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Abstract 

 

Electrocorticographic Neural Correlates of Arm Movements and Associated Goal 
Orientation in Humans 

 

by 

Nicholas R. Anderson 

ADVISORS: Professor Daniel W. Moran and Professor Eric C. Leuthardt 

December 2009 

St. Louis, Missouri 

 
            This thesis analyzed the cortical representation of arm kinematics, target encoding, 
and goal encoding using subdural electrocorticographic (ECoG) recordings in humans.  
Using a joystick-based visuomotor task, subjects performed both a standard, delayed match-
to-sample center-out task as well as a circular tracing task.  Spectral analyses of the ECoG 
signals clearly showed significant cosine tuning for hand velocity, direction, position and 
speed throughout the cortex.   In particular, velocity tuning was best represented spectrally  
in a high gamma band from around 90-150 Hz in the primary motor cortical regions.  In 
dorsolateral prefrontal cortex (DLPFC), cortical activity in the 150-250 Hz band of the 
ECoG signal showed robust, non-directional encoding for the goal during both the delay 
period prior to moving as well as the final hold period.  This study suggests that ECoG is an 
effectively modality for applications where both movement kinematics and goal selection 
need to be decoded.  Given ECoG’s higher spatial and spectral frequency content as well as 
its higher signal to noise ratio versus scalp-based electroencephalography (EEG), ECoG is 
an optimal signal choice in brain-computer interface (BCI) applications. 
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Epigraph 
 
 
 
 
 

“If knowledge can create problems, it is not through ignorance that we can solve 

them.” 

 

Isaac Asimov 
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1 Introduction 

1.1 Motivation 

Millions of people suffer from neurological injury as a result of stroke and other 

neurological disorders (e.g. ALS).  Each of these diseases and injuries has a different 

mechanism but the resulting paralysis is universal (A.H.A. 2007; NSCIA 2007).  Due to the 

nature of these different mechanisms, curing these conditions through biological 

mechanisms would require a myriad of different treatments.  However, methods have been 

developed to help alleviate the symptoms of these diseases without curing the underlying 

cause.  One common solution is a Brain Computer Interface or BCI.  BCIs are systems that 

bypass the nervous system to allow control of external devices from signals generated by the 

brain, these interfaces have been in development for the past 45 years,(Licklider 1960).  

Extracting these signals directly from the motor cortex can bypass any physiological 

problems that would normally interrupt these signals, allowing the patient to communicate 

or interact with the outside world (Wolpaw, McFarland et al. 1991).  

    Historically, control signals have been extracted from the human cortex using 

Electroencephalography (EEG), which has been the basis for developing human BCI 

(Wolpaw and Birbaumer 2005).  The state of the art of EEG systems have recently been 

moved from their laboratory roots into a clinical environment with resulting increased 

efficacy.   Improved functionality from these clinically developed BCIs allow some of them 

to be administrated on a daily basis by the patient’s nurse (Birbaumer 2006).  This improved 

functionality bring us closer to the goal of BCI technology, that is to allow the paralyzed 

patient to interact as normally as possible with the outside world; however, normal function 
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is not possible with the low signal fidelity present in EEG.  Higher signal fidelity, available 

using other recording modalities, should allow for more degrees of freedom and thus a more 

useful interface.  Action potentials of single neurons or single units provide the highest 

signal fidelity, and theoretically the most useful control (Nunez and Srinivasan 2006).   

Control using single units has primarily been performed in non-human primates and 

other animals.  The development of single unit recordings for BCI control has been largely 

in parallel to the EEG interfaces (Fetz and Finocchio 1971; Schwartz, Kettner et al. 1988; 

Georgopoulos 1995; Nicolelis, Dimitrov et al. 2003).  Single units have been shown to carry 

much more detailed information per unit volume than EEG because they can record many 

independent neurons rather than an average of these same neurons as a large group (Fetz 

and Finocchio 1975).  Single units are limited in their human applications because they both 

damage the cortex upon insertion and have uncertain long-term stability.  Due to the 

instability of single units (Kipke, Vetter et al. 2003; Vetter, Williams et al. 2004), interest has 

shifted to field potentials of small groups of neurons that may provide the signal fidelity 

present in single units, while also offering a level of safety and stability suitable for human 

use (Heldman, Wang et al. 2006; Hochberg, Serruya et al. 2006).   

Field potentials currently show the most promise for long term encoding of brain 

activity for use in brain computer interfaces (Andersen, Burdick et al. 2004; Andersen, 

Musallam et al. 2004; Schwartz, Cui et al. 2006).  These field potentials have been shown to 

carry information about both the synaptic and the action potentials (Heldman, Wang et al. 

2006).  In addition field potentials are more robust and less technically demanding than 

recording action potentials directly (Pesaran, Pezaris et al. 2002; Heldman, Wang et al. 2006).  

Field potentials have been recorded both by microelectrodes and electrocorticographic 

(ECoG) electrodes, and both methodologies have shown encouraging results.  Field 
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potentials have been shown to correlate to a variety of motor and cognitive activities that 

show promise for BCIs (Crone, Hao et al. 2001; G Schalk 2007).  In addition, the ECoG 

BCI has shown the ability to allow the user to learn to control a computer with just a few 

minutes of training. ECoG has proven to be more robust in clinical settings, however it has 

not yet shown to decode more degrees of freedom than its EEG counterpart (Leuthardt, 

Schalk et al. 2004; Schalk 2005).  

The aims of this thesis are to further understand the underlying ECoG activity as it 

relates to arm/hand movements, thereby enabling the creation of BCIs with more degrees of 

freedom and more intuitive control.  Specific Aim I seeks to relate ECoG activity with 

human arm movements.  While this encoding has shown to be cosine tuned to hand velocity 

and position for non-human primates, no one has been able isolate the separate components 

of position and velocity in humans using ECoG.  Specific Aim 2 looks at non-motor aspects 

of these signals and seeks to find a non-directional signal appropriate for closed loop target 

selection (e.g., mouse click) using goal information encoded in the prefrontal cortex.   

 

1.2  Specific Aims 

 

I. Determine the ECoG neural correlates of hand position and/or velocity coding 

during joystick-based visuomotor tasks. 

 

Hypothesis:  High frequency tuning for arm movements has been shown in both human 

ECoG and non-human primate Local Field Potentials (LFPs); therefore, we expect the 

cosine tuning to be evident in these higher frequencies (Heldman, Wang et al. 2006; Kai J. 
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Miller 2007).  Recently, time domain signals have shown some correlation to arm 

movements in ECoG; these signals may show tuning outside of the expected cosine tuning 

(G Schalk 2007). 

 

 

II. Record from the Dorsolateral Prefrontal Cortex (DLPFC) and assess the feasibility 

of target encoding signals for use in BCI 

 

a. Determine if the neural correlates for target information can be recorded 

using ECoG. 

 

Hypothesis:  ECoG signals in non-human primates have shown correlation to both goal 

encoding and target direction (Niki and Watanabe 1976; di Pellegrino and Wise 1993; Tanji 

and Hoshi 2001; Iba and Sawaguchi 2003).  Humans have shown activity in specific 

Brodmann areas when performing directional based target tasks; therefore, we expect some 

some goal encoding and possibly directionality of target information. 

 

b. Explore the feasibility of using attention signals for discrete selection. 

 

Hypothesis:  Given the encoding of target information recorded with other modalities 

some encoding is likely to be seen using ECoG (McCarthy, Puce et al. 1996; D'Esposito, 

Ballard et al. 2000; Iba and Sawaguchi 2003; Ramsey, van de Heuvel et al. 2006).  In addition 

this should be a useful non motor signal for use in a selection task, given appropriate 

exploration of the encoding to fully understand it.   



 6 

 

1.3 Significance 

 

This thesis is most directly applicable to furthering BCI technology, which is still in 

its infancy.  In order for BCI technology to reach the potential of restoring function to 

paralyzed and impaired individuals, advances need to be made in the associated neuroscience 

and engineering.  This work is a small step in both of these areas.   We do not understand 

how the cortex encodes information well enough to then decode the information 

completely.  We currently believe that both the information encoded in action potentials as 

well as in synaptic potentials are useful for closed loop control of a BCI, and thus both will 

be important to use for successful restoration of a large percentage of limb function.  Local 

field potentials and ECoG are uniquely suited for this endeavor as they monitor both of 

these signals.   

Previous studies using ECoG has shown the ability to detect the encoding of arm 

movements; however, Aim I seeks to more precisely understand this encoding at a level 

where it could be used for real time control.  This is the first study of human arm function to 

separate the position and velocity of the movements so that the related neural encoding can 

be viewed independently.  Aim II seeks to show that ECoG can be used to view phenomena 

of target encoding previously seen mostly in non-human primate single units (Niki and 

Watanabe 1976; di Pellegrino and Wise 1993; D'Esposito, Ballard et al. 2000; Pochon, Levy 

et al. 2001).  We use many non-motor areas in order to accomplish motor tasks, thus 

completely restoring function will likely require use of non-motor areas that have not been 

extensively studied for use in BCI. 
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1.4 Thesis organization  

 
The experiments performed were based on a modification of the classic Center Out 

paradigm and Circle Tracing (Georgopoulos, Schwartz et al. 1986; Schwartz 1994).  The 

Center Out task is a paradigm in which a subject moves a cursor from a center location to a 

radially placed goal target.  The tracing task was is a task where two spheres move in a 

circular radius.  One of these spheres is subject controlled and pushes the second computer 

controlled cursor.  The data collected for Specific Aim 1 and Specific Aim 2a was based on 

joystick movement paradigms beginning with the center-out task.  Aim 2b is based on the 

statistical analysis of the results acquired in 2a within the context of using this target 

encoding signal as a selection task (e.g. mouse click).   

Chapter 2 outlines the previous research in the BCI community and how this thesis 

will further the body of knowledge necessary for this area of study to move forward.  

Chapter 3 outlines the methods for data acquisition, followed by Chapter 4 covering 

simulated data and analysis.  Results for Specific Aim 1 and Specific Aim 2 are discussed in 

Chapters 5 and 6, respectively.  Finally, Chapter 7 provides conclusions and future directions 

for this research. 
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2 Background and Significance 
 

Assistive and prosthetic technologies for patients who have suffered neural injuries 

have been in development for over 100 years. A promising new technology for assisting 

these patients is Brain Computer Interfaces (BCI).  The work to create a useful BCI as a 

human prosthetic began only 30 years ago using the modality of EEG (Vidal 1973).  While it 

seemed that creating an EEG based BCI would be a relatively simple endeavor, many 

practical and engineering problems were encountered (e.g., noise and user training times) 

(Wolpaw, McFarland et al. 2003; Schalk 2005).  These issues have belabored the 

development of a pragmatic BCI for those with immediate need.  While progress has been 

made on some of these issues in the original modality of EEG, moving to a recording 

modality with higher signal fidelity such as Electrocorticography (ECoG) may provide a 

simpler and easier solution. 

In first creating a closed loop ECoG BCI engineers used gross motor movements 

given their previous success in EEG BCI (Leuthardt, Schalk et al. 2004).  Due to the chosen 

experiments and the immaturity of ECoG as a recording paradigm, the state of the art 

ECoG BCI has shown about the same level of control as the state of the art EEG BCI using 

the same type of motor signals (McFarland, Sarnacki et al. 2005; Schalk, Miller et al. 2008).  

However, this level of control in ECoG has been achieved with relatively little training 

compared to EEG due to the increased fidelity of the ECoG signals. In the future, the signal 

strength and detail of the ECoG BCI may allow the use of different features than the EEG 

BCI (Leuthardt 2006).     
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Investigations into the use of motor features similar to those used in other recording 

modalities began by looking at joystick movements while recording ECoG (G Schalk 2007).  

In addition, investigations of non-motor signals for control of ECoG BCI shows significant 

promise (Wilson, Felton et al. 2006).  Isolating more complex signals using ECoG would be 

a significant advancement for neuroscience as it has the potential to fill gaps in our 

understanding left by other available modalities.  Application of these signals to BCI could 

add additional degrees of freedom, and potentially lead to the development of better 

prosthetic devices for patients who suffer from neurological injuries. 

2.1  Recording Cortical Activations  
  

Human cortical activations were first measured using Electroencephalography 

(EEG) by Hans Berger in 1929 (Berger 1929).  Prior to Berger’s creation of this new 

technology, stimulation mapping had been used to chart the brain (Brodmann 1905).  EEG 

was the first cortical recording technology, and a big advance in neuroscience because it is 

passive instead of active, thus it can provide temporal and frequency information about 

cortical signals whereas stimulation can only suggest location (Berger 1929).  This 

electrophysiological information is important when trying to elucidate the neurophysiology 

of the human cortex.  However, while EEG can provide much information about 

physiology it lacks the resolution, and detail, of other modalities (e.g. single units or local 

field potentials)(Nunez and Srinivasan 2006).  With the use of single units or local field 

potentials, we can begin to understand the function of individual cortical areas and apply this 

understanding to create reasonably useful BCIs. 
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Since its inception in the 1970s, BCI has progressed seemingly independently in non-

humans and humans because of the vast difference in recording paradigms.  Human 

mapping and BCI has been done primarily with EEG, while single unit microelectrode 

recordings have been used in non-human primates (Fetz, Finoccio et al. 1971; Vidal 1973; 

Schmidt 1980; Georgopoulos, Schwartz et al. 1986; Schwartz, Kettner et al. 1988; Wolpaw, 

McFarland et al. 1991; Donoghue, Sanes et al. 1998; Nicolelis, Dimitrov et al. 2003).  These 

two technologies have recently been tenuously bridged by the use of local field potentials 

(LFP) and Electrocorticography (ECoG) (Leuthardt, Schalk et al. 2004; Heldman, Wang et 

al. 2006). There is still some debate as to how these signals fit in to the existing landscape of 

recording methodologies.  However, these technologies have provided for increased signal 

fidelity over EEG while avoiding many of the problems associated with single units 

(Leuthardt 2006).   

 
  

2.1.1 Single Units 

 

Single units are recorded by microelectrodes –(high-impedance devices that record 

the electrical activity (action potentials) of individual cells (Bremer 1958)).  Single units are 

individual neurons, providing high spatial resolution, and are a proven recording paradigm 

for neurophysiology and BCI (Fetz and Finocchio 1971; Niki and Watanabe 1976; 

Georgopoulos, Kalaska et al. 1982; Schwartz, Kettner et al. 1988).  The high resolution but 

invasive nature of these electrodes makes them well-suited for many studies in non-human 

primates.  These studies have been conducted over a large spectrum of cortical and 

subcortical areas, with the thrust areas for neurophysiologists interested in BCI focused on 

motor and motor attention regions.   Motor regions include primary motor (M1), pre-motor, 
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supplementary motor, and the motor attention regions including prefrontal cortex, 

dorsolateral prefrontal cortex (DLPFC), MT, LIP and others.   

Microelectrodes have yielded many significant results in the study of motor regions, 

beginning with the demonstration that a monkey’s arm movements are correlated with 

action potentials (Polit and Bizzi 1979).  Building upon this result, it was shown that hand 

direction is represented in motor cortex (Georgopoulos, Schwartz et al. 1986).  Also, arm 

position was shown to encoded by a sub population of motor cortical neurons (Evarts, 

Fromm et al. 1983).  Further experiments indicated that velocity, rather than position was 

preferentially represented in motor cortex neurons (Fu, Suarez et al. 1993; Georgopoulos 

1995).  Furthermore, it was shown that in motor cortex, while the arm is being held still arm 

position is preferentially represented; however, during movement, velocities are dominantly 

represented (Moran and Schwartz 1999a; Moran and Schwartz 1999b; Wang, Chan et al. 

2007).  Finally, it was found that during movements velocity can be separated into speed and 

direction (Schwartz and Moran 1999c; Moran and Schwartz 2000).  The encoding of cortical 

activity can be decoded using all three of these components if they are separated in the 

experimental design.     
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 Figure 2.1.1: Methodologies for detection.   
There are number of methods for recording cortical signals, they have different levels of 
invasiveness and signal detection ability. (Heldman 2007) 

 

 

Kinematic encoding similar to that found in motor cortex has been found to correlate to 

activity in the dorsolateral prefrontal cortex (DLPFC) of non-human primates (Pochon, 

Levy et al. 2001).   These studies have focused on how the information is encoded and have 

shown significant correlation to different attentional activities in the task. The correlations 

were found beginning with individual neurons showing increased firing rates during 

presentation and delay for a match to target task in primates prefrontal cortex  (Fuster and 

Alexander 1971; Kubota and Niki 1971).  Although these original studies were not delayed 

matching tasks, they pointed out an important cortical area involved in target matching tasks.  

Further investigations of this area have concentrated on the spatial nature of these signals 

(Niki 1974; Kubota and Funahashi 1982; Funahashi, Bruce et al. 1990). 
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The neurophysiology of many of these studies show tuning in the prefrontal cortex 

area to direction of response, but did not try to decorrelate cue direction from response 

direction.  These responses, when decorrelated, appear to correspond more to cue direction 

than response direction in primates (Niki and Watanabe 1976; Funahashi, Bruce et al. 1993) .  

This cue directional encoding seems to be independent of stimulus modality as it has been 

shown to be present in prefrontal cortex areas in primates for both visual and auditory 

stimuli (Vaadia, Benson et al. 1986).  While these neurophysiological studies correlated the 

response in DLPFC primarily to cue direction, questions remained if this activity was seen as 

independent of response and response modality. 

 These response modality questions have begun to be answered using implantable eye 

coils, which allowed controlled eye movements and showed there were spatial fields for 

these neurons.  From these studies individual neurons in primate prefrontal cortex appeared 

to encode for cues in a specific contra-lateral area.  Some of these contra-laterally encoded 

neurons showed directional target encoding and others showed non-directional target 

encoding (Funahashi, Bruce et al. 1989). These results were confirmed in work which saw 

encoding of cue direction in both prefrontal and premotor areas (di Pellegrino and Wise 

1993).  Using eye coil information, it has been shown that the cue direction is encoded in 

primate dorsolateral prefrontal cortex even when the response does not have a directional 

component (Sawaguchi and Yamane 1999).  In addition to the encoding of current cue 

direction other signals have been identified (Takeda and Funahashi 2002; Tsujimoto, 

Genovesio et al. 2008),  including non directional signals where neurons recorded showed an 

increase in activity post saccade as a “termination of target encoding signal” (Takeda and 

Funahashi 2002)  All of this work in single units provides an indication of how individual 

cells behave but not of the population which is recorded by other modalities.    
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 The tuning of components in motor cortex obtained through single units have 

yielded impressive results when used in BCIs (Schwartz, Taylor et al. 2001; Donoghue 2002; 

Velliste, Ferel et al. 2008).   Monkeys have shown the ability to control cursors in multi-

dimensional space based on components detected with microelectrodes during arm 

movements (Fetz and Finocchio 1971; Schwartz, Taylor et al. 2001; Velliste, Ferel et al. 

2008).  The level of control has been more robust as the encoding of the neural activity in 

different areas has become better understood, and the associated decoding algorithms 

become more sophisticated (Donoghue 2002).  Due to this increased understanding and 

enhanced decoding techniques, single units have recently been used to control robotic arm 

devices (Fetz 1999; Taylor, Tillery et al. 2002; Carmena, Lebedev et al. 2005).    

2.1.2 Electroencephalography (EEG) 

 
While EEG lacks the signal fidelity of single units, much research has been done 

using EEG on motor and cognitive systems.  EEG has very good temporal resolution 

compared to other non invasive techniques (e.g. fMRI, PET), making it useful for a variety 

of studies as well as BCI (Pfurtscheller and Aranibar 1977; Vidal 1977; Wolpaw and 

McFarland 1994).  In addition, it has proven useful in studying lower frequency encoding in 

the cortex, particularly from the cortical gyruses (Pfurtscheller and Cooper 1975; Nunez and 

Srinivasan 2006).  EEG recordings have been used to record from motor cortex and many 

other cortical areas (Bertrand ; Vidal 1977; Pfurtscheller, Neuper et al. 1997). 

Gross motor movements were the first and simplest experiments performed using 

EEG (Penfield and Boldrey 1937) .  EEG was then shown to correlate beyond different 

muscle groups to different movements of the same muscle group (Zetterberg. 1969; Roland, 

Skinhoj et al. 1980).  Arm movements are of particular interest to those performing studies 
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with EEG because they have cross-modality support (i.e. they are also recorded by 

microelectrodes), and these recordings of cortical potentials do show correlation to arm 

movements (Touge, Werhahn et al. 1995).  While EEG cannot provide the tuning results of 

other recording modalities, it continues to be important in providing an overall picture of 

cortical activity and important comprehensive timing information (Foxe and Simpson 2002).   

 

 

Figure 2.1.2: Recording modalities.   
EEG (A), single units (B), and ECoG (C) are the primary means of acquiring neural signals 

for BCI applications. (Heldman 2007) 

 
EEG has been the focus of human BCI research because it is very safe and 

inexpensive, resulting in a large number of labs running this paradigm.(Wolpaw, McFarland 

et al. 1991; Wolpaw and McFarland 1994; McFarland, Lefkowicz et al. 1997).     A substantial 

amount of information can be recorded from EEG that is useful for BCIs.  Currently 

available clinical BCI are based on EEG and allow a patient to control a computer in 

multiple ways for communication. The many years of signal process work and computer 

programming that have been invested in EEG have made it the most successful modality for 

BCIs at the present time.  (Wolpaw, McFarland et al. 1991; Wolpaw and McFarland 2004; 

McFarland, Sarnacki et al. 2005; Birbaumer 2006).  Despite EEG’s success as a paradigm for 

BCI, it has some limitations that keep it from realizing the level of success initially hoped for. 
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There are many limitations that have slowed the progress of clinically available BCIs 

for patient use.  Many of the issues that have slowed development of a BCI in EEG would 

have been encountered using any recording methodology.  Some of these issues have been 

resolved by advances in technology. Other issues are engineering issues such as; human 

factors that go into creating a new interface to a machine, or developing algorithms that 

decode neural signals in a way that makes sense for a BCI.  Currently, the major issues 

impeding the development of EEG BCI are those related to the physics restraining the 

methodology and no longer signal processing or hardware (Nunez and Srinivasan 2006).  

First, EEG has poor spatial resolution. Six square centimeters of cortex are needed to create 

a signal detectable with EEG, which means that at most people could have approximately 

four control signals from the motor cortex (two on each hemisphere) (Birbaumer 2006; 

Nunez and Srinivasan 2006).  Second, EEG has a low signal to noise ratio, which comes in 

part from the heterogeneous impedance of the tissue between the cortical sources and the 

EEG electrodes (Kostov and Polak 2000; Guger, Edlinger et al. 2003; Nunez and Srinivasan 

2006).   These problems are compounded by the fact that the interfaces require months of 

training before meaningfully accurate control can be realized (Wolpaw 2004).   Patients who 

need BCIs for daily living can not afford to train for months while their condition degrades, 

merely to gain a small degree of non-restorative control.  

2.1.3 Magnetoencepholography (MEG) 

 
 Magnetoencepholography is closely related to EEG, in that it detects the magnetic 

component (rather than the electrical component) of the signal on the surface of the skull.  

It is different from EEG in that EEG records signals primarily from the gyri of the cortex 

whereas MEG records primarily from the sulci (Cohen 1968; Zimmerman 1970).  The MEG 



 17 

technique has much better source localization than EEG because it does not depend on 

head geometry and signals are not randomly scattered.  EEG signals are randomly scattered 

by the differential permittivity of the tissue between the electrodes.  The permeability that 

would affect the magnetic signals recorded by MEG is relatively uniform, resulting in better 

source localization (Martin, Houck et al. 2006). 

MEG was plagued by noise for decades because the magnetic signals it records are 

incredibly small in magnitude (Huk and Vieth 1993).  Recently, advances in computers and 

the associated algorithms have allowed compensation for the noise, resulting in a host of 

new research using MEG (Merlet 2001; Stam 2005).  This research has included both studies 

on basic neuroscience as well as application to BCI technology (Stippich, Freitag et al. 1998; 

Mellinger, Schalk et al. 2007).    

 MEG has the ability to provide more specific results about underlying neural activity 

(Martin, Houck et al. 2006).   Individual finger activity has been detected with the use of 

MEG because of its superior localization of individual sources (Nakamura, Yamada et al. 

1998; Jarvelainen and Schurmann 2002). One study in MEG was able to predict movement 

position based on MEG data without dissociation of position and velocity (Georgopoulos, 

Langheim et al. 2005)   Hand speed and coordination from prefrontal cortex to posterior 

regions has been correlated to MEG (Jerbi, Lachaux et al. 2007).   These results have not 

shown correlation to hand movement direction or position.  This could be because MEG 

does not perform well at higher frequencies, or simply because the data was low pass filtered 

at 100 Hz (Jerbi, Lachaux et al. 2007). 

 Prefrontal cortex has been the focus of many different studies in MEG, including for 

motor related tasks (Sasaki, Nambu et al. 1996; Kawaguchi, Ukai et al. 2005; Nakata, Inui et 

al. 2005).  These studies have focused on the go/no-go related signals and not on possible 
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directional tuning or target encoding.  Go/no-go signals give a cue to a subject and then 

instruct the subject whether to perform the action associated with that cue.  The go/no-go 

signal is closely related to target signals and is encouraging for the prospect of target signals 

located in the dorsolateral prefrontal cortex.  

  From the available studies, it is apparent that the work utilizing MEG has focused 

more on clinical and epilepsy related research than on motor control or BCIs (Barkley 2004; 

Castillo, Simos et al. 2004).  One of the reasons for the lack of BCI application is that the 

MEG system is as expensive as a fMRI system. This makes MEG much more difficult to 

afford and apply to BCIs then EEG (Mellinger, Schalk et al. 2005).  Thus, for MEG to reach  

its potential as a BCI, it would need to be scaled down and reduced in cost (Birbaumer, 

Kubler et al. 2000; Wolpaw, Birbaumer et al. 2002) .  In addition, MEG BCIs currently show 

improvement to EEG BCIs only in reduced training times and not in the other metrics that 

are used to gauge BCI performance (e.g. dimensions of control, accuracy) (Mellinger, Schalk 

et al. 2007).  MEG as a BCI modality has the advantage of better signal to noise ratio and 

better source localization than EEG, but it is less widely used than cheaper but invasive 

methods (Leuthardt, Schalk et al. 2004).    

2.1.4 Functional Magnetic Resonance Imaging (fMRI) 

Functional Magnetic Resonance Imaging (fMRI) is the most common recording 

methodology for cortical activation studies in humans.  It yields better spatial resolution than 

any other non-invasive modality, and can also simultaneously record activity from the whole 

brain, which is not available with any other modality (Rao, Binder et al. 1993; Cohen and 

Bookheimer 1994).  Experiments on both motor systems and intentional systems are 

performed using fMRI.  These experiments performed on humans tend to show less specific 
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results than the related non-human primate literature but give a better picture of the overall 

brain activity (Matelli, Rizzolatti et al. 1993; Moran and Schwartz 1999a). 

fMRI studies have not been widely used in decoding the activations in motor cortex 

because of the difficulty in recording movements in fMRI machine space (Gassert, Dovat et 

al. 2005).  In the studies that have been done, fMRI has shown that different areas are 

activated for different types of arm movements (Menon, Glover et al. 1998; Nirkko, Ozdoba 

et al. 2001).  In addition, these studies have shown that fMRI is sensitive to fluctuations in 

signals that arise depending upon the direction of movement. (Lotze, Erb et al. 2000).  fMRI 

can not be used to confirm the spectral and temporal information because the signal 

currently measures the hemodynamic response, not electrical activity.  The hemodynamic 

response has been shown to correlate to electrical activity, but lacks the subtle changes in 

frequency response associated with electrical activity (Jueptner and Weiller 1995; Moseley, 

deCrespigny et al. 1996).  In addition the hemodynamic response is slower than the electrical 

response associated with neuronal activity (Turner, Howseman et al. 1998).  The extent and 

complexity of directional encoding is likely missed in fMRI because of the aforementioned 

limitations.   The decoding of direction has proven to be a highly successful signal for 

control of BCI and the diminished capacity to detect this signal in fMRI puts it at a 

disadvantage for BCI applications (Schwartz 2004).   While fMRI is not the best paradigm 

for motor studies or BCI applications, it has been yielded more complete data for other areas 

of interest.   

fMRI has been used in humans to identify the dorsolateral prefrontal cortex 

(DLPFC) as an area of interest for coding target information, which supports the single unit 

work conducted in primates (D'Esposito, Ballard et al. 2000; Levy, Nichols et al. 2001; 

Pochon, Levy et al. 2001; Tanji and Hoshi 2001; Corbetta and Shulman 2002). Similar to the 
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single unit studies,  fMRI studies demonstrated significant activation in the human analog 

area of cortex for the encoding of target information and motor initiation; however,  they 

differed in that they did not show any positional information encoded in these areas 

(D'Esposito, Ballard et al. 2000; Pochon, Levy et al. 2001).  This may be because of the low 

temporal resolution of fMRI or the fact that the fMRI signal is actually the hemodynamic 

response in the brain and is not a neural signal.  Although unlikely, it is possible that humans 

or at least untrained humans simply do not encode for direction or position in this area of 

cortex and instead have adopted a new strategy for completing this type of task.   

The high spatial resolution and non-invasive nature of fMRI have led some scientists 

to pursue it as a possible methodology for a BCI (Weiskopf, Veit et al. 2003).  Through this 

work they have shown that it is possible for a person to control the signals that can be 

detected with fMRI (Weiskopf, Mathiak et al. 2004).  In addition to the traditional motor 

tasks, dorsolateral prefrontal cortical areas have been explored using cognitive tasks 

(Ramsey, van de Heuvel et al. 2006).  These data indicate that a variety of fMRI detectable 

signals can be controlled by the user and also, more importantly, that signals in the 

dorsolateral prefrontal cortex can be controlled by humans for the purposes of BCI.  

Despite this success, the expense of the equipment and the relatively low temporal 

resolution make fMRI an unlikely candidate for practical applications of BCI, compared to 

less expensive alternatives that can provide comparatively good results (Wolpaw, Birbaumer 

et al. 2002). 
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2.1.5 Intracortical Local Field Potentials 

 
 Local field potentials recorded with microelectrodes have recently yielded very 

encouraging results (Heldman, Wang et al. 2006).  In addition, LFPs have better spatial, 

frequency, and temporal resolution than fMRI and EEG.  Neuro-anatomy studies have 

shown that populations of neurons collectively carry larger amounts of information than 

single neurons alone and since high frequency LFP represent a population response from a 

group of single units.  For example, multiple researchers have found that different neurons 

in M1 encode for both position and velocity (Georgopoulos, Schwartz et al. 1986; Moran 

and Schwartz 1999a; Wang, Chan et al. 2007).  Thus by recording LFPs one can find 

encoding for both position and velocity, where as recording from one neuron would likely 

only show encoding of one component. 

LFPs have recently been shown to record activity related to action potentials, which 

is particularly important because action potentials encode much of the information in the 

cortex.  EEG records from large populations of neurons, but it does not record information 

directly related to action potentials.  It is believed the low frequency activations recorded by 

EEG represent synaptic activity (Nunez and Srinivasan 2006).  LFPs can record both the 

synaptic potentials and the action potentials of cells that are close to the recording area 

(Heldman, Wang et al. 2006).  The action potentials appear to be largely encoded in the 

frequency range from 75 Hz and above this frequency range is not widely recorded using 

EEG (Heldman 2007).  Because LFPs have the ability to record the most available 

information, they show promise for cognitive control of a BCI.  
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For the past decade several groups have looked at local field potentials with varying 

results.  Until recently LFPs were investigated only in frequency regions lower than 50 Hz 

and showed results similar to EEG (Sanes and Donoghue 1993; Donoghue, Sanes et al. 

1998).  More complex results have been found by investigating the frequencies above 75 Hz.  

This higher frequency band has yielded better results from LFPs compared to previous 

studies using, other modalities, which is logical, given the LPF’s correlation to action 

potentials in this band (Scherberger, Jarvis et al. 2005; Heldman, Wang et al. 2006).  The 

sensitivity of high frequency LFPs can be seen in Figure 2.3, which shows that the preferred 

direction of a cosine tuned cell correlates to the preferred direction of the LFP taken from 

an electrode near that area (Heldman, Wang et al. 2006).   

The correlation between high frequency LFP and action potentials gives a good 

indication that a high degree of kinematic encoding should be seen in LFPs.  Heldman et al  

demonstrated speed tuning in M1 of non-human primates using two related target based 

tasks(Heldman 2007).  Despite the correlation to speed tuning, the same study found that 

direction, velocity, and position tuning did not yield statistically significant results.  This is 

believed to be the result of field cancellation due to overlapping receptive fields of the cells 

(Heldman 2007).  First, it is of note that although the direction and position results did not 

show statistically significant results they did show tuning in many individual cases.  It is 

believed that tuning for direction and position was not seen by Heldman et al because of the 

overlap of receptive fields.  These LFPs were recorded from small groups of adjacent 

neurons that had different receptive fields thus canceling out any directional tuning that 

would be seen.  In addition, it is of note that these LFP recordings were done with micro 

electrodes that were designed for single unit recording and studies of the appropriate size 

and geometry have not been performed for electrodes to record LFPs at this level.   
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Figure 2.1.3: Single units and LFPs  
 Comparison of single units action potentials with local field potentials (Heldman 2007) 
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Figure 2.1.4: Screening compared to control  
 Screened for feature vs feature used by patient for control (Leuthardt 2006) 
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2.1.6 Electrocorticography (ECoG) 

Electrocorticography (ECoG) has been in use as a clinical paradigm for several 

decades and has been of interest to neuroscience researchers for about a decade (Toro, Cox 

et al. 1994).   ECoG is an intermediate modality between EEG and LFPs.  ECoG is 

recorded on the surface of the brain, whereas EEG is recorded on the surface of the skull, 

allowing ECoG to have better spatial selectivity and signal fidelity.  Clinicians use ECoG 

because it offers better spatial localization then EEG (Toro, Deuschl et al. 1994).  In 

addition,  there is another very important advantage that  ECoG offers over EEG;  ECoG 

has a much better signal to noise ratio at higher frequencies (Leuthardt, Schalk et al. 2004).   

As seen in studies with LFPs, this higher frequency range is where additional relevant 

information can be found.  The advantages of ECoG, when compared to EEG, should 

allow for better mapping of the encoded information and underlying anatomy involved with 

motor as well as non-motor areas.   

ECoG offers advantages similar to LFPs; however, there are key differences between 

LFPs and ECoG.  First, LFPs are recorded with much smaller electrodes (tens of microns) 

whereas ECoG is recorded with millimeter sized electrodes.  Secondly, LFPs are recorded 

inside the cortical layers, while ECoG is recorded from the cortical surface.   

It is also important to note that ECoG is dissimilar from single unit microelectrode 

recordings in that both ECoG and LFPs record high frequency information that is 

correlated with action potentials rather than the action potentials themselves (Heldman, 

Wang et al. 2006).  As discussed earlier, action potentials have been shown to be highly 

correlated to movement kinematics and LFPs have shown some correlation to movement 

kinematics (Heldman, Wang et al. 2006). Recent studies have demonstrated ECoG’s ability 

in detecting these movement signals as well (Miller, Leuthardt et al. 2007). 
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ECoG has been shown to be a good method for mapping spatial and frequency 

information correlated to movements.  Gross motor movements have been extensively 

mapped out using ECoG (Kai J. Miller 2007).  Recent results have shown joystick 

movement to be correlated to cortical potentials recorded with ECoG. In these experiments, 

movements could be predicted based on the amplitude of the ECoG signal recorded (G 

Schalk 2007).  However, the joystick movements used did not differentiate position from 

velocity so the cortical signals could not be decomposed into kinematic components.  The 

next step toward characterizing ECoG signals correlated to joystick movements is to 

decompose these signals into various kinematic components.  Properly designed joystick 

experiments can help dissociate the different components of movements.  The next logical 

step is to record cortical signals obtained during joystick movements that dissociate position 

from velocity.  In addition, through careful experimental design, other ECoG responses can 

be explored at the same time. Since ECoG arrays typically cover a broad cortical surface, it 

would be advantageous to design experiments that simultaneously examine motor and non 

motor areas. 

Motor cortex represents a small area compared to the total area of cortex, and other 

areas of cortex could potentially prove useful for BCIs given appropriate quantification of 

the available signals.  One non-motor area that is important in daily functioning is associated 

with goal acquisition. Much of what humans do on a day to day basis is goal-oriented, and  

decoding this information could be useful for a BCI.  The most likely non-motor location to 

be useful in goal selection is the prefrontal cortex.  The prefrontal cortex has been 

extensively mapped in non-human primates using the delay-match-to-target task and using 

fMRI in humans (D'Esposito, Ballard et al. 2000; Tanji and Hoshi 2001).   In addition, the 

DLPFC appears to encode for motor initiation and target position which are closely related 
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to target encoding (Jahanshahi, Dirnberger et al. 2001).  Recent studies are encouraging for 

ECoG because they have found target encoding results in fMRI (Ramsey, van de Heuvel et 

al. 2006).  Recently, recordings of ECoG have shown statistical significance in target based 

tasks; however, the studies only looked at frequencies generally associated with EEG 

(Rektor, Sochurkova et al. 2006).  Thus, this area should be one of the first evaluated to 

determine whether ECoG signals are present and can be utilized for closed loop control. 

ECoG can currently be used to control two dimensional interfaces with accuracy that is 

similar to that using EEG interfaces.  The advantage ECoG has shown is shorter training 

time. ECoG control only requires a few minutes to learn (Schalk, Miller et al. 2008) as 

opposed to EEG that requires months of training.  ECoG has a higher signal fidelity than 

EEG and should now be explored to create more robust and intuitive BCI.   This higher 

signal fidelity is of particular importance because the spatial extent of the signals from gross 

movements, shown in Figure 2.4, has become a hindrance to achieving higher dimensions of 

control.  Just one signal for a gross movement used in this fashion takes up several square 

centimeters of cortical area, limiting the degrees of freedom possible with that cortical area.  

ECoG has shown an ability to decode signals that are of much smaller spatial extent than 

gross motor signals, including more specific motor signals (e.g. decoding directional 

movements) and also signals that are a combination of attention, sensory, and motor 

(Schwartz, Moran et al. 2004; Rektor, Sochurkova et al. 2006; G Schalk 2007).  By better 

understanding how these signals are encoded at the level of ECoG, they can be applied to 

BCIs and provide more degrees of freedom.    
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2.2 Neural Decoding  

 
 The human brain converts sensory input and electrical impulses into motor outputs.  

These electrical impulses encode information in a variety of anatomical and spectral codes 

which are represented as a epiphenomena in ECoG (Brodmann 1905; Norton 1928; Berger 

1929).  The information exists across different Brodmann areas in the brain and at many 

different frequencies that can be sorted into features using spectral transformations 

(Krusienski, Schalk et al. 2006).  Once the information is broken down into features, it can 

be further correlated to the experimental paradigm (Dalton 1969; Evarts and Tanji 1976; 

Georgopoulos, Kettner et al. 1988).   

2.2.1 Techniques for computing spectral power 

Auto regressive (AR) spectral estimation is one of the techniques most commonly 

used in biosignal applications because it solves difficulties associated with other techniques.  

The two major problems solved by the AR estimation technique are those of phase reversal 

and windowing effects.  The problems that still remain include choosing the correct model 

order for this technique and determining whether the estimation created by the AR filter is 

better than the transformation provided by the fast fourier transform (FFT).   

The AR filter is modeled using only poles making it very good at dealing with very 

sharp changes in the spectra (Marple 1987).  Conversely, the FFT is an all zeros method, 

both equations are shown in Equation 2.2.1 and Equation 2.2.2.  Poles (in the denominator) 

lead to fast changes in the power estimation as they cause the denominator to approach 0.  

Conversely in Equation 2.2.2 one can see that the FFT has all the variables for power 
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estimation in the numerator.  This makes it much harder to fit to sharp spectral features due 

to the large changes required in the variables to make medium changes to the estimate.   
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The FFT works very well on long time periods of stationary data.  However the 

major problems the FFT causes for analyzing EEG data, is due to the windowing of the 

small samples. This effect may not be present for the relatively large samples obtained from 

ECoG.  The windows used for EEG generally are of dozens of samples while those for 

ECoG are for hundreds of samples (Wolpaw, McFarland et al. 2003; Leuthardt, Schalk et al. 

2004). To get around this problem all together, the AR filter does not have to be windowed 

because it can deal with very small windows of time and sharp spectral changes.   

The AR filter has been used appropriately for EEG but has not been evaluated 

extensively for use with ECoG (Krusienski, Schalk et al. 2006).   It has thus far been 

assumed that the AR filter is the appropriate choice for ECoG motor experiments while 

there has been no documented quantification as to how to choose the model order (G 

Schalk 2007; Kai J. Miller 2007).  Outside of biosignals, a computational method would be 

used to determine the model order of the AR filter.  These computational methods, such as 

the Akaike Information Criterion, can provide a model order for the filter; however, the 

results have shown to not be optimal for biosignals.  In the EEG domain, new methods 

have been developed to choose an optimal filter order based on certain metrics(Dean J. 

Krusienski 2006).    Similarly these methods have been used for ECoG but not systematically 



 29 

quantified.  These methods should be quantified for use, specifically for motor screening 

tasks, before this filtering method is continued 

 

2.2.2 Mathematical encoding of movement information 

 Finding position and velocity encoding in humans brain activity would be significant 

because it would demonstrate that humans encode information in the same way as non-

human primates.  While this separable activity has been shown in single units, and somewhat 

in micro-local field potentials, it has never been dissociated in ECoG.  This dissociation 

would allow for BCI with more degrees of freedom.  Currently, two degrees of control are 

possible, but it takes seven to control a human arm, which is the eventual goal.  If it does not 

provide significantly better control than what is offered by EEG, the invasive nature of 

ECoG will reduce its strength as an option for practical application (Leuthardt, Schalk et al. 

2006). 

 Single unit decoding has a long history of mathematical rigor, including cosine tuning 

in the motor cortex (Georgopoulos, Kalaska et al. 1982).  Georgopolous introduced the idea 

of cosine tuning for neurons controlling arm movements (Georgopoulos, Schwartz et al. 

1986).  These neurons would fire maximally in the preferred direction (defined by the 

direction of movement that caused maximal firing).  The preferred direction was found by 

using linear regression (Equation 2.2.1).  In Equation 2.2.3  d(M) is the firing rate for a given 

neuron during a movement with a given direction defined by the x,y, and z components (mx, 

my, mz) and then determining b, bx, by, and bz which are coefficients from linear regression.  

Converting Equation 2.2.3 into polar coordinates yields Equation 2.2.4 illustrating the 

“cosine tuning” of the regression. 
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)cos()( pdkbMd θθ −+=  (2.2.4) 

 

The activity of the cortical areas is denoted by d(M) and the baseline firing rate is b (sp/sec).  

The portion of the activity that is correlated to arm movement corresponds to 

)cos( pdk θθ − .  In addition to these physical encoding factors there is a temporal encoding 

delay between the neural activity and the corresponding movements. 

 These equations have been converted into a form that is useful for different 

movement parameters by Moran et al. as well as others (Moran and Schwartz 1999a; Moran 

and Schwartz 1999b; Wang, Chan et al. 2007).   These equation were used on LFPs data by 

Heldman et al. to find the preferred directions of features rather than firing rates (Heldman 

2007).  Equations 2.2.5-6 are taken from Heldman et al. and show how position and velocity 

can be fitted to the features in question.  By fitting individual features to these equations, one 

can determine the percentage of activity correlated to position and velocity.  Equation 2.2.5 

utilizes the mean positions (x,y, and z) and finds the tuning (B values) for them.  Similarly 

equation 2.2.6 finds the tuning criteria for the mean velocities in the x,y, and z directions. 

0 , , ,p x p y p zP B B x B y B z= + + +  (2.2.5) 

0 , , ,v x v y v zP B B x B y B z= + + +& & &  (2.2.6) 
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2.3 Novel directions explored in this thesis  

 
This thesis explorers two new areas of BCI on neuroscience research.  Chapter 5 

addresses encoding of arm kinematics in ECoG data, Specific Aim 1.  The second is covered 

in Chapter 6 addresses the unique encoding of DLPFC, Specific Aim 2.  ECoG offers a 

unique perspective over previous techniques because it has electrodes specifically designed 

for large scale, close proximity, LFP recordings and also records wide areas of cortex 

(Heldman, Wang et al. 2004; Heldman 2007).  These electrodes have started to be a 

successful paradigm with some early successes in motor decoding and BCI control 

(Leuthardt, Schalk et al. 2004; Schalk, Kubanek et al. 2007; Schalk, Miller et al. 2008; 

Wisneski, Anderson et al. 2008). 

Showing the neural correlates of arm movements is an important step in creating a 

useful BCI using ECoG.  ECoG is a very stable invasive system for recording neural activity; 

and as such it provides a possible medium for creating a useful BCI.  However, thus far 

ECoG has been limited to using gross motor movement paradigms for creation of BCI 

which limit its functionality (Leuthardt, Schalk et al. 2004; Schalk, Miller et al. 2008).  By 

mapping arm movements in a more specific manner ECoG can potentially be used to create 

a more useful multidimensional BCI.   

Specific Aim 2 is the first time a delay match to sample task is used to explore the 

non-directional ECoG correlates of target based tasks.  The end vision is to use the non 

directional ECoG correlates as a selection signal in a BCI.  Other groups have shown that 

the DLPFC is an area that can be controlled for use on a BCI (Andersen, Burdick et al. 

2004; Ramsey, van de Heuvel et al. 2006).  At the same time the use of selection tasks have 
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been shown to increase the accuracy of BCI (McFarland, Sarnacki et al. 2005). Meanwhile , 

information in the DLPFC encodes directional and non directional information that may be 

useful for a selection task (Niki and Watanabe 1976; Funahashi, Bruce et al. 1990; Sawaguchi 

and Yamane 1999).  Evaluating which ECoG signals would be useful for a selection task is 

an important step in developing a reliable selection paradigm for BCI. 
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3 General Experimental Methods   

 
The Human Studies Committee at Washington University in Saint Louis approved 

the research protocols used herein.  These protocols were approved at Barnes Jewish 

Hospital and Saint Louis Children’s Hospital, for human epilepsy subjects.  All approved 

guidelines set forth were followed when conducting these experiments. 

 

3.1 Data Collection 

 
Data were collected from epilepsy patients during invasive electrcorticography 

(ECoG) monitoring.  All patients who underwent the placement of ECoG grids were asked 

to participate, less than five percent did not consent.  The age and clinical diagnoses of the 

patients varied.  Each patient performed a battery of experiments designed to test the 

cortical responses in a variety of ways.   

3.1.1 Subject Pool and Electrode Placement 

Epilepsy patients who consented and assented to involvement in this study were the 

subjects in these experiments.  Clinicians placed electrodes on the surface of the cortex for 

the purpose of seizure localization prior to resection; Figure 3.1.1 shows the placement of 

such a grid.  The location and quantity of these electrodes were determined clinically.  The 

experiments contained herein accounted for variance in electrode placement based on 

several previous studies at Washington University that have used these subject groups 
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(Leuthardt, Schalk et al. 2004; Miller, Leuthardt et al. 2007; Schalk, Kubanek et al. 2007; 

Schalk, Miller et al. 2008).   

These data were recorded concurrently to a clinical system that monitored continuously 

for epileptic events (e.g. seizures).  A large improvement in temporal and amplitude 

sensitivity has been made in this experimental setup from the previous studies.  Previously, 

these data were retrieved from the clinical network.  However, in this study, data were 

collected by splitting off the clinical signal recorded from these subjects for purposes of 

seizure localization. The new and superior setup is shown in Figure 3.1.2 and allowed for the 

experiments contained herein.  

 

 

Figure 3.1.1: Electrocorticography 
 Electrodes placed on the surface of the cortex for the purpose of seizure localization. 
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The split signal was routed to four G.USB amplifiers connected to a computer running 

BCI2000.  Each G.Usb amplifier can record 16 channels (for a total of 64 channels) and 

were purchased from Guger Technologies , Graz, Austria.  The signals from these amplifiers 

were then routed to a computer containing BCI2000, a software designed to coordinate 

experiments with EEG or ECoG recordings (Schalk, McFarland et al. 2004).  All 

experimental paradigms for this study used BCI 2000 to coordinate psychometric and 

kinematic stimulus with the cortical recordings. 

 

Figure 3.1.2: Splitting of the signal.   
While previous studies had downloaded the ECoG signal off of the clinical network this study split the 
signal before it was recorded by the clinical system.  This connection provided better temporal and 
amplitude sensitivity than the previous setup. 
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3.1.2 Systematic Localization of Electrodes  

 

 Figure 3.1.3: Example of electrode localization 
Electrode locations on an x-ray using the LOC package developed by Kai Miller (Miller, Rao et al. 
2007) 

 
 

Care was taken to ensure precise electrode localization for these experiments.  This could 

not be done directly as the electrodes were covered with the subject’s dura mater and other 

tissue during the recordings.  Between the time of electrode placement and recording these 

electrodes are imaged by a lateral x-ray of the subject’s skull.   These images were then used 

to localize electrode locations using the Talairach Coordinate system (Talairach and P. 

Tournoux PU  - Thieme Medical Publishers 1988).   

The calculation of Talairach coordinates of ECoG electrodes has been well documented 

and automated (Miller, Rao et al. 2007).  This automated system was used to find the 

Talairach coordinates for each electrode, with 1 cm of variance to their actual location.  The 

corresponding Brodmann areas were then found using the Talairach Daemon (Daemon).   

The Brodmann areas given by the Daemon were adjusted when they disagreed with what 

had been established clinically through stimulation and visual localization. 



 37 

3.1.3 Subjects 

Patient Number Sex Handed Age Cognition 

ZNZS 47 Male Left 14 Normal 

ZOZN 49 Male  Right  11 Normal 

TOFS 51 Female Right 27 Normal 

TTES 54 Female Right 46 Normal 

ETOS 59 Female Right 9 Normal 

NTES 60 Male Right 43 Normal 

ZOOS 50 Male Right 23 Normal 

TOTS 52 Female Right 11 Normal 

EOES 58 Female Right 11 Normal 

FOTE 55 Female Right 16 Normal 

FZFE 67 Female Right 48 Normal 

Table 3.1.1: Subjects 
 Consenting subjects who participated in these experiments.  Subject ZOOS was 
eliminated because the data collected was incomplete.  Subjects EOES and ZOZN 
were eliminated due to non-compliance (refusing to follow instructions).  Subject 
TOTS was eliminated due to noise issues caused by the clinical system yielding a 
total of seven subjects.  
 

Data were collected from 11 subjects (listed in Table 3.1) for these experiments.  

Partial data was collected from three subjects because of non-compliance, or epileptic 

events.  One subject had to be eliminated because change to the clinical system caused noise 

for both the experimental and clinical recordings .  The remaining seven subjects performed 

the same three experiments using the same experimental conditions.   

Experimental Environment  

Experiments were performed by the subjects, in their hospital room, when they were 

feeling well enough to participate.  The patients performed the experiments with a Microsoft 

Sidewinder II force feedback joystick which was placed at a comfortable distance to move 

with whole arm movements.  These experiments or tasks were displayed on a computer 

monitor that was placed approximately 18 inches from the subject based on both best 
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viewing and comfort for the subject.  The joystick was placed near the subject’s contra lateral 

arm (contra lateral to electrode placement), this joystick was used to control the open loop 

task that was presented.  This joystick provided forces to the center of the joystick and also 

resisted whichever direction the subject moved in.   At maximum displacement from center 

the joystick provided x grams of force toward the center.  When moving in a circle at 

maximum displacement there are x grams of force toward the center and y grams of force 

which resisted the circular movement of the subject.   These forces provided increased effort 

from the subjects and thus increased activation on the cortex. 

3.1.4 Controlling for Eye Position and Movements 

The original experiments (i.e. Center Out and Tracing) have been performed in non-

human primates and were then modified, in part to control for eye movements 

(Georgopoulos, Schwartz et al. 1986; Moran and Schwartz 1999a; Moran and Schwartz 

1999b).  It is of note that these tasks are generally performed without controlling or 

recording eye movement in non-human primates when recording from motor areas 

(Nicolelis, Dimitrov et al. 2003; Heldman 2007; Wang, Chan et al. 2007).  However, for the 

purposes of these experiments we are also recording from areas associated with eye 

movements, particularly Brodmann Area 8 (Frontal Eye Fields). 

  The eye position of the subject was important because they correlate heavily with 

arm movements, and the primary interest is arm movements.  A variety of measures were 

attempted to control eye movements including instruction, monitoring eye movements, and 

experimental design.  Significant effort was placed into controlling for this possible 

confounding variable, and experimental design was eventually deemed the most successful 

approach. 
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When recording from visual areas it is common place to control eye position, in part 

because of the study of receptive fields (di Pellegrino and Wise 1993; Iba and Sawaguchi 

2003).  A receptive field is a region in the field of vision where a neuron responds to 

stimulus.  The purposes of these tasks is not to ascertain receptive fields at the level ECoG 

records, nor would it be likely to see receptive fields at this level.   However, due to this 

additional coverage attempts were made to account for the eye movements. 

The first method attempted to control eye movements was to have the subject’s 

foveate at the center of the task while also recording Electrooculogram (EOG).  It was 

deemed that this could eliminate eye movements entirely, however subjects found the task 

too difficult with out being able to move their eyes.  In addition, it became apparent that, 

EOG electrodes often would have to be placed close to areas that caused the subjects 

discomfort or pain.  For these reasons the tasks were designed to minimize eye movements.   

The Center Out task had delay periods added to analyze specific attentional 

components and they also eliminated potential eye movements from many of the periods of 

interest.  The target was displayed during a period (Target Encoding) that was not analyzed 

(Figure 3.2.2); during this Target Encoding period there is an expectation of eye movements 

as the subject saccades to the target.  Following this there was a delay where in the subject 

waited for a signal to move (go signal).  This signal was an elimination of a center target and 

ring which kept the subjects attention and eyes focused on the center of the task, reducing 

eye movements during this important period.  The last section wherein eye movements 

would be expected is following the go signal, wherein the subject would be expected to 

saccade to the goal target.  This saccade would last only a short time (20-200 ms) for the 

entire movement period (1-2 s) and thus be largely averaged out.   
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The hold period of Center Out (Figure 3.2.2) was used to find position tuning.  

During this period it would be expected that the subject be foveated on the goal target and 

be holding the cursor on the goal target.  During this section eye position and hand position 

would be highly correlated, however a way to eliminate this was not added to the task.  It is 

now recommended that the reward or error signal be put in the center of the task to force 

the subject to look in that location during this hold period. 

The Tracing task was programmed in two versions, with one designed to minimize 

eye movements.  The traditional version uses a cursor radius that encompasses the whole 

size of the screen.  To reduce this radius, a version was created that used arrows (Figure 

3.2.1) that had a 54% reduction in radius, while still using the same arm movements (Table 

3.2.2).  This was the smallest radius of arrow that could be used while still having a 

distinction between the smaller and larger radii.  We still expect smooth pursuit eye 

movements to be present during this task, but this was deemed an appropriate reduction of 

eye movements.
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3.1.5 Manipulandum 

 The manipulandum used to perform the tasks outlined in Figure 3.2.1 was a 

Microsoft Sidewinder force feedback joystick.  The forces applied from this joystick are 

outlined in Figure 3.1.4.  The patient was resisted in movement of the joystick in every 

direction except when moving toward the center.  The joystick provided continual force 

toward the center and as such would apply force to the subjects arm back to the center 

during any movement.  This would provide perpendicular force (compared to movement 

direction) during Tracing and assistive force when returning the joystick to its center.   

Subjects were instructed to move the manipulandum using their whole arm and not just 

wrist movements.  In addition, the tasks lent themselves to using the whole arm both given 

the arm movements required and the resistive force of the joystick.  This will allow decoding 

of the neural correlates of arm movements rather than simply wrist or shoulder movements.   

JoystickA B Forces Center Out Forces Tracking/TracingC

 

 Figure 3.1.4: Manipulandum 
  A. The manipulandum (joystick) used in the experiments as shown from the front, it had force 
feedback as outlined above.   Resistive and pushing towards the center of the joystick similar to an 
aircrafts yoke..  B. For Center Out the subjects experienced forces resisting their movement to the 
targets.  C.  For Tracing the subjects experienced forces resisting their movements as well as 
continual force towards the center. 
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3.2 Tasks 

The following four experiments were performed by each subject: a center out task 

(Center Out), arrow tracing task (Tracing), a sphere tracing task, and a Speller task; all tasks 

are shown in Figure 3.2.1.  Each task was designed to test for a different neural correlate.  

Center Out and the tracing tasks were meant to test for the neural correlates of directional 

movement.  Center Out was also designed to work in combination with the Speller task to 

test for target encoding.  

Figure 3.2.1: Task Diagram 
The above tasks were performed by the subjects in these experiments. Each task was created for a 
specific cortical response, in order to establish whether that response was present and viewable at the 
level of ECoG. 

 

Arrow Tracing

 Sphere Tracing

   Center Out

  Speller Task
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3.2.1 Center Out 

Center Out was derived from the classic center out task run by many earlier studies 

(Georgopoulos, Kalaska et al. 1982; Moran and Schwartz 1999a; Georgopoulos, Langheim et 

al. 2005; Heldman 2007).  The Center Out task had 8 targets spaced 45 degrees away from 

each other (Figure 3.2.1).  The subject was instructed to move the cursor to the target that 

shifts colors during a target acquisition period.  Table 3.2.1 displays the subjects tested on 

this task.  Center Out was divided into five different periods and included delay periods 

allowing attention and intentional components to be analyzed separate from motor 

components.  The delay periods were of differing and variable lengths and are displayed in 

Figure 3.2.2.   
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Figure 3.2.2: Temporal details of Center Out. 
Each delay period was set up in order to view encoding of target information, attention, or intention 
without the motor responses related to movement. The red line and green line are a sample velocity 
curve of the subject’s movements.  During red periods the subject is not moving, and during green 
periods the subject is moving. 
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The first period is a delay (Baseline Period; 300 ms), used as a baseline in the analysis, is 

before the subject can encode the target.  The goal target then briefly changes color (Target 

Encoding Period; 300-500 ms) to indicate that it is the goal target, which the subject is to 

attain for this trial.  Another delay (Delay Period; 300 ms) follows the target-encoding 

period, allowing analysis of the intentional encoding of the target without the motor 

response.  Subjects then move (Movement Period; variable ms) the cursor to the appropriate 

target.  Upon reaching the target the subject has to hold for a length of time (Hold Period; 

300-500 ms); allowing for analysis of goal accomplishment.  A reward period follows 

wherein the original goal target changes to green if the trial was completed correctly or red if 

the trial was completed incorrectly.  To complete the cycle of the task the cursor is re-

centered by the subject so that each trial begins in the same location.   

Center Out 

Patient Number Hold Click 

ZNZS 47 x x 

TTES 54 x x 

TOFS 51 x x 

ETOS 59 x x 

FOTE 55 x   

NTES 60 x   

FZFE 67 x x 

Total   7 5 
Table 3.2.1: Center Out Subjects 
 The center out hold task was run on seven patients and the center out click task was run on 5 
patients.  The hold task was prioritized first, and was run on on more patients than the click task.  

3.2.2 Tracing 

The tracing tasks were originally programmed in several varieties, all of which were 

designed to decorrelate position and velocity kinematics.  A circle would be traced by the 

subject so that the position and velocity components of the movement kinematics would be 
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orthogonal to each other (Figure 3.2.3).  In Center Out these components are correlated so 

that it cannot be determined which component is being encoded.  By making these 

components orthogonal and running the task in both directions (clockwise and counter-

clockwise) it can be shown that either position or velocity is being encoded for preferentially.   

 

Figure 3.2.3: Tracing task with arrows 
Demonstrates the dissociation of position from velocity for this task.  For each position there are two 
anti-parallel directions and for each direction there are two positions.  The green and purple direction 
arrows point in the same direction, despite being in opposite positions around the circumference. 
Similarly the position of the arrows on the left at one point on the circle has two opposite directions 
applied to it. 

 

A prototypical tracing task done by monkeys uses two spheres where one sphere is 

controlled by the monkey to push the other sphere in a specified direction (Schwartz 1993; 

Moran and Schwartz 1999b).  The direction changes from between trials, so that the velocity 

encoding can be compared to the position encoding.  This was modified into a task for 

humans where one sphere pushed another in two dimensions around a circle (radius) 

encompassing the entire screen height.  The goal of the task was to match the radius of the 

target sphere so that it could be pushed around the circle.  In addition a task was devised 

where in one sphere would follow another traveling at a constant computer paced speed 

(“Tracking” task) in two dimensions. These tasks were run in a clockwise and 
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counterclockwise direction and in two radii (Table 3.2.2). An issue that arose when using a 

circle with a radius of the monitor width was that the eye movements were very large and 

correlated heavily with the arm movements. 

 

 

  Large radius (cm) Small radius (cm) 

Center Out 12.7   

Sphere Tracing 8.25 4.125 

Arrow Tracing 3.81 1.905 
Joystick 
(Displacement) 5.334  2.667 

Table 3.2.2: Tracing Radii 
  The Tracing tasks were run at two radii, and the Center only had the maximum radius.  Joystick 
displacement is the distant from center the top of the joystick moves; it was the same for all the tasks.  
That is, the hand position to reach the large radius in all three tasks was the same. 

 
Arrows of much shorter length (Table 3.2.2) than the height of the monitor were placed 

in the center of the screen. These arrows were used both in the tracing and tracking version , 

in both directions, and at both radii, the only difference being that they allowed a 

minimization of eye movements in this task.  While the arm movements were the same as 

the previous task, the arrow diameters were smaller so the eye movements were smaller.  

The arrow Tracing task was prioritized to be run on subjects first as it had the best subject 

compliance and kinematics that were most interesting.  Due to the prioritization of this task 

enough data was generated for analysis, 6 subjects were deemed to be a high enough number 

for this analysis.  While each Brodmann area had to have coverage from at least three 

subjects to be considered. As such the other Tracking/Tracing tasks were not run on enough 

subjects for analysis. The number of subjects that performed each task is shown in Table 

3.2.2.   
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Tracing Task 

Patient Number Arrow Tracing Arrow Tracking Circle Tracing Circle Tracking 

ZNZS 47 x x X x 

TTES 54 x x X x 

TOFS 51 x   X   

ETOS 59 x   X   

FOTE 55 x      

FZFE 67 x       

Total   6 2 4 2 
Table 3.2.3: Tracing Subjects 
The arrow tracing task was performed by 6 subjects, the arrow tracking task was performed by 2, the 
circle tracing task was performed by 3, and the circle tracking task was performed by 2.  The arrow 
tracing task was prioritized highest because of the higher subject compliance and reduced eye 
movements, causing it to be run on many more subjects. 

3.2.3 Speller  

The last experiment was referred to as the Speller task.  The subject would spell out 

words using the joystick to control the cursor (Figure 3.2.4).  The task was designed so that a 

subject hitting a goal target could be compared to a subject passing over a non-goal target.  

This was accomplished by putting all of the targets next to each other on a grid.   

There were some unresolved issues with the design of the task.  The hold period on the 

each target was not long enough in comparison to the movement periods to give very good 

results.  In addition there was no delay period after each target was acquired.  Lastly, the 

letters should be presented to the subject one at a time rather than as a string so that the 

delay periods can be added later. 

The issues mentioned kept the analysis from teasing out the attention details that it was 

designed to capture.  The results were overwhelmed by the motor responses involved in all 

sections of the task.  With the addition of delay periods and more careful motor control a 

similar task will likely have better results.  

This task was run on four patients and did not yield novel results based on the 

corresponding analysis.  No interesting results were found that could not be attributed to the 
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motor components of the task; therefore, no further analysis will be presented on this task in 

this dissertation. 

 

Figure 3.2.4: Speller task  
The subject was instructed to spell out the word or pseudoword in the upper right hand corner using 
the cursor.   
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4 Analysis and Simulations 
Simulated data was created based on expected performance of the models and analysis.  

Simulated data was created using cosine tuning models for kinematics (position,velocity, 

etc.).  Data was also created that simulated non directional target encoding.  Lastly, data was 

created that only contained noise to verify that encoding would not be seen on un-tuned 

data. 

  Spectral estimation and analysis was run for cosine tuning, goal tuning, and using a 

decision tree to test all of the applicable algorithms.  The spectral estimation techniques 

accurately represented the encoded data.  Each algorithm showed the expected result and 

also rejected the channels with incorrect or no tuning.  The decision tree analysis was able to 

correctly identify when a target was encoded in the simulated data.  The results were 

positive, confirming the validity of the analyses algorithms   

4.1 Simulated Data 

Simulated ECoG data was designed and created to encode for the expected results of 

both the Center Out and Tracing tasks.  A simulated patient was created for both tasks with 

independent channels encoding position, velocity, amplitude, and noise.  These channels 

were divided into different simulated Brodmann areas for the purposes of analysis.    

The process of creating an encoded channel had three steps, creation of a kinematic 

signal, encoding of the signal in the spectra, and addition of noise.  The creation of a 

kinematic (e.g. hand position) signals were all done manually.  In Figure 4.1.1 a, position 

duing a center-out task was modeled as a straight line as a function of time.  This signal was 

then used to amplitude modulate a carrier signal by multiplying its magnitude for each 

sample by a series of sinusoids across a frequency band.  The sinusoids phases were then 
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randomized and combined into one modulated spectra.  Lastly, 20% noise was added to 

these spectra by taking the existing modulated spectra and adding a random number (white 

noise). 

 

4.1.1 Encoding of Center Out 

Simulated Center Out ECoG data was encoded with position, velocity, amplitude tuning, 

and two types of noise.  Position was a ramp function that increased as the simulated cursor 

position approached the preferred positions (Figure 4.1.1 a).  Velocity encoding was 

represented as a Gaussian curve that increased when the simulations cursor was moving in 

the preferred direction (Figure 4.1.2 a).   Amplitude encoding was represented by a ramp that 

increased as the simulated cursor approached any target (Figure 4.1.3 a).   

Noise encoded channels were created in two ways.  First, by taking purely random 

uniformly distributed encoding (white noise).  The second by adding this white noise to a 

signal that had been put through the modulation process with no task related encoding.  This 

noise was added to ensure that the modulation process was functioning exactly as expected, 

and not adding encoding.  

The position tuned signals (Figure 4.1.1) show an increase when the simulation is 

positioned near 180 degrees and a decrease when the simulation is near 0 degrees.  The 

preferred position in this case is 180 degrees and the anti-preferred position is 0 degrees.    

The intermediate directions are cosine tuned because the amplitude of the signal in a polar 

coordinate system mirrors that of a cosine tuned wave.   

The position tuning used to encode Center Out simulated data can be seen in Figure 

4.1.1 a. This position tuning was encoded into a simulated channel by amplitude modulating 
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a power signal centered at 90 Hz (Figure 4.1.1 b).  The power of the spectra can be seen to 

mirror that of the encoding despite the randomization of the phases in the signal.    

Noise was then added to this signal in addition to the noise inherent in the original signal 

due to the process of mixing the phases (Figure 4.1.1 c).  This additional noise was designed 

to be 20 % of the maximum power present in the signal.  Despite the addition of the noise, 

the original tuning can still be seen in the signal.   

The power of this signal is centered at a frequency of 90 hz, which can only be viewed as 

a spectrogram, which converts the data into the time and frequency domain (Figure 4.1.1 d).   

This spectrogram shows the same tuning as the spectra in Figure 4.1.1 b, but also shows that 

the encoded frequency is centered around 90 Hz.  Additionally, it shows that all of the 

power in the modulated signal is represented between 85 and 115, as was intended.  
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Figure 4.1.1: Position encoded sample data  
Displaying different aspects to the process of encoding and eventual data.  A. The position signal 
encoded into the simulated ECoG data.  B. A sample of the traces created to form a position tuned 
signal, the tuning mirrors that of the encoding vectors.  C. White noise is added to the traces from part 
B.  White noise was added, in the form of a random number 20 % the magnitude of the tuning.  D.  
Traces from part B viewed in the frequency domain, the color scale goes from 0 (blue) to 1 (red). 

 
 Velocity tuning was simulated for Center Out (Figure 4.1.2 a), as an increase during 

the simulated movement period for the preferred direction and a decrease for the anti-

preferred direction.  This cosine tuning is now related to direction and speed instead of just 

position.   The basis for the velocity tuned signal was the expected velocity profile shown in 
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Figure 3.2.2.  This standard velocity profile should correlate to the encoding of the actual 

data. 

The velocity encoded spectra signal was created in the same way as the position tuned 

signal and is shown in Figure 4.1.2. b. The encoding of the spectra can be seen to match the 

tuning signal in Figure 4.1.1 a.  The overall power is at its maximum when the simulated 

cursor is moving toward 180 degrees, indicating this is the preferred direction.  

Noise was added to the velocity signal that represented 20 % of its maximum amplitude 

(Figure 4.1.2 c).  With the addition of the noise, the tuning can still be seen in this signal and 

the preferred direction is still 180 degrees.  The maximal and minimal power encoded in this 

signal and the other signals with added noise is higher than their no noise counterparts.  By 

adding white noise to the signal, it raises the mean signal power by the mean of the noise. 

 A frequency domain version of the velocity encoded signal can be seen around the 

center tuned frequency in Figure 4.1.2 d.  This figure is a spectrogram of the signal in Figure 

4.1.2 b.  Similar to the position encoding (Figure 4.1.1 d), this figure shows a center 

frequency of 90 Hz and is power encoded only in the appropriate frequency region.    
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Ccaption: Velocity tuned spectrogram for center out task.  The 
prefered direction is at 180 degrees or 9 o’clock.
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Figure 4.1.2: Velocity encoded sample data 
Displaying different aspects to the process of encoding and eventual data.  A. This is the amplitude 
that was placed into the amplitude modulation signal in order to create velocity tuned data.  B. A 
sample of the traces created to form a velocity tuned signal, the tuning mirrors that of the encoding 
vectors.  C. White noise is added to the traces from part B.    D.  Traces from part B viewed in the 
frequency domain, the color scale goes from 0 (blue) to 1 (red). 
 

 

Amplitude or Target Encoding was only simulated for Center Out and is shown in 

Figure 4.1.3 a.  The amplitude of the encoding increases as the simulation approaches the 

target regardless of the location. This encoding has no directionality, which is important 
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because the expected signal and corresponding analysis are decoding for a signal that has no 

directionality.   

The amplitude encoding signal was used to modulate a spectrum as shown in Figure 

4.1.3 b.  This spectrum a simple ramp function is conceptually similar to the position tuning 

signal as it is a simple ramp function.  However, there is no directionality to the tuning 

function or this associated spectrum.  This non-directionality demonstrates the expected 

results when a subject has encoded for a goal. 

 When noise is added to these target encoded channels, the tuning is still evident (Figure 

4.1.3 c).  More and less noise was added to these channels in order to fine tune the analysis.  

A noise level of 60% of the maximum was eventually used in order to demonstrate the 

efficacy of the amplitude tuned signal.   

This amplitude signal shows a corresponding increase only around the tuned frequency 

of 90 Hz, Figure 4.1.3 d.  This corresponds to the tuning that was intended for this channel 

and shows that the spectrum is being encoded at the correct frequency.   
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Ccaption: Mouse click tuned spectrogram for center out task.  There 
is no preferred direction as the mouse click signals are 
directionless
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Figure 4.1.3: Amplitude encoded sample data 
Displaying different aspects to the process of encoding and eventual data.  A. This is the amplitude 
that was placed into the amplitude modulation signal in order to create amplitude tuned data.  B. A 
sample of the traces created to form a amplitude tuned signal, the tuning mirrors that of the encoding 
vectors.  C. White noise is added to the traces from part B.  D.  Traces from part B viewed in the 
frequency domain, the color scale goes from 0 (blue) to 1 (red). 
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4.1.2 Encoding of Tracing Kinematics in ECoG 

 
A simulated Tracing ECoG signal was created for cosine tuning of position and 

velocity similar to the Center Out.  Position and velocity time traces are 90 degrees out of 

phase in the simulations (Figure 4.1.5 a-b).  This interplay between correlations of phase 

position encoding to velocity encoding was discussed earlier in Chapter three (see Figure 

3.2.3). 

 The position and velocity kinematics of the tracing task were encoded in the same 

way as the center out task (Figure 4.1.4 c-d).  These kinematic signals were multiplied by the 

modulation signal over time, then the phases were randomized, and all of the sinusoids were 

summed.  The modulation of these signals is evident in the spectra as they mirror the tuning 

signal. 

  Noise was also added to these spectra (20% max power white noise).  The 

corresponding noisy spectra are shown in Figure 4.1.4 e-f.  They demonstrate both of the 

concepts discussed concerning the noisy spectra of Center Out.  First, they show tuning 

despite the added noise.  Second, they also have an increased mean due to the added white 

noise.  The third important point these sub-figures represent is that the position and velocity 

remain 90 degrees out of phase. 

Once the signal is moved back into the frequency domain, the 90 degree phase shift 

from position to velocity can be seen around the 90 Hz center (Figure 4.1.5 a-b).  This figure 

is the spectrogram of the signals in Figures 4.14 c-d.  It demonstrates the continued 

encoding in the expected band as well as the absence of power outside of this band. 
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Figure 4.1.4: Position and Velocity encoded sample data 
Displaying different aspects to the process of encoding and eventual data.  A. This is the amplitude 
that was placed into the signal in order to create position tuned tracing data.  B.  Similarly, this is the 
amplitude for velocity tuned data. C-D sample of the traces created to form a position (C.) and 
velocity (D.) tuned signal, the tuning mirrors that of the respective encoding vectors.  E-F. White 
noise is added to the traces from part C-D respectively.   
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Figure 4.1.5: The spectra of position and velocity encoded sample data  
 A. The spectra of the position tuned signal, the amplitude changes as the sample data moves around 
the circumference of the circle.  B.  The spectra of the position tuned signal, the amplitude changes as 
the sample data moves around the circumference of the circle.  Notice the velocity signal is 90 degrees 
out of phase with the position signal. 
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4.2 Spectral Estimation 

Care in spectral estimation is important when analyzing ECoG data.  Errors in the 

spectral estimation can be made if a technique that does not perfectly reconstruct the signal, 

such as the FFT, is used.  In this case, the Maximum Entropy Method (MEM) was used, but 

it must be stressed that care was taken to ensure that the model order and windows were 

carefully considered and evaluated.  A small change in either of these can vastly change the 

estimate MEM creates and alter any further analysis done using these estimated spectra. 

The MEM, an autoregressive technique, was used because of its ability to fit sharp 

spectral periods and make estimation in short time windows (Press, Teukolsky et al. 1992).  

The MEM has been used for spectral estimation in both EEG and ECoG BCI (McFarland, 

Lefkowicz et al. 1997; Leuthardt, Schalk et al. 2004).   

Two other methods were also evaluated to transform the data to the frequency 

domain, the Fast Fourier Transforms (FFT) and Gabor Filters.  The FFT was rejected 

because the tasks time windows were too short to get accurate representations of the signal 

using the FFT, and it was necessary to use a spectral estimation technique.   The Gabor filter 

is a spectral estimation technique that uses wavelets and varying temporal windows to create 

,in general, a more accurate estimation of spectra than the MEM filter. Gabor filters were 

rejected based on their inability to provide a more accurate representation than the MEM 

filter for these experiments and analyses. 

4.2.1 Bandwidth, Bandsize, and Window length  

The MEM requires a bandwidth, bandsize, length of data, and a model order.  

Bandwidth is the overall frequency range used in analysis, the bandsize is the size of each 

individual feature, and each channel had a bandwidth of .5-280.5 Hz and a bandsize of 5 Hz.   
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These parameters are decided by the programmer and have to be determined prior to 

analysis either qualitatively or quantitatively.  Quantitative methods were used herein 

wherever possible and qualitative methods were used when appropriate.  Bandwidth was 

determined by experimental filter setting and amplifier performance, bandsize was chosen 

qualitatively, window length was quantitatively by experimental restrictions, and model order 

was chosen based on previous work (Anderson, Wisneski et al. 2009). 

The estimation range was chosen to be between 0.5-280.5 Hz, due to a combination 

of factors.  A lower range of 0.5 was chosen based on the filter settings during data 

collection; the original filter setting was chosen qualitatively, to facilitate fast and accurate 

measurements in the hospital room.  The upper limit of 280.5 Hz was chosen based on the 

signal-to-noise ratio, at higher frequencies.  The bandwidth also had to be an even multiple 

of the bandsize 5 Hz, 280.5 Hz allowed an even multiple.  The amplifier performance above 

290 Hz was poor, due to the lower powers that are expressed at these higher frequencies in 

the brain.  As such it would not be possible to view a spectral change in the range above 290 

Hz with any certainty.   

Bandsizes from 1 Hz to 50 Hz were tested and 5 Hz was settled on qualitatively.  It 

was originally expected that lower frequencies would perform better at lower bandsizes and 

higher frequencies would perform better at high bandsizes due to the nature of spectral 

estimation.  However, upon further analysis and experience with the data it was found that 5 

Hz did a good job and lower bandsizes did not increase accuracy. 

 A window length of 200 ms was chosen because it allowed for multiple samples to 

be taken for each trial even during the delay periods.  The smallest delay periods were 300 

ms and thus a window was needed that was shorter than this time period in order to create 

an accurate spectral estimate.  200 ms was chosen in combination with 20 ms stepping in a 
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sliding window technique because it allowed for the largest windows while still allowing for 

multiple samples per trial.  The multiple samples created from this slidng window technique 

were averaged to help create a better estimation of the spectra present during that time 

period. 

Averaging multiple samples is a common trade off used to reduce noise while 

preserving the desired signals.  Multiple sample averaging may allow for a more accurate 

representation of the spectra by eliminating white noise, but it may also be reducing 

activations that are correlated to our stimulus.  The activations at higher frequencies appear 

to exist for very short time windows on the order of tens of milliseconds.  These short time 

period activations will be averaged out if long samples are taken or if windows are averaged 

together.  The time periods in this analysis were long which was desired to show the 

robustness of these results, so this trade off was accepted, but should be noted.  

 

4.2.2 MEM filter and model order 

 
Autoregressive techniques and specifically the MEM have been analyzed for efficacy 

with use in EEG and ECoG (Anderson, Stolz et al. 1998; Anderson, Wisneski et al. 2009).  

Anderson et al found that a filter order of about 30 was ideal on data given a frequency band 

from 0-500 hz and no filtering.  This was the filter order that we originally used to create an 

estimate of spectra for these experiments until a comb filter was applied to the data 

(Krusienski 2008; Anderson, Wisneski et al. 2009).  A comb filter, is a series of notch filters 

that eliminate not only 60 Hz but also it’s harmonics (120 Hz, 180 Hz, etc), or other narrow 

band noise. 
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Filtering data causes a large decrease in the number of weights the MEM filter needs 

to create an accurate representation of the spectra (Krusienski 2008).   A band stop filter was 

applied to the recorded data at 60 Hz and it’s harmonics that interfered with proper spectral 

estimation.   In this case it was found that 20 weights worked to create an accurate 

representation of the spectra, once the comb filter was applied.  This number of weights 

seemed to create an accurate representation when compared to previous work. 

 

4.3 Analysis for Cosine tuning 

4.3.1 Determination of Position, Direction, Velocity, and Speed 

 
Figure 4.3.1: Dividing the tasks up into octants.  
 The center out task was broken up into octants by its  8 targets.  There were only 8 targets so the 
maximum level of precision for tuning would be 1/8 of 360 degrees.  Similarly the tracing task was 
broken down into octants so that the two tasks could be more properly compared. The data was first 
broken down based on rotations around the circle making each rotation on trial; each octant was then 
averaged for the tracing task so that one mean position and velocity were found within each octant.  
In this way there were than 8 samples for each rotation the subject accomplished. 

 

In the Center Out task the position was taken as the mean position during the hold 

period for that trial, shown in Equation 4.3.1-2.   There is minimal movement during the 

hold periods so these numbers should be consistent from trial to trial.  Position for the 
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whole movement and mean paths can be seen for Center Out and Tracing in Figure 5.2.1.  

After a mean position was found for each trial, the positions were normalized by the 

maximum magnitude x and y position, respectively, (Equations 4.3.5-6).  Normalization was 

used on all of the kinematics in order to normalize them to vary between -1 and 1.  The 

normalization of ECoG data and kinematics is important, because when regressed 

(Equations 4.3.) normalized variables produce weights that can be directly compared across 

different encoding schemes.  

The Tracing task analysis and samples were matched as closely as possible to Center Out 

task.  The Tracing task was divided up into eight octants (Figure 4.3.1) in order to facilitate 

ease of analysis as well as cross task comparisons. Each time there was a change in direction 

the trial number was incremented.  The mean of each octant in each trial was taken as one 

sample, Equations 4.3.1-2.   This would give 8 samples for each trial, one for each octant.   

These samples were then normalized in the same fashion as Center Out, Equations 4.3.3-4. 

N

x

x

N

n

n

t

∑
== 1

 (4.3.1) 

N

y

y

N

n

n

t

∑
== 1

 (4.3.2) 

[ ]
[ ])....,max(

....,

21

21

tNtt

tNtt

xxx

xxx
x =  (4.3.3) 

[ ]
[ ])....,max(

....,

21

21

tNtt

tNtt

yyy

yyy
y =  (4.3.4) 

 

In equations 4.3.1-4.3.4 x and y are the associated position of the cursor on the screen.  x 

was the horizontal component of position and y was the vertical component of position.  
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Many of x and y measurements are taken over the period of one trial and are averaged into 

the variables ty  and tx  giving one measurement per trial.  These measurements were then 

normalized by the maximum of all trials to create the normalized vectors of positions x and 

y . 

Velocity for Center Out task was taken from the average for a whole movement, and 

then transformed similar to position.  The mean velocities and velocity at each position for 

actual data can be seen in Figure 5.2.2.  Each trial had many velocities which were then 

averaged using Equations 4.3.5-6, this average would results in one sample per trial.   This 

vector of average velocities was then normalized by the maximum velocity, shown in 

Equations 4.3.7-8.  The un-normalized velocities were also used to find the speed 

component and direction using later transformations. 

Velocity for the Tracing task was found in much the same was as position, for Tracing.  

To begin with the Tracing task was once again divided into octants.  After dividing into 

octants a mean velocity was taken from each octant for each trial.  Trials were defined by 

changes in direction, just as they were for defining position.  Finally, the velocities were 

normalized by the maximum absolute velocity to give normalized samples of velocity.  In 

addition to this measurement of velocity, the raw velocity values for Center Out and Tracing 

were used to calculate speed and direction.   
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Equations 4.3.5-4.3.8 are the velocity equivalent of the earlier equations for position; x&  

and y&  are the associated velocity of the cursor on the screen.  x&  was the horizontal 

component of velocity and y&  was the vertical component of velocity.  Many of x&  and y&  

velocity measurements are taken over the period of one trial and are averaged into the 

variables ty&  and tx&  giving one measurement per trial.  These measurements were then 

normalized by the maximum of all trials to create the normalized vectors of velocity x& and 

y& . 

Speed was derived from the velocity components by taking their magnitudes.  The raw 

velocities magnitudes were taken prior to normalization, Equation 4.3.9.  The speeds were 

then normalized in the same fashion as position and velocity, Equation 4.3.10.  The speed 

was found this way for both Center Out and Tracing tasks.  The raw speeds were also used 

to find the direction kinematics. 
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Speed was determined from the velocity components on a trial by trial basis.  The speed, 

ts , of each trial was found by squaring each component from Equation 4.3.5-4.3.6 then 

summing them and taking the square root.  From here the speed data across all trials is 

normalized into the vector  s  by dividing by the maximum speed. 
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Direction was also derived from velocity, by removing the speed.  For each trial the x 

velocity and the y velocity were both divided by the speed giving a unit vector for direction, 

Equations 4.3.11-12.  Transformation to a unit vector is an inherent normalization so no 

further normalization was needed. This was done both for Center Out and Tracing.  
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Direction is found by making each trial a unit vector.  The un-normalized velocity of 

each trial is taken from Equations 4.3.5 and 4.3.6, listed as tNx&  and tNy& .  The speed is taken 

from Equation 4.3.9 and is listed as tNs .  For each trial the horizontal and vertical velocities 

are normalized by the magnitude to create normalized unit vectors in the direction of the 

velocity. 

  

4.3.2 Model and Regression 

 
The different movement parameters, (e.g. position) can be decoded in the simulated 

channels in which they were encoded. Cosine tuning has been done historically with both 

single units and LFPs (Georgopoulos, Kalaska et al. 1982; Heldman, Wang et al. 2006; 

Heldman 2007; Wang, Chan et al. 2007).  In the simulated data discussed before and in the 

channels with the most significant tuning this can be seen just by categorizing the data by 

direction, position, or speed.  In this case an individual channel and frequency bin (feature) is 

binned according to either position or direction to view the tuning of the raw data, Figure 

4.3.2-3.  To quantify the tuning of each feature, a regression to a model of the kinematics is 
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done for each movement parameter.   These models are listed as equations 4.3.13-17 and are 

present for position, direction, speed, and velocity respectively.   

0 , ,p x p yP B B x B y= + +  (4.3.13) 

dyddxd yBxBBP &&
,,0 ++=  (4.3.14) 

0 s
P B B s= + &  (4.3.15) 

0 , ,v x v yP B B x B y= + +& &  (4.3.16) 

For Equation 4.3.13-17 the variable P  is the average spectral amplitude in a given 

frequency band and x  and y  are the mean cursor positions for that period. P  is found by 

taking the percent deviation from baseline before it is entered in the equation.  Similarly the 

movement kinematics are standardized as percentages of the maximum in order to 

normalize the data.  

Equation 4.3.13 is a model for position and fits the signal to the mean position of 

the cursor for each sample.  Similarly for Equation 4.3.14 the variable P is the same as in 

4.3.13 but the dx&  and dy&  are the mean direction the cursor is moving. Equation 4.3.15 is 

setup for speed tuning and only has one component.  By combining speed and direction 

Equation 4.3.16 models velocity, the two vectors x& and y& are the corresponding velocities of 

cursor movement. 

The models use the average spectral amplitude as the dependent variables and the 

movement kinematics of position, direction, speed, and velocity as independent data, the 

weights or regression coefficients are represented by the B variables in the above equations.  

Each equation has a B0 variable which corresponds to the cortical activity unrelated to 

movement kinematics.  In addition there is a B value for each movement kinematic variable 
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fit to the equation.  For example position has Bpx and Bpy in addition to the B0 component, 

similarly direction has Bd:0,x,y,z , speed has Bs:0,s, and velocity has Bv:0,x,y,z.  Bpx and Bpy together are 

the preferred gradient of a given feature.  The magnitudes of the positional or directional B 

values are defined as the Depth of Modulation (DOM), shown in Equation 4.3.17.  Features 

were statistically significant if their fit to the model had a corresponding p value of below 

0.05 and a depth of modulation of greater then 0.05 (Heldman 2007).   

2 2

, ,p x p y
DOM B B= +  (4.3.17) 

4.3.3 Center Out 

The Center Out task was broken down into three distinct periods which were 

analyzed separately; delay, movement, and holding.  The kinematics and spectral data for 

these periods was averaged for each trial and then regressed to the models discussed in 

Equations 4.3.13-17.  The mean amplitude of the period before target encoding (Baseline 

Period) of all trials was used to find the deviation from the mean for the other periods 

(Delay, Movement, and Holding).  This was an ideal situation as there could be no task 

relevant tuning previous to the display of the target as the subject would have no knowledge 

of which target was going to be the goal target.   

The movement and hold periods were analyzed separately, because the use of both 

periods separately allowed for some dissociation of kinematics. The Movement period was 

regressed to direction, speed, and velocity.  The Hold period was regressed to position since 

it allowed for some dissociation of the position components from the direction and velocity 

components.  Results on the simulated data are shown in Figure 4.3.3 where position and 

velocity data show the expected results and noise shows nothing significant.    

The Delay period (post target introduction but prior to movement onset) was of 

particular interest as it had been designed to look at movement intention.  This Delay period 
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was regressed to the direction, speed, velocity, or position of the following movement and 

also following hold period.  This allowed for some measurement of intention and a 

quantification of which parameters were encoded in this time period and how they changed 

across time periods.  It also allowed for a comparison across Delay and Movement periods 

in order to show which kinematic parameters remained constant from intention through 

movement. 
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. 
Figure 4.3.2: Center out results  
Results for two models on three simulated channels. A frequency band of 75-105 Hz was used, the 
tuned band for the simulated data. The red line indicates the mean and blue boxes indicate 25th and 
75th percentiles of data.  It is important to note that the direction model shows positive results for 
velocity tuning and position tuning, but the position model only does for position encoding.   
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.  
Figure 4.3.3: Tracing results for position and directional tuning. 
  In this case the orthogonality of the kinematics allows the dissociation of the two components.  Due 
to this orthogonality the position model only shows position tuning and the direction model only 
shows direction tuning. 
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Figure 4.3.4: Analysis of simulated position, direction, and velocity  
Encoding results in Center Out task.  The position decoding only shows significant results for the 
position encoding on the left and it shows this in 100 percent of the electrodes, shown on the right.  
However, the Direction and velocity results yielded significant results for both position and direction 
tuning which can be seen in the left and right columns.  These overall results were expected based on 
the tuning that was simulated and the analysis, in addition this correlates to the data shown in Figure 
4.3.1of an individual channel. 
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4.3.4 Tracing 

 

Tracing was first divided into 8 octants that mirrored the 8 targets shown in Center 

Out, shown in Figure 4.3.1.  These octants were then analyzed as separate movements.  This 

lent itself well to both creating a simple analysis that could take advantage of the 

experimental design containing multiple directions and radii, and comparing the tuning 

vectors across both tasks.   

A baseline used to normalize the data similar to Center Out.  However, no delay 

periods were present in this task so the baseline that was used for comparison was the mean 

of all trials (in all octants).  This baseline was based on all of the data used for each feature 

and was not based on a trial by trial analysis. 

Position, direction, and velocity were dissociated into separate components more 

easily in this task by virtue of the orthogonal nature of the task.  Speed was easily dissociated 

as it is directionless and had little bearing on the position of the cursor (per Equation 4.3.9). 

Position tuning was found by a regression of the spectral features to the mean position of 

that octant for that trial.  Similarly, velocity was regressed to the mean velocity of that octant 

for that trial.  Direction was found by making all velocities unit vectors based on speed 

(Equations 4.3.11-12).   

Using this method position, velocity, and direction could be correlated for an 

individual trial but they would not be correlated for all the combined trials, due to the 

reversal of directions.  Data was simulated that performed the tracing perfectly (constant 

angular velocities and radius), and corresponding results of the analysis on simulated data 

can be seen in Figure 4.3.5.  In this figure it can be seen that position has been successfully 

dissociated from velocity and direction in the simulated data and ensuing analysis. 
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Figure 4.3.5: Tracing analysis of position and velocity.   
Position and Direction/Velocity components have been successfully dissociated.   Only the position 
encoded electrodes showed significant results for position model and similarly only velocity encoded 
electrodes showed significant results for direction/velocity model. 

4.3.5 Comparison 

The tuning vectors for features that were statistically significant by the given criteria 

across multiple different tasks Delay to Movement and Holding of Center Out, and also 

Movement and Holding of Center Out to Tracing were compared.  These tuning vectors 

were compared by finding the angle between them, using Equation 4.3.18, the results from 
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the simulated data are shown in Figure 4.3.6.  In Equation 4.3.18 variables v1 and v2 

correspond to the vectors in two conditions, the equation finds Theta which is the angle 

between the two vectors.  These angles were then histogrammed in octants in an effort to 

keep the level of discriminibility constant for comparison purposes.  These binned results of 

tuned data can be compared to the same analysis done on random data to show that there is 

a consistency to the tuning, which was purposefully entered into the simulated data for 

testing purposes.  If the angle between the two vectors was less than 45 degrees the two 

vectors were said to have similar tuning.   

1 2
arccos( )

1 2

v v
Theta

v v
=

o
 (4.3.18) 

Similarly these comparisons were made across different electrodes as a function of 

simulated distance.  Distances were simulated for two and three dimensional coordinates.   

In terms of the simulated data only the surface coordinates were used as no third coordinate 

was entered, simulated (results shown in Figure 4.3.7).  The angles between the vectors were 

found using Equation 4.3.18 and the mean was taken for each frequency and distance that 

had at least 5 comparisons in the actual data.  This was done for comparisons between two 

statistically significant vectors and two non-statistically significant vectors.   
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Figure 4.3.6: Position, Direction and Velocity simulated comparisons 
Comparisons of tuning vectors across Center Out and Tracing tasks with the simulated data.  The 
tuned data were simulated so that the vectors would be significantly tuned in the 90-150 Hz range.  
This clustering on the top row can be seen in comparison to the overall uniformity in the non tuned 
data on the bottom row.  These results can be compared to figure 4.3.1-2 where the data for position 
and direction for Center Out are greatly out phase with that for Tracing. 
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Figure 4.3.7: Distance tuning 
Tuning of both Center Out and Tracing on simulated data.  This is a measure of the difference 
between two vectors at some distance for position, velocity, or direction tuning.  These vectors were 
setup on the tuned data to be in bands where they would either be at 0 degrees or 180 degrees.  This is 
in respect to the un-tuned noise data on the right which shows all of its results to be averaging out to 
90 degrees. 

 

4.4 Analysis for Dorsolateral Prefrontal Cortex (DLPFC) encoding 

The analysis for the target encoding in the DLPFC can be broken down into two 

categories, amplitude modulation and directional modulation.  The amplitude modulation is 

a change in signal when the subject encodes any target.  The directional modulation is 

expected to be a change in the signal that correlates to the position of the eventual target or 

direction the target is in from the current position.  These are the two types of encoding that 

have been found in the DLPFC in previous studies using single units (Iba and Sawaguchi 

2003; Funahashi, Takeda et al. 2004; Tsujimoto, Genovesio et al. 2008).  It is unknown if 

these signals will be present in ECoG due to its difference from previous modalities.   
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4.4.1 Amplitude Encoding 

Amplitude encoding determines whether there is a statistically significant change in 

magnitude over many trials on a given feature.  This was determined by application of a 

standard T-test.  To change this comparison to a trial-by-trial basis one condition was 

subtracted from another condition for each trial, to create a new Combined Distribution.  

This Combined Distribution was then subjected to a lillie-test to make sure that it was 

reasonably Gaussian (Conover 1980).  After Gaussian distribution was assured, a T-test was 

performed on the Combined Distribution to test whether it was statistically different from 

zero (p<0.05).  

Combined Distributions were found for each combination of conditions, Baseline, 

Delay, and Holding.  If the p value for the T-test was less than 0.05, that feature was 

considered statistically significant; this is shown on the simulated data in Figure 4.4.1.  In 

Figure 4.4.1 the simulated data shows tuning for amplitude encoding but no tuning for 

position or velocity encoding.  The only portion that shows statistical significance is the 

amplitude encoded channel in the 30 Hz band centered around 90 Hz. 

The absolute amplitude was also analyzed in order to qualitatively determine if there 

was a decrease or an increase in the amplitude across each period; this is shown for the 

simulated data in Figure 4.4.2.  The percent deviation from the mean of all conditions is 

color scaled and shows the difference in the mean on a trial by trial basis.   A mean of all 

conditions was used in this case since it can be used to see the change across all conditions 

including baseline and no increase in tuning is shown because of the relative change of 

baseline.   

Temporal dynamics of the amplitude tuning were displayed for qualitative viewing; 

the simulated results for this are shown in Figure 4.4.2. A gradual increase across the 
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conditions can be seen in Figure 4.4.2 which is the same result that can be seen in Figure 

4.1.3 when the amplitude encoding data was created.  This correlation to the spectrogram is 

what should be seen given the analysis.  It is worth noting that there is more smearing over 

frequency in 4.4.2 than 4.1.3.  This is due to the spectral estimation that was used for 4.4.2 

whereas 4.1.3 was a direct transformation (FFT). 

 

 
 
 Figure 4.4.1: Amplitude decoding of simulated data.   
Every channel within the encoded range showed up as being statistically significant.  Velocity and 
position encoded channels showed no statistical significance when analyzed using an amplitude 
model. 
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Figure 4.4.2: Amplitude tuning in simulated channels.   
A gradual increase can be seen as the subject approaches any target.  All targets were averaged for this 
figure.  

  

4.4.2 Positional and Directional Encoding 

Positional and Directional Encoding were not analyzed on a trial by trial basis, but 

rather used a baseline from the entire task period.  The models that were used herein are 

Equations 4.3.1-2.  For position, all three relevant time periods were compared to the 

eventual position of the goal target.  For direction, the delay and movement period were 

compared to the direction the subject was moving in.    In this case the criteria for being 

statistically significant were a p value less than 0.05 (no depth of modulation test was applied) 

and the position tuning is shown on the simulated data in Figure 4.4.3.   

In this case the spectra from Delay, Movement, and Holding were normalized by the 

Baseline value for all trials.  Baseline was used as normalization here as it did not contain any 

directional tuning so it would not insert any directional bias into the data.  If a mean of all 

conditions was used as it was for amplitude tuning it could have inserted additional direction 

or positional information that was not in fact present.   
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. 
Figure 4.4.3: Decoding of simulated data.  
 Velocity and Position models show appropriate tuning.  It is important to note that the hold period of 
velocity model encoding is flat because there is no movement.  Amplitude encoding shows no 
position decoding that is statistically significant. 

4.4.3 Decision Tree Analysis in the DLPFC 

Decision trees are a data mining technique that uses a simple discriminibility test; an 

example decision tree is shown in Figure 4.4.4.  A decision tree analysis takes a set of data 

and trains the tree.  It does this by building a set of nodes by looking for features that best 

correspond to being on a target vs not being on a target. It creates the first node based on 

the feature which seemingly does the best job of separating being on a target vs not being on 

a target; separating the data into two groups.  There continues to be some cases in each 

group; that is, on target and not on target are still mixed.  This process is then continued 

through the lower nodes, dividing into smaller and smaller groups until all on target and not 

on target data is separate from each other. 

 When simulated data were tested the reasons for decision trees lack of discrimination 

became more obvious, results shown in Table 4.4.1.  The first test on target tuned data 

showed good efficacy at 92% and the percentage on the test data was 100% correct so the 

tree is being formed correctly.  The problem arises once position or velocity tuned data are 
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introduced.  These data seem to create systematic noise as is evident by the decrease from 

row one to row two of Table 4.4.1. 

 When fitting the decision trees on all of the data it contained both data fitted for 

this test and confounding encoding.  With the addition of the systematic position and 

velocity tuning the percent correct fell by 5%.  In addition when the only the channels with 

systematic noise are used they actually drive the percent correct down to 20%, well below 

the 50% that could be acquired given chance probability.  This problem was also apparent 

when the analysis was run on the actual data; the results of which can be seen in the 

Appendix.  This issue of systematic position and velocity tuning seems to make it hard for 

machine learning to effectively cluster ECoG data, and will be a continued issue for those 

who try to do automated analysis. 

   

 

Table 4.4.1: Simulated Decision Tree Analysis 
The target tuned data showed good efficacy for training the decision trees, however once other data 
was added the effectiveness of these trees fell drastically.  The decision tree is being trained on 
systematic noise in this case and it can actually cause the tree to do far worse than chance probability 
seen in the last row. 
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Figure 4.4.4: Example Decision Tree 
An example decision tree corresponding to the Target Tuned data in row 2 of Table 4.4.1.   The tree 
has clustered all of the data within only a few nodes and can discriminate on the test data at a rate of 
100 percent.   



 85 

5 Directional Encoding throughout the Brain  

5.1 Introduction 

Cortical activations were recorded using ECoG during arm movement tasks.  The 

cortical activity was decoded using a cosine tuning model based on earlier studies. 

Historically these cosine tuned models have been applied in distinct regions using single 

units, (e.g. M1, premotor, DLPFC, MT, LIP); however, one of the advantages of ECoG is 

that many different functional areas can be recorded simultaneously and then compared 

(Georgopoulos, Kalaska et al. 1982; Moran and Schwartz 1999b; Leuthardt 2006).  Cosine 

tuning has shown heavy correlations to the activity of single units during motor paradigms. 

  In these experiments two tasks will be performed to help elucidate the encoding of arm 

movements in ECoG gamma band activity.  These two experiments were based on the 

classic Center Out task and Tracing task that were designed for use in non-human primates 

(Georgopoulos, Schwartz et al. 1986; Schwartz, Kettner et al. 1988).  ECoG electrodes 

should offer a different view from the microscopic level of electrical activity that 

accompanies microelectrodes recording single cells or LFPs.   

It is unknown whether positional or velocity information is encoded at the level of 

ECoG.  It has been shown that directional tuning exists at the level of ECoG, however the 

design of the previous experiment did not dissociate kinematic parameters (Schalk, Kubanek 

et al. 2007).   My hypothesis is that there is tuning of position, velocity, direction and speed.  

It is expected that speed will show the greatest modulation and most robust and widespread 

encoding (Heldman 2007).  Finally, we hypothesize that this kinematic tuning, while 

widespread, will be more robust and have greater depth of modulation within the motor 

areas (Miller, Leuthardt et al. 2007).   
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5.2 Kinematics Encoding  

The Center Out and Tracing tasks were performed and movement kinematics have been 

isolated from both tasks.  The Center Out task allows both for separation of different 

movement periods and some disassociation of kinematics.  It was redesigned specifically to 

isolate encoding during delay periods from movement responses so that planning encoding 

could be analyzed separately from the movement correlated signals.  The Tracing task was 

redesigned to dissociate position kinematics from velocity kinematics in a 2 dimensional 

environment.. 

In center out and tracing if a subject moved in the wrong direction or began to move 

before the beginning of the trial it was eliminated.  Less than 10% of the data were 

eliminated in this fashion.  The bulk of the data was analyzed as approximately 70 trials for 

both tasks as the majority of the data conformed to these standards.   All the trials longer 

than half a second and shorter than three seconds were accepted from the Center out task.  

In the tracing task the subject had to be moving the target for 300 ms for the trail to be 

accepted.  Also, data with a radius greater than one, or less than 0.3 (0.3 is 30 % of the radius 

as it was standardized to a unit circle), was eliminated.  Figures 5.2.1-2 shows the positions 

and velocities which were used to model the signal.  It is with these limitations that the data 

in Figure 5.2.1-2 were selected and then used to create the models for Tracing. 

The data in these tasks were normalized so that the regressions would be a percentage of 

the mean cortical activations, this was discussed in more detail in Chapter 4.  Similarly, the 

respective ECoG data was normalized as a percent deviation from baseline.  In this way the 

regressions weights that are formed using Equation 4.3.1-4 can be viewed as being related to 

the percent deviation from the mean based on the percentage of maximum extent for the 

related kinematic component.    
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Mean times were found for each location on all patients to account for any large 

variations in movement kinematics.  The mean time to reach the target and the variance of 

the times taken to reach the target were analyzed for center out.  For the Tracing task the 

mean time and the variance for the times in each octant were checked.  Example results of 

timing are shown in Figure 5.2.3 and no patients showed significant variance across target or 

octants. 

 

 

 

Figure 5.2.1: Positions and mean paths/positions.   
These are the paths taken by one subject as they performed the Center Out and Arrow Tracing tasks. 
A) For Center Out the blue dots are the position held by the patient as he tried to capture the target.  
The red line in Center Out is the mean path the subject took.  B) For Tracing the blue points are the 
positions held by the cursor as it traveled around the circle.   The red points on the right are the mean 
position of the blue points in each octant.  The green paths on the right are the path of the blue arrow 
(computer controlled) that is pushed around in a circle.  Both the path of the small arrow and the 
large arrow can be seen as all this data was clustered together for analysis. 
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Figure 5.2.2: Velocity and mean velocity/mean position 
 These are the velocities produced in the paths taken by one subject as he moved to the targets in 
Center Out and pushed the arrow in Tracing.  A) For Center Out the green arrows are all the velocities 
used in the center out analysis on this patient and they are located at their positions.  The red arrows 
are the mean velocities for each target plotted at the mean position. B) For Tracing the blue arrows 
represent all the velocities used to create average values for the regression.  The red arrows on the 
right are the mean velocity all originating from the mean position in that octant.  
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Figure 5.2.3: Mean movement times and variance 
for trials in Center Out task or time spent in a particular octant for Tracing task.  The blue circles 
represent the mean time spent in each of the conditions and the red triangles are one standard 
deviation above or below this mean.  A) For Center Out the means were relatively consistent around 
1.25 seconds and variances were relatively consistent across locations.  B) For Tracing the means was 
relatively consistent around 2-3 seconds.  The variances on this were more consistent except 90 
degrees.  Each trial started at 90 degrees causing the subject to have to restart there, increasing the 
variance in the eventual results.   
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5.3 Example Channel 

In Chapter 4 one simulated channel’s direction and position tuning were binned to both 

elucidate the  cosine tuning as well as to show that the simulated data had the expected 

tuning.  In this section one channel has been chosen that has particularly good tuning and 

exemplifies several patterns in the data that should be highlighted.  For this channel one 

wide–band, high-frequency feature was taken and one wide–band, low-frequency feature. 

The raw data from these wide bands were grouped by their kinematic variables (i.e. direction, 

speed).  By clustering these data the underlying tuning can be seen in this channel.  In 

addition, the example channel was divided into 5 Hz bins (features).  The 5 Hz features were 

arranged by frequency to demonstrate their tuning relationship to each other.  Showing these 

5 Hz bins with the wide band results help exemplify the population of features.   

5.3.1 Direction, Velocity, Speed, and Position Tuning 

 
Channel 31 in subject ZNZS is a good example of speed tuning as well as direction and 

velocity tuning.    Two large bandwidths one low frequency, (8-32 Hz) and one high 

frequency (90-160) Hz were identified as being significantly tuned to the movement 

kinematics.  While these bands were significantly tuned on this channel, the population as a 

whole had slightly wider bands (8-32, 70-160) that were significant as there is some variation 

from subject to subject.  The bands that were significant for this channel were binned to 

show position, direction, and speed tuning.   

An example of a non-tuned position encoding electrode is shown in Figure 5.3.1.  It 

shows that there is, in fact, no significant position tuning (p>.05) for this example.  In 

addition the right two plots in this figure show the tuning vectors by applying the position 
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model to this electrode in 5 Hz bins.  Many of the channels do show good position tuning; 

however, this channel did not show significant position tuning but was chosen because it 

showed very good tuning for the other kinematics.   

Direction binned spectra are shown in Figure 5.3.2.  From Figure 5.3.2 it can be seen 

that the channel has particularly good direction tuning for high frequencies in Center Out.   

It is slightly hard to see, but the tuning for high frequency Tracing is also significant (p<.05 

DOM > .05) and has almost the same preferred direction.  The low frequencies of this 

direction tuning are out of phase with the high frequencies which is important to note 

because the high frequencies have been show to be opposite in amplitude from the low 

frequencies in other motor studies (Leuthardt, Schalk et al. 2004; Miller, Leuthardt et al. 

2007). In addition, the right two plots in this figure show the tuning vectors by applying the 

direction model to this electrode in 5 Hz bins.  This tuning shows good depth of modulation 

for direction and good wide band tuning that is significant.  Lastly, it shows the phase 

reversal from low frequency to high frequency in more detail. 

Speed tuning also shows an increase in slope of the higher frequency bin and a relative 

decrease in slope of the lower frequency bin.  The plotted amplitude can be seen in Figure 

5.3.3 and shows a relative increase as speed increases at higher frequencies in both Center 

Out and Tracing.  In addition it shows a decrease in amplitude as speed increases in the 

lower frequency band of 8-32 Hz.  The slope of this channel can be modeled as discussed in 

Chapter 4 and the associated vectors across the tasks can be compared. Speed slopes in 5 Hz 

bins appears on the right hand side of Figure 5.3.3 and shows the important phase reversal 

from low frequency to high frequency in its modulation. This speed slope is consistent 

between the Center Out and Tracing tasks. 
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Velocity cannot be binned like the other components because it is a mix of two 

components.  In Figure 5.3.4 the tuning of large bandwidths can be seen for velocity and 

how they are very similar to direction.  This similar tuning helps to exemplify the similarity 

between the two paradigms. This plot also helps to show that the preferred direction at a 

given frequency is generally very similar to the frequencies adjacent to it.  There is a relatively 

constant change in preferred direction, so that across many frequencies there can be a large 

change in preferred direction.  Though the velocity tuning cannot be binned like the other 

components the preferred direction can still be found for large bandwidths, and then 

compared.   

5.3.2 Across task comparisons 

 
Comparison of preferred direction for position, direction, velocity, and speed can be 

seen in Figure 5.3.5.  These comparisons are of particular interest because of the differences 

this electrode shows between the statistically significant results and the tuning, which is not 

statistically significant.  It is important to make comparisons across tasks because it gives an 

opportunity to look at how robust this tuning is across tasks; in addition comparison across 

tasks can lead to comparison across time. 

In Figure 5.3.5 position tuning is the only example where in the high frequencies and low 

frequency preferred directions do not cluster.  In all three other kinematics the difference 

between high and lower frequencies within a task is greater than the difference in the two 

high frequency preferred directions, or low frequency preferred directions, across tasks.  

This difference of position from the other examples helps to show that only the statistically 

significant vectors show tuning. 
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The directional high frequency tuning of Center Out matches up very well with the high 

frequency component of Tracing.  By comparing Figure 5.3.5 to Figure 5.3.2 the matching 

of high frequency components in the raw data can also be compared to that of the tuning 

vector.  Similarly the low frequency components can be compared across Figures 5.3.5 and 

5.3.2 to see the similarity in tuning.  Speed and Velocity tuning show similar results to 

direction tuning and have high frequency and low frequency match up.  This comparison of 

tuning vectors is later calculated across all features for all subjects.
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Figure 5.3.1: Position tuning on one channel 
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 Figure 5.3.2: Directional tuning . 
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Figure 5.3.3: Speed tuning 
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Figure 5.3.5: Comparison of angle between vectors for each movement component 
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5.4 Population Analyses 

Now that it has been established that an individual electrode can show good kinematic 

tuning, tuning should be compared across the population.  Within the population, any tuning 

was said to be statistically significant in a given channel if it had both p<0.05 for fit to the 

model and depth of modulation (DOM) > 0.05.  This threshold for significance was applied 

to all four kinematics and allowed for distinguishing between results that were significant and 

could be applied to BCI and those that could not.  It is of note that the depth of modulation 

portion of the test eliminated very few features so that of the p-value by itself may be a good 

indication of tuning. 

There were three separate regressions, done on different periods; they are referred to as 

Center Out, Delay, and Tracing.  Center Out was the movement period of the Center Out 

task for speed, velocity, and direction; Center Out was the hold period of the Center Out 

task for position tuning.  Delay was the spectra from the Delay period of Center Out and the 

kinematics from the following movement period for direction, speed, and velocity; similarly 

it was the spectra from Delay and the kinematics from the hold period for position.  Tracing 

was taken during the Tracing task once it was divided into octants. 

 

5.4.1 Comparison Across all frequencies 

The populations of all features show trends that are in line with previous studies that 

have shown motor cortical regions will have more consistent tuning than other areas.   These 

trends are important because they allow us to see which Brodmann areas are encoding a 

reliable signal for each of these components.  It is important to be able to pick out the most 

robust tuning in the cortex to create a reliable BCI using these components; if there are 

unreliable tuning, the features will not be controllable by a BCI user.  
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 Tables were created by taking the criteria for significance and combining those 

features across Brodmann Area and kinematic component (Table 5.4.1-3).  Each set of 

features was viewed for all frequencies and also across a region of interest in the high gamma 

band between 70-160 Hz.  Each of the regressed periods showed differences but a few 

overall important trends are evident.  These trends are dominant in the motor areas but 

show good tuning in other areas as well. 

The Center Out task showed significance across a variety of different areas but only 

Brodmann Area 4 showed significance across virtually all the kinematics (Table 5.4.1).  

Brodmann Area 4 had statistical significance across all of the kinematic regressions except 

positions in all frequencies.  This is consistent with earlier single unit studies which have 

shown that motor areas encode preferentially for velocity and direction rather than position.   

The Center Out task also found clustering of statistical significance in the areas 

surrounding motor cortex.  Brodmann Areas 8,6,1,2,3, and 43 all surround the motor area 

and all show statistical significance for velocity.  In addition they all show statistical 

significance for one of the other components as well.  Only the areas surrounding 

Brodmann Area 4 had statistical significance for more than one kinematic component in the 

region of interest.  

 Another trend seen in Table 5.4.1 is significant position tuning in Brodmann Areas 

10 and 47.  These two areas show position tuning in all frequencies and the region of 

interest.  However, in the Center Out task the velocity and position kinematics are heavily 

correlated.  Due to this correlation the ability to dissociate this position encoding from the 

velocity is reduced. 

 Interestingly, Delay Period shows statistical significance in a much broader array of 

areas than during movement (Table 5.4.2).  During movement Brodmann Area 4 showed 
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statistical significance across most kinematics; however during the delay period, it is joined 

by Brodman Areas 6 9 10, and somatosensory (1,2,3).  These broader activations across 

many features and areas in the region of interest during the delay period may be related to 

coordination of attention and movement.   

 The Delay Period shows an important trend in speed tuning; all areas except three 

are significant for speed tuning.  This shows that there is some statistically significant 

component of speed that is being encoded in many locations of the cortex.  The Delay 

Period also shows a cluster of statistical significance in position tuning in DLPFC and 

frontal areas.  These areas are of particular interest because they have been implicated in 

planning motor action in other work.  The Brodmann areas that show activation for this 

kinematic are areas 47, 46, and 9.  This cluster is particularly highlighted because areas 8 and 

10 do not show any position tuning and they surround the given areas.  Area 10 and 9 both 

show significance for all of the other components which are likely particularly involved in 

motor planning 

 The Tracing task shows statistical significance in the most widespread area of the 

three regressed spectra periods.  The wide regions of tuning likely are related to the nature of 

the task for two reasons.  The first of which is that it requires continual control and 

significantly more attention than Center Out.  The second is the correlated nature of some 

of the components in this task.  While position and velocity have been designed to be 

orthogonal, there is significant correlation of the other components; also, there is continual 

updating of these components such that it is important for the cortex to encode for them 

continually. 

 The broad activation of cortex during the tracing task is of particular note in 

Brodmann areas 47, 46, 6, 4, 21, 22, and 38.  Each of these areas showed tuning to most, if 
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not all, of the kinematic components in the region of interest.  This region of interest is of 

particular importance because in this task the tuning is more widespread at frequencies 

outside of the region of interest than inside.  This is likely based on previous research to be 

correlated to diffusion of lower frequency information.  However, upon further review 

(Figures 5.4.1-4) the situation is much more complicated and frequencies above the region of 

interest are also playing a significant role. 

5.4.2 Comparison across individual frequencies 

 
The comparison across individual frequencies gives a better picture of the overall trends 

than the earlier tables.  These trends are important to understand the underlying neural 

activity and also to show the Depth of Modulation and slopes.  These depths of modulation 

are important because they are a measure of the signal to noise ratio of this encoding.  A 

high signal to noise ratio is important to create a usable BCI in a noisy environments (i.e., a 

hospital room, or home).  By taking the Depth of Modulation into account when 

considering kinematic encoding it takes this signal to noise ratio into account in addition to 

the statistical significance.  The overall results were that there was broad activation of most 

of the components but there are a few trends that should be highlighted in the significant 

tuning. 

Position tuning was found in all Brodmann areas and actually showed more significant 

results outside of motor areas than inside motor areas in some instances.  The vast majority 

of position tuning occurs within the expected confines of 70-160 Hz as can be seen in Figure 

5.4.1.  However, there is significant position tuning at much higher frequencies and that is 

true in many brodmann areas.  This was similar to what was shown in Table 5.4.1 where the 

number of features is widely spread both inside and outside of the normal high gamma band.   
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 It was not surprising that position was found to be relatively ubiquitous.  Position is 

found in attentional areas as well as eye movements (Curtis, Rao et al. 2004; Thompson, 

Biscoe et al. 2005).  It is likely an earlier joystick based decoding study was using positional 

encoding to predict cursor movements (Schalk, Kubanek et al. 2007).  We expected motor 

cortex to show preferential position tuning, which it did not; however motor cortex did 

show better tuning in other kinematic tuning. 

 Speed tuning was expected to be everywhere due to earlier results in LFPs (Heldman 

2007).  Speed tuning is seen in many locations (Figure 5.4.2), however, cortical activations 

are positively correlated to speed in primary motor (Brodmann area 4), and cortical 

activations are negatively correlated to speed elsewhere.  While this was not expected it 

makes some sense because the rest of the cortical areas may be decreasing in amplitude as 

the subject pays more attention to the motor task.  Putting more resources into the task 

would cause the area of interest, primary motor, to increase and other areas to decrease in 

tuning. 

The Delay period shows strong positive depth of modulation across many areas. 

This is inverted from the speed tuning in the Movement period and the Tracing period, but 

can be explained as an attention effect.  If the subject is paying more attention to a trial it is 

likely they will move more quickly in that trial.  If they are paying more attention and are 

more engaged we would expect this high positive correlation to speed in many areas.   

Direction tuning is found more predominantly in motor cortex than in other cortical 

areas (Figure 5.4.3).  Primary motor cortex has been shown to encode direction preferentially 

in many different studies (Georgopoulos, Schwartz et al. 1986; Schwartz, Kettner et al. 1988; 

Turner, Owens et al. 1995).  The relationship of direction to velocity also plays a significant 
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role in its dominant encoding in motor areas.  Table 5.4.1-3 illustrates this as the motor areas 

and even premotor shows up statistically significant in almost every case.   

Velocity tuning is the best kinematic tunings represented in motor areas, compared 

to other functional areas (Figure 5.4.4).  Velocity is a combination of direction and speed 

which have both showed different motor results than the rest of the cortex.  While 

experiments have shown show that direction, position and speed are all corollary to motor 

cortex responses.  Velocity is encoded for more robustly, during movements than the other 

components. 

When all four kinematics are considered, motor cortex shows the most stable depth 

of modulation and most reliable number of electrodes with activation across all four 

components.  Many of the Brodmann areas show significant activation in one component or 

another; however Brodmann area 4 shows statistically significant activation across all of the 

components.  In the 70-160 Hz band BA 4 is most likely to be tuned with 10-25 % of 

features having statistically significant activation.   

While the motor area (Brodmann area 4) shows the best tuning and the most tuned 

features, many of the other areas show tuning as well.  The hypothesis was that the motor 

area would show much better tuning than the other areas but many of the other areas also 

show good tuning.  This large amount of encoding in other areas is not surprising given 

multiple other studies that have shown tuning in these other areas.  These other areas may 

also prove useful for BCI given this tuning as these areas have shown the ability to be 

controlled for BCI by users.
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Figure 5.4.1: Population Position Tuning.  
Position tuning was relatively ubiquitous. 
  During the Delay period the position tuning seems to cluster around the motor areas in the 
150 Hz range.  However, there is not the high level of clustering around primary motor that there is in 
other conditions.  In addition it is important to point out the activity in the high frequency range (200-
250 Hz) in the frontal areas during the delay period, correlates well with the percentage of features in 
that region and shows that there is significant activity being encoded there.  

During the Center Out (Hold) period much of the activity moves to lower frequency ranges, 
except the frontal and dorsolateral prefrontal areas which show tuning from 110-250 Hz and 190-250 
Hz respectively.  It is interesting for the purposes of Aim 2 to point out the DLPFC high frequency 
tuning that shows up in the center out task during movement and delay.  The Motor areas activation 
between 70-110 Hz is very similar to the activations that have been seen in other work (Leuthardt, 
Schalk et al. 2004; Miller, Leuthardt et al. 2007).   

Tracing shows the most widespread activation of position, which is counter to its goal of 
dissociating position from other components.  It is the only one of the three tasks that was tuned 
during actual movement and not a delay period.  Tracing actually showed results in higher frequency 
ranges then some of the other tuning functions, particularly in areas 43,21,22, and 38 which are 
posterior parietal and temporal areas.   
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Figure 5.4.2: Population Speed tuning 
Speed tuning is not nearly as widespread as expected.  It was hypothesized to be the most widespread 
of the movement kinematics but it appear to be less widespread then position.  It is best represented 
in Brodman area 4 (Primary motor) which correlates with previous results (Heldman 2007).  In 
addition speed is the only  

The speed tuning In Center Out (Movement) shows high positive correlation in Brodmann 
area 4 (Primary motor) and slight negative depth of modulation in other areas during actual 
movements.  Its likely as the subject is devoting more resources to motor they are devoting less to 
other areas.   

Tracing shows similar results to Center Out, in that there is an positive correlation to speed in 
area 4 but primarily negative outside of this area.    

During delay there are high positive correlations in many cortical areas.  This is likely an 
attention affect as the subject has to coordinate movements and if they are more engaged in a task 
during the delay there would be an expected increase in speed. 

 

Frequency (Hz) 

F
ra

ct
io

n
 o

f 
fe

at
u
re

s 
D

ep
th

 o
f 
M

o
d
u
la

ti
o
n
 

  
  
  
  
  
  
  
  
  
C

o
rt

ic
al

 R
eg

io
n
 (
B

ro
d
m

an
n
 a

re
a)

 

Tracing (Moving) Center Out (Moving) Center Out (Delay) 



 106 

Center out TracingDelay

D
e
p

th
 o

f 
M

o
d

u
la

ti
o

n
P

e
rc

e
n

ta
g

e
 o

f 
fe

a
tu

re
s

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25
47

9

6

1,2,3

21

38

11

46

8

4

43

22

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25
47

9

6

1,2,3

21

38

11

46

8

4

43

22

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.2547

9

6

1,2,3

21

38

11

46

8

4

43

22

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25
47

9

6

1,2,3

21

38

11

46

8

4

43

22

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.2547

9

6

1,2,3

21

38

11

46

8

4

43

22

50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25
47

9

6

1,2,3

21

38

11

46

8

4

43

22

 Figure 5.4.3: Population Direction Tuning 
Direction tuningis encoded dominantly in primary motor, Brodmann area 4.  

Direction tuning in center out (Movement) shows very focal results in the higher gamma 
band.  This high frequency gamma activation is slightly reflected in Brodman areas 1,2 and 3 
(Somatosensory).  There is lower gamma frequency that is particularly interesting in the frontal areas 
as well. These frontal electrodes seem to be encoding for this at lower frequencies rather than the 
higher frequencies seen in Figure 5.4.1. 

 Tracing shows much more high frequency and relative broad activation compared to Center 
Out.  It also shows interesting encoding at lower frequencies in somatosensory, and some breadth of 
tuning.  These results suggest that motor dominantly represents direction over other cortical areas.  
Brodmann area 6 (Supplementary Motor and Pre Motor) show the most correlation to Brodmann area 
4 (Primary motor) in this case. 

Delay seems to show activation in the motor areas and frontal areas in higher gamma 
frequencies, it appears to show activation in the posterior parietal and temporal regions in lower 
frequencies.        
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Figure 5.4.1: Population Velocity Tuning  
Velocity was the most motor centered of all the kinematic tunings. Wide band activation at gamma 
frequencies occurs primarily in Brodmann area 4 or motor related areas in all three conditions. This 
makes sense given that we are tuning to velocity of arm movements and it uses the most kinematic 
data to tune.  It is unlikely that attention or eye movement would be tuned for velocity; even as it is 
likely both would be tuned for position. 

Center Out shows much stronger encoding in Brodmann area 4 (Primary motor) then in any 
other area.  There is also some high frequency somatosensory as well as low frequency activation in 
most areas.   

Tracing is broadly activated across many areas; however similar to direction (Figure 5.4.3) 
there is the heaviest activations in Brodmann area 4 and 6.    The largest low frequency activation is in 
somatosensory (Brodmann areas 1,2,3, and 43).  

Delay of velocity shows high frequency activation in Brodman area 4 (primary motor), 
Brodman areas 1,2 and 3 (somatosensory).   There is additionally a high frequency activation in the 
frontal areas, Brodmann areas 11 and 47.  The low frequency activation is primarily in temporal and 
posterial parietal cortex.
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b
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 p
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p
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c
tr
a
. 
 

O
th
e
r 
a
re
a
s 
d
o
 n
o
t 
sh

o
w
 m

o
re
 t
h
a
n
 o
n
e
 o
r 
tw

o
 r
eg

io
n
s 
o
f 
a
c
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c
it
y
 s
e
e
m
s 
to
 s
h
o
w
 s
o
m
e
 a
c
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b
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 d
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c
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 f
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c
it
y
. 
 G

re
e
n
 f
e
a
tu
re
s 
sh

o
w
 s
ta
ti
st
ic
a
l 
si
g
n
if
ic
an

c
e 
fo
r 
a
ll
 f
re
q
u
e
n
c
ie
s.
  
R
e
d
 f
e
a
tu
re
s 
sh

o
w
 s
ig
n
if
ic
a
n
c
e
 f
o
r 
th
e 
re
g
io
n
 o
f 
in
te
re
st
. 
 B

lu
e 
fe
a
tu
re
s 

sh
o
w
 s
ig
n
if
ic
a
n
c
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 f
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 f
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c
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 d
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 c
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 f
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 c
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c
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c
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 p
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n
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b
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c
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 f
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c
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c
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 b
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b
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b
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c
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 c
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5.5 Comparison of tuning vectors  

5.5.1 Across Task Comparisons 

Tuning vectors from the Delay period of Center Out to the Movement period are 

only separated by tens of milliseconds in time so we would expect a large amount of them to 

have similar tuning.   Many of the features which are statistically significant, in both Delay 

and Movement, show similar tuning (Figure 5.5.1).  The difference in angles between these 

periods is fairly small particularly in direction and position tuning where virtually all of the 

angles in the motor area between 70-160 Hz are near 0 degrees, Figure 5.5.2.  Direction and 

position appear to be dominantly encoded between Delay and Movement; however this 

dominance becomes even more evident when looking at the region of interest. 

The Comparison of Movement in Center Out to Tracing is in contrast to the earlier 

results because position actually shows the most significant results (Figure 5.5.3). To review 

the Delay compared to Movement of Center Out showed larger encoding in direction, 

Figure 5.5.4.  This result makes sense based on the fact that direction only needs to remain 

constant for a few hundred milliseconds for Delay and Movement to correlate; position 

needs to remain constant for several seconds, because position is taken from the Hold 

period rather than the movement period. 

 Position is not dominant when Center Out movement is compared to Tracing and 

anatomy is limited to motor areas, Figure 5.5.4.  The high gamma band of the motor area 

seems to show dominance of direction and velocity.  However this does not tell the whole 

pictures, as one might expect that the position component has been removed by filtering out 

the results below 70 Hz and it was actually largely removed by filtering the results above 160 
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Hz.  This is particularly interesting when combined with results from Chapter 6 which show 

activity in frontal regions for this band. 

The robust nature of preferred direction across task is particularly good when the 

time between tasks is taken into account, (Table 5.5.4).  This Table demonstrates that there 

is, in some cases, a long time between tasks and there is still a large correlation of preferred 

direction.  This shows that the preferred direction of ECoG features is very stable, when 

compared to other recording modalities. 
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Figure 5.5.1: Comparison of Center Out Delay to Movement 
Difference in Angles from Center Out Delay to Center Out Movement.  Direction and Velocity appear 
to show significant encoding between the two periods in this task.  Position tuning is not as nearly as 
stable between tasks. 
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Tuning from Delay to Movement Center 
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Figure 5.5.2: Angles in Region of interest (70 - 160 Hz) Comparison of Movement to Delay 
Comparison from Center Out Delay to Center Out Movement. This only further highlights the 
representation of direction and velocity during the delay period.  This encoding remains constant 
across the movement period.  However, position is not encoded for in the same way during Delay and 
Holding.  This makes sense, as the position is different. 
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Figure 5.5.3: Comparison of Center Out and Tracing 
Difference in tuning  Angles from Center Out Movement to Tracing.  All kinematic components that 
are statistically significant show primarily small difference between the two tasks.  It is important to 
note that these tasks were often separated by days so this tuning is robust for long periods of time. 
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Figure 5.5.4: Angles in Region of interest (70 - 160 Hz) Center Out vs Tracing 
Comparison of angles from Center Out Movement to Tracing.  By looking at the frequency range of 
interest there appears to be robust velocity and direction encoding in the high gamma frequency 
range.  Position is greatly reduced when this frequency range is looked at separately from low 
frequencies and frequencies greater than 160 Hz.  In this case the frequency range greater than 160 Hz 
contains the bulk of the position vectors that were displayed in Figure 5.5.4. 

 
 

5.5.2 Distance Comparisons  

Distance comparisons showed very significant correlations across very large 

distances (8 cm on a standardized Talairach Brain) (Talairach and P. Tournoux PU  - Thieme 

Medical Publishers 1988).  These significant correlations across large distance could be 

mistaken for noise if it was not for the fact that the results which are not statistically 

significant and are actually noise show no correlation across distance, Figure 5.5.5.  The 

significant correlations were surprising as it was expected correlation would fall off quickly 

with distance as had been seen with LFPs (Heldman 2007). 

Heldman had used a different method for looking at correlation across distance.  

Here it is the angle between to vectors tuned to the same kinematic that is being compared.  

Heldman compared signal correlation in different frequency bands.  These are fundamentally 

different metrics and while we see an increase in amplitude it is unknown whether the phases 
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are the same. If we return to the 5.4.1-4 figures and focus on the breadth of modulation on 

these figures it is even more unsurprising that we see this over these distances.  The 

significant encoding of hand movements is present in many areas and over great distances in 

each of the analysis that are presented
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Figure 5.5.5: Comparison of angles across distance 
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5.6 Discussion 

ECoG recordings of spectra and tuning to the neural correlates showed widespread 

statistical significance throughout the brain.  This widespread tuning showed a few 

interesting trends and areas that showed better tuning but many areas showed tuning that 

was robust enough to show significant involvement in the task.  Many areas have shown this 

kind of tuning in previous studies using other recording modalities (Moran and Schwartz 

1999a; Schwartz and Moran 1999c; Georgopoulos, Langheim et al. 2005; Wang, Chan et al. 

2007).  While there is tuning in all the functional areas, the high gamma band (70-160 Hz) 

seems to encode for these kinematics in the bulk of cases.  The high gamma band is the 

frequency band where ECoG shows it’s most promising results (Leuthardt, Schalk et al. 

2004; G. Schalk 2007). 

Signal to noise ratio is an important factor in controlling a useful BCI and the ECoG 

neural correlates of hand movements are encouraging in this respect.  The purpose of 

quantifying depth of modulation was to help understand the signal to noise ratio that would 

be present in a BCI.  In addition to showing statistical significance in a widespread number 

of Brodmann Areas there was also a relatively high depth of modulation in many of these 

areas.  This means that these areas should be able to provide a robust signal when applied to 

a BCI. 

The widespread tuning of ECoG throughout the cortex should allow for many 

independent control signals for BCI.  Multiple different areas showed good tuning to the 

motor kinematics of hand movements and several of these areas have been previously tested 

in BCI (Andersen, Burdick et al. 2004; Ramsey, van de Heuvel et al. 2006).  The use of these 

other cortical areas in BCI should be explored, using ECoG.  It should not be necessary to 
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only use the motor cortex for BCI control as has been previously thought. This gives hope 

to those patients who have suffered cortical injuries of the motor cortex (i.e., stroke).  In 

these cases other cortical areas may be able to operate BCI to help compensate for some of 

these motor deficits.  

Tuning across different tasks is robust and should create a more stable BCI than single 

units.  Single Unit BCIs are not only plagued by encapsulation, but they require complicated 

models that must be continually updated due to plasticity of individual neurons (Schwartz 

2004).  The preferred direction of individual neurons change within a matter of hours 

(Velliste, Ferel et al. 2008).  Herein we have shown that the preferred direction in features of 

ECoG can be similar for days (Table 5.5.4).  The stability of these features will be useful for 

home use of ECoG BCI as they will not need to be updated or maintained as much as other 

BCI modalities. 

 The widespread correlation of tuning vectors could prevent the creation of multi-

dimensionality BCI using ECoG.  However, previous results have shown that even closely 

related electrodes can be operated independently with training (Heldman 2007).  ECoG has 

also shown a good amount of plasticity when training to use a BCI (Leuthardt, Schalk et al. 

2004; Leuthardt 2006; Schalk, Miller et al. 2008).  The important factor is to find tuned 

features with good signal to noise ratios that are controllable by the user, so that online 

learning can start.  We have shown that tuned features with a good signal to noise ratio can 

be found throughout the cortex.  
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6 Dorsolateral Prefrontal Cortex (DLPFC) Encoding  
 

Previously, the DLPFC has demonstrated encoding of target information in both 

humans and non human primates (Niki and Watanabe 1976; D'Esposito, Ballard et al. 2000).  

Consistently the DLPFC shows a physiological change correlated to task related targets, 

both across humans and primates, as well as across experimental modalities. (Curtis, Rao et 

al. 2004).  We have recorded ECoG data which shows physiological responses of the 

DLPFC during a target based task.   

We tested for both directional and non directional signals in order to better elucidate 

encoding of information at the level of ECoG.  Our purpose in identifying DLPFC target 

selection signals is to create a binary selection signal, which could be used for a mouse click 

in a BCI.  While much of the research on this area has focused on the directionality of these 

signals it has also been shown to encode non directional signals, which are potentially useful 

for this type of selection (Tsujimoto, Genovesio et al. 2008).  In addition it was expected 

that directional tuning would be found based on previous studies in local field potentials 

(LFPs) and ECoG, which have demonstrated robust directional tuning (Heldman 2007; 

Schalk, Kubanek et al. 2007).   

We have found both non-directional and directional encoding in DLPFC ECoG.   The 

encoding shows unique results above 150 Hz, a result of note given previous studies have 

shown encoding between 70-150 Hz(Miller, Leuthardt et al. 2007).  It is also indicated from 

the results that the tuning of signals at the level of ECoG tend to move to higher frequencies 

as they move forward.  These signals were isolated with the hopes of using them in BCI, 

however, the efficacy of this signal as a mouse click is still in question as it has not been 

shown to be effective for determining whether a subject is on their goal. 
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6.1 DLPFC electrodes  
Electrodes contra-lateral to hand movement were chosen from seven patients that 

had coverage on either the right  (17 electrodes) or on the left (24 electrodes) hemisphere.  

Consistent with previous fMRI reports, electrodes which covered Brodmann areas (BA) 46 

and 9 were chosen. (D'Esposito, Ballard et al. 2000).   In previous reports DLPFC is located 

near the intersections of BA 9 and 46, so electrodes outside of a approximately 1 cm radius 

were eliminated.    These electrodes are shown in Figure 6.1.1 and are clustered around the 

important location in DLPFC.   

 

Figure 6.1.1: Dorsolateral Prefrontal Cortex Electrodes 
Electrodes that were chosen were in the DLPFC, more specifically, they were in Brodmann areas 9 
and 46. The wider distribution on the left cortex is due to subject electrode location rather than 
selection. 

6.2 Unique frequency response of DLPFC  
Electrodes in motor areas have historically shown a frequency response from 

approximately 70 Hz to 150 Hz (Miller, Leuthardt et al. 2007).   Response from DLPFC 

electrodes, however, have a separable bandwidth ranging approximately from 160 Hz to 250 

Hz. These differences are shown in the example in Figure 6.2.1.  The response in DLPFC 

for goal tuning, and position tuning, was in the 160-250 Hz band.  Goal tuning was shown as 

a simple comparison of mean cortical activation across two time periods.  Position tuning 

can not be shown by a simple amplitude change between time periods (Figure 6.2.2).  In 
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order to view the position tuning at these levels the bandwidth from 160 – 250 Hz needs to 

be combined and viewed based on target location. 

Position tuning shows no absolute difference across different periods but does 

across different targets. Goal tuning shows no difference across targets but shows a 

difference across periods.  Goal tuning of a wide high frequency band for two electrodes is 

shown in Figure 6.2.3; electrode 1 shows no goal tuning and electrode 2 shows a large 

change once the subject is on any target.  The features displayed in Figure 6.2.3 and Figure 

6.2.4  were created using a bandwidth between 160 Hz – 250 Hz as it showed typical tuning 

seen in electrodes in the DLPFC.  Figure 6.2.4 has position tuning for electrode 1 but only 

during the Hold period, electrode 2 shows no position tuning.  This shows that we should 

expect some position tuning throughout the population and some goal tuning; and each of 

these tunings may be represented in separate electrodes. 
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Figure 6.2.1: Example of DLPFC encoding from two channels. 
Difference in amplitude of ECoG power from a motor electrode during a holding vs rest and a DLPFC 
electrode for holding vs rest.  The difference in magnitude can be seen at different frequencies, 
particularly the magnitude below 120 Hz for the motor electrode and above 160 Hz for the DLPFC 
electrode.  During the movement the motor electrode shows much broader tuning including in the 
high frequency band.  The greatest difference in activations is in the 100 Hz region for the motor 
electrode during movement.   There is no large difference in activation between baseline and 
movement for the DLPFC electrode. 
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Figure 6.2.2: Comparison of two DLPFC electrodes 
One electrode with directional tuning for position(left) vs goal tuning (right). The x-axis shows the 
frequency (Hz) and the y-axis shows Log Power of both conditions.  There is no obvious difference in 
amplitude for the position tuned electrode.  The goal tuned electrode shows a large change in 
amplitude in the higher frequency band.  
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Figure 6.2.3: Comparison of two electrodes with different tuning in DLPFC 
The figure displays a wide band high frequency (160-250 Hz) across different periods of Center Out.  
Relative amplitude is percent deviation from the mean of all periods.  The blue circles represent the 
mean and the red triangles represent the mean plus or minus the standard deviation.  By comparing 
these different periods, the goal tuned electrode can be seen to change in amplitude by a significant 
amount over these periods (thus the name goal tuning).  The directional tuned electrode shows no 
systematic change over these periods.   
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Figure 6.2.4:  Comparison of wide band frequency across angle for two electrodes.   
The red lines are the median of the data in that group, the lower bound on the box is the lower quarter 
and the upper bound is the upper quartile.  The relative amplitude is percent deviation from baseline.  
The only state that shows statistically significant position tuning is the Hold period on Electrode 1.  
Features were said to be statistically significant if they had a p < 0.05 for their fit to the model.  The 
rest of the periods show no statistically significant or obvious position tuning.   
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6.3 Result from all features 

6.3.1 Comparison of Center Out periods 

The goal tuning of one electrode which exemplified the response that was seen 

across the DLPFC, was discussed earlier.  To quantify the response across the population of 

electrodes a T-test was used on each feature and then binned by frequency as discussed in 

Chapter 4.  Results from the binned T-test can be seen in Figure 6.3.1.  Statistical 

significance was determined by whether the number of electrodes exceeded what would be 

expected based on a binomial distribution at p< .05.   

 The goal tuning for comparison of Baseline to Delay, in the population, showed 

statistically significant results in the expected gamma range.  However, when Baseline and 

Delay was compared to the Hold period the frequencies demonstrating significant alteration 

moved to a higher range. This is also demonstrated in Figure 6.2.1 for individual electrodes, 

these spectral changes are in a higher frequency range than has been traditionally 

demonstrated for motor associated ECoG activations.    

Because of the more established experience and prior documented cortical 

physiology associated with movements, these three delay periods were also compared to the 

movement period.  When all three periods were compared to the movement period, there 

was a broader tuning which was consistent with previous reported spectral changes (Miller, 

Leuthardt et al. 2007) .  The results in Figure 6.3.2 show broad tuning for comparisons from 

movement to baseline and holding.  Consistent with the proposed notion that DLPFC is 

more involved with motor planning than motor execution, the delay period versus the 

movement period showed little difference. (Tanji and Hoshi 2001; Astafiev, Shulman et al. 

2003). 
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Figure 6.3.1: Comparison of delay periods for goal tuning.  
 Any number of electrodes greater than the red lin is statistically significant.  Each of these 
comparisons shows statistical significance in different bands, and these results can be compared to 
Figure 6.3.3.  Baseline vs Delay shows encoding of a target as the subject acquires their goal This is 
broadly tuned primarily around the spectra range related to motor activation. There is, however,  some 
activation in the higher frequency range associated with the DLPFC.  Baseline vs Holding shows 
primarily high frequency activation associated with the DLPFC.  Delay vs Holding show a couple of 
bands that reached statistical significance but is a less striking activation than the comparison of 
Holding to Baseline. 
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Figure 6.3.2: Movement period compared to other periods for goal tuning.  
 Any number of electrodes greater than the red line is statistically significant.  Movement should show 
a broad difference when compared to most periods.  This is the case for the comparison of Baseline to 
Holding, but the Delay period shows very little that is significant.  The lack of statistically significant 
results in Delay vs Moving is interesting.  

 
 

The DLPFC sites demonstrate a consistent change in spectral power to create the 

statistically significant results seen in Figure 6.3.1.  This change was also evaluated over time 

by analyzing the amplitude deviation for each of the examined periods (baseline, delay, 

movement, and holding).  This is shown in Figure 6.3.3.  Percent deviation from the mean 

showed a decrease at all the higher frequencies during baseline.  Respectively an increase in 

amplitude at the higher gamma frequencies (160 Hz and above) during delay was seen when 

the spectra of the entire population was evaluated.  During the movement period, however, 

there was a broader band of increased spectral power encompassing which was different 

from that seen during the delay period.  Most strikingly there was a large increase of 

amplitude at frequencies over 160 Hz during holding period.  This is the largest percent 

deviation from the mean seen throughout these results.  This percent deviation from the 
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mean was a measure of the goal encoding and does not change for position or direction 

tuning. 
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Figure 6.3.3: All electrode percent deviation from the mean for each period.   
The color scale goes from -2-3% deviation from the mean.  Each of the periods has a unique spectral 
deviation from the mean.  Baseline and Movement are responses we have seen before; Baseline shows 
an increase at lower frequencies and a decrease at higher frequencies and Movement shows the 
opposite.  The Delay period and Hold period show more interesting responses when compared to the 
others.  Both Delay and Hold periods show an increase beginning in much higher frequencies than 
the movement period, and multiple unique bands that are not seen in Movement periods.  
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6.3.2 Position and Direction Tuning in the DLPFC 

Position and direction fitting to the cosine tuned model were calculated as described 

in Chapter 4,. The analyses was different from Chapter 5 in that p<0.05 was used but no 

magnitude of tuning was placed as a threshold for significance.  Positions were tuned to the 

target location and direction is tuned to the direction of the trial.   

Position tuning showed statistically significant results in the higher frequency band 

particularly during the hold period.  There are statistically significant results for both position 

and direction tuning, shown in Figure 6.3.4.  The direction components were largely 

significant at lower frequencies in bands that had been previously implicated in other ECoG 

experiments (Miller, Leuthardt et al. 2007).  The hold period shows the best position tuning 

(Figure 6.3.4) of any time period and this was primarily seen in frequencies above 160 hz.  

The delay period also shows its most significant results in the higher frequency band 150-250 

Hz.  The movement period tuning to position is best represented at lower frequencies, 

which is similar to the movement period of tuning of direction.   

Directional tuning was seen in both periods (movement and delay) and was 

represented primarily in lower frequencies.  Position appears to be preferentially encoded at 

higher frequencies, whereas direction appears to be preferentially encoded at lower 

frequencies.  This low frequency vs high frequency dichotomy is interesting when comparing 

different kinematic variables as it helps elucidate the different neuronal populations involved 

in the activities. 
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Figure 6.3.4: Temporal periods for encoding of a target goal 



 133 

 

Figure 6.3.5: Tuning of position and direction in the DLPFC.   
Any number of electrodes greater than the red lin is statistically significant. Position encoding is shown for 
all three periods. Direction is shown for the two it could be represented in, namely, delay and movement.  
Position seems to be encoded at higher frequencies similar to the results in the goal tuning.  The results 
are most significant during the Hold period but also show some significance during the Delay period.  
Direction seems to be encoded at lower frequencies and is primarily encoded during the actual movement.  
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6.3.3 Comparison to other functional areas 

 
Two electrodes were show in Figure 6.1.1 to demonstrate the difference in spectra of 

an electrode in a motor area from that in the DLPFC.  The motor and DLPFC populations 

show similar results to Figure 6.1.1.  There is broad tuning across the gamma range in the 

motor area and high frequency band (160-250 Hz) tuning above those typically expected in 

the DLPFC, shown in Figure 6.3.6.  This shift to higher frequencies appears to continue as 

detection moves farther anterior.  The highest percentages of electrodes that show 

differences are in the frontal areas (Brodmann areas 47 and 11).  In addition the frontal areas 

show nothing statistically significant in bands below this high frequency range.   

This trend is of importance as it appears that cortical areas can encode information 

at higher frequencies than has been seen previously in ECoG.  It has been shown in other 

studies that higher frequency Local Field Potentials (LFPs) are encoding information in 

cortices of animals (Jones and Barth 1999; Jones, MacDonald et al. 2000; Staba, Ard et al. 

2005).  However, in humans this is largely unexplored territory and warrants further 

investigation.  Unfortunately 280 Hz and higher is near the limit of what the amplifiers could 

handle in terms of magnitude so higher frequency information could not be obtained.   
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Figure 6.3.6: Cortical Progession 
 Demonstrates the goal (non directional) analysis of Baseline vs Holding comparison for each of the 
different functional areas has a different frequency response.  The motor areas show a broad tuning 
across many frequencies for this comparison.  The DLPFC shows a greater response in the higher 
frequency range 150-250 Hz than in the lower frequency range.  Finally the Frontal areas show a much 
greater response in high frequency components than in low frequency components.   

 

6.4 Discussion 

 
A non-directional goal signal has been found and tested for efficacy as a mouse click 

which was the original goal of Specific Aim 2.  This goal signal while identified has not been 

proven effective in a closed loop BCI.  It is unclear as to whether a subject will be able to 

control this signal but it is likely given other work done in ECoG for BCI (Ramsey, van de 



 136 

Heuvel et al. 2006; Felton, Wilson et al. 2007).  With training a subject should be able to 

control this signal given some level of efficacy.   

It is encouraging that direction encoding is found and this may prove effective for 

BCI in the future as well given that other BCI studies have shown effectiveness in this area 

(Ramsey, van de Heuvel et al. 2006).  Position tuning is not as well represented in this area as 

in motor areas.  We hypothesize that this could be because of overlapping receptive fields. 

This was an issue for Heldman et al in previous local field potential work with receptive 

fields in motor areas (Heldman 2007).   

Despite decreased representation of both non-directional goal signals and directional 

signals over single units, the DLPFC ECoG activity could be useful in BCI.  This area has 

proven to be controllable by other studies and it encodes for both signals that were 

examined.  Further examination of this area would likely be able to identify more signals of 

use and find more support for use of this area in BCI.  It is a particularly good candidate for 

BCI if more traditional available areas have been damaged (i.e. stroke). 
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7 Conclusions  

 
There were two aims proposed in Chapter 1 of this thesis and each had results that have 

implications that will affect the understanding of what is encoded in ECoG as well as the 

type of BCI it can be used for.  In Specific Aim 1 we looked at the tuning of arm movement 

kinematics in different cortical regions.  The results showed that there was encoding of 

kinematics in many areas of the cortex that could be useful for BCI.  In Specific Aim 2 the 

experiments were designed to find a goal encoding signal in the Dorsolateral Prefrontal 

Cortex (DLPFC), which could be used as a binary selection control (i.e., Mouse Click).  

These experiments found a signal encoding for goal targets, and also explored how the 

DLPFC encodes direction and position information.    

 

7.1 Specific Aim 1: Tuning of Cortical Potential to Arm movements 
 
 

In Aim 1 it was proposed to determine the tuning of arm movement kinematics in 

neural signals collected using ECoG features.  Experiments were designed to dissociate the 

movement kinematics of velocity and position.  Velocity would further be decomposed into 

direction and speed.  These four variables were then correlated to features of the ECoG 

signals collected.  Specific results were expected based on previous work which had shown 

tuning of these kinematic variables in different portions of the brain (DeAngelis, Cumming 

et al. 1998; Moran and Schwartz 1999b; Pochon, Levy et al. 2001; Schalk, Kubanek et al. 

2007).   

In this study the motor areas did show higher correlation to two of the kinematics 

related to movement, direction and velocity.  These two components have shown strong 
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encoding in motor cortex in previous single unit studies (Moran and Schwartz 1999b; 

Schwartz and Moran 1999c).  In addition these components were represented in the 70-150 

Hz band, which was expected, as recent studies had shown activation for motor tasks 

(Miller, Leuthardt et al. 2007).  These two components fit neatly into the existing 

understanding of how motor actions are controlled by and correlated to neural activity 

recorded by ECoG. The remaining two kinematic components (position and speed) display 

much broader tuning in neuro-anatomy and frequency.   

 Speed was expected to have widespread representation based on previous 

work by Heldman et al (Heldman 2007).  Expectedly the motor areas showed a positive 

correlation to speed; however, all other areas showed a negative correlation to speed during 

actual movements.  This could be explained as an attention effect.  As a subject concentrates 

more on their movements they focus more resources on the motor areas, increasing motor 

activation and decreasing other areas at the same time they are moving faster.  During the 

Delay period of the Center Out task, more areas showed a positive correlation to the 

following speed.  This can be described as an attention effect as well; more attention during 

preparation would correlate to higher activations and thus a positive correlation to the speed 

during the following movement (Cisek 2006).    

 Position was encoded in most of the locations that were examined (i.e., 

frontal, motor, posterior parietal, and temporal) and at higher frequencies than have been 

seen previously in motor based tasks.  The positions in the task were correlated across many 

different aspects of the task (i.e., attention, and movement) in these experiments; thus, it is 

not surprising that many of the areas are correlated.      

The higher frequency encoding of position is possibly related to smaller cortical units 

being recruited than the motor areas that drive direction and velocity.  Larger groups of 
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neurons seem to manifest themselves at lower frequencies and thus if position is being 

represented by smaller cortical units we may likely see position represented at higher 

frequencies (Nunez and Srinivasan 2006). There is some evidence even within primary 

motor cortex, fewer neurons represent position than other kinematics (Georgopoulos, 

Kalaska et al. 1982; Wang, Chan et al. 2007).  In addition position is not unique to motor 

cortex as it is represented for eye movements and attention areas as well, this helps support 

that position is represented at higher frequencies in motor cortical ECoG data.   

Comparison of preferred directions across tasks yielded very robust and encouraging 

results. The angles between preferred directions of the same component (e.g., position) were 

hypothesized to show very little difference across the two separate tasks (Tracing and Center 

Out) based on previous studies (Moran and Schwartz 1999b).  Delay and Movement of 

Center Out seemed to be most similar for direction and velocity.  The actual position of the 

cursor is very different during Hold than Delay, this seems to indicate that in most cases 

cortex is encoding for the cursor position and not the target position.  All three components 

(velocity, position, and direction) were the same across the Movement period of Center Out 

and Tracing.  This stability across different movements helps support its relationship to hand 

position and the robust nature of this encoding.  In addition, the stability of these 

comparisons is particularly impressive as they are performed hours apart. 

Stability in preferred direction is supported by our understanding of the receptive 

fields.  Single cells may change their encoding due to plasticity, and micro LFPs have issues 

with overlapping receptive fields; ECoG records from many cortical columns and it is likely 

the encoding of a movement remains relatively stable at this macroscopic level.  From a BCI 

standpoint this stability in preferred directions is ideal for an ECoG BCI paradigm.    
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Finally, it was hypothesized that the distant electrodes particularly at higher 

frequencies would show dissimilar preferred directions.  The results show a high level of 

correlation in preferred directions, even at 8cm distance on the surface of the cortex.  These 

results led to the further test of features showing non-statistically significant tuning over the 

surface of the cortex, these un-tuned features showed no correlation based on distance.  The 

data seems to indicate that the cortex is keeping a relatively constant representation of this 

task.  However, many of the factors in this experiment are correlated, so this may be 

particular to this experiment. 

   

7.2 Specific Aim 2:  DLPFC encoding 

It was hypothesized that the DLPFC would show goal and/or position encoding in 

the Center Out task and both types of encoding were found.  Goal encoding was found to 

be heavily represented in this area of cortex, and at higher frequencies than anticipated.  

ECoG direction encoding was also represented at higher frequencies, but not as well as 

single units in the same area (Iba and Sawaguchi 2003; Funahashi, Takeda et al. 2004; 

Tsujimoto, Genovesio et al. 2008).    

The gradual increase to higher frequency representations in the cortex as one move 

from motor to frontal areas raises interesting questions about what signals we are recording 

using ECoG.  As discussed earlier, smaller groups of neurons seem to manifest at higher 

frequencies than larger groups.  This manifestation is likely correlated to the amount of 

cortical area involved in the processing, indicating there are many smaller cortical areas 

manifesting higher frequency signals.  Future research should explore the actual sizes of 

these areas as well as the smallest area that ECoG can reliably detect. 
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These higher frequency bands in DLPFC were statistically significant primarily 

during planning stages rather than movement periods.  This held true for both the non 

directional signals and the directional signals found through fitting to the cosine tuning 

model.  This result helps us to again conclude that the DLPFC is involved in planning of 

motor responses rather than executing these movements.   

When the spectral amplitude of all electrodes in the DLPFC are compared across 

periods the higher frequency encoding of attention components remains dominant.  While 

there is broad activation in the movement period, which is possibly a bleed over from motor 

areas, the high frequency component is dominant for the baseline, delay, and hold periods 

when compared to the average of all periods.  This higher frequency dominance of attention 

period becomes more apparent as the electrodes move further anterior.  This is likely 

because fewer of the neurons are involved in movement as the electrodes are further 

anterior then if they are adjacent to motor areas or smaller cortical groups are involved in 

processing in these anterior areas.   

Overall changes in activation (power) of DLPFC were much smaller than motor 

areas, which was why a trial by trial analysis had to be used.   This more sensitive analysis 

seems to show that ECoG is maturing as a recording paradigm and will need more 

complicated and robust analysis and decoding algorithms in the future.  Increased sensitivity 

of analysis and recordings will demand careful experimental design in the future.   

 

7.3 Application to BCI and implications for neuroscience   

Generalized ECoG feature tuning found in non-motor cortical regions is quite useful 

to BCI.  It has yet to be seen whether these non-motor regions can be controlled by a user, 

however it is likely given the history of BCI and ability of users to learn to control them 



 142 

(Wolpaw, McFarland et al. 2003; Leuthardt, Schalk et al. 2004; Kubler, Nijboer et al. 2005). 

Identification of tuning vectors for use in a multiple degree of freedom BCI, could help 

create a BCI using only a few electrodes in different cortical areas.  Encouragingly these 

preferred directions in ECoG recordings seem to be more stable than single units, making it 

easier to create a more robust BCI.   

    The robust tuning across time and tasks is encouraging but the common tuning 

across different anatomical locations may require additional training.  The high degree of 

correlation across features on different electrodes in the same time period of each task needs 

to be addressed.  The features need to be independently controllable by the user in order to 

obtain multidimensional control.  This high degree of correlation raises concerns about the 

possible independence of these features. 

The DLPFC does show promise as an area that could be used for BCI since it has 

both goal encoding and direction tuning.  This attention area can be controlled by users, so it 

should prove useful for BCI.  In addition, motor areas tend to degrade after neural injury so 

this frontal attention area may be a more stable location to allow a user to control a BCI 

(Andersen, Burdick et al. 2004). 

Use of the DLPFC for a mouse click will likely require some training by the user.  As 

we showed in Chapters 4, the directional signals interfere with the goal encoding signals for 

some types of decoding.  It is likely that a novel decoding algorithms combined with user 

training will be required.  With this type of set up it should have some efficacy as a mouse 

click signal.  

7.4 Future Work 

Applying results of Aim1 and 2 to a closed-loop BCI application is the next logical 

step in development.  We have shown detection of the desired control signals but not 
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whether a subject can actively control the available signals.  Both aims show promise but 

there are issues with regarding to whether these are in fact controllable effects.  However, we 

cannot be certain whether the identified signals are controllable until closed loop 

experiments have been conducted. 

In attempting or achieving closed loop control these signals will change.  As 

discussed in Chapter 2, when closed loop control is achieved on signals they change in 

different ways.  The signals identified in this thesis will undoubtedly change when they are 

put into a closed loop system.  Based on previous experience, it is likely the signals will be 

able to achieve better control than what initial results have indicated (Heldman 2007). 

Correlation of features across different electrodes is the next stage of analysis.  While 

this thesis viewed each electrode as an independent source, more neuroscience and BCI 

work can be done by quantifying the interactions of these features.  An analysis that 

quantifies electrode locations should be able to greatly increase our understanding of the 

interaction of cortical areas.  ECoG creates an opportunity to look at these interactions on 

time and spatial scales that other modalities cannot. 

Correlation of information across electrodes could also greatly increase the efficacy 

and accuracy of a BCI.  Activity across different electrodes provides additional dimensions 

to the data (in this case an increase by 264).  Use of this additional dimension of data could 

provide more degrees of freedom then current BCI systems. It also provides the opportunity 

to create a system that can be used by patients to lead more normal lives (i.e., 

multidimensionality, asynchronous control).  If these opportunities of ECoG are taken 

advantage of, it could provide real improvement over existing BCI technology and more 

importantly to patient’s lives.   
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