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HANKEL VECTOR MOMENT SEQUENCES AND THE

NON-TANGENTIAL REGULARITY AT INFINITY

OF TWO VARIABLE PICK FUNCTIONS

JIM AGLER AND JOHN E. McCARTHY

Abstract. A Pick function of d variables is a holomorphic map from Πd to
Π, where Π is the upper halfplane. Some Pick functions of one variable have
an asymptotic expansion at infinity, a power series

∑∞
n=1 ρnz−n with real

numbers ρn that gives an asymptotic expansion on non-tangential approach
regions to infinity. In 1921 H. Hamburger characterized which sequences {ρn}
can occur. We give an extension of Hamburger’s results to Pick functions of
two variables.

1. Introduction

A Pick function of one variable is a holomorphic map from the upper half-
plane, which we shall denote by Π, into Π. A Pick function of two variables is
a holomorphic map from Π2 to Π. The purpose of this note is to extend to two
variables certain well-known results about the asymptotic analysis of Pick functions
in one variable.

1.1. One variable results. In 1922, R. Nevanlinna showed that a Pick class func-
tion of one variable that decays at infinity is the Cauchy transform of a finite
measure on R.

Theorem 1.1 ([13]). If F : Π → Π is analytic and satisfies

(1.2) lim sup
y→∞

|yF (iy)| < ∞,

then there exists a unique finite positive Borel measure µ on R so that

(1.3) F (z) =

∫
dµ(t)

t − z
.

We shall say that a set S in Π approaches ∞ non-tangentially, S
nt→ ∞, if ∞ is

in the closure, and there is a constant c such that |z| ≤ c Im(z) for all z ∈ S. If F
has a representation as in (1.3), then

F (z) =
ρ

z
+ o(1/|z|)
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1380 JIM AGLER AND JOHN E. McCARTHY

as z
nt→ ∞, where ρ = −‖µ‖. If µ has more moments, then there is a higher order

asymptotic expansion at ∞. H. Hamburger proved the following two theorems
[8, 9]. For a proof of Theorem 1.4 as stated, see [17, Thm. 2.2] or [5, Thm 3.2.1].

Theorem 1.4. Let real constants ρ1, . . . , ρ2N−1 be given. There exists a Pick
function F satisfying

(1.5) F (z) =
ρ1

z
+

ρ2

z2
+ · · · + ρ2N−1

z2N−1
+ o(|z|−(2N−1))

as z
nt→ ∞ if and only if there is a measure µ on R whose first 2(N − 1) moments

are finite and satisfy

(1.6)

∫
tkdµ(t) = −ρk+1, 0 ≤ k ≤ 2(N − 1).

Moreover, in this case F has a representation as in (1.3) for some measure µ
satisfying (1.6).

Hamburger gave an alternate equivalent condition. There is also a proof in [17,
Thm. 1.2], and see [12, Thm. 3.3] for an alternative formulation (but without a
proof).

Theorem 1.7. Let ρ1, . . . , ρ2N−1 be given real numbers. There exists a Pick func-
tion F satisfying (1.5) if and only if the N-by-N Hankel matrix

H = −





ρ1 ρ2 . . . ρN

ρ2 ρ3 . . . ρN+1
...

...
...

ρN ρN+1 . . . ρ2N−1





is positive semi-definite and has the property that whenever (c1, c2, . . . , cN−1, 0)t is
in the kernel of H, then (0, c1, c2, . . . , cN−1)t is also in the kernel.

In 1881, L. Kronecker proved the following theorem [11] (see [14, Thm. I.3.1] for
a modern treatment).

Theorem 1.8. The infinite Hankel form




ρ1 ρ2 ρ3 . . .
ρ2 ρ3 ρ4 . . .
ρ3 ρ4 ρ5 . . .
...

...
...

...





is of finite rank if and only if

F (z) =
∞∑

n=1

ρn

zn

is a rational function.

1.2. Two variable results. A two variable version of Theorem 1.1 was proved in
[4]; see also Theorem 8.4 below. Before stating it, let us introduce some notation.
If Y is an operator on a Hilbert space, and z = (z1, z2) is a point in C2, we shall
use zY to denote the operator

zY = z1Y + z2(I − Y ).
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HANKEL VECTOR MOMENT SEQUENCES 1381

Theorem 1.9 ([4]). Let h : Π2 → Π be a Pick function of two variables. Then

lim sup
s→∞

|sF (is, is)| < ∞

if and only if there is a Hilbert space H, a self-adjoint densely defined operator A
on H, a positive contraction Y on H, and a vector α in H, such that

(1.10) h(z) = 〈(A − zY )−1α,α〉, z ∈ Π2.

We shall say that h has a type I Nevanlinna representation if it has a represen-
tation as in (1.10).

In one variable, the Poisson integral of any finite positive measure on R is the real
part of a Pick function that decays like (1.2), so the study of asymptotic expansions
(1.5) and solutions to the moment problem (1.6) for arbitrary measures are tightly
bound. In two variables, their study diverges. The infinite Hamburger moment
problem in several variables is studied in [16] and [18]; for an algorithm for solving
the problem in two variables, see [19]. For the truncated problem, see for example
the memoir [7] and subsequent papers. Our objective is to study the two variable
analogue of (1.5).

If one restricts z to the diagonal {z1 = z2}, then (1.10) becomes (1.3), where µ
is the scalar spectral measure of A for the vector α. Saying that an even moment
γ2k exists in this case is the assertion that tk−1 is in the domain of A. We shall
generalize this idea to two variables.

We shall let m and n denote ordered pairs of non-negative integers. We set
e1 = (1, 0) and e2 = (0, 1). If n = (n1, n2), we set |n|= n1 + n2, and for a pair
z = (z1, z2) we follow the usual convention of letting zn = zn1

1 zn2
2 . For N a positive

integer we set IN = {n | 1 ≤|n|≤ N}.
We now define an object that we shall call a finite Hankel vector moment se-

quence, or for short, a finite HVMS. For simplicity, we take N ≥ 2; see (2.1) for
general N .

Definition 1.11. For a fixed positive integer N ≥ 2, a finite Hankel vector moment
sequence is a 3-tuple, ({αn}n∈IN

, Y, A), where: {αn}n∈IN
is a sequence of vectors

in some Hilbert space H; Y is a positive contraction acting on H, satisfying for
each l = 1, . . . , N

(1.12) Y α(0,l) = 0 = (1 − Y )α(l,0) = 0;

A is a partially defined symmetric operator on H with the property that

(1.13) {αn | 1 ≤ |n| ≤ N − 1} ⊂ Dom(A);

and for each n ∈ IN−1,

(1.14) Aαn = Y αn+e1 + (1 − Y )αn+e2 .

Here is the main result of this paper.

Theorem 1.15. A Pick function h of two variables satisfies

(1.16) h(z) =
∑

n∈I2N−1

ρn

zn
+ o(‖z‖−(2N−1))
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1382 JIM AGLER AND JOHN E. McCARTHY

as z
nt→ ∞, for some real numbers ρn, if and only if it has a representation as

in (1.10) and there is a finite HVMS ({αn}n∈IN
, Y, A) with α = α(1,0) + α(0,1).

Moreover, ρk is given by the formula

ρk = −
∑

{〈αn, Aαm〉 : m1 + n1 = k1, m2 + n2 = k2, m1 + m2 = +|k|/2, }.

When k = 1, one interprets the right-hand side of the inner product as α (so

ρ(1,0) = −〈α(1,0),α〉 and ρ(0,1) = −〈α(0,1),α〉). By z
nt→ ∞ we mean that ‖z‖ → ∞,

while z stays in an approach region

{z ∈ Π2 : ‖z‖ ≤ c min{Imz1, Imz2}}

for some c. The notation +M/2, stands for the greatest integer less than or equal
to M/2.

The forward implication of (1.15) is Theorem 4.2; the converse is Theorem 3.10.
To relate Theorem 1.15 to Theorems 1.4 and 1.7, think in one variable of αn as
tn−1 in L2(µ), and A as multiplication by t on L2(µ). Then ρk is given by a single
term, −〈t%k/2&−1, t'k/2(〉.

Theorem 1.7 also has a two variable analogue, which we give in Theorem 5.7.
This justifies our nomenclature of Hankel vector moment sequence. The last con-
dition in Theorem 5.7 is an analogue of the last condition in Theorem 1.7; for an
explanation of it, see Section 5.

Theorem 5.7. Let a = (a1, a2) be a pair of matrices on IN . Then there is a finite
HVMS ({αn}n∈IN

, Y, A) such that

a1
mn = 〈Y αn,αm〉,

a2
mn = 〈(1 − Y )αn,αm〉

if and only if the following four conditions obtain:

a1 and a2 are positive semi-definite,

a1
m+e1,n + a2

m+e2,n = a1
m,n+e1

+ a2
m,n+e2

whenever m, n ∈ IN−1,

a1
(0,l),(0,l) = a2

(l,0),(l,0) = 0 for l = 1, . . . , N,

supp(f) ∈ IN−1 and (a1 + a2)f = 0 ⇒ (a1S1 + a2S2)f = 0.

In Section 6, we discuss infinite sequences. One multi-variable generalization of
Kronecker’s Theorem 1.8 was proved by S. C. Power [15]. In Theorem 6.6, we prove
another.

Theorem 6.6. Let h have non-tangential asymptotic expansions of all orders at
infinity. Then there is an infinite HVMS ({αn}, Y, A) with α = α(1,0) + α(0,1), and
h(z) = 〈(A − zY )−1α,α〉. The sequence can be chosen with rank〈αn,αm〉 < ∞ if
and only if h is a rational function.
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HANKEL VECTOR MOMENT SEQUENCES 1383

In Section 7, we give an example of a construction of functions in the Pick class
that have asymptotic expansions. In Section 8, we give some technical results on
models.

2. Finite Hankel vector moment sequences

Definition 2.1. For a fixed positive integer N , a finite Hankel vector moment
sequence is a 3-tuple, ({αn}n∈IN

, Y, A), where: {αn}n∈IN
is a sequence of vectors

in some Hilbert space H; Y is a positive contraction acting on H, satisfying for
each l = 1, . . . , N

(2.2) Y α(0,l) = 0 = (1 − Y )α(l,0) = 0;

A is a partially defined symmetric operator on H with the properties that, if N ≥ 2,

(2.3) {αn | 1 ≤ |n| ≤ N − 1} ⊂ Dom(A);

and, for each n ∈ IN−1,

(2.4) Aαn = Y αn+e1 + (1 − Y )αn+e2 .

When N = 1 conditions (2.3) and (2.4) are dropped.

Every symmetric operator has a self-adjoint extension on a possibly larger Hilbert
space, so there is no loss in generality in assuming A is self-adjoint.

If ({αn}n∈IN
, Y, A) is a finite HVMS, we shall frequently abuse the notation

somewhat and refer to the entire tuple by simply {αn}. If {αn} is an HVMS as
above, we refer to N as the size of {αn}, Y as the Hankel weight of {αn}, A as the
Hankel shift of {αn}, and finally the vectors, αn, are called the vector moments of
{αn}.

Our first proposition gives a simple yet fundamental property of HVMS’s. If
z ∈ C2 and Y is a positive contraction on a Hilbert space H, we define zY =
z1Y + z2(1 − Y ). As Y is a positive contraction, the spectral theorem implies that
z−1
Y is a well-defined analytic operator valued function on the set {z ∈ C2 | z2 .=

0, z1/z2 /∈ (−∞, 0]}. If {αn} is an HVMS with shift A and weight Y , and l is a
positive integer, we shall adopt the notation

Rl(z) = z−1
Y (Az−1

Y )l−1.

Note that if z ∈ {z ∈ C2 | z2 .= 0, z1/z2 /∈ (−∞, 0]}, then the domain of Rl(z) is all
of H if l = 1 and for l ≥ 2 it is inductively defined by

Dom((Rl(z))) = {α ∈ H | (z−1
Y A)

i
z−1
Y α ∈ Dom(A), i = 0, . . . , l − 2}.

Note also that

Rl(z̄) ⊆ Rl(z)∗.

Proposition 2.5. Let {αn} be an HVMS of size N and let

(2.6) α = α(1,0) + α(0,1).

If 1 ≤ l ≤ N , then

(2.7) α ∈ Dom(Rl(z))

Licensed to Washington Univ. Prepared on Tue Dec 31 10:54:32 EST 2013 for download from IP 128.252.66.80.
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1384 JIM AGLER AND JOHN E. McCARTHY

and

(2.8) Rl(z)α =
∑

|n|=l

1

zn
αn

for all z in {z ∈ C2 | z2 .= 0, z1/z2 /∈ (−∞, 0]}.

Proof. We induct on N . If N = 1 and l = 1, then trivially (2.7) holds. Also, by
(2.2), Y α(0,1) = 0 = (1 − Y )α(1,0) = 0. Hence,

R1(z)α = z−1
Y α

= z−1
Y α(1,0) + z−1

Y α(0,1)

=
1

z1
α(1,0) +

1

z2
α(1,0)

=
∑

|n|=1

1

zn
αn.

Now assume that the proposition holds for HVMS’s of size N . Fix an HVMS,
{αn}n∈IN+1

, of size N + 1. The case when l = 1 is handled as in the previous

paragraph. If 2 ≤ l ≤ N + 1, as {αn}n∈IN
is an HVMS of size N , the inductive

hypothesis implies that

(2.9) Rl(z)α = z−1
Y ARl−1(z)α = z−1

Y A
∑

|n|=l−1

1

zn
αn.

As {αn}n∈IN+1
is of size N + 1 and l − 1 ≤ N , (2.3) implies that αn ∈ Dom(A)

whenever |n|= l − 1. Hence, (2.9) implies that α ∈ Dom(Rl(z)). Also, using (2.2)
and (2.4) we see via (2.9) that

Rl(z)α = z−1
Y A

∑

|n|=l−1

1

zn
αn

= z−1
Y

∑

|n|=l−1

1

zn
Y αn+e1 + z−1

Y

∑

|n|=l−1

1

zn
(1 − Y )αn+e2

= z−1
Y

1

zl−1
1

Y α(l,0) + z−1
Y

∑

|m|=l
m *=(l,0),(0,l)

z1

zm
Y αm

+ z−1
Y

∑

|m|=l
m *=(l,0),(0,l)

z2

zm
(1 − Y )αm + z−1

Y

1

zl−1
2

(1 − Y )α(0,l)

=
1

zl
1

α(l,0) + z−1
Y

∑

|m|=l
m *=(l,0),(0,l)

z1

zm
Y αm

+ z−1
Y

∑

|m|=l
m *=(l,0)(0,l)

z2

zm
(1 − Y )αm +

1

zl
2

α(0,l)

=
1

zl
1

α(l,0) + z−1
Y

∑

|m|=l
m *=(l,0)(0,l)

(z1Y + z2(1 − Y ))
1

zm
αm +

1

zl
2

α(0,l)
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HANKEL VECTOR MOMENT SEQUENCES 1385

=
1

zl
1

α(l,0) +
∑

|m|=l
m *=(l,0)(0,l)

1

zm
αm +

1

zl
2

α(0,l)

=
∑

|n|=l

1

zn
αn.

!

The property described by (2.7) in Proposition 2.5 arises as an issue in many of
the applications of HVMS’s that we have in mind. Accordingly, we introduce the
following definition.

Definition 2.10. Let H be a Hilbert space, α ∈ H, and assume that Y is a
positive contraction on H. If A is a symmetric operator on H, we say that A has
finite complex vector (Y,α)-moments to order N if for each z ∈ {z | z2 .= 0, z1/z2 /∈
(−∞, 0]}, α ∈ Dom((Az−1

Y )l) for l = 1, . . . , N . We say that A has finite real vector

(Y,α)-moments to order N if for each b ∈ R+2
, α ∈ Dom((Ab−1

Y )l) for l = 1, . . . , N .

The following converse to Proposition 2.5 provides a useful criterion to verify that
a given symmetric operator and positive operator are associated with an HVMS.

Proposition 2.11. Let H be a Hilbert space, let α ∈ H and assume that A and
Y are operators acting on H, with A symmetric and Y a positive contraction. The
following conditions are equivalent.

(i) There exists a sequence {αn}n∈IN
in H such that α = α(1,0) + α(0,1) and

({αn}, A, Y ) is an HVMS.
(ii) A has finite complex vector (Y,α)-moments to order N − 1, and for each

l = 1, . . . , N there exist vectors αn, |n|= l, such that

Rl(z)α =
∑

|n|=l

1

zn
αn

whenever z ∈ {z | z2 .= 0, z1/z2 /∈ (−∞, 0]}.
(iii) A has finite real vector (Y,α)-moments to order N − 1, and for each l =

1, . . . , N there exist vectors αn, |n|= l, such that

(2.12) Rl(b)α =
∑

|n|=l

1

bn
αn

whenever b ∈ R+2
.

Proof. That (i) implies (ii) follows from Proposition 2.5. Obviously, (ii) implies
(iii).

Assume that (iii) holds. To show that (2.2) holds when l = 1 and that α =
α(1,0) + α(0,1), equate coefficients in the following equation obtained from (2.12)
when l = 1:

α = bY b−1
Y α

= bY R1(b)α

= (b1Y + b2(1 − Y ))(
1

b1
α(1,0) +

1

b2
α(0,1)).
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1386 JIM AGLER AND JOHN E. McCARTHY

Now assume N ≥ 2. Note that the moment condition implies that for 1 ≤ l ≤ N−1,
Rl(b)α ∈ Dom(A). Hence by (2.12),

∑

|n|=l

1

bn
αn ∈ Dom(A),

for all b ∈ R+2
. As

span{
∑

|n|=l

1

bn
αn | b ∈ R+2} = span{αn | |n|= l},

it follows that (2.3) holds.
Now fix l with 1 ≤ l ≤ N − 1. Noting that bY Rl+1(b) = ARl(b), we compute

using (2.12) that

∑

|m|=l

1

bm
Aαm = A

∑

|m|=l

1

bm
αm

= bY

∑

|n|=l+1

1

bn
αn

=
b1

bl+1
2

Y α(0,l+1) +
∑

|m|=l

1

bm
(Y αm+e1 + (1 − Y )αm+e2)

+
b2

bl+1
1

(1 − Y )α(l+1,0).

Equating terms in this formula yields that (2.4) holds for 2 ≤ l ≤ N − 1 and that
(2.2) holds for 2 ≤ l ≤ N . !

We now turn to a much more subtle characterization of the HVMS’s given in
Theorem 2.21 below. Suppose that {αn} is an HVMS of size N with weight Y and
shift A and let α be as in (2.6). Let R+ = {t ∈ R | t > 0}. For 1 ≤ k ≤ 2N − 1

define functions rk : R+2 → R by the formulas

r1(b) = 〈R1(b)α,α〉 = 〈b−1
Y α,α〉 if k = 1,(2.13)

rk(b) = 〈Rl(b)α, ARl−1(b)α〉 if 3 ≤ k = 2l − 1,(2.14)

rk(b) = 〈Rl(b)α, ARl(b)α〉 if 2 ≤ k = 2l,(2.15)

where the expressions Rl(b)α make sense by Proposition 2.5. Computing rk(b)
using (2.8) yields the qualitative information that for each k with 1 ≤ k ≤ 2N − 1,
rk(b) is a homogenous polynomial in 1

b = ( 1
b1

, 1
b2

) of degree k. To formalize these
properties of α, Y , and A we introduce the following definition.

Definition 2.16. Let H be a Hilbert space, α ∈ H, and assume that Y is a positive
contraction on H. Assume that A is a symmetric operator on H with finite real
vector (Y,α)-moments to order N − 1. For 1 ≤ k ≤ 2n− 1 we define the kth scalar
(Y,α)-moment of A by equations (2.13) to (2.15).

Before continuing, we remark that ontologically the scalar (Y,α)-moments of A

are functions on (R+)
2
. However, if these functions happen to be given by homoge-

nous polynomials (as e.g. occurs in the case of an HVMS), then there is an obvious
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HANKEL VECTOR MOMENT SEQUENCES 1387

way to extend the moment functions to all of C2. Concrete formulas for this case
would be

r1(z) = 〈R1(z)α,α〉 = 〈z−1
Y α,α〉 if k = 1,(2.17)

rk(z) = 〈Rl(z)α, ARl−1(z)∗α〉 if 3 ≤ k = 2l − 1,(2.18)

rk(z) = 〈Rl(z)α, ARl(z)∗α〉 if 2 ≤ k = 2l.(2.19)

Remark 2.20. If ({αn}, A, Y ) is a finite HVMS, then by Proposition 2.11 the kth

scalar (Y,α)-moments of A are given by

r1(b) = 1
b1
〈α(1,0),α〉 + 1

b2
〈α(0,1),α〉 if k = 1,

rk(b) =
∑

|m|=l−1,|n|=l
1

bm+n 〈αn, Y αm+e1 + (1 − Y )αm+e2〉 if 3 ≤ k = 2l − 1,

rk(b) =
∑

|m|=l,|n|=l
1

bm+n 〈αn, Y αm+e1 + (1 − Y )αm+e2〉 if 2 ≤ k = 2l.

In particular, they only depend on the Gram matrices a1 = 〈Y αn,αm〉 and a2 =
〈(1 − Y )αn,αm〉.

Theorem 2.21. Let H be a Hilbert space, α ∈ H, and N ≥ 1. Assume that Y is
a positive contraction on H and A is a symmetric operator on H. There exists an
indexed sequence {αn}n∈IN

of vectors in H such that ({αn}, A, Y ) is an HVMS of
size N and

(2.22) α = α(1,0) + α(1,0)

if and only if A has finite real vector (Y,α)-moments to order N − 1, and for each
k ≤ 2N − 1, the kth scalar (Y,α)-moment of A is a homogeneous polynomial in 1

b
of order k.

Proof. The necessity of the homogeneity condition follows by the discussion leading
up to Definition 2.16. To prove the sufficiency we proceed by induction on N .

When N = 1, there is only one scalar moment given by

r1(b) = 〈b−1
Y α,α〉.

If r1 is homogenous of degree one, then there exist constants a1 and a2 such that

(2.23) 〈b−1
Y α,α〉 = a1

1

b1
+ a2

1

b2
.

We analyze (2.23) by making the substitutions

(2.24) b1 = x and b2 =
t

t − 1
x.

Noting that in the new variables x and t,

(2.25) b−1
Y =

t − 1

x
(t − Y )−1,

one computes that (2.23) becomes

(2.26) 〈(t − Y )−1α,α〉 =
a1

t − 1
+

a2

t
.

Now, (2.26) implies that the scalar spectral measure of Y w.r.t. α is supported in
the set {0, 1}, which in turn implies that Y (1 − Y )α = 0. Letting α(1,0) = Y α and
α(0,1) = (1 − Y )α, we see immediately that (2.22) holds. As

(1 − Y )α(1,0) = (1 − Y )Y α = 0
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and

Y α(1,0) = Y (1 − Y )α = 0,

we see that (2.2) holds. Finally, as (2.3) and (2.4) are both vacuous when N = 1,
the theorem is proved for the special case when N = 1.

Now suppose the sufficiency of the homogeneity conditions whenever A has finite
vector (Y,α)-moments to order N−1 and 2N−1 homogenous scalar (Y,α)-moments.
Fix A, Y , and α with the properties that A has finite real vector (Y,α)-moments
to order N and 2N + 1 homogenous real scalar (Y,α)-moments, rk(b). We need to
show that there exists an indexed sequence {αn}n∈IN+1

in H such that ({αn}, A, Y )
is an HVMS of size N + 1 and such that α = α(1,0) + α(1,0). By Proposition 2.11
this will be accomplished if we can construct an indexed set {αn}n∈IN+1

in H such
that

(2.27) {αn}n∈IN
⊂ Dom(A)

and

(2.28) Rl(b)α =
∑

|n|=l

1

bn
αn for l = 1, . . . , N + 1.

By the induction hypothesis, there exists an indexed set of vectors in H,
{αn}n∈IN

, such that (2.22) holds and such that ({αn}n∈IN
, A, Y ) is an HVMS

of size N . By the homogeneity of r2N+1(b), there exist scalars ρn, |n|= 2N + 1,
such that

(2.29) r2N+1(b) =
∑

|n|=2N+1

ρn

bn
.

On the other hand, by the definition of the odd scalar moments, (2.14),

(2.30) r2N+1(b) = 〈b−1
Y ARN (b)α, ARN (b)α〉.

Finally, Proposition 2.5 implies that

(2.31) RN (b)α =
∑

|n|=N

1

bn
αn.

The remainder of the proof consists of employing the substitutions, (2.24), to make
various deductions from (2.29), (2.30), and (2.31) pertinent to establishing (2.27)
and (2.28). To facilitate our calculations we shall employ the notation,

tn = tn1(t − 1)n2 .

Making the substitutions, (2.24), in (2.31), we obtain that

(2.32) RN (b)α = (tx)−N
∑

|n|=N

tnαn.

As A is assumed to have finite real vector (Y,α)-moments to order N , the left side

of (2.32) is in the domain of A for all b ∈ (R+)
2
. Hence, the right side of (2.32)

is in the domain of A for all t ∈ R+. Noting that the set {tn | |n|= N} is a basis
for the polynomials of degree less than or equal to N , it follows that αn ∈ Dom(A)
whenever |n|= N . On the other hand, as ({αn}n∈IN

, A, Y ) is an HVMS of size N ,
it follows from (2.3) that αn ∈ Dom(A) whenever |n|< N . Thus, we have shown
that (2.27) holds.

Licensed to Washington Univ. Prepared on Tue Dec 31 10:54:32 EST 2013 for download from IP 128.252.66.80.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HANKEL VECTOR MOMENT SEQUENCES 1389

In order to verify (2.28) we must first explain how αn is defined when |n|= N +1.
Substitute (2.31) into (2.30) and then equate the right-hand sides of (2.29) and
(2.30) to obtain

(tx)−(2N+1)
∑

|n|=2N+1

ρntn

=
t − 1

x
〈(t − Y )−1(tx)−N

∑

|m|=N

tmAαm, (tx)−N
∑

|m|=N

tmAαm〉,

which simplifies to

(2.33)
p(t)

t(t − 1)
= 〈(t − Y )−1

∑

|m|=N

tmAαm,
∑

|m|=N

tmAαm〉,

where p is the polynomial of degree less than or equal to 2N + 1 defined by

(2.34) p(t) =
∑

|n|=2N+1

ρntn.

For m a multi-index, we define Qm(t), an operator valued polynomial of degree
|m| −1, by the formula

Qm(t) =
tm − Y m

t − Y
.

Computing with the right side of (2.33) yields that

〈(t − Y )−1
∑

|m|=N

tmAαm,
∑

|m|=N

tmAαm〉

= 〈(t − Y )−1
∑

|m|=N

[(t − Y )Qm(t) + Y m]Aαm,
∑

|m|=N

tmAαm〉

= 〈
∑

|m|=N

Qm(t)Aαm,
∑

|m|=N

tmAαm〉

+ 〈(t − Y )−1
∑

|m|=N

Y mAαm,
∑

|m|=N

tmAαm〉

= 〈
∑

|m|=N

Qm(t)Aαm,
∑

|m|=N

tmAαm〉

+ 〈
∑

|m|=N

Y mAαm, (t − Y )−1
∑

|m|=N

tmAαm〉

= 〈
∑

|m|=N

Qm(t)Aαm,
∑

|m|=N

tmAαm〉 + 〈
∑

|m|=N

Y mAαm,
∑

|m|=N

Qm(t)Aαm〉

+ 〈
∑

|m|=N

Y mAαm, (t − Y )−1
∑

|m|=N

Y mAαm〉.

As the first two terms of this last expression are polynomials of degree less than
or equal to 2N − 1 and N − 1 respectively, recalling that p has degree less than or
equal to 2N + 1, we see that the third term in the above expression must have the
form

(2.35) 〈
∑

|m|=N

Y mAαm, (t − Y )−1
∑

|m|=N

Y mAαm〉 =
c1

t
+

c1

t − 1
+ q(t),
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where c1 and c2 are scalars and q is a polynomial of degree less than or equal to
2N − 1. (2.35) implies that if we set

β =
∑

|m|=N

Y mAαm

and E is the spectral measure for Y , then dEβ,β is supported in {0, 1}, which in
turn implies that

(2.36) Y (Y − 1)β = 0.

Now observe in light of (2.36), that

t(t − 1)(t − Y )−1β = (t + Y − 1)β.

Hence,

t(t − 1)(t − Y )−1
∑

|m|=N

tmAαm

= t(t − 1)(t − Y )−1
∑

|m|=N

[(t − Y )Qm(t) + Y m]Aαm

= t(t − 1)
∑

|m|=N

Qm(t)Aαm + t(t − 1)(t − Y )−1
∑

|m|=N

Y mAαm

= t(t − 1)
∑

|m|=N

Qm(t)Aαm + t(t − 1)(t − Y )−1β

= t(t − 1)
∑

|m|=N

Qm(t)Aαm + (t + Y − 1)β.

As Qm(t) has degree N − 1, this implies that

t(t − 1)(t − Y )−1
∑

|m|=N

tmAαm

is a vector valued polynomial of degree N + 1. But the set {tn | |n|= N + 1} forms
a basis for the polynomials of degree less than or equal to N +1. Hence, there exist
vectors αn ∈ H, |n|= N + 1, such that

(2.37) t(t − 1)(t − Y )−1
∑

|m|=N

tmAαm =
∑

|n|=N+1

tnαn.

Unraveling the substitutions, (2.24) and (2.37) become

b−1
Y ARN (b)α =

∑

|n|=N+1

1

bn
αn

or

(2.38) RN+1(b)α =
∑

|n|=N+1

1

bn
αn.

In addition, recalling that ({αn}n∈IN
, A, Y ) is an HVMS of size N , we see from

Proposition 2.5 that

(2.39) Rl(b)α =
∑

|n|=l

1

bn
αn for l = 1, . . . , N.

Taken together, (2.38) and (2.39) imply (2.28). !
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3. From HVMS’s to Loewner functions

We let Π2 denote the set {z ∈ C2 | Im(z1) ≥ 0, Im(z2) ≥ 0}. We let P denote
the Pick class on Π2, i.e. the set of holomorphic functions on Π2 that have a
non-negative imaginary part. If D ⊆ R2, we define the Loewner class, L(D), by

L(D) = {h ∈ P | h is analytic and real valued on D}.

L(D), which captures a semi-local version of the notion of inner, arises in a variety
of problems involving interpolation, the real edge of the wedge theorem, and the
analysis of operator monotone functions; see e.g. [3]. In this section we wish to
consider a fully local version of L(D). To that end we shall require a number of
definitions. Let Jk = Ik ∪ {(0, 0)}.

Definition 3.1. For x ∈ R2 and S ⊆ Π2 let us agree to say that S approaches x

non-tangentially, S
nt→ x, if x ∈ S− and there exists a constant c such that

‖z − x‖ ≤ c min{Im(z1)Im(z2)}
for all z ∈ S.

Definition 3.2. Let h ∈ P and x ∈ R2. We say that x is a Ck-point of h if h is
“non-tangentially Ck at x” i.e. there exists an indexed set of scalars, δ = {δn}n∈Jk

,

such that if S ⊂ Π2 and S
nt→ x, then

(3.3) lim
z→x
z∈S

h(z) −
∑

n∈Jk
δnzn

‖z‖k
= 0.

Evidently, if h ∈ L(D), x ∈ D, and x is a Ck-point of h, then δ, as uniquely
determined by (3.3), has the property that δn is real whenever n ∈ Jk. This suggests
the following definition as a reasonable localization of the Loewner class.

Definition 3.4. Let k ≥ 0 and x ∈ R2. If h ∈ P, we say that h is Loewner to
order k at x if x is a Ck-point of h and if δ, as uniquely determined by (3.3), has
the property that δn is real for all n ∈ Jk.

We introduce in Definition 3.9 below a class of functions, LN , obtained by adding
three extra minor provisos to the notion in Definition 3.4. First we shall assume
that k = 2N − 1 is odd. Secondly, we wish to consider regularity as z approaches
infinity non-tangentially rather than as z approaches a finite point x ∈ R2. Finally,
we shall normalize h to have the value zero at infinity.

To formalize regularity at ∞, we introduce the following two definitions.

Definition 3.5. If {zn} is a sequence in Π2, we say zn → ∞ if zn = (λn, µn)
and both λn → ∞ and µn → ∞. For S ⊆ Π2 we say that S approaches ∞ non-

tangentially, S
nt→ ∞, if there is a sequence {zn} in S such that zn → ∞ and a

constant c such that

(3.6) ‖z‖ ≤ c min{Im(z1)Im(z2)}

for all z ∈ S. If S
nt→ ∞, we let adj(S) denote the smallest constant such that (3.6)

holds for all z ∈ S.

Definition 3.7. Let Ω be a metric space, ω ∈ Ω, and F : Π2 → Ω be a map. We
say

F (z) → ω as z
nt→ ∞
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if for each S ⊂ Π2 such that S
nt→ ∞,

lim
z→∞
z∈S

F (z) = ω.

We now can extend the notion of a Ck-point to ∞.

Definition 3.8. If h ∈ P we say ∞ is a Ck-point of h if there exists an indexed
set of scalars, ρ = {ρn}n∈Jk

, referred to as residues, such that

‖z‖k(h(z) −
∑

n∈Jk

ρn

zn
) → 0 as z

nt→ ∞.

Finally, notice that the residue, ρ(0,0), when it exists, is the limit of h(z) as
z → ∞ non-tangentially, and hence we denote it by h(∞). Our third proviso is to
normalize h by requiring that h(∞) = 0.

Definition 3.9. For N a positive integer, let LN denote the set of all h ∈ P such
that ∞ is a C2N−1-point for h with real residues and h(∞) = 0.

Let us note that Theorem 1.9 implies that any function in L1 must have a
representation as in (1.10). In previous work [3], we required Y to be a projection.
This was inspired by representations on the bidisk, as in [6] and [2]. Here, we do
not require Y to necessarily be a projection. But, in order for ({αn}n∈IN

, Y, A)
to be an HVMS of size N , the operator Y (1 − Y ) annihilates α(l,0) and α(0,l) for
1 ≤ l ≤ N . So these vectors “think” Y is a projection.

We now can formulate the main result of this section.

Theorem 3.10. Suppose that H is a Hilbert space, A is a densely defined self-
adjoint operator on H, α ∈ H, and h ∈ P is defined by the type I Nevanlinna
representation,

(3.11) h(z) = 〈(A − zY )−1α,α〉, z ∈ Π2.

If ({αn}, A, Y ) is a of size N and α = α(1,0) +α(0,1), then h ∈ LN . Furthermore, if
rl are the scalar (Y,α)-moments of A (as given by the formulas (2.18) and (2.19))
and ρn are the residues of h (as given in Definition 3.8), then

(3.12)
∑

|n|=l

ρn

bn
= −rl(b)

for l = 1, . . . , 2N − 1.

The remainder of the section will be devoted to the proof of Theorem 3.10.
Accordingly, fix an HVMS of size N , ({αn}, A, Y ), with the property that A is
densely defined and self-adjoint, set α = α(1,0) + α(0,1), and assume that h is given
by (3.11). The point z will always lie in Π2, so (A − zY ) is invertible.

Observe that as

(3.13) A(A − zY )−1 = (A − zY + zY )(A − zY )−1 = 1 + zY (A − zY )−1,

the operator A(A − zY )−1 is bounded. Likewise, the operator (A − zY )−1A is
bounded. Also, we have the following simple identities involving these operators:

zY (A − zY )−1A = A(A − zY )−1zY ,(3.14)

(A − zY )−1 = −z−1
Y + z−1

Y A(A − zY )−1,(3.15)

(A − zY )−1 = −z−1
Y + (A − zY )−1Az−1

Y .(3.16)
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Claim 3.17.

〈(A − zY )−1α,α〉 = −
2N−1∑

k=1

rk(z) + 〈A(A − zY )−1zY RN (z)α, RN (z)∗α〉.

Note that as ({αn}, A, Y ) is an HVMS, condition (ii) of Proposition 2.11 guar-
antees that α ∈ Dom(RN (z)) and, in addition, that the residues, rk(z), k =
1, . . . , 2N − 1, are well-defined by equations (2.17) to (2.19). Thus, the expres-
sion that appears on the right side of the claim is well-defined.

To prove Claim 3.17 we proceed by induction. Note that when N = 1 the claim
follows immediately from (3.15). Suppose the claim holds for HVMS’s of size N . If
({αn}, A, Y ) is an HVMS of size N + 1, then as ({αn}, A, Y ) is also an HVMS of
size N , the inductive hypothesis yields that

(3.18) 〈(A − zY )−1α,α〉 = −
2N−1∑

k=1

rk(z) + 〈A(A − zY )−1zY RN (z)α, RN (z)∗α〉.

But,

〈A(A − zY )−1zY RN (z)α, RN (z)∗α〉

(i) = 〈(A − zY )−1zY RN (z)α, ARN (z)∗α〉

(ii) = 〈(−z−1
Y + (A − zY )−1Az−1

Y )zY RN (z)α, ARN (z)∗α〉

= −〈RN (z)α, ARN (z)∗α〉 + 〈(A − zY )−1ARN (z)α, ARN (z)∗α〉
(iii) = −〈RN (z)α, ARN (z)∗α〉

+ 〈(−z−1
Y + z−1

Y A(A − zY )−1)ARN (z)α, ARN (z)∗α〉
= −〈RN (z)α, ARN (z)∗α〉 − 〈z−1

Y ARN (z)α, ARN (z)∗α〉

+ 〈z−1
Y A(A − zY )−1ARN (z)α, ARN (z)∗α〉

= −〈RN (z)α, ARN (z)∗α〉 − 〈z−1
Y ARN (z)α, ARN (z)∗α〉

+ 〈A(A − zY )−1zY z−1
Y ARN (z)α, z−1

Y
∗
ARN (z)∗α〉

(iv) = −〈RN (z)α, ARN (z)∗α〉 − 〈RN+1(z)α, ARN (z)∗α〉

+ 〈A(A − zY )−1zY RN+1(z)α, RN+1(z)∗α〉
(v) = −r2N (z) − r2N+1(z)

+ 〈A(A − zY )−1zY RN+1(z)α, RN+1(z)∗α〉.
Here, the following facts were used.

(i) as ({αn}, A, Y ) is an HVMS of size N + 1, RN (z)∗α = RN (z̄)α ∈ Dom(A),

(ii) (3.16),

(iii) (3.15),

(iv) RN+1(z)α = z−1
Y ARN (z),

(v) (2.18) and (2.19).

Combining the result of this calculation with (3.18), we deduce that

〈(A − zY )−1α,α〉 = −
2N+1∑

k=1

rk(z) + 〈A(A − zY )−1zY RN+1(z)α, RN+1(z)∗α〉,

Licensed to Washington Univ. Prepared on Tue Dec 31 10:54:32 EST 2013 for download from IP 128.252.66.80.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1394 JIM AGLER AND JOHN E. McCARTHY

which is (3.18) with N replaced with N + 1. This concludes the proof of Claim
3.17.

Now observe that both of the facts we need to prove to establish Theorem 3.10,
that h ∈ LN and (3.12), will follow from Claim 3.17 if we can show that

(3.19) ‖z‖2N−1〈A(A − zY )−1zY RN (z)α, RN (z)∗α〉 → 0 as z
nt→ ∞.

On the other hand, we claim that (3.19) will follow if we can show

Claim 3.20. If β, γ ∈ H, then

(3.21) 〈A(A − zY )−1β, γ〉 → 0 as z
nt→ ∞.

To see how Claim 3.20 implies (3.19) we use the following simple property of sets
that approach ∞ non-tangentially.

Lemma 3.22. If n is a multi-index, S ⊂ Π2 and S
nt→ ∞, then

| 1

zn
| ≤ (adj(S))|n|‖z‖−|n|

for all z ∈ S.

Proof. If z ∈ S, then Definition 3.5 implies that

‖z‖ ≤ adj(S) min{Im(z1)Im(z2)}
≤ adj(S) Im(z1)

≤ adj(S) |z1|.
Hence,

|z1|−n1 ≤ adj(S)n1 ‖z‖−n1 .

Likewise,
|z2|−n2 ≤ adj(S)n2 ‖z‖−n2 .

The lemma follows by multiplying these last two inequalities together. !
Now, using Proposition 2.5, if N ≥ 2,

〈A(A − zY )−1zY RN (z)α, RN (z)∗α〉

= 〈A(A − zY )−1ARN−1(z)α, RN (z)∗α〉

= 〈A(A − zY )−1A
∑

|m|=N−1

1

zm
αm,

∑

|n|=N

1

zn
αn〉

=
∑

|m|=N−1
|n|=N

1

zm+n
〈A(A − zY )−1Aαm,αn〉.

Thus, using Lemma 3.22, we see that if S
nt→ ∞ and z ∈ S, then

|〈A(A − zY )−1zY RN (z)α, RN (z)∗α〉|

≤
∑

|m|=N−1
|n|=N

| 1

zm+n
| |〈A(A − zY )−1Aαm,αn〉|

≤ adj(S)2N−1‖z‖−(2N−1)
∑

|m|=N−1
|n|=N

|〈A(A − zY )−1Aαm,αn〉|.
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When N = 1, we get

|〈A(A − zY )−1zY R1(z)α, R1(z)∗α〉|

= |
∑

|n|=1

1

zn
〈A(A − zY )−1α,αn〉|

≤ adj(S)‖z‖−1
∑

|n|=1

|〈A(A − zY )−1α,αn〉|.

So we see that Claim 3.20 does indeed imply (3.19).
There remains to prove Claim 3.20. For this we shall require three lemmas.

These lemmas involve the notion of a proximity estimate, an idea which we make
precise in the following definition.

Definition 3.23. Let Ω be a metric space and F : Π2 → Ω a map. We say that F

is proximal (or more precisely, proximal at ∞) if for each S ⊂ Π2 such that S
nt→ ∞,

there exists a constant c such that

(3.24) d(F (z), F (w)) ≤ c
‖z − w‖
‖z‖

for all z, w ∈ S. We refer to the inequality (3.24) as a proximity estimate.

It turns out that frequently, as a consequence of various forms of the Schwarz
Lemma, quantities that are formed from holomorphic functions satisfy proximity
estimates. In such cases, the following lemma greatly simplifies the analysis of
non-tangential regularity.

Lemma 3.25. Let Ω be a metric space, let ω ∈ Ω and let F : Π2 → Ω be a proximal

map. F (z) → ω as z
nt→ ∞ if and only if for each δ ∈ Π2,

(3.26) lim
s→∞

F (sδ) = ω.

Proof. Clearly, if F (z) → ω as z
nt→ ∞, then (3.26) holds. To prove the converse

we argue by contradiction. Suppose (3.26) holds. If it is false that F (z) → ω as

z
nt→ ∞, then there exist ε > 0, S ⊂ Π2, and a sequence {zl} in S such that S

nt→ ∞,
zl → ∞, and

(3.27) d(F (zl),ω) ≥ ε

for all positive l. By compactness, there exist δ ∈ C2 and a subsequence zlj , such
that ‖zlj‖−1zlj → δ as j → ∞. In fact, δ ∈ Π2. To see this, let δ = (δ1, δ2) and
zlj = (λlj , µlj ) and observe that

(3.28) Im(δ1) = lim
j→∞

Im(λlj )

‖zlj‖
≥ lim

j→∞

min{Im(λlj )Im(µlj )}
‖zlj‖

≥ 1

adj(S)
> 0.

Likewise, Im(δ2) > 0 and we conclude that δ ∈ Π2.
Now, let wj = zlj and sj = ‖zlj‖. By construction we have that wj −sjδ = o(sj)

so that the proximity estimate gives that

(3.29) d(F (wj), F (sjδ)) ≤ c
‖wj − sjδ‖

‖sjδ‖
→ 0.

Also, (3.26) implies that

(3.30) d(F (sjδ),ω) → 0.
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Given (3.29) and (3.30), the triangle inequality gives that

d(F (wj),ω)) → 0,

contradicting (3.27). !
Lemma 3.31. Let L(H) denote the algebra of bounded operators on H equipped
with the operator norm. F : Π2 → L(H), defined by

F (z) = A(A − zY )−1, z ∈ Π2,

is proximal.

Proof. Fix S ⊂ Π2 with S
nt→ ∞. For z ∈ Π2 we have that

(3.32) ‖zY ‖ ≤ max{|z1|, |z2|} ≤
√

2‖z‖.
Also, as Im(A − zY ) = −Im(zY ) ≤ −min{Im(z1)Im(z2)}, we have that if, in addi-
tion, z ∈ S, then

(3.33) ‖(A − zY )−1‖ ≤ 1

min{Im(z1)Im(z2)}
≤ adj(S)

‖z‖ .

Now, using (3.13), we get

F (z) − F (w)

= A(A − zY )−1 − A(A − wY )−1

= (1 + zY (A − zY )−1) − (1 + wY (A − wY )−1)

= zY (A − zY )−1 − wY (A − wY )−1

= (zY − wY )(A − zY )−1 + wY ((A − zY )−1 − (A − wY )−1)

= (zY − wY )(A − zY )−1 + wY (A − wY )−1(zY − wY )(A − zY )−1.

Hence using (3.32) and (3.33),

‖F (z) − F (w)‖

≤ ‖zY − wY ‖ ‖(A − zY )−1‖ + ‖wY ‖ ‖(A − wY )−1‖ ‖zY − wY ‖ ‖(A − zY )−1‖

≤
√

2 ‖z − w‖ adj(S)

‖z‖ +
√

2 ‖w‖ adj(S)

‖w‖
√

2 ‖z − w‖ adj(S)

‖z‖

= (
√

2 adj(S) + 2 adj(S)2)
‖z − w‖
‖z‖ ,

which is (3.24) with c =
√

2adj(S) + 2adj(S)2. !
Lemma 3.34. If β, γ ∈ H and δ ∈ Π2, then

lim
s→∞

〈A(A − tδY )−1β, γ〉 = 0.

Proof. We claim that for each vector u ∈ H,

(3.35) δY (εA − δY )−1u → −u weakly in H
as ε → 0. To prove this claim, first notice that as Im(δY ) ≥ min{Im(δ1)Im(δ2)},
we have both that δY is invertible and that (εA − δY )−1 is uniformly bounded. In
particular, as A is densely defined, M = δY Dom(A) is dense in H. If u = δY v ∈ M,
then as v ∈ Dom(A) and (εA − δY )−1 is uniformly bounded,

(εA − δY )−1εAv → 0

Licensed to Washington Univ. Prepared on Tue Dec 31 10:54:32 EST 2013 for download from IP 128.252.66.80.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HANKEL VECTOR MOMENT SEQUENCES 1397

as ε → 0. Hence,

(εA − δY )−1u = (εA − δY )−1δY v

= (εA − δY )−1((δY − εA) + εA)v

= −v + (εA − δY )−1εAv

→ −v

= −δ−1
Y u.

Applying the bounded operator δY yields that (3.35) holds whenever u ∈ M. As
M is dense and δY (εA − δY )−1 is uniformly bounded, it follows that (3.35) holds
for all u ∈ H. This proves the claim.

Now notice that if in the claim we substitute ε = s−1, we deduce that for all
u ∈ H,

sδY (A − sδY )−1u → −u weakly in H
as s → ∞. Hence, for all u ∈ H,

1 + sδY (A − sδY )−1u → 0 weakly in H

as s → ∞. The lemma now follows by observing that from (3.13)

1 + sδY (A − sδY )−1 = A(A − sδY )−1.

!

Armed with the above lemmas it is a simple matter to prove Claim 3.20 and
thereby complete the proof of Theorem 3.10. If β, γ ∈ H, then by Lemma 3.31
F (z) = 〈A(A − zY )−1β, γ〉 is proximal. As Lemma 3.34 gives that lims→∞ F (sδ) =

0 whenever δ ∈ Π2, Lemma 3.25 yields that F (z) → 0 as z
nt→ ∞, as was to be

proved.

4. From Loewner functions to HVMS’s

In this section we shall formulate and then prove a converse to Theorem 3.10,
using Theorem 2.21. If h ∈ LN , then it is easy to check that h is type I and
accordingly has a Nevanlinna representation of the form

(4.1) h(z) = 〈(A − zY )−1α,α〉, z ∈ Π2,

where A and Y are operators acting on a Hilbert space H, A is densely defined and
self-adjoint, Y is a positive contraction, and α ∈ H.

Theorem 4.2. If h ∈ LN and A, Y , and α are such that (4.1) holds, then A has
real vector (Y,α)-moments to order N − 1 and homogenous scalar (Y,α)-moments
to order 2N − 1. Furthermore,

(4.3)
∑

|n|=l

ρn

bn
= −rl(b)

whenever 1 ≤ l ≤ 2N − 1 and b ∈ (R+)
2
, where ρn are the residues of h.

Proof. We proceed by induction. Let N = 1 and assume that h ∈ LN has a
Nevanlinna representation as in (4.1). As N = 1, the assertion that A have real
vector (Y,α)-moments to order N − 1 is vacuous. To see that A has homogenous
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scalar (Y,α)-moments to order 2N − 1, first note that since ∞ is a C1-point for h
with real residues, we have that there exist ρ(1,0), ρ(0,1) ∈ R2 such that

(4.4) 〈(A − zY )−1α,α〉 = h(z) =
ρ(1,0)

z1
+

ρ(0,1)

z2
+ o(‖z‖−1),

non-tangentially at ∞. Fixing b ∈ (R+)
2

and setting z = isb in (4.4) gives that

(4.5) is〈(A − isbY )−1α,α〉 →
ρ(1,0)

b1
+

ρ(0,1)

b2

as s → ∞ in R+. Noting that for b ∈ (R+)
2
, bY is strictly positive definite and

hence, invertible, we define a self-adjoint operator, Xb, by the formula

(4.6) Xb = b
− 1

2
Y Ab

− 1
2

Y .

Noting that

is〈(A − isbY )−1α,α〉 = is〈(b
1
2
Y (Xb − is)b

1
2
Y )

−1
α,α〉

= is〈b−
1
2

Y (Xb − is)−1b
− 1

2
Y α,α〉

= is〈(Xb − is)−1b
− 1

2
Y α, b

− 1
2

Y α〉

= is〈 Xb + is

X2
b + s2

b
− 1

2
Y α, b

− 1
2

Y α〉

= 〈−s2 + isXb

X2
b + s2

b
− 1

2
Y α, b

− 1
2

Y α〉,

we see upon taking real parts in (4.5) that

(4.7) −〈 s2

X2
b + s2

b
− 1

2
Y α, b

− 1
2

Y α〉 →
ρ(1,0)

b1
+

ρ(0,1)

b2

as s → ∞ in R+. Now, the Lesbesgue Dominated Convergence Theorem guarantees
that

s2

X2
b + s2

b
− 1

2
Y α → b

− 1
2

Y α

as s → ∞ in R+. Hence,

(4.8) −〈b−1
Y α,α〉 = −〈b−

1
2

Y α, b
− 1

2
Y α〉 =

ρ(1,0)

b1
+

ρ(0,1)

b2
.

As (4.8) holds for all b ∈ (R+)
2
, we conclude that A has homogenous scalar (Y,α)-

moments to order 1 as was to be shown. Also note that (4.8) implies that (4.3)
holds.

We now turn to the inductive step of the proof. Accordingly, assume that

A has real vector (Y,α)-moments to order N − 1,(4.9)

A has homogenous scalar (Y,α)-moments to order 2N − 1, and(4.10)

1 ≤ l ≤ 2N − 1, b ∈ (R+)
2

=⇒
∑

|n|=l

ρn

bn
= −rl(b)(4.11)

whenever h ∈ LN and has a representation as in (4.1). Fix h with a representation
as in (4.1) and assume that h ∈ LN+1. We need to show that (4.9), (4.10), and
(4.11) hold with N replaced with N +1. However, as h ∈ LN+1 ⊂ LN , the inductive
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hypothesis implies that 4.9, 4.10, and 4.11 hold for N . Therefore, the induction
will be complete if we can show the following three conditions:

(4.12) α ∈ Dom((Ab−1
Y )

N
),

(4.13) r2N+1(b) = −
∑

|n|=2N+1

ρn

bn
, b ∈ (R+)

2
,

and

(4.14) r2N (b) = −
∑

|n|=2N

ρn

bn
, b ∈ (R+)

2
.

First note that as h ∈ LN+1 and (4.1) holds, there exist scalar residues, ρn,
n ∈ I2N+1, such that

(4.15) 〈(A − zY )−1α,α〉 =
∑

n∈I2N+1

ρn

zn
+ o(‖z‖−(2N+1))

as z → ∞ non-tangentially in Π2. Fixing b ∈ (R+)
2

and setting z = isb in (4.15)
we deduce that

〈(A − isbY )−1α,α〉 =
2N+1∑

l=1

(is)−l
∑

|n|=l

ρn

bn
+ o(s−(2N+1)),

as s → ∞ in R+, which, upon taking the imaginary parts, yields that

(4.16) Im(〈(A − isbY )−1α,α〉) =
N+1∑

k=1

(−1)k

s2k−1

∑

|n|=2k−1

ρn

bn
+ o(s−(2N+1))

as s → ∞ in R+. Finally, upon multiplying (4.16) by the factor s2N+1, we deduce
the limit,

(4.17) lim
s→∞

Gb(s) = (−1)N+1
∑

|n|=2N+1

ρn

bn
,

where for s ∈ R+ and b ∈ (R+)
2
, Gb(s) is defined by

(4.18) Gb(s) = s2N+1Im(〈(A − isbY )−1α,α〉) −
N∑

k=1

(−1)ks2(N−k+1)
∑

|n|=2k−1

ρn

bn
.

We now compute Gb(s) using the substitution of (4.6). We set

(4.19) γb = b
− 1

2
Y α.

Note that (4.9) implies that γb ∈ Dom(X l
b) for l = 1, . . . , N − 1. Using (4.11) and

(2.14) we see for k = 1, . . . , N , that
∑

|n|=2k−1

ρn

bn
= −r2k−1(b)

= −〈b−1
Y (Ab−1

Y )
k−1

α, (Ab−1
Y )

k−1
α〉

= −〈(Xb)
k−1γb, (Xb)

k−1γb〉.
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Also, just as in the calculation leading up to (4.7), we compute that

〈(A − isbY )−1α,α〉 = 〈 Xb + is

X2
b + s2

b
− 1

2
Y α, b

− 1
2

Y α〉,

so that

Im(〈(A − isbY )−1α,α〉) = 〈 s

X2
b + s2

b
− 1

2
Y α, b

− 1
2

Y α〉

= 〈 s

X2
b + s2

γb, γb〉.

Hence we have that

Gb(s) = 〈 s2N+2

X2
b + s2

γb, γb〉 +
N∑

k=1

(−1)ks2(N−k+1)〈(Xb)
k−1γb, (Xb)

k−1γb〉.

We claim that the above sum telescopes. Indeed, using the fact that

〈(Xb)
k−1γb, (Xb)

k−1γb〉

=〈( X2
b

X2
b + s2

+
s2

X2
b + s2

)(Xb)
k−1γb, (Xb)

k−1γb〉

=〈 X2
b

X2
b + s2

(Xb)
k−1γb, (Xb)

k−1γb〉 + 〈 s2

X2
b + s2

(Xb)
k−1γb, (Xb)

k−1γb〉,

we compute that

Gb(s) = 〈 s2N+2

X2
b + s2

γb, γb〉 +
N∑

k=1

(−1)ks2(N−k+1)〈(Xb)
k−1γb, (Xb)

k−1γb〉

= 〈 s2N+2

X2
b + s2

γb, γb〉

− s2N (〈 X2
b

X2
b + s2

γb, γb〉 + 〈 s2

X2
b + s2

γb, γb〉)

+ s2N−2(〈 X2
b

X2
b + s2

Xbγb, Xbγb〉 + 〈 s2

X2
b + s2

Xbγb, Xbγb〉)

...

+ (−1)Ns2(〈 X2
b

X2
b + s2

(Xb)
N−1γb, (Xb)

N−1γb〉

+ 〈 s2

X2
b + s2

(Xb)
N−1γb, (Xb)

N−1γb〉)

= (−1)Ns2〈 X2
b

X2
b + s2

(Xb)
N−1γb, (Xb)

N−1γb〉.

This last calculation makes sense since

X2
b

X2
b + s2

is a bounded operator and γb ∈ Dom(Xb
l) for l = 1, . . . , N − 1.
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Now recall (4.17). From the formula for Gb(s) just derived, we see that

(4.20) lim
s→∞

〈 s2X2
b

X2
b + s2

(Xb)
N−1γb, (Xb)

N−1γb〉 = −
∑

|n|=2N+1

ρn

bn
.

As Xb is self-adjoint and γb ∈ Dom(Xb
N−1), we can apply the spectral theorem

to Xb and thereby obtain the scalar spectral measure of γb, µ. Analyzing the very
existence of the limit on the left side of (4.20) in the space L2(µ) yields via the
Lesbesgue Dominated Convergence Theorem that

(4.21) γb ∈ Dom(Xb
N ).

Unraveling (4.21) via (4.6) and (4.19) gives that

α ∈ Dom((Ab−1
Y )N ),

which is (4.12). Note also from (4.20) we have that

〈(Xb)
2(Xb)

N−1γb, (Xb)
N−1γb〉 = −

∑

|n|=2N+1

ρn

bn
,

which unravels to

(4.22) r2N+1(b) = −
∑

|n|=2N+1

ρn

bn
,

which is (4.13).
There remains to check (4.14). This is done by following the same line of reason-

ing that led from (4.15) to (4.20). One starts with (4.15) but with 2N + 1 replaced
with 2N :

(4.23) 〈(A − zY )−1α,α〉 =
∑

n∈I2N

ρn

zn
+ o(‖z‖−(2N)).

Proceeding as before, for a fixed b ∈ (R+)
2

and s ∈ R+ we set z = isb in (4.23).
However, unlike before, where we took imaginary parts to obtain (4.16), we now
take real parts. This results in

(4.24) Re(〈(A − isbY )−1α,α〉) =
N∑

k=1

(−1)k

s2k

∑

|n|=2k

ρn

bn
+ o(s−2N )

as s → ∞ in R+. Finally, upon multiplying (4.23) by the factor s2N (rather than
s2N+1 as before), we deduce the limit,

(4.25) lim
s→∞

Fb(s) = (−1)N
∑

|n|=2N

ρn

bn
,

where for s ∈ R+ and b ∈ (R+)
2
, Fb(s) is defined by

(4.26) Fb(s) = s2NRe(〈(A − isbY )−1α,α〉) −
N−1∑

k=1

(−1)ks2(N−k)
∑

|n|=2k

ρn

bn
.

Carrying out the telescoping argument, one computes that

Fb(s) = (−1)N−1s2〈 X2
b

X2
b + s2

(Xb)
N−2γb, (Xb)

N−1γb〉,
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which implies via (4.25) the existence of the limit

(4.27) lim
s→∞

〈 s2X2
b

X2
b + s2

(Xb)
N−2γb, (Xb)

N−1γb〉 = −
∑

|n|=2N

ρn

bn
.

As (4.21) holds, (4.27) implies that

〈(Xb)
2(Xb)

N−2γb, (Xb)
N−1γb〉 = −

∑

|n|=2N

ρn

bn
.

As this last equation unravels via (4.6) and (4.19) to

r2N (b) = −
∑

|n|=2N

ρn

bn
,

the proof that (4.14) holds is complete. !

5. Finite Hankel pairs

In this section we give an alternate matrix theoretic treatment of HVMS’s based
on the fact that it is possible to cleanly characterize the Gram matrix formed from
the moment vectors of an HVMS.

For X a set, we let )2(X) denote the Hilbert space of square summable complex
valued functions on X. If f ∈ )2(X), we let supp(f), the support of f , denote the
subset of X defined by

supp(f) = {x ∈ X | f(x) .= 0}.

By a matrix on X we mean a square array of scalars, doubly indexed by the
elements of X. If a = [ax,y] is a matrix on X, then a induces a densely defined
linear operator, also denoted by a, on the finitely supported functions in )2(X) by
the formula

(af)(x) =
∑

y∈supp(f)

ax,yf(y).

If a = [ax,y] is a matrix on X, then we say that a is symmetric if

ax,y = ay,x for all x, y ∈ X,

and we say that a is positive semi-definite if for each (finite) choice of elements,
x1, x2, . . . , xl ∈ X, and each choice of scalars, c1, c2, . . . , cl ∈ C,

l∑

i,j=1

axi,xj cjci ≥ 0.

In this section we shall be exclusively interested in the case where X = IN , for
N a positive integer. Note that naturally, if M ≤ N , then )2(IM ) ⊆ )2(IN ), and in
addition, that there is a pair of shift operators, S1, S2 : )2(IN−1) → )2(IN ), defined
by

(S1 f)(n) =

{
f(n − e1) n − e1 ∈ IN−1,
0 else,

(S2 f)(n) =

{
f(n − e2) n − e2 ∈ IN−1,
0 else.
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If ({αn}, A, Y ) is an HVMS of size N , then we may define a pair of matrices
a = (a1, a2) on IN by

(5.1) a1
m,n = 〈Y αn,αm〉 and a2

m,n = 〈(1 − Y )αn,αm〉 for m, n ∈ IN .

Definition 5.2. We say that a = (a1, a2) is a finite Hankel pair of size N if a1 and
a2 are matrices on IN and there exists an HVMS of size N such that (5.1) holds.

In Theorem 5.7, we give a characterization of when a pair of matrices is a finite
Hankel pair. To see how this is a two variable version of Theorem 1.7, let us restate
that theorem more abstractly. Let S : )2({0, 1, . . . , N − 2}) → )2({0, 1, . . . , N − 1})
be the shift defined by Sf(j) = f(j − 1), j > 0, and Sf(0) = 0.

Theorem 5.3. Let H be an N-by-N matrix. There is a self-adjoint operator A
and a vector α with α ∈ Dom(Ak) for 1 ≤ k ≤ N − 1 such that

Hij = 〈Ajα, Aiα〉, 0 ≤ i, j ≤ N − 1,

if and only if the following three conditions obtain:

(5.4) H is positive semi-definite,

(5.5) Hi+1,j = Hi,j+1, 0 ≤ i, j ≤ N − 2,

(5.6) supp(f) ∈ {0, . . . , N − 2} and Hf = 0 ⇒ HSf = 0.

Here is our two variable version of Hamburger’s Theorem 1.7.

Theorem 5.7. Let a be a pair of matrices on IN . Then a is a finite Hankel pair
of size N if and only if the following four conditions obtain:

(5.8) a1 and a2 are positive semi-definite,

(5.9) a1
m+e1,n + a2

m+e2,n = a1
m,n+e1

+ a2
m,n+e2

whenever m, n ∈ IN−1,

(5.10) a1
(0,l),(0,l) = a2

(l,0),(l,0) = 0 for l = 1, . . . , N,

(5.11) supp(f) ∈ IN−1 and (a1 + a2)f = 0 ⇒ (a1S1 + a2S2)f = 0.

Proof. (Necessity). Assume that ({αn}n∈IN , Y, A) is an HVMS and (5.1) holds.
Then (5.8) holds because Y and 1 − Y are positive operators. (5.9) holds because
the left-hand side is

〈Y αn,αm+e1〉 + 〈(1 − Y )αn,αm+e2〉 = 〈αn, Aαm〉,

by (2.4). But the right-hand side of (5.9) by a similar calculation is 〈Aαn,αm〉,
which is equal to 〈αn, Aαm〉 because A is self-adjoint and αm,αn are in its domain
for m, n ∈ IN−1. Condition (5.10) follows from (2.2).

Finally, if supp(f) ∈ IN−1 and (a1 + a2)f = 0, this says that

〈
∑

n∈IN−1

f(n)αn,αm〉 = 0
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for all m ∈ IN . But

(a1S1 + a2S2)f(m) =
∑

n∈IN−1

f(n)〈Y αn+e1 + (1 − Y )αn+e2 ,αm〉

= 〈A(
∑

n∈IN−1

f(n)αn),αm〉

= 0,

so (5.11) holds.
(Sufficiency). Assume (5.8) — (5.11) hold. Choose vectors αn in a Hilbert space

H so that their Grammian equals the matrix a1 + a2:

〈αn,αm〉 = a1
m,n + a2

m,n.

Since a1 ≤ 〈αn,αm〉, there is a positive operator Y satisfying (5.1). Equation (2.2)
follows from (5.10).

If N = 1, we can define A arbitrarily, e.g. by A = 0.
If N ≥ 2, we define A on the span of {αn}n∈IN−1 by

Aαn = Y αn+e1 + (1 − Y )αn+e2 .

To check that this is a well-defined linear operator, we need to know that if
∑

n∈IN−1

cnαn = 0,

then ∑

n∈IN−1

cn(Y αn+e1 + (1 − Y )αn+e2) = 0.

This follows from (5.11). It follows from (5.9) that A is symmetric. !

6. Infinite sequences

As in one variable, passage from the finite to the infinite case is straightforward
and leads to some simplifications. Let I denote the set of pairs of non-negative
integers, excluding (0, 0).

Definition 6.1. An infinite Hankel vector moment sequence is a 3-tuple, ({αn}n∈I ,
Y, A), where: {αn}n∈I is a sequence of vectors in some Hilbert space H; Y is a
positive contraction acting on H, satisfying for each l ≥ 1

Y α(0,l) = 0 = (1 − Y )α(l,0) = 0;

A is a densely defined self-adjoint operator on H with the property that

{αn | n ∈ I} ⊂ Dom(A);

and for each n ∈ I,

Aαn = Y αn+e1 + (1 − Y )αn+e2 .

Theorem 1.15 becomes a description of functions in L∞.

Theorem 6.2. A Pick function h of two variables has an asymptotic expansion

h(z) =
∑

n∈I

ρn

zn
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as z
nt→ ∞, for some real numbers ρn, if and only if it has a representation as in

(1.10) and for every such representation there is an infinite HVMS ({αn}n∈I , Y, A)
with α = α(1,0) + α(0,1). Moreover, {ρn} are given by

∑

|n|=l

ρn

bn
= −rl(b)

whenever l ≥ 1 and b ∈ (R+)
2
.

Sufficiency of the condition follows from Theorem 3.10; necessity follows from
the constructive proof of Theorem 4.2.

We define an infinite Hankel pair by

Definition 6.3. We say that a = (a1, a2) is an infinite Hankel pair if a1 and a2

are matrices on I and there exists an infinite HVMS such that

(6.4) a1
m,n = 〈Y αn,αm〉 and a2

m,n = 〈(1 − Y )αn,αm〉 for m, n ∈ I.

If (5.9) holds for all N , then (5.11) holds automatically. So the infinite Ham-
burger Theorem becomes

Theorem 6.5. Let a be a pair of matrices on I. Then a is an infinite Hankel pair
if and only if the following three conditions obtain:

a1 and a2 are positive semi-definite,

a1
m+e1,n + a2

m+e2,n = a1
m,n+e1

+ a2
m,n+e2

whenever m, n ∈ I,

a1
(0,l),(0,l) = a2

(l,0),(l,0) = 0 for l ≥ 1.

Here is a two variable version of Kronecker’s theorem.

Theorem 6.6. Let h ∈ L∞. Then there is an infinite HVMS ({αn}n∈I , Y, A) with
α = α(1,0) + α(0,1), satisfying rank(a1 + a2) < ∞ and

(6.7) h(z) = 〈(A − zY )−1α,α〉

if and only if h is a rational function.

Proof. If h is rational of degree (d1, d2), then by Theorem 8.12 h has a representation
(6.7) on a Hilbert space H of dimension at most d = d1 + d2. Since h ∈ L∞, by
Theorem 6.2 there is an infinite HVMS ({αn}n∈I , Y, A) on H. So

(a1 + a2)m,n = 〈αn,αm〉H
has rank at most d.

Conversely, suppose there is an infinite HVMS ({αn}n∈I , Y, A) with α = α(1,0) +
α(0,1), satisfying rank(a1 + a2) = d < ∞ and (6.7). Then one can choose vectors
βn in a space H of dimension d such that

(6.8) 〈βn,βm〉H = 〈αn,αm〉

and so that the vectors {βn} span H. Define a positive contraction X on H by

(6.9) 〈Xβn,βm〉 = 〈Y αn,αm〉.

Define B by

Bβn = Xβn+e1 + (1 − X)βn+e2 .
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We claim that B extends by linearity to a well-defined linear operator on H. Indeed,
suppose

∑
cnβn = 0. Then by (6.8),

〈
∑

cnαn,
∑

cmαm〉 = 〈
∑

cnβn,
∑

cmβm〉 = 0.

So
∑

cnαn = 0, and therefore by (6.9),

〈
∑

cn[Xβn+e1 + (1 − X)βn+e2 ],βm〉 = 〈
∑

cn[Y αn+e1 + (1 − Y )αn+e2 ],αm〉

= 〈A
∑

cnαn,αm〉
= 0.

As {βm} span H, this means
∑

cn[Xβn+e1 +(1−X)βn+e2 ] = 0; so B is well defined,
and hence ({βn}n∈I , X, B) is an infinite HVMS on H. Let β = β(1,0) + β(0,1).

By Remark 2.20 the scalar (X,β) moments of B agree with the scalar (Y,α)
moments of A to all orders. Therefore by Theorem 6.2, the rational function g of
degree at most d in each variable given by

(6.10) g(z) = 〈(B − zX)−1β,β〉H
has the same asymptotic expansion at ∞ as h. By Lemma 6.11, we are done. !
Lemma 6.11. Let g, h be in L∞ and have the same asymptotic expansion at ∞.
Assume in addition that g is rational. Then g and h are equal.

Proof. For each fixed w in R, the functions g(z, z+w) and h(z, z+w) are in the one
variable Pick class and have the same asymptotic expansions at ∞. By Theorem 1.4,
they must be Cauchy transforms of measures with the same moments. Moreover,
g(z, z + w) is rational. Therefore by [17, Thm. 1.2], the one variable moment
problem is in this case determinate, so the two measures must be equal. Therefore
g(z, z + w) = h(z, z + w) for all z ∈ Π, w ∈ R, and so the two functions are
identically equal. !
Corollary 6.12. Let h ∈ LN have an asymptotic expansion

h(z) =
∑

|n|≤2N−1

ρn

zn
+ o(‖z‖−(2N−1))

as z
nt→ ∞. Then there is a rational function g in L∞ that has the same asymptotic

expansion to order 2N − 1.

Proof. Let ({αn}n∈IN
, Y, A) be a finite HVMS corresponding to h as in Theo-

rem 4.2. Choose vectors {βn}n∈IN in a finite dimensional space H so that (6.8)
holds, and define X and B as in the proof of Theorem 6.6. Then g given by (6.10)
has the same asymptotic expansion. !

7. An example

Let {wj}∞j=1 be a summable sequence of non-negative numbers, and let {λj}∞j=1

be a sequence of real numbers. Let tj be numbers in the interval [0, 1]. Define

A =
⊕(

λj 0
0 −λj

)
,

Y =
⊕




t2j tj

√
1 − t2j

tj
√

1 − t2j 1 − t2j



 ,
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α(1,0) =
⊕√

wj




tj

√
1 − t2j



 ,

α(0,1) =
⊕√

wj

( √
1 − t2j
−tj

)
.

If α = α(1,0) + α(0,1) and h(z) = 〈(A − zY )−1α,α〉, then h(z) is given by

(7.1) h(z) =
∞∑

j=1

wj

4tj
√

1 − t2j λj + z1 + z2

λ2
j − λj(2t2j − 1)(z1 − z2) − z1z2

.

If
∑

wjλ2
j < ∞, then one can extend the HVMS by

α(2,0) =
⊕√

wj λj (2t2j − 1)




tj

√
1 − t2j



 ,

α(1,1) =
⊕

2
√

wj λj





tj − t3j + t2j

√
1 − t2j

tj − t3j − t2j

√
1 − t2j



 ,

α(0,2) =
⊕√

wj λj (1 − 2t2j)

( √
1 − t2j
−tj

)
.

Calculating, one gets that

r1(z) =
(∑

wj

)[
1

z1
+

1

z2

]

r2(z) =
∑

wjλj



2t2j − 1

z2
1

+
4tj

√
1 − t2j

z1z2
+

1 − 2t2j
z2
2





r3(z) =
∑

wjλ
2
j



 (2t2j − 1)2

z3
1

+
4(t2j − t4j) + 4tj(2t2j − 1)

√
1 − t2j

z2
1z2

+
4(t2j − t4j ) + 4tj(1 − 2t2j)

√
1 − t2j

z1z2
2

+
(2t2j − 1)2

z3
2



 .

These are (up to a minus sign) the first three terms in the asymptotic expansion of
(7.1) at infinity. If one assumes that

∑
wjλ4

j < ∞, then one gets two more terms,
and so on.

In the special case that every tj = 1/
√

2, the formulas simplify. Then

h(z) =
∑

wj
2λj + z1 + z2

λ2
j − z1z2

,

r1(z) =
(∑

wj

) z1 + z2

z1z2
,
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r2(z) =
(∑

wjλj

) 2

z1z2
,

r3(z) =
(∑

wjλ
2
j

) z1 + z2

z2
1z2

2

.

8. Models

A model for h is a reproducing kernel space M on Π2 and a positive contraction
Y on M so that, if the reproducing kernel K for M is written as

(8.1) K(z, w) = 〈vz, vw〉M
with vz analytic in z, then

(8.2) h(z) − h(w) = (z1 − w̄1)〈Y vz, vw〉 + (z2 − w̄2)〈(I − Y )vz, vw〉.

Using our earlier notation zY = z1Y + z2(I − Y ), (8.2) becomes

(8.3) h(z) − h(w) = 〈(zY − w∗
Y )vz, vw〉.

The existence of models for functions in the Pick class was proved in [1]. Indeed,
it was shown there that for every h in the Pick class, there are analytic functions
v1(z) and v2(z) taking values in Hilbert spaces M1 and M2 so that

h(z) − h(w) = (z1 − w̄1)〈v1(z), v1(w)〉M1 + (z2 − w̄2)〈v2(z), v2(w)〉M2 .

Let

K(z, w) = 〈v1(z), v1(w)〉M1 + 〈v2(z), v2(w)〉M2 .

This is a kernel, so it can be written as in (8.1) for some other Hilbert space M,
and there is a positive contraction Y on M so that

〈v1(z), v1(w)〉M1 = 〈Y vz, vw〉.

This yields (8.3).
Write i for the point (i, i) in C2. The equivalence of (ii) - (iv) in the following

theorem was first proved in [4].

Theorem 8.4. Let h : Π2 → Π be in the Pick class, and not identically zero. The
following are equivalent.

(i) For some/every model with reproducing kernel as in (8.1), there is a vector
α in M such that

(8.5) h(z) = 〈vz,α〉.

(ii) There exists a self-adjoint operator A on a Hilbert space H and a vector α
in H such that

(8.6) h(z) = 〈(A − zY )−1α,α〉.

(iii) There exists c > 0 such that

(8.7) lim
s→∞

sh(si) = ic.

(iv) We have

(8.8) lim inf
s→∞

|sh(si)| < i.
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Proof. (i) ⇒ (ii): Define B by

B : vz 2→ zY vz + α.

Equations (8.3) and (8.5) imply that

(8.9) 〈Bvz, vw〉 = 〈vz, Bvw〉.
Extend B to finite linear combinations of vectors vzj by linearity, and (8.9) says that
B is well defined and symmetric. Indeed, if some linear combination

∑
cjvzj = 0,

then for every w we have

〈
∑

cj((zj)Y vzj + α), vw〉 = 〈
∑

cjvzj , wY vw + α〉 = 0,

so B(cjvzj ) = 0.
If the defect indices of the closure of B match, then B can be extended to a

self-adjoint operator on M. If not, B can be extended to a self-adjoint operator on
a superspace of M. In either event, we can assume that there is a self-adjoint A
on H ⊇ M such that

A : vz 2→ zY vz + α.

Therefore vz = (A − zY )−1α, and (8.6) follows from (8.5).
(ii) ⇒ (iii): By the spectral theorem,

s h(si) =

∫
s

t − is
dµ(t),

where µ is the finite measure that is the scalar spectral measure of A for α. As
the integrand is bounded by 1 in modulus and tends pointwise to i, the dominated
convergence theorem implies

lim
s→∞

sh(si) = i‖α‖2.

(iii) ⇒ (iv): Obvious.
(iv) ⇒ (i) By (8.3),

(8.10) 2Imh(si) = 2is〈vsi, vsi〉.
By (8.8) and (8.10), there is a sequence sn such that −isnvsni has a weak limit.
Call this limit α. By (8.3) we have

(8.11) h(z) − h(sni) = 〈zyvz, vsni〉 + 〈vz,−isnvsni〉.
Take the limit in (8.11) as sn → ∞ to get (8.5). !

Theorem 8.12. Let h be in the Pick class of two variables, and assume h satisfies
(8.8). There exists a representation as in (8.6) with H finite dimensional if and
only if h is rational and real-valued on the complement in R2 of its polar set.

Proof. If h has a representation as in (8.6) with H d dimensional, it is clear that h
is rational of degree at most d in each variable, and that h is real on R2 of its polar
set.

For the converse, let

α(λ) = i
1 + λ

1 − λ
be a linear fractional map that maps the unit disk D to Π, and let

β(z) =
z − i

z + i
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be its inverse. Let
φ(λ1,λ2) = β ◦ h(α(λ1),α(λ2)).

This is a function in the unit ball of H∞(D2), the space of bounded analytic func-
tions on the bidisk. Moreover, φ is rational if and only if h is, in which case they
have the same bidegree, and φ is inner if and only if h is real valued a.e. on R2.

Assume h is rational and non-constant of bidegree (d1, d2). By a result of
G. Knese [10], there are Hilbert spaces M1 and M2 of dimension d1 and d2 respec-
tively, and analytic functions u1 : D2 → M1 and u2 : D2 → M2 so that

(8.13) 1 − φ(λ)φ(ζ) = (1 − λ1ζ1)〈u1(λ), u1(ζ)〉 + (1 − λ2ζ2)〈u2(λ), u2(ζ)〉.

Define functions vr : Π2 → Mr for r = 1, 2 by

vr(z) =
h(z) + i

zr + i
ur
β(z).

Then an algebraic manipulation transforms (8.13) into

(8.14) h(z) − h(w) = (z1 − w̄1)〈v1(z), v1(w)〉 + (z2 − w̄2)〈v2(z), v2(w)〉.

Let
K(z, w) = 〈v1(z), v1(w)〉M1 + 〈v2(z), v2(w)〉M2 .

This has rank less than or equal to d = d1 + d2, so it is the reproducing kernel for
some Hilbert function space M on Π2 of dimension less than or equal to d. By
(iv) ⇒ (i) of Theorem 8.4, we have a vector α such that (8.5) holds. Now follow
the proof of (i) ⇒ (ii), and observe that since B is defined on a finite dimensional
space, its defect indices must match, and so it can be extended to a self-adjoint
operator A on M. !
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