arranged on either side of the specimen in a through-transmission arrangement.

The initial direction of propagation through the sample was the superior-inferior di-

rection, along the predominant trabecular orientation. The transmitter was excited

by one cycle of a 1 MHz sinusoidal pulse. The signal was received after passing

through the sample, digitized on an oscilloscope, and stored for off-line analysis. This

process was repeated as the specimen was rotated in 10 degree increments between 0
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and 180 degrees, allowing the data to be analyzed as a function of insonation angle

relative to the predominant trabecular alignment.

6.3.2 Analysis

Data analysis was carried out in the Laboratory for Ultrasonics at Washington

University in St. Louis. Bayesian probability theory as described in Chapter 5 was

performed on data acquired at each insonation angle. The model used for fast and

slow ultrasonic wave propagation in bone is the same one described in Section 5.4.2,

in which the parameters to be estimated are {Afast, βfast, cfast(f0), Aslow, βslow,

cslow(f0)}. In this application, f0 was set to 1 MHz, the center frequency of the

transmitted signal.

6.4 Results

A representative portion of the experimental data and the models constructed us-

ing the most probable parameter values are shown in Fig. 6.1. In Fig. 6.1, the black

lines are the acquired data and the gray curves are the models for the data. Results

shown are when the angle of insonation θ was 0◦ (parallel), 30◦, 60◦, and 90◦ (perpen-

dicular) to the predominant trabecular alignment. Anisotropy is evident in that fast

and slow waves are easily identified in the acquired data at parallel insonation, but

they become more and more overlapped as θ increases. At perpendicular insonation,

discernment of individual fast and slow waves is problematic. In general, the models
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are in good agreement with the data despite the difficult experimental factors noted

in Section 5.6

The most probable parameter values for each insonation angle were stored. In

Fig. 6.2, the parameters Afast and Aslow are plotted at each angle. Afast is at a

maximum when insonation is parallel to the trabeculae and at a minimum when in-

sonation is approximately perpendicular to the trabeculae. The opposite relationship

exists for Aslow, which has a minimum at parallel insonation and a maximum near

perpendicular insonation.

Anisotropy is also apparent in normalized Broadband Ultrasound Attenuation

(nBUA) for the fast and slow waves, equivalent to the parameters βfast and βslow.

As shown in Fig. 6.3, The fast wave exhibits more smoothly varying anisotropy for

this sample compared to that of the slow wave, which does not have a pronounced

maximum near 90 degrees. It is interesting to note that unlike Aslow, the parameter

βslow appears to have a maximum at approximately perpendicular insonation and a

minimum at parallel insonation.

Signal loss is a measure that incorporates all factors contributing to Afast and

βfast, and correspondingly Aslow and βslow. The signal losses for the spherical bovine

bone sample are displayed in Fig. 6.4 as a function of insonation angle. Like nBUA,

signal loss for both waves achieves a maximum near 90 degrees and a minimum near

0 and 180 degrees.

Velocity should be expected to exhibit significant anisotropy based on qualitative

observations of the data in Fig. 6.1, which indicate that the degree to which the fast
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Figure 6.1: Acquired experimental data (black curves) and models constructed
using Bayesian probability theory (gray curves) for a cancellous bone sample. The
angles θ are insonation angles relative to the predominant trabecular alignment. As
θ increases from parallel to perpendicular insonation, the fast and slow waves become
more overlapped.
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Slow Wave

Fast Wave

Figure 6.2: The most probable values for the parameters Afast (top) and Aslow
(bottom) as a function of insonation angle for a bovine cancellous bone specimen.
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Fast Wave

Slow Wave

Figure 6.3: The most probable values for the parameters βfast (top) and βslow
(bottom) as a function of insonation angle for a bovine cancellous bone specimen.
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Fast Wave

Slow Wave

Figure 6.4: The signal loss at band center (1 MHz) as a function of insonation
angle for a bovine cancellous bone specimen.
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and slow waves overlap changes with insonation angle. The phase velocity at 1 MHz

is displayed as a function of angle of insonation in Fig. 6.5. At parallel insonation,

the fast wave has a maximum in velocity and the slow wave has a minimum. At

perpendicular insonation, the situation is reversed; the fast wave velocity is at its

minimum, and the slow wave velocity is at its maximum. Therefore, the difference

in the velocities is maximized at parallel insonation, and the two waves should be

expected to be more distinct in the acquired data. At perpendicular insonation, vfast

and vslow are more similar, and more overlap should be anticipated.

An additional parameter of interest is the relative amplitude of the fast and slow

waves. The wave amplitudes are determined by finding the maximum of the signal

envelope. In Fig. 6.6, the ratio of the maximum amplitude of the fast wave and the

maximum amplitude of the slow wave is plotted against insonation angle. A value

of 1 indicates that the fast and slow waves have approximately equal amplitude.

Again, the anisotropy is evident. The fast wave has approximately 40 percent of the

amplitude of the slow wave at parallel insonation, but at perpendicular insonation

the fast wave amplitude is higher than the slow wave amplitude.

6.5 Discussion

Using conventional analysis techniques, it can be difficult to fully determine the

anisotropy of ultrasonic parameters in cancellous bone because of the strong over-

lap of fast and slow waves. For the data presented in the current study, accurate
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Fast Wave

Slow Wave

Figure 6.5: The most probable values for the parameters vfast (top) and vslow
(bottom) as a function of insonation angle for a bovine cancellous bone specimen.
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Figure 6.6: The ratio of maximum fast wave amplitude to maximum slow wave
amplitude as a function of insonation angle for a bovine cancellous bone specimen.
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determination of these parameters would be problematic as the angle of insonation

approached 90 degrees. Fortunately, Bayesian probability theory is a method for

estimating these elusive ultrasonic properties even when the waves are strongly over-

lapped. The results presented suggest significant anisotropy in phase velocity, nBUA,

frequency independent loss (Afast and Aslow), signal loss, and fast wave-to-slow wave

amplitude ratio.
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Chapter 7

Bayesian Analysis of Cyclic

Variation of Myocardial

Backscatter

7.1 Preface

This Chapter is based on the manuscript “Bayesian parameter estimation for char-

acterizing the cyclic variation of echocardiographic backscatter to assess the hearts of

asymptomatic type 2 diabetes mellitus subjects” written by Christian C. Anderson,

Allyson A. Gibson, Jean E. Schaffer, Linda R. Peterson, Mark R. Holland, and James

G Miller. It is currently under review for publication in a peer-reviewed journal.

132



7.2 Abstract

7.2 Abstract

Previous studies have shown that effective quantification of the cyclic variation of

myocardial ultrasonic backscatter over the heart cycle might provide a non-invasive

technique for identifying the early onset of cardiac abnormalities. These studies

have demonstrated the potential for measurements of the magnitude and time de-

lay of cyclic variation for identifying early onset of disease. The goal of this study

was to extend this approach by extracting additional parameters characterizing the

cyclic variation in an effort to better assess subtle changes in myocardial properties

in asymptomatic subjects with type 2 diabetes. Echocardiographic images were ob-

tained on a total of 43 age-matched normal control subjects and 100 type 2 diabetics.

Cyclic variation data were generated by measuring the average level of ultrasonic

backscatter over the heart cycle within a region of interest placed in the posterior

wall of the left ventricle. Cyclic variation waveforms were modeled as piecewise lin-

ear functions, and quantified using a novel Bayesian parameter estimation method.

Magnitude, rise time and slew rate parameters were extracted from models of the

data. The ability of each of these parameters to distinguish between normal and type

2 diabetic subjects, and between subjects grouped by glycated hemoglobin (HbA1c)

was compared. Results suggest a significant improvement in using measurements of

the rise time and slew rate parameters of cyclic variation to differentiate (p < 0.001)

the hearts of patients segregated based on widely employed indices of diabetic control

compared to differentiation based on the magnitude of cyclic variation.
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7.3 Introduction

Type 2 diabetes mellitus is a known risk factor for coronary artery disease and

subsequent heart failure. In addition, an increasing body of evidence indicates that

diabetes can lead to heart disease independent of atherosclerosis, a condition known

as ”diabetic cardiomyopathy” (Fang et al., 2004; Hamby et al., 1974; Kannel et al.,

1974; Witteles and Fowler, 2008; Rijzewijk et al., 2008). The mechanisms underlying

the development of diabetic cardiomyopathy are not fully understood, but several

studies suggest that lipid metabolic abnormalities may play a role in lipid accumu-

lation in non-adipose tissue, including myocardium, and that the accumulation of

lipids in myocardium contributes to cell dysfunction, cell death, and subsequently

cardiomyopathy (Kusminski et al., 2009; Augustus et al., 2003; Carley and Severson,

2005; Peterson et al., 2004; Stremmel, 1988; Borradaile and Schaffer, 2005; Chiu et al.,

2001; Finck et al., 2003; Nielsen et al., 2002; Rijzewijk et al., 2008; Zhou et al., 2000).

Ultrasonic backscatter from myocardium has long been known to vary systemati-

cally over the cardiac cycle (Mottley et al., 1984; Barzilai et al., 1984; Wickline et al.,

1985; Mobley et al., 1995; Naito et al., 1996; DiBello et al., 1998; Hu et al., 2003;

Holland et al., 2004, 2007, 2009; Gibson et al., 2009). Quantification of this cyclic

variation of myocardial backscatter has provided a tool for non-invasive ultrasonic

tissue characterization in a range of pathologies, including diabetes (Gibson et al.,

2009; Holland et al., 2007; Wagner et al., 1995; DiBello et al., 1995; Pérez et al., 1992).

Traditionally, cyclic variation has been quantified by using the magnitude and time
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delay (phase) of the systematic variation of backscatter over the heart cycle. Both of

these parameters have been shown to be useful for characterizing myocardium (Hol-

land et al., 2007; Gibson et al., 2009; Wagner et al., 1995; DiBello et al., 1995; Hu

et al., 2003; Finch-Johnston et al., 2000). However, other features of the cyclic varia-

tion waveform may be more sensitive to the early onset of diabetic cardiomyopathy.

Because diabetic cardiomyopathies may first manifest themselves in the form of dias-

tolic dysfunction, methods for characterizing cyclic variation that measure diastolic

function could be useful for distinguishing between healthy hearts and those at risk

for disease. The current study introduces a novel method for modeling the cyclic vari-

ation of myocardial backscatter as a pulse waveform in order to extract parameters

with the potential for identifying diastolic dysfunction. This model is then applied

to a population of subjects that includes normal controls and asymptomatic type 2

diabetes patients to determine the ability of the model to discriminate between pa-

tient groups. Improved non-invasive methods for assessing the potential development

of cardiomyopathies associated with type 2 diabetes could permit earlier and more

effective intervention.

7.4 Methods

7.4.1 Subjects

Normal control subjects (with a fasting glucose < 100 mg/dL) and subjects with a

history of type 2 diabetes mellitus between the ages of 30 and 55 years were recruited
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for the study over a three-year span. All subjects underwent a screening medical

history and physical exam and phlebotomy for routine laboratories. Participants

were excluded from the study if they exhibited greater than Stage 1 hypertension as

defined by the seventh report of the Joint National Committee (The Joint National

Committee on the Prevention, Detection, Evaluation, and Treatment of High Blood

Pressure, 2003); other systemic diseases (e.g. lupus); valvular disease; greater than

trace or mild valvular regurgitation; an ejection fraction < 55%; ischemic heart disease

as assessed by a screening stress echocardiography exam; or symptoms of heart failure.

Study participants were also excluded if they were current smokers, postmenopausal,

pregnant, or lactating. A total of 143 subjects were retained in the study, which

included 43 normal controls and 100 type 2 diabetics. The average age of the subjects

was 43 ± 7 years, and included 57 males and 86 females. Signed informed consent for

participation was obtained from each of the subjects under a human studies protocol

approved by the Washington University Human Research Protection Office (HRPO).

7.4.2 Laboratory tests

Subjects underwent fasting glucose, glycated hemoglobin, and lipid and protein

level tests after an overnight fast. A standard echocardiographic exam was performed

to assess cardiac function in addition to the echocardiographic images acquired for

ultrasonic tissue characterization.
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7.4.3 Data acquisition

A General Electric Vivid 7 clinical imaging system (General Electric Medical

Systems, Waukesha, WI, USA) was used to collect echocardiographic cineloops over

approximately five heart cycles for each subject. The data were acquired from the

parasternal long-axis view in harmonic imaging mode; the transmit frequency was 1.7

MHz, and the receive frequency was 3.4 MHz. The imaging system was configured

such that there was a linear relationship between the displayed image grayscale value

and changes in the level of ultrasonic backscatter expressed in decibels (dB). To verify

this relationship, a series of measurements were performed on a tissue-mimicking

phantom in which the imaging system gain was varied systematically in known dB

steps. The average grayscale level was determined from within a region of interest

placed on each phantom image at each gain setting to establish a conversion factor

from image grayscale level to dB and to determine where the relationship was linear.

The images were analyzed using NIH ImageJ software (National Institutes of Health,

Bethesda, MD, USA).

Subject images were acquired with the system gain set at a level that optimized

the dynamic range of the backscattered signals from the myocardium. The acquired

data were analyzed offline by using NIH ImageJ to draw a region of interest within

the left ventricular free wall and manually tracking it over the several heart cycles

in the cineloops. The average grayscale levels within the region of interest for each

image frame was recorded and converted to decibels to obtain a measurement of
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A. B. Average cyclic variation waveform

Figure 7.1: Regions of interest were placed within the posterior left ventricular wall
on each image frame (shown in Panel A) and tracked throughout the heart cycle. The
average level of backscatter was determined for each frame and averaged across five
heart cycles to obtain an average cyclic variation waveform, such as the one depicted
in Panel B.

backscattered energy. The backscattered energy in dB was plotted against time to

obtain the systematic variation of ultrasonic backscatter from myocardium. This

data was then averaged over the separate heart cycles and redimensioned so that

it could be plotted as a percentage of the heart cycle, independent of heart rate.

This processing results in average cyclic variation waveforms in which end-diastole

is defined as the start (0%) and end (100%) of the heart cycle. A schematic of a

region of interest within the posterior wall and the resulting average cyclic variation

waveform is depicted in Fig. 7.1.

More details of cyclic variation data acquisition and analysis are outlined by Gib-

son et al. (2009).
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7.4.4 Model of cyclic variation data

A piecewise linear model of cyclic variation was defined using six parameters to

characterize a given cyclic variation waveform. Two parameters define the high and

low levels for the waveform, and four parameters determine the placement (in time or

percentage of the heart cycle) of the transition points between the line segments that

comprise the model. The line segments are connected to form a continuous model

waveform in the manner depicted in Panel A of Fig. 7.2. Mathematically, the model

can be expressed as

M(x) =



H, x ≤ x1

max+ ba, x1 < x ≤ x2

L, x2 < x ≤ x3

mbx+ bb, x3 < x ≤ x4

H, x4 < x

, (7.1)

where M(x) is the amplitude of the model waveform at a percentage of the heart

cycle x, H is the high amplitude level for the waveform, L is the low amplitude level

for the waveform, and the xi are the transition point parameters. The slopes of the

line segments representing the transitions between the high and low levels, ma and

mb, are given by

ma =
L−H
x2 − x1

(7.2a)

mb =
H − L
x4 − x3

(7.2b)

and the intercepts, ba and bb, are given by

ba = H −max1 (7.3a)
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bb = L−mbx3. (7.3b)

This model can be used to characterize a generic positive-going or negative-going pulse

with a variety of qualitatively different shapes, making it suitable for use on cyclic

variation waveforms. Once a model for a specific waveform has been constructed,

additional derived quantities can be extracted, such as the magnitude, rise time, fall

time, slew rate, duration, and more.

7.4.5 Parameter estimation

Bayesian probability theory was used to estimate the six parameters {H, L, x1,

x2, x3, x4} in the model of cyclic variation for each subject. In Bayesian probability

theory, all of the information about a given parameter is represented by a probability

density function. As an example, the probability for the parameter L is expressed

as P (L|DI), where this notation is understood to denote the probability for L given

the data D and available background information I. The posterior probability den-

sity functions for individual parameters can be computed from the joint posterior

probability for all model parameters by marginalization, a process in which the joint

posterior probability is integrated over all parameters except the one of interest. For

instance, if all parameters are represented by Θ = {H, L, x1, x2, x3, x4}, then the

marginal posterior probability for L is calculated by

P (L|DI) =

∫∫∫∫∫
P (Θ|DI) dHdx1dx2dx3dx4, (7.4)

140



7.4 Methods

Magnitude
Rise Time

B
a
c
k
s
c
a
tt

e
r 

(d
B

)

Percentage of Heart Cycle (%)

90% Level

10% Level

x1 x2 x3 x4

Percentage of Heart Cycle (%)

B
a
c
k
s
c
a
tt

e
r 

(d
B

) High Level

Low Level

Transition

Points

A.

B.

Figure 7.2: Panel A (top): Schematic of a model cyclic variation waveform and the
parameters used to characterize it. The high and low amplitude levels determine the
magnitude, and the four transition time parameters (x1, x2, x3, x4) mark the locations
where the line segments join. Given a set of values for these six parameters, the model
waveform (shown in gray) can be constructed. Panel B (bottom): Illustration of the
pulse parameters derived from a model cyclic variation waveform. The magnitude is
the difference between the high and low levels, and the rise time is the time taken to
go from 10% of the magnitude to 90% of the magnitude on the rising edge. The slew
rate is the difference between the 90% level and the 10% level, divided by the rise
time.
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where P (Θ|DI) is the joint posterior probability for all model parameters. Marginal

posterior probabilities for the other parameters can be computed by using the same

procedure, but integrating over the appropriate (different) sets of parameters. Thus,

for the six-parameter model described in Eq. (7.1), a total of six integrals similar to

Eq. (7.4) must be computed.

The joint posterior probability is obtained using Bayes’ theorem,

P (Θ|DI) =
P (Θ|I)P (D|ΘI)

P (D|I)
, (7.5)

where P (Θ|I) is the prior probability for the parameters given only the background

information I (i.e. before any data is analyzed), P (D|ΘI) is the likelihood, or direct

probability for the data given the parameters and prior information, and P (D|I) is

the evidence.

The calculation is performed under the assumption that the model parameters are

logically independent; that is, each prior probability depends only on the parameter

in question and not on any others. For example, knowledge of L has no bearing on

the knowledge of H, x1, or any other parameter. Under this assumption, the prior

probability for the parameters can be factored using the product rule of probability

theory, yielding

P (Θ|I) = P (H|I)P (L|I)P (x1|I)P (x2|I)P (x3|I)P (x4|I) (7.6)

The terms on the right-hand side of Eq. (7.6) are prior probabilities for the individual

parameters. These prior probabilities are assigned as bounded Gaussian functions

defined by a low, high, mean, and standard deviation for each parameter. The prior
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Table 7.1: Summary of prior probability density functions used for each parameter
in the Bayesian calculations. The means and standard deviations define Gaussian
probability densities bounded by the low and the high values.

Parameter

H L x1 x2 x3 x4

(dB) (dB) (Percentage of Heart Cycle)

Low -10 -10 0 0 0 0

Mean 0 0 50 50 50 50

High 10 10 100 100 100 100

Standard Deviation 10 10 50 50 50 50

information about the parameters is assumed to be vague, and hence the purpose of

the prior probabilities are to provide order-of-magnitude estimates for the parameter

values. The exact functional form of these prior probabilities has little effect on

the final parameter estimates. Summaries of the Gaussian prior probability density

functions are given in Table 7.1.

The likelihood, P (D|ΘI), was assigned using a Gaussian prior probability to

represent what was known about the noise. The standard deviation of this Gaussian

was removed via marginalization using a Jeffreys prior (Jeffreys, 1961).

Evaluation of complicated multi-dimensional integrals such as those in Eq. (7.4)

is difficult or impossible to achieve analytically. As such, the integrals were approxi-

mated using a Markov chain Monte Carlo simulation. The nested sampling algorithm

was used to carry out the Markov chain Monte Carlo calculations and to draw samples

from the joint posterior probability (Skilling, 2006). The nested sampling calculations

used 25 live points and 1000 iterations, which provided a satisfactory sampling of the
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joint posterior probability. A detailed description of the nested sampling approach is

given by Sivia (Sivia and Skilling, 2006) and Skilling (Skilling, 2006), and further de-

tails on Bayesian probability theory are given by Sivia and Skilling (Sivia and Skilling,

2006), Jaynes (Jaynes and Bretthorst, 2003), and Bretthorst (Bretthorst et al., 2005).

7.4.6 Data analysis

At the completion of the Markov chain Monte Carlo simulation for a given set of

input data, the Monte Carlo samples of the joint posterior probability were used to

extract means and standard deviations for each parameter. A model waveform for

the input data was constructed using the most probable values for each parameter.

Because the model waveform for each data set can be described as a negative-going

pulse, additional parameters characteristic of pulsed waveforms can be derived. The

parameters extracted from the model waveforms in this study used in this study

are illustrated in Panel B of Fig. 2. Each model waveform was analyzed to obtain

magnitudes, rise times, and slew rates for each patient. The magnitude is defined

as the difference between the high and low levels of the model waveform. The rise

time is the time interval between the amplitudes representing 10% and 90% of the

magnitude on the rising edge of the pulse. The slew rate is defined as the difference

between 90% and 10% magnitude, divided by the rise time. The rising edge of the

model waveform was chosen for this analysis because it corresponds to physiology that

occurs during early diastolic relaxation, and therefore could serve as an indicator of

diastolic dysfunction.
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Table 7.2: Study group characteristics for the control and diabetic populations.

Controls Diabetics

Gender M = 15 M = 45

F = 28 F = 55

Age (y) 41 ± 6 44 ± 7

p = n.s.

Body Mass Index (kg/m3) 28 ± 6 34 ± 7

p < 0.001

HbA1c (%) 5.6 ± 0.4 7.6 ± 1.6

p < 0.001

Values are expressed as means ± standard deviations. n.s. = not significant.

The subjects were separated into diabetic (n = 100) and normal control (n = 43)

groups, and the magnitudes, rise times, and slew rates for each group were compared.

Statistical significance was determined by a two-tailed, unpaired Student’s t-test. In

addition, to examine further the impact glycemic control may have on the observed

cyclic variation of backscatter, the subjects were divided into quartiles by glycated

hemoglobin (HbA1c). Thus, although all subjects enrolled in this study had normal

systolic function at rest and no evidence of significant obstructive coronary disease

during stress echocardiography, the highest quartile of HbA1c (n = 35) can in principle

be considered the most “diseased” and the lowest quartile (n = 35) could be considered

the most “healthy” for the purposes of this study. Cyclic variation parameters for the

highest and lowest quartiles were also compared using a two-tailed, unpaired Student’s

t-test. A summary of the subject group characteristics is given in Tables 7.2 and 7.3.
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Table 7.3: Study group characteristics for the glycated hemoglobin (HbA1c) highest
and lowest quartiles.

Lowest Quartile Highest Quartile

Gender M = 13 M = 16

F = 22 F = 19

Age (y) 40 ± 6 42 ± 7

p = n.s.

Body Mass Index (kg/m3) 27 ± 6 36 ± 6

p < 0.001

HbA1c (%) 5.4 ± 0.2 9.5 ± 1.2

p < 0.001

Values are expressed as means ± standard deviations. n.s. = not significant.

7.5 Results

Representative data, along with corresponding model waveforms, are shown in

Panels A and B of Fig. 7.3. The versatility of the piecewise linear model allows

accurate representation of narrow cyclic variation waveforms that rise quickly back to

baseline (Fig. 7.3, Panel A) as well as wider waveforms that take longer to return to

baseline (Fig. 7.3, Panel B). Means and standard errors for the magnitude, rise time,

and slew rate parameters for the different subject groups are shown in Fig. 7.4, with

comparisons between the diabetic and control groups shown in the left-hand panels

and those between the highest and lowest quartiles of HbA1c displayed in the right

panels. As a group, the normal control subjects had shorter rise times and higher slew

rates than their diabetic counterparts, indicating that on average, the cyclic variation

of backscatter in the healthier subject population returned to baseline more rapidly

146



7.6 Discussion

during diastole than in the diseased population. Similar characteristics are evident

between the highest and lowest HbA1c quartile groups. The rise time and slew rate

parameters showed highly significant differences between the control and diabetic

populations as well as the high and low HbA1c quartiles (p ranged between 0.003 and

less than 0.0001). The differences in the magnitude of cyclic variation between the

respective groups was either not significant (p = 0.06) or weakly significant (p < 0.05).

7.6 Discussion

Constructing models of cyclic variation data might provide further non-invasive

tools for quantification of cardiac function that extend beyond the information ob-

tained using conventional analysis of cyclic variation. Specifically, the shape of the

waveform itself may provide indications of dysfunction that are independent or only

weakly dependent on the traditionally reported magnitude of cyclic variation. The

piecewise linear model examined in this study permits a relatively simple means of

modeling such data, and the pulse parameters derived from it (rise time and slew

rate) allow basic quantification of waveform characteristics that could have relevance

to diastolic function. Although all subjects in the study exhibited clinically normal

cardiac function, measurements of these novel cyclic variation parameters demon-

strated highly significant differences between normal controls and individuals with

type 2 diabetes, as well as between individuals with high and low HbA1c. Results for
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A.

B.

Figure 7.3: Representative results for models of acquired cyclic variation data.
The data, consisting of backscatter averaged over five heart cycles, are shown in gray
circles; the models are shown in solid black lines. The flexible nature of the model
allows good representation of both narrow (Panel A) and wide (Panel B) waveform
data.
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Figure 7.4: Differences in the magnitude, rise time, and slew rate of the cyclic
variation of backscatter from myocardium among the two subject groupings. Dif-
ferences between normal control and type 2 diabetic subjects are shown in the left
panels, and those between the highest and lowest quartiles of subjects grouped by
glycated hemoglobin (HgA1c) are shown in the right panels. Data are presented as
means ± standard errors. Corresponding p-values determined by two-tailed t-tests
are included in each panel.
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the magnitude parameter are consistent with previous studies involving type 1 and

type 2 diabetics (Wagner et al., 1995; Gibson et al., 2009) in that higher magnitudes

were observed in healthy individuals than in diabetics. However, the differences in

rise time and slew rate between these two populations are stronger than the differ-

ences in the magnitude. Subjects without diabetes and subjects with low HbA1c

tended to have lower rise times and higher slew rates than their counterparts. If

these parameters do indeed have a close correspondence with diastolic performance,

this finding is consistent with the expectation that individuals subject to early onset

of cardiomyopathies will first present with diastolic dysfunction.

The present study is limited by the absence of concrete evidence of cardiac metabolic

or structural abnormalities. Indeed, it is impossible under the current study condi-

tions to determine which, if any, subjects will develop a diabetic cardiomyopathy.

A careful longitudinal study over many years could perhaps determine definitively

whether differences in the parameters examined here are truly indicative of a high

risk for cardiac dysfunction, but such an investigation is beyond the scope of the

current study.

In summary, analyses of model-derived parameters for cyclic variation data, espe-

cially rise time and slew rate, suggest that using a model-based approach could lead

to enhancement or improvement in patient classification. Using these parameters

in tandem with magnitude or time delay analyses could eventually lead to effective

non-invasive monitoring of patients at higher risk for type 2 diabetic cardiomyopathy.
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Chapter 8

Summary and Concluding Remarks

This scope of this Dissertation encompassed simulated and experimental stud-

ies of the physics underlying the interaction of ultrasound with cancellous bone and

myocardium. A central theme was the use of Bayesian probability theory in data

analysis. Bayesian parameter estimation was used in a model for ultrasonic wave

propagation in bone, and in a model to characterize ultrasonic backscatter from my-

ocardium.

Chapter 2 provided context for later Chapters related to bone sonometry. Back-

ground on the use of ultrasound for diagnosis and monitoring of osteoporosis was

given, followed by information on dispersion in cancellous bone. The apparent dis-

agreement between the Kramers-Kronig relations and experimental measurements of

phase velocity was presented, along with proposed explanations.

Chapter 3 was a study investigating whether, and to what extent, fast and slow
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waves present in ultrasonic signals transmitted through bone affect measurements of

phase velocity. The results of simulated data suggested that when two waves are

present in the acquired signal, negative dispersion can be measured if the signal is

assumed to be composed of only one wave. Anomalous dispersion was exhibited even

when the amplitude of the second wave is small compared to the dominant mode.

Furthermore, in some cases in which the dispersion of the mixed mode waveform

is negative, the attenuation coefficient retained an approximately linear relationship

with frequency.

Chapter 4 introduced Bayesian probability theory and Markov chain Monte Carlo

methods for evaluating marginal posterior probabilities. Details were given for calcu-

lations used in later Chapters in parameter estimation, including simulated annealing

(Chapter 5) and nested sampling (Chapter 7).

The study reported in Chapter 5 used Bayesian parameter estimation to estimate

the ultrasonic properties of overlapping fast and slow waves in simulated data and

in experimental data acquired on bone-mimicking phantoms and human cancellous

bone. The parameter estimates for the simulations were in excellent agreement with

the input data. In the studies on bone-mimicking phantoms, Bayesian analysis was

also successful in estimating parameters for the fast and slow waves that were in

agreement with the known ultrasonic properties of the plastics used to construct the

phantoms. For data acquired on bone, the models constructed with highly probable

parameter estimates were also in good agreement with the acquired data. However,

experimental factors such as insertion losses, phase cancellation, and uncertainty in
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the way energy is distributed among the fast and slow waves make interpretation of

the results more complicated.

Chapter 6 reported the results of Bayesian parameter estimation applied to ultra-

sonic data acquired on a spherical cancellous bone sample extracted from a bovine

femur. Measurements were taken in 10 degree steps between insonation angles of

0 degrees and 180 degrees relative to the predominant direction of the trabeculae.

Conventional analysis techniques were difficult to apply to the full data set because

the fast and slow waves strongly overlapped when the insonation angle approaches

90 degrees. However, the fast and slow waves were able to be reconstructed using

Bayesian methods, allowing full characterization of the anisotropy. Anisotropies were

found in velocity, attenuation, and relative amplitude parameters even when the fast

and slow waves were strongly overlapped.

In Chapter 7, Bayesian methods were used to estimate parameters in a piecewise

linear model of the cyclic variation of backscatter from myocardium in 43 normal

control subjects and 100 subjects with type 2 diabetes mellitus. The subjects were

also grouped into quartiles by glycated hemoglobin (HbA1c). Subjects with diabetes

or high HbA1c were found, on average, to have longer rise times and lower slew rates

than the normal controls or subjects with low HbA1c. Greater statistical significances

were found in the differences between the subject groups for the rise time and slew

rate parameters derived from the model than for the magnitude of cyclic variation

alone.
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