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Generating Electromagnetic Waves

1. Where do we start?

When SIW first encountered electromagnetic fields at U. Chicago during the depress-
sion, textbooks used two different systems of units. Firsl. elecsrical pheromena were de-
scribed using a CGS-based system of units known as the Gaussian or ESU systom. Then
magnetic phenomena were described using a CGS-based system of units known as the
electromagnetic (EMU) units. Then both the ESU and EMU units were used to describe
phenomena involving both electric and magnetic forces. Remmnants of this schizophrenia
are present in all modern E&M textbooks.

Electric and magnetic fields were mostly theoretical conzepts until the 18&0s. About
1880 T. A. Edison, invented (at his Menlo Park, New Jersey lab) a carbou filament elec-
tric lamp. He realized that he could sell one of these tamps to everyone in the UJSA 4 he
could provide them with the requisite electrical excitation. (His early experiments were
powered by batteries which were too expensive for homeowners to buy or maintain!)
Elecric and magnetic fields had to become household entities. So he hired European ed-
ucated engineers to build a commercial source of clectricity. The Pearl Street S.ation
was the first central power plant in the world. It was located at 255-257 Pearl Street in
Manhattan on a site measuring 15 m by 30 m, just souta of Fulton Streer and fred by
coal. It began with one direct current gencrator, and it started gencrasivg elecuricity on
Sceptember 4, 1882, serving an initial load of 400 lamps of 82 customers. By Listid, the
Pearl Street Station was serving 508 customers with 10,164 lamps. The station was built
by the Edison Illuminating Company, headed by Thomas Edison, which evolved into the
present Consolidated Edison company.

The Pearl Street Station not only holds the distinction of being the world’s lrst cen-
tral power plant, but it was also the world's first cogeneration plant. While the steam
engines provided grid electricity, Edison made use of the thermal byproduct by distribut-
ing steam to local manufacturers, and warming nearby buildings on the samne Manhattan
block. The station burned down in 1390, destroying all “nit one dyname that is now kept
in the Greenfield Village Museuin in Dearborn, Michigan.

Generally, the builders of the Pear! Street Station decribed their work in mathemiat-
ical terms that were beyond Edison’s comprehension. But when it caine Lo markeling
their product (electricity), Edison forced them to introdice a new unit ol current. He
was set up to manufactutre essentially 100 W electric light bulbs. His ergineers built
gencrators that produced a potential on the power lines of == 100 V. But when che en-
gineers told Edison that it would take =~ 107 stal amperes (vhe ESU/EMU unit for cur-
rent) to light the bulbs, he had a fit: If a bulb required that much current. no cne would
buy one. So he made the engineers define a new unit (a practical ampere) with a size
that it would only require 1 ampere of current to light ap his bulbs. Thus a third sel. of
units ( “practical units”) came into existence.
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By tle curn of the century, university texthooks came in three Aavors: ESU or EMU
units used in Arts and Science departments, and Practical units used in engineering de
partnients. The boalk publishers. however. realized shat this meant that each flavor of
book had o limited audience. They informed authors that they would stop publishing
F&M booxs until a pew sot of units was developed that could be used by everyone. The
LUPAP wud TUPAC organizztions formed committees to address this issue. Basically
they produced a new system (ultimately the ST system) out of the old systems by mak-
ing two changes o the old. (1°) In 1900, Giovanni Giorgi published a paper in which he
noted that the 107 factor would po away if one went from CGS — MKS units. [Giorgi
read a doscription of this shift at a scientific meeting in St. Louis sponsored by the 1904
St. Lonis Worlds Fairl] (2°) Academic scientists had noted that the old systems were ir-
rational (d7's were present in descriptions of systems with no rotational symmetry but
absent in descriptions of systems with rotational symmetry) but a careful addition of ex-
tra 4n factors could ationalize the fundamental equations.

The &7 system of units was first used in 1960 and dominated all textbooks by 1970.
It remains detested by most people working in quantum field theory.

Mazxvell formalized his description of electrical and magnetic phenomena by giving a

set of equations governing electric E and magnetic B fields. In ST units, these equations
are

V- E = p/e (la)
\—xE-I-g;l—f—zl) (1b)
V-B=0 (1e)
V x B =y (J+ q)%ft}) (1d)

£(r, i) 15 the electric field at r.¢ and B(r,t) is the magnetic field at 7, . These fields
produce a tores
F=Q(F—+wvxB) (2)

on a particle of charge @ located at » and moving with velocity v at time ¢t. The sources
for the fields are the charge density p(r,t) and the current density J(r,t) in the system.
"The cight equations in (1) determine what the fields E(r,t), B(r,t) are in the presence
of these sources. The constants ¢ and g fix the units of charge and current: p is the
charge density in Ctmlamhs/mdc 7> and J is the current density in amperes/meter>
with 1 armpere = 1 Coulomb/second.

. Introduce Potentials

There are two general theorerns of vector calculns that allow one to simplify the rela-
tions in Eq.(1). 17 If a field B satisfies V - B = 0, then one can always find another field
A from which B can be derived,

B =V »x A.

ta
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2° If a field F satisfies V x F = 0, then one can always find another field ¢ [rom which
F' can be derived.

F = V.
Thus, if we represent
B=VxA, (2a)
- 0A
E= —V(b - '—5}—, (21))

then Egs.(1b,1c) will be satisfied for any A. ¢ fields. A is callad the vector potential of
the system and ¢ is called the scalar potential of the systen.. Using thesc representations
in the remaining equations in Eq.(1) gives

_vlﬁj_ﬁv‘éz,‘)/én -;3(1)
ot
oA
V X (¥ x A) + gy (%v@ n —87) — b (35)

While specifying V x A provides an A that makes (1c) correct. one can also pre-
scribe V - A. It turns out, however, that Eq.(1¢) remains correct no matter wlat values
arc prescribed for V - A. Thus we can prescribe any value for V - A thar simplifics the
formulation. Explicitly. we will now prescribe (the “Lorentz gange™)

O

V-A= E()GQE. (4)
Eqs.(3) are then reduced to
&% ,
~V26 + egpg W =p/ep. (Ba)
)
A
—V2A + g %7 =g . (50)

In the absence of sources p and J, Eqs.(5) arc just wave equations associated with a

speed
1

VEO IO

that we associate with the speed of light. So we can identify ) pg with 1/¢2 and rewrite
Eqgs.(5) as

o=

1 8%

V3¢ + Tl =p/€g (6a)
9 1A ,
-V“A+ ?W— =.U.0J [()b)

3
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. In summary

Given p and J, we can solve Egs.(6) for the potentials ¢ and A. [We must also ap-

ply the bounary condition ¥V - A = —;-l:;%?}

Then we can deduce E and £ from Egs.(2).

. The Poynting vector

In 1834. John Henry Poynting, wrote a paper “On the Transfer of Energy in the
Electromagnetic Field” { Philosophical Transactions of the Royal Society of London) in
which he identified the energy flux associated with clectromagnetic fields with the vector
(now called the Poynting vector)

S = -l—E x B (7)
10
Thus an identification of the generation of electromagnetic waves involves the calculation
route
pnd—-+Ad—=EB—>S

and then examining S at large distances from the sources.

. The Hertz calculation

In 1579, H. Helmholtz suggespted to his doctoral student H. Hertz to include a test
of Maxwell's 1363 prediction that there were electromagnetic waves. The experimental
details were complex. but Hertz ezpluined the results by calculating the electromagnetic
field prociuced hy an oscillating clectric dipole moment. What follows here is the original
calculation trauslated into ST units.

Suppose that n charge @ oscillates along the z axis. Let
1 -
r4(l) = —2—1.’ sin(wt) k

locate the charge at time ¢, And suppose that another charge —Qg (to keep the total
charge zero) is lacated at

1 .
r=(t)= -—36 sin(wt) k.

Then
plr.t) = Qo [8 (1 = 74 () = 6 (r = 7 (2)) ®)
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Knowing the right hand side of (Ga), we can solve (5a) for o(v. 1) *

I

¢J(7'.t) — 1 f d’!” p(TIrt =" ‘-";"’i)

dreg 7 — 7|
1 1
== 4632 l r=ralu i ] (9)
O |r—re(t———H |r—r_{t-—]

Finally, we expand Eq.(9) in £ about £ = ( (anticipating that we're only interested in
the £ — 0 limit)

Qo [ 1 1 }
T,t - ’ ' I f i3
é(r.1) d7eg |'r—'rHt—’F)| lr —r_{t — L)
_ Qo [ r et =3%) - (t—E!)_F.__
dmwegr re
- o
N Qo [_z*C*sm(n:*(t £ +l (10)
dweyr re

If £ « Qg — d in the limit that { — 0, the field associated with the charges 22h. —Qp
bhecomes dipolar and d is the dipole moment. Sctting

-

d(t) = Qp # £ # sinfwi) k
the potential in (10) becomes

dit—-%)-r r

Br,t) = - =t (1)

The electrical currents in a system are just a description of the moving chirges in
the system. In fact, they must satisfy the continuity equation

Wb . gty =0, (12)
ot
Since
plr,t) = Qpd(x) 3(3) [0(z —~ 24 () — (2 - 2 ()] (13)

* https://www.phy.duke.edu/~rgb/Class/phy319/phv319/nodel2.html
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dp(r,i}
a

[N A N R

Lwcos(wt)Qud () 6(y) [5'(2 =z (t)) + &' (2 - z_(t))]

Lurcos(wt)Qud(a) d(y) V- [8(z — 24 (8)) + 8(z — z—(t))] k (14)

and we i identily the lefe hand side of Eq.(14) as =V - J(r,t) with

T(r,1) = 5w cos{ewt)Qud(z) 6(y) [6(z ~ 24(8)) + 8(z - = ()] & (15)

Knowing the right hand side of Eq.(6b), we can evaluate A(r,t):

(!, ¢ = =7l
A(v'.f,')z_.g_ﬁ/d,rf J(rt =)

s |r — 2’|

__ potw Gy cos(w ((t-

LC”[)) cos(w (t -- 11'—TEE*—I))

~

= —= — (16)
R Y e S IR (R
Again. expanding in £ leads to
HO td T -
Hy=L 0 dii— )k 1
A(r.t) i) dit C)L (17)

From A, ¢ we deduce (neglecting terms of order 1 /1'2) that

i . 3
= : - -
Ee - gt =r/dly
dmege* r
9 5
z sinfw(t — r/c)] -
B Y d_i sinﬂqm[w‘t T/C)]¢
TEYC: r

Next, evaluating Eq.(7) gives

4 22 e 2
wd* L9 sin“ 8
=—7— sin“jwi(t — r/c T

3272¢gcd ot /e)] 72
c.ugt:i(lf.)2 sin @ )

T 327%ened 12

with # a unit vector in the r-direction. All that remains is the replacement of sin?[w(t —
r/e)] by 1/2 (i.c.. to time average the cnergy flix).
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Appendix

. The Problem

In this Appendiz we examine how to solve the wave cquation. This is o general prob-
lem with many practical applications: Basically, we wane to construct functions F{r,?)
that solve the partial differential equation

1 6°F

B v2- A il
+ 2 O

= S5(r t) (A1)
F is the (sought) amplitude of the wave, a quantity that varies in space and time.
S(r,t) is the source of the wave.

In the absence of a source, Eq.(A1) reduces to

1 82F
A
- ¢’ Ot?

= (), (A2)
a linear equation that has free waves as solutions. These could be any freely propagating
waves. Because of the linearity of (Al), we can add any solution to (A2) to a solution

to (Al) and get another solution to (Al). Generally. we're not interested in waves pass-
ing us by associated with initial conditions or boundary conditions. We're interested in
waves that are caused by the source S(r,t). These will be solutions that are. in fact.
proportional to S(r,t) and will go away if S(r,¢) — 0.

. If the source is localized

Let us start by supposing that the source is localized at » = 0, a point in some 3D
space. Solutions to
1 9%F
c? Oit

will have spherical symmetry around » = 0, o they will only depend on » and .

—V?F + = §(r) S(t) (A3)

If we suppose that
G(r,t)

T

F(r.t)= (Ad)

then (A3) becomes

_PGt) | 1 PGy
a2 2 gl

=1 d(r) 5(t) = 0. (A5)

But this equation is just the wave equation in one dimnension and the general solution is
known to be
G(r,t) = hy(r —ct) + ha(r + ) (AG)

T
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with S (@), hatr) eny functions shat have second derivatives.

Thus the general solution to {A3) will look like

F(r.1) = h(r—ct) N ha(r +ct) (A7)

r I

The two terms in (A7) correspond to ewtward and inward propagating waves. Since we
want a solution to (A5) that looks like an outward propagating wave, we drop the hs
term it (A7) and keow chat F(r,¢) will have the form

—H{r'_.d . itr>e,
Fir,t)y = ! (A8)
0, otherwise.

3. Fooling the singularity

The 1 /r in Eq.1A8) leads to a singularity at r = 0. This may be assessed quantita-
tively by nsing Gauss' Theoromn to calculate

r - l

[ e R

. r r

Ir|< R |+j=R |r|=R

for alt R > 0. Thais resalt is cguivalent to

v‘-’% = —d78(r) (A9)

We can use (A8) and (A9) to rewrite (A3) as
—dah(r —ct) = S(i)

whenee we can identify k) as being o S(¢), just the solution we seek. The result is
that the solution 1o (A3) i3

F(r.t) = St~ ¢) (A10)
Tall = I
If the souree is distributed over space (if § = S(r',t)) then superposition gives
!
ser ¢ — =y
Flr,t)=— [ dr' = L, A1l
()=~ [an T (A11)
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