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I investigate the hydrothermal system located in Tutum Bay, Ambitle Island, 

Papua New Guinea, a shallow-sea system ~5 – 10 meters below sea level that is arsenic-

rich.  Hydrothermal vents in the bay expel fluids with arsenite (AsIII) concentrations as 

high as 950 μg/L.  To determine the role that Tutum Bay microorganisms might play in 

mediating As-redox reactions, three approaches were used:  analyzing the geochemical 

environment for energy sources, characterizing the archaeal community composition of 

the sediments, and conducting culture-dependent As-cycling experiments.  The second 

chapter of this dissertation discusses an energetic study of potential chemolithotrophic 

metabolic reactions, including As-redox reactions.  Results show that under the 

environmental conditions present in Tutum Bay, significant amounts of energy for 

microbial metabolism could be gained from a number of reactions, including AsIII 

oxidizing reactions using oxygen and nitrate as terminal electron acceptors.  In the third 

chapter, a 16S rRNA-based culture-independent investigation of the archaeal community 

structure of the As-rich sediments shows the presence of diverse uncultured archaea at 

 ii



sites both near and far from hydrothermal venting.  The studies in these two chapters 

demonstrate that the Tutum Bay hydrothermal system provides an environment 

hospitable to metabolically and phylogenetically diverse microorganisms.  Finally, in 

chapter four, evidence of functional genes related to both arsenate- and arsenite-redox 

were recovered from sediments examined via molecular screening.  It was also shown 

that microbial consortia enriched from Tutum Bay sediments and porefluids were able to 

reduce arsenate (AsV) to arsenite when incubated at 30°C in an AsV-rich growth medium.  

These results demonstrate that As-redox microorganisms exist in shallow-sea 

hydrothermal environments and broaden our understanding of not only the types of 

microbial species that are capable of As-redox, but also the unique environmental niches 

in which life can exist and thrive. 
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CHAPTER 1 

INTRODUCTION 

 

Hydrothermal Systems and Chemosynthesis 

Hydrothermal systems, where geothermally heated waters are expelled through 

fissures in the Earth’s crust, are located both on land and under the sea.  Most people are 

familiar with terrestrial hydrothermal systems, such as the hot springs and geysers seen in 

Yellowstone National Park, USA.  Marine hydrothermal systems may be less familiar, 

but photographs of deep-sea systems with their towering sulfide chimneys and 

communities of strange tube worms, clams, mussels, and crabs have captured public 

attention since their discovery in the late 1970s (Lonsdale, 1977; Francheteau et al., 1979; 

Spiess et al., 1980).  Even less widely known than deep-sea systems, however, are 

shallow-sea hydrothermal systems, located at less than 200 meters below sea level (mbsl).  

Shallow-sea systems, such as the on-shore seeps and shallow vents located in a few 

meters of water at Vulcano Island, Italy, have been known for much longer than deep-sea 

systems due to their proximity to shore and easier accessibility.  However, they are not 

yet as well-studied as their deep-sea counterparts, which in part provided the motivation 

for this dissertation, which focuses on an arsenic-rich shallow-sea hydrothermal system in 

Tutum Bay, Papua New Guinea. 

Hydrothermal systems in at least 55 deep-sea and 21 shallow-sea settings have 

been documented and their biota studied in detail (Figure 1).  Deep-sea systems are 

numerous while their shallow-sea counterparts have not been as well studied, although 

shallow-sea systems are more easily accessible and can often be explored via SCUBA 



diving.  Like their deep-sea counterparts, many shallow-sea systems occur in volcanically 

active areas, with systems located along arcs, mid-ocean ridges, and in island arc-related 

environments.  Some shallow vent systems have also been found in continental margins 

undergoing tectonic extension, lakes in continental rift basins, and crater lakes (Prol-

Ledesma et al., 2005).  Both deep- and shallow-sea systems are high temperature, 

reducing environments enriched in gases and heavy metals such as iron (up to 6500 and 

875 μM/kg for deep and shallow systems, respectively), manganese (1140, 675), zinc 

(100, 12.5), copper (40, 2.3), and lead (360, 4350) (Tarasov et al., 2005).     

Shallow-sea systems also differ from deep-sea systems in a variety of ways.  For 

example, shallow-sea systems are no larger than several hundred square meters, while 

deep-sea systems can stretch tens of kilometers along ridges (Mironov et al., 2005).  In 

shallow-sea systems, hydrothermal fluids range from 10 to 135°C, much cooler than 

deep-sea systems where fluids can surpass 400°C (Baross and Hoffman, 1986; Amend, 

personal communication).  The chemical composition of hydrothermal fluids is reducing, 

like other hydrothermal sites, but shallow-sea systems can be viewed as a transition 

between deep-sea and terrestrial systems.  Fluids are usually more enriched in N, P, and 

Si and do not have as high concentrations of CH4 and H2 compared to deep-sea systems 

(von Damm et al., 1995).  Shallow vent fluids often contain a meteoric water component 

(Prol-Ledesma et al., 2004; Pichler, 2005) and their chemistry can both affect and be 

affected by near-shore terrestrial activity (Price and Pichler, 2005).  Pressures are also not 

as high due to the shallower depths.  The lower boiling temperature of water in shallow 

systems can lead to subsurface deposition of metals (Prol-Ledesma et al., 2005).  

Shallow-sea vents typically feature an exsolved gas phase such as carbon dioxide, 
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hydrogen sulfide, or methane (Pichler et al., 1999a; de Ronde et al., 2001; Prol-Ledesma 

et al., 2002, Amend et al., 2003; Hirayama et al., 2007). 

Biologically, both deep- and shallow-sea systems support a wide variety of 

organisms, but deep-sea systems display vent-obligate fauna; lack diatoms, algae-

bacterial mats, and plankton; and are dominated by symbiotrophic forms of life, while 

shallow-sea systems tend to display a more diverse array of fauna that are not all 

dependent on the vents (Tarasov et al., 2005).  Shallow systems are also known to be 

hotspots of eukaryotic biodiversity (Morri et al., 1999).  Most importantly, shallow-sea 

systems exist within the photic zone and both photosynthetic and chemosynthetic 

organisms can play a role in primary production, while chemosynthetic organisms are the 

main producers in deep-sea systems.  In 1977, when scientists made the discovery of 

hydrothermal vents located ~2500 meters below sea level (mbsl) along the Galapagos 

Rift, they were surprised that the ocean floor surrounding the vents was not a barren 

desert, but instead covered in clams, mussels, and giant tube worms, with larger animals 

such as crabs, octopi, and rays swimming nearby (Londsale, 1977).  Scientists in the 

deep-ocean submersible Alvin had seen for the first time entire biological communities 

that did not depend on sunlight.  Instead, chemosynthetic microorganisms are the primary 

producers in deep-sea hydrothermal systems, gaining energy from the chemical 

disequilibria created when hot hydrothermal fluids mix with cooler, oxidized seawater.  

According to Holger Jannasch, “[Chemosynthesis] was a powerful new concept and, in 

my mind, one of the major biological discoveries of the 20th century.” (Jannasch, 1997). 

An obligate photosynthetic bacterium was recently discovered at a deep-sea vent site, but 

it is unclear how large a role photosynthetic organisms play in deep-sea system 
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productivity and it is assumed that chemosynthesis is still the dominant form of primary 

production (Beatty et al., 2005).  In shallow-sea systems, primary production from both 

chemosynthetic and photosynthetic organisms is well documented (Sorokin et al., 1998; 

2003; Tarasov, 1999).  Microbial mats and biofilms are common in shallow-sea systems, 

and mats composed of photosynthetic diatoms, chemosynthetic and photosynthetic 

prokaryotes, and prokaryotic-algae photosynthetic-and-chemosynthetic communities 

have all been observed (e.g., Nesterov et al., 1991; Tarasov 2002; Meyer-Dombard et al., 

2005; Hirayama et al., 2007).  

Numerous biological studies of deep-sea hydrothermal systems have been 

conducted (e.g., Takai and Horikoshi, 1999; Takai and Sako, 1999; Schrenk et al., 2003; 

Huber et al., 2006; Ehrhardt et al., 2007), along with studies of terrestrial systems (e.g., 

Barns et al., 1994; Thevenieau et al., 2006; Mori et al., 2008), and shallow-sea systems 

(e.g., Miura et al., 2002; Pichler et al., 2006; Hirayama et al., 2007), all of which have 

increased the range of environments that we now know can harbor life, as well as our 

understanding of the capabilities of microbial life.  Many of the organisms discovered are 

“extremophiles,” able to live in environments of high temperature, pressure, salt content, 

acidity or alkalinity, and heavy metal concentrations, including arsenic.  

In marine hydrothermal systems, arsenic concentrations can range from around 

the typical seawater background level of ~2.6 μg/L (Mukhopadhyay et al., 2002) to as 

high as 824 μg/L (von Damm, 1995; Canet et al., 2005; McCarthy et al., 2005).  In hot 

springs, concentrations as high as 150,000 μg/L have been observed in Yellowstone 

National Park, USA (Langner et al., 2001).  Arsenic-rich hydrothermally-influenced sites 

may host currently unknown As-redox microorganisms.  Very little is currently known 
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about microbially-mediated As-redox at high temperatures, which has provided the other 

part of the motivation for this research to study the high-arsenic, shallow-sea 

hydrothermal system located in Tutum Bay, Ambitle Island, Papua New Guinea.   

 

A Brief History of Arsenic  

Arsenic (As) is a notorious poison.  It has been used since ancient times as a toxin 

in warfare, and in the Middle Ages it became known in France as la poudre de succession, 

the inheritance powder, due to its popularity among the nobility who used it to dispatch 

their rivals (Nriagu, 2002).  Most arsenic compounds, such as arsenic trioxide (As2O3), 

are toxic to humans, with the toxicity level estimated to be around 2 – 3 mg/kg of body 

weight for arsenic trioxide.  Thus, a 55-kg (120 lb) person could die from ingesting as 

little as 0.11 g of arsenic trioxide (Dueñas-Laita et al., 2005).   

Arsenic exists in four oxidation states: AsV, AsIII, As0, and As−III.  The two most 

common arsenic oxidation states, arsenate (AsV) and arsenite (AsIII), are some of the most 

toxic forms of arsenic.  Arsenate is a molecular analog of phosphate, and so it can enter 

the cell through phosphate transporters and inhibit oxidative phosphorylation, which 

produces ATP, a key molecule that supplies energy for cellular processes, including 

catabolic (biomass synthesis) reactions.  Arsenite is even more toxic than arsenate 

because it binds to reactive sulfur atoms (-SH groups) in many enzymes, including those 

important in respiration (NRC, 1999; Oremland and Stolz, 2005). 

Clearly, the presence of arsenic can have a deleterious effect on the health of 

humans.  Arsenic-contaminated food and water can cause many health problems, 

including skin lesions, diabetes, various types of cancer, cardiovascular and neurological 
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problems, or even death (Smith et al., 2000; Nriagu, 2002; Le, 2002).  Countries around 

the world, including the United States, Mexico, Bangladesh, India, Nepal, China, 

Vietnam, Taiwan, Afghanistan, Iran, Argentina, Chile, and Australia all have documented 

cases of chronic poisoning from arsenic-contaminated waters (Mukherjee et al., 2006).  

Bangladesh has the most widespread problem, with an estimated 35 and 57 million 

people at risk of drinking water with arsenic concentrations exceeding 0.05 and 0.01 

mg/L, respectively (Brinkel et al., 2009).  The World Health Organization’s 

recommended levels for arsenic in drinking water are 0.01 mg/L (WHO, 1996), and 

millions of people in Bangladesh are at risk of developing chronic arsenic poisoning.  

Both the United States and Canada lowered the maximum contaminant limit for arsenic 

in drinking water from 50 to 10 μg/L within the past three years (U.S. EPA, 2001; Health 

Canada, 2006), and this change in water quality standards has made it even more 

important to understand how arsenic cycles in the environment. 

In spite of its toxicity, arsenic has also been used since ancient times as an 

ingredient in many medical treatments, because in the right concentrations, arsenic can be 

used to selectively cleanse and kill unwanted targets.  It has been used as a cure for 

conditions ranging from bad skin, asthma, and head lice to diseases like malaria and 

cancer.  Arsenic was a key component in Salvarsan, the first chemotherapy treatment, 

created by Paul Ehrlich who later won the Nobel Prize for medicine.  Salvarsan and its 

successor Neosalvarsan were used as treatments for syphilis as late as the 1940s (Nriagu, 

2002).  Organoarsenicals are still the last resort treatment in a number of diseases such as 

sleeping sickness, and relapsed acute promyelocytic leukemia (Nriagu, 2002; Tallman, 

2007).  Metal-arsenic compounds, including lead and copper complexes, were often 
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sprayed on crops as insecticides from the mid-1800s to the late-1900s, and a solution of 

copper, chromate, and arsenic was used until 2004 in the treatment of wood to prevent 

insect rot (Nriagu, 2002; Oremland and Stolz, 2003; Christen, 2006).  In addition to its 

use as an insecticide and rodenticide, arsenic compounds have also been used as a green 

dye for decorative purposes including wallpaper, artificial flowers, birthday cake 

decorations, toys, and clothing (Aronson, 2005; Hindmarsh and Savory, 2008).  Of 

course, the use of arsenic in medicines, on crops, and in decoration often inadvertently 

harmed people.  For instance, children in the 19th century were poisoned after eating 

sweets colored with arsenic compounds (Taylor, 1875).  In a recent study, it has been 

suggested that the madness of King George III of England may actually have been 

exacerbated by the presence of arsenic in some of the very medicines intended to help 

cure him (Cox et al., 2005).  Similarly, Napoleon Bonaparte may have been chronically 

poisoned either on purpose, by arsenic administered in his food, or accidentally, by toxic 

gases exuded from the arsenic-painted wallpaper in his rooms during his exile on St. 

Helena, although his actual cause of death is still debated (Weider and Fournier, 1999; 

Lin et al., 2004; Aronson, 2005; Hindmarsh and Savory, 2008). 

Because of its high toxicity to humans and its constant presence in the water 

supply, it is important to try and understand the chemistry of arsenic in the environment.  

A simplistic view of the arsenic cycle is illustrated in Figure 2.  Arsenic can enter the 

environment through both natural geologic and anthropogenic processes.  Arsenic is 

released into the environment through volcanic and tectonic activity and the weathering 

of arsenic minerals (Cullen and Reimer, 1989; Newman et al., 1997); anthropogenic 

sources of arsenic are mainly produced as industrial by-products.  For instance, 

 7



organoarsenicals are a common addition in chicken feed to prevent intestinal parasites 

and subsequently high levels of arsenic are released in the chicken effluent 

(Mukhopadhyay et al., 2002).  Arsenic in the water supply can be adsorbed onto 

sediments, oxidized and reduced by microbes, and also taken up by larger organisms.  

These organisms may store arsenic in their tissues, or convert it into arsenosugars, 

arsenolipids, methylated species, or other compounds.  These arsenic species are 

eventually passed up the food chain to larger animals and cycled back into the 

environment (Mukhopadhyay et al., 2002).  The role that microbial species play in the 

arsenic cycle is complicated and largely unknown, and by studying them we can gain key 

insights into how microbes can affect water and soil quality and even how to use them to 

bioremediate contaminated sites.   

 

Microorganisms and Arsenic 

To date, only a few more than 30 microorganisms are known that can use arsenic 

as an energy source, while many more microbes can reduce or oxidize arsenic as a 

detoxification mechanism but do not harvest energy from the process (Oremland et al., 

2009).  Figure 3 is a phylogenetic tree illustrating the relationships of As-redox 

microorganisms.  As can be seen in the figure, almost all As-redox microbes belong to 

the Domain Bacteria, one of the three domains of life.  The other two Domains are the 

Archaea and the Eukarya.  Members of the Bacteria and the Archaea are prokaryotic 

organisms, while the Eukarya contain eukaryotic organisms.  There are at least 17 major 

groups (phyla) within the Bacteria.  Among the Bacteria, As-redox microbes belong to a 

variety of these phyla including Deinococcus-Thermus, Deferribacter, Gram-Positives, 
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and all divisions (alpha, beta, gamma, delta, and epsilon) of the Proteobacteria (Ehrlich, 

2002; Oremland and Stolz, 2003).  The Domain Archaea contains 3 major phyla: 

Crenarchaeota, Euryarchaeota, and Korarchaeota.  Archaea were originally thought to 

consist mainly of “extremophiles,” with the Crenarchaeota phylum incorporating 

psychrophiles, sulfur-respiring microbes, and some thermophilic microbes and the 

Euryarchaeota phylum incorporating methanogens, halophiles, and some thermophilic 

microbes.  However, not all Archaea are extremophiles.  They are also present in 

moderate environments such as marine water, sediments, forests, and freshwater lakes at 

temperatures and chemical conditions that are not so drastic (Schleper et al., 2005).  

Indeed, one group of Crenarchaeota have been recognized to constitute a significant 

proportion, up to 20%, of the marine prokaryotic population (DeLong, 2003).   

In arsenic microbiology, much less is known about As-redox organisms within the 

Archaea.  Currently, the only archaeal species known to reduce arsenate for energy gain 

are Pyrobaculum arsenaticum and P. aerophilum (Huber et al., 2000), while the archaeon  

Sulfolobus acidocaldarus strain BC is capable of arsenite oxidation, but not for energy 

gain (Sehlin and Lindström, 1992; Ehrlich, 2002).  Due to the diverse habitats of archaea, 

and also considering how the As-redox capability is widespread in the bacterial domain, 

it is likely As-redox is more extensive among the archaea than currently documented.  

Although arsenic can occur in four different oxidation states, microbes 

predominantly mediate electron transfer among only two—AsV and AsIII; energy gain 

from redox reactions involving As0 and As−III has not yet been observed (Oremland and 

Stolz, 2003).  In aqueous environments, AsIII and AsV are the main oxidations states, but 

the proportions of these two oxidation states depend on a number of factors including the 
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biological processes in the surrounding environment, the redox potential, and the pH 

(Lièvremont et al., 2009).  In oxic environments, AsV is found predominately in the form 

of H2AsO4
– (at pH below ~6.9) and HAsO4

2– (at pH above ~6.9), while AsIII is found in 

the form H3AsO3 until pH > 9.2 (Francesconi and Kuehnelt, 2002; Inskeep et al., 2002; 

Le, 2002).  Arsenate is less mobile than arsenite (Cullen and Reimer, 1989) and it often 

co-precipitates (sorbs) with ferric iron or sulfur (Foster, 2003; O’Day et al., 2004).  It also 

adsorbs to clay, calcite, organic matter, and iron and aluminum oxides (Cullen and 

Reimer, 1989; Morin et al., 2003), making arsenic easily removed from solution and 

potentially less bioavailable for microbial use.  However, some studies have shown that 

microbes are capable of leaching arsenic from mineral substrates, either by using the 

arsenic directly or by metabolizing other ions such as FeIII in the minerals and thereby 

releasing the arsenate into the water (Harrington et al., 1998; Oremland et al., 2002b). 

Arsenate reduction to arsenite for energy gain is a relatively recently recognized 

process, with the first isolate, epsilon-Proteobacterium Sulfurospirillum arsenophilum 

strain MIT-13, isolated by Ahmann et al. in 1994 and subsequently genomically 

characterized in 1999 (Stolz et al., 1999).  MIT-13 was obtained from sediments in the 

Aberjona River watershed of suburban Boston, MA; the Aberjona is heavily 

contaminated with arsenic from pesticide production wastes (Ahmann et al., 1997).  

Since MIT-13’s discovery, the arsenate respiratory ability has been found to be 

widespread throughout different phyla in the Bacteria including the gamma-, delta-, 

epsilon-Proteobacteria, the Gram-Positives, and the Deinococcus-Thermus (see Figure 3).  

Arsenate-respiring microbes come from a wide variety of environments, including lakes, 

soda lakes, salt and freshwater marshes, and contaminated sediments from gold mines 
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and watersheds (Dowdle et al., 1996; Newman et al., 1997; Stolz et al., 1999; Santini et 

al., 2002; Oremland et al., 2005; Lear et al., 2007; Switzer Blum et al., 2009), and are 

adapted to a range of living conditions.  For example, P. arsenaticum and P. aerophilum 

are adapted to high temperatures (95°C) (Huber et al., 2000), and Halarsenatibacter 

silvermanii strain SLAS-1 is an extreme halophile (a salt-loving microorganism) 

(Oremland et al., 2005; Switzer Blum et al., 2009).   

MIT-13 anaerobically oxidizes lactate using arsenate, nitrate, or fumurate as its 

terminal electron acceptor (Ahmann et al., 1994; Newman et al., 1998).  Almost all 

arsenate reducers are able, like MIT-13, to use other electron acceptors, such as selenate, 

nitrate, nitrite, sulfate, FeIII, thiosulfate, sulfur, dimethylsulfoxide, and trimethylamine 

oxide – in fact, all of these electron acceptors, in addition to arsenate, can be used by 

Sulfurospirillum barnesii (Oremland et al., 1994; Laverman et al., 1995).  In nature, 

arsenic often interacts with chemical species such as sulfide, nitrate, and FeOOH, which 

may help explain why arsenate reducers are often able to use a variety of electron 

acceptors (Oremland and Stolz, 2003).  However, one obligate arsenate reducer has been 

isolated: the delta-Proteobacterium strain MLMS-1 from Mono Lake, California, which 

couples sulfide oxidation with arsenate reduction (Hoeft et al., 2004). 

Metabolically, two pathways are known for arsenate reduction, one of which is 

for detoxification purposes, and one of which can be used for energy gain.  The 

detoxification pathway has been well studied and characterized (see Mukhopadhyay and 

Rosen, 2002; Stolz et al., 2006; and Páez-Espino et al., 2009 for reviews).  In brief, the 

ars operon in many microbes is composed of up to 5 genes, arsRDABC, but at minimum 

contains three genes: arsR, which encodes a transcriptional repressor, arsB, a 
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transmembrane efflux pump, and arsC, an arsenate reductase.  When present, the proteins 

encoded by arsA and arsD help the efflux pump encoded in arsB (Lièvremont et al., 

2009).  In the respiratory pathway, sometimes called dissimilatory arsenate respiration, a 

respiratory arsenate reductase consisting of two subunits (ArrA and ArrB) carries out 

arsenate reduction.  The reductase is encoded by the arr operon which always includes 

the arrA and arrB genes, with some strains containing an additional membrane subunit 

ArrC (Páez-Espino et al., 2009).   

Arsenite oxidation comprises the other half of the microbial As-cycle.  Microbial 

arsenite oxidation is a process that has been known and studied since the early 20th 

century (Green, 1918), with many microorganisms known to be capable of the process 

(e.g., Anderson et al., 2002; Gihring and Banfield, 2001; Muller et al., 2006).  The 

arsenite oxidase protein structure has been purified and crystallized from several 

microbes (Ellis et al., 2001, Santini and vanden Hoven 2004; vanden Hoven and Santini 

2004).  Three different arsenite oxidases have been identified, but are homologous in 

structure (Quéméneur et al., 2008).  The enzyme is a member of the DMSO reductase 

family and consists of two subunits, AoxA and AoxB, encoded by the aoxA and aoxB 

genes (alternatively known as asoA and asoB or aroA and aroB) which are expressed in 

the presence of arsenic (Inskeep et al., 2007; Lièvremont et al., 2009; Páez-Espino et al., 

2009).  The arsenite oxidase enzyme may be an ancient protein predating the divergence 

between Archaea and Bacteria (Lebrun et al., 2003), and it has been suggested that AsIII 

may have been one of the main energy sources involved in early earth metabolisms 

(Lièvremont et al., 2009). 
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Overall, arsenite oxidizers, like arsenate reducers, have been isolated from a wide 

variety of environments, including stratified soda lakes, hot springs, gold mines, arsenic-

contaminated waters, soils, and animal insect-repellants (Santini et al., 2000; Gihring et 

al., 2001; Langner et al., 2001; Ehrlich, 2002; Oremland et al., 2002b; Donahoe-

Christiansen et al., 2004).  Arsenite oxidizers (see Figure 3) can be grouped into 

heterotrophic oxidizers, which convert AsIII on the cell’s outer membrane into AsV as a 

detoxification technique, and chemoautotrophic oxidizers, which use AsIII as an electron 

donor to reduce either oxygen or nitrate, with the energy being harnessed for growth  

(Lièvremont et al., 2009).  Currently, oxygen and nitrate are the only two electron 

acceptors known for respiratory AsIII oxidation, but other electron acceptors may be 

discovered in the future. 

Chemoautotrophic arsenite oxidizers have mainly been found in extreme (e.g., 

high pH, high salt content) environments, but have also been found in non-extreme 

environments such as freshwater (Garcia-Dominguez et al., 2008).  They are mainly 

members of the alpha-Proteobacteria, with a few examples in the beta-Proteobacteria, 

including Azoarcus sp. DAO1 (Rhine et al., 2006) and Hydrogenophaga CL-3 (Garcia-

Dominguez et al., 2008), and the gamma-Proteobacterium Alkalilimnicola ehrlichii strain 

MLHE-1 (Hoeft et al., 2002; Oremland et al., 2002a).  However, there may be more 

chemoautotrophic arsenite oxidizers in other bacterial – or even archaeal phyla – that 

have not yet been discovered or characterized (Garcia-Dominguez et al., 2008; Oremland 

et al., 2009).  The only known arsenite oxidizer in the archaeal domain, Sulfolobus 

acidocaldarius strain BC is, like most arsenite oxidizers, a heterotrophic oxidizer that 
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does not harvest energy from the oxidation reaction (Lindström and Sehlin, 1989; Sehlin 

and Lindström, 1992). 

Arsenite oxidation takes place both aerobically and anaerobically, and sometimes, 

as in the case of Thermus strain HR13, oxic conditions lead to detoxification of arsenite 

while anoxic conditions result in respiration of arsenate (Gihring and Banfield, 2001).  

Recently, microbes conducting anoxygenic photosynthesis using arsenic as the electron 

donor were isolated from microbial mats in anoxic brine pools fed by high-arsenite, high-

sulfide hot spring waters from Mono Lake (Kulp et al., 2008).  These purple bacteria are 

the first reported to use arsenite oxidation for photosynthesis. 

In Tutum Bay, the arsenic concentrations in the hydrothermal vent fluids are as 

high as 950 μg/L (Price and Pichler, 2005).  This site is ideal for investigating the role of 

microorganisms in mediating As-redox reactions, and for broadening our understanding 

of As-redox at elevated temperatures.  Following is a brief overview of the field site.  For 

more in-depth discussions of the geologic and geochemical setting, see, e.g., Wallace et 

al, 1983; Pichler and Dix, 1996; Pichler and Veizer, 1999; Pichler et al., 1999a,b; Price 

and Pichler, 2005; Pichler et al., 2006; Price et al., 2007. 

 

Tutum Bay 

 Tutum Bay, off the coast of Ambitle Island, Papua New Guinea (Figure 4a), is a 

unique, arsenic-rich, shallow-sea hydrothermal system located in a coral reef 

environment.  Ambitle, with its northeastern neighbor Babase Island, make up the Feni 

Islands, the southeasternmost island group in the 260 km long Tabar-Feni chain of 

eastern Papua New Guinea.  The Tabar-Feni chain is a group of fore-arc alkaline 
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volcanoes on the North Bismarck Plate (Hamilton, 1979). The Pacific Plate is subducting 

below the North Bismarck Plate along the West Melanesian Trench (Hamilton, 1979) 

(Figure 5).  Ambitle is part of a Quaternary stratovolcano (Wallace et al., 1983).  Rising 

450 m above sea level, Ambitle is a diamond-shaped island approximately 12 km wide 

and 14 km from north to south that is mostly covered in dense rain forest.  The human 

population of the Feni Islands is just over 1000 as of 1983, and the population of Ambitle 

is mainly subsistence farmers who have minimal impact on the nearshore environment 

(McCloskey, 2009).  Several hot mud pools, fumaroles, and springs with chloride or acid-

sulfate waters dot the island (Pichler and Dix, 1996).   

Off the west coast of Ambitle, Tutum Bay contains a hydrothermal system located 

among coral-algal reefs 5 – 10 mbsl (Pichler et al., 1999a).  Two types of hydrothermal 

venting occur in Tutum Bay: focused discharge from discrete vents 10 – 15 cm in 

diameter, and diffuse discharge of gas bubbles through unconsolidated medium to coarse-

grained carbonate sand and gravel on the seafloor (Figures 6 – 8).  The vents audibly 

discharge fluid at an estimated rate of 300 – 400 L/min (Pichler and Dix, 1996), and vent 

fluid temperatures range from 89 – 98°C (Pichler et al., 1999a). 

Compared to ambient seawater, the Tutum Bay hydrothermal fluids are enriched 

in As, B, Mn, Si, Fe, and HCO3
−, and depleted in Na, Cl, SO4

2−, and Mg (Pichler et al., 

1999a; Price et al., 2007).  Arsenic is the only potentially toxic element to be particularly 

elevated, with hydrothermal fluids containing up to ~950 μg/L AsIII, compared to the 

typical seawater background concentration of ~2.4 μg/L arsenic (Price et al., 2007).  

Rocks and corals near vent orifices were coated in arsenate-rich FeIII-oxyhydroxide 

precipitates (Figure 8) which ranged from soft orange and brown layers to hard greenish-
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brown layers (Pichler et al., 1999b).  The oxyhydroxides contained 6.2 wt% arsenic when 

measured by neutron activation (Pichler and Veizer, 1999). 

 The hydrothermal vent orifices in Tutum Bay expel As exclusively in the form of 

AsIII (Pichler et al., 1999a; Price and Pichler, 2005; Price et al., 2007), and as such can be 

viewed as point sources for the release of AsIII into the hydrothermal system.  It is 

believed that the source of arsenic in the hydrothermal fluids is due to dissolution of 

arsenopyrite underneath Ambitle Island, which is then transported by the hydrothermal 

fluids (Pichler et al., 1999a).  In this dissertation, I focus on Transect 4B (Figure 4b), 

which denotes a 300 m long sampling area starting at Vent 4 and extending southwest for 

30 m and then due west (to avoid coral reefs) for an additional 270 m.   

Along Transect 4B, the major anion, cation, and arsenic concentrations in the 

porewaters were determined by Roy Price and Thomas Pichler at the University of South 

Florida; redox sensitive species were determined on site by D’Arcy Meyer-Dombard and 

Jan Amend.  In the vent fluids, concentrations of arsenite up to 950 μg/L have been 

measured (Price and Pichler, 2005).  With increasing distance from the vent, the 

hydrothermal influence lessens, and at 300 m distance the AsIII concentration is 2.01 μg/L, 

less than the local seawater level of 2.6 μg/L.  The AsV concentration is ~ 7 – 94 times 

the local concentration of 2.3 μg/L except for the 20 and 240 m sites where the 

concentration was approximately ambient.  The pH is circumneutral along the entire 

transect, while the temperature drops off quickly from 95°C at the vent to ambient 

temperatures around 30 m distance. 

Figure 9 illustrates a schematic view of a hydrothermal vent in Tutum Bay and the 

locations at which we could likely expect to find microbial AsIII oxidizers and AsV 
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reducers.  In Tutum Bay, the vents act as point-sources of arsenite, so arsenite oxidizing 

microorganisms in the water column and also in the sediment-water interface and upper 

layers of the sediment could take advantage of the chemical disequilibria created where 

expelled vent fluids mix with oxidized seawater.  This microbially-mediated AsV 

precipitation may be incorporated into the ferric-oxy-hydroxide precipitates that coat 

rocks and corals around the vents (Figure 8).   Within the coatings, AsV could be reduced 

in anoxic internal layers, which may or may not be biologically mediated.  The 

microbiological communities in these coatings were investigated recently and distinct 

communities of bacteria and archaea were recovered from differently colored coatings 

that grew in close proximity (Meyer-Dombard et al., 2005).  My research focuses mainly 

on the porefluids and sediments found in the upper 10 cm of the seawater-seafloor 

interface, where microbially-mediated AsIII oxidation and AsV reduction are both possible.   

 

Outline of Dissertation 

This dissertation discusses the microbial life and energy potential of an arsenic-

rich shallow-sea hydrothermal system of Tutum Bay, Ambitle Island, Papua New Guinea.  

Chapters 2, 3, and 4 are written as manuscripts for submission to scientific journals and 

each of these chapters contains its own introduction, materials and methods, results, 

discussion, and conclusion sections.  A glossary of terms is provided in Appendix A. 

In Chapter 2, I calculate the Gibbs free energy of 19 potential chemolithotrophic 

reactions at 9 sites in Tutum Bay based on the geochemical composition of the 

porewaters using geochemical data from Roy Price and Thomas Pichler.  To gain energy 

for growth, chemotrophic microbes catalyze oxidation-reduction reactions.  The amount 
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of energy available from metabolic redox reactions can inform us about the types of 

microbes that may be found in an environment.  The amount of energy available from 

any given reaction depends on the chemical composition of the system, its temperature, 

pressure, and the standard free energy of the reaction, and can be calculated by the 

following equation: 

ΔGr =  ΔGrº + RT ln Q      (1) 

where R is the universal gas constant (8.314 J K-1 mol-1), T is the temperature (in K), and 

ΔGrº is the sum of the standard Gibbs free energy of reaction at the temperature and 

pressure of interest, determined by the equation  

ΔGrº = ∑ νi ΔGiº      (2) 

where the stoichiometric reaction coefficient νi is negative for reactants and positive for 

products, and Q is the activity quotient,  

Q      (3)  iv
ia∏=

where  is the activity of species i raised to its stoichiometric reaction coefficient νi with 

ν negative for reactants and positive for products.  If ΔGr is negative, the reaction is 

energy-yielding and organisms can gain energy by catalyzing that reaction.  A positive 

value, on the other hand, means that the reaction requires energy to proceed in the 

direction written and thus consumes energy.  This chapter includes a discussion of the 

variations in the Tutum Bay energy yields in relation to other systems, and a discussion 

of potential organisms that may inhabit Tutum Bay based on the energy framework 

constructed.  This work is written for submission to Geobiology. 

ia

Chapter 3 discusses the variety of archaea present at 5 sites in Tutum Bay.  Very 

little is known about archaea that are capable of arsenic redox, so I chose to examine the 
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archaeal diversity of Tutum Bay using 16S rRNA clone library construction, a culture-

independent technique.  The bacterial diversity was investigated by our colleagues at the 

University of South Florida and is not discussed in detail in this dissertation.  The 

phylogenetic relationships of the 16S rRNA sequences identified here are compared to 

other archaea and this survey provides a view of life in an extreme environment.  This 

chapter is written for submission to Environmental Microbiology and follows the 

formatting guidelines of the journal. 

In Chapter 4, I discuss culture-dependent experiments that investigate the As-

redox capabilities of microbes enriched from Tutum Bay sediments with a particular 

emphasis on AsV-reduction.  One of the key aims of the NSF proposal that funded our 

research in Tutum Bay was to determine whether microbes were actively involved in 

arsenic cycling in the bay.  To examine this possibility, bulk DNA extracted from 

sediments and enrichment cultures was screened for the existence of the arsenate 

reduction respiratory gene arrA and arsenite oxidase genes, and bulk RNA extracted from 

enrichment cultures grown in AsV-rich growth medium were screened for arrA gene 

expression.  An incubation experiment to observe microbially-mediated As-reduction is 

also discussed, along with an isolate obtained from Tutum Bay porefluids and sediments 

that was grown in AsV-rich medium.  This chapter is to be submitted to Applied and 

Environmental Microbiology. 

Finally, in Chapter 5, I summarize future directions for this research and 

implications of this work.  In particular, I discuss bioremediation and how the search for 

life in other extreme environments, including those on other planetary bodies in our solar 

system, may be informed by the work in this dissertation. 
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Figure 1.  Hydrothermal vent systems around the world where biota have been studied.  

Solid circles indicate deep-sea (>200 m depth) hydrothermal sites; blue rings indicate 

shallow-sea (<200 m depth) hydrothermal sites.  Site indicated with red ring is the 

shallow-sea hydrothermal system at Tutum Bay, Ambitle Island, Papua New Guinea.  

Figure adapted from Tarasov et al., 2005. 
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Figure 2.  The Arsenic Cycle.  Arsenic is emitted into the environment through geologic 

activities (A) and anthropogenic sources (B).  Once in the water supply (C), arsenic can 

be oxidized and reduced by microbes, stored in sediments, or converted into arsenic 

compounds by algae and other marine organisms that are eaten and returned to the 

environment (D).  Figure adapted from Mukhopadhyay et al., 2002. 
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Figure 3.  Phylogenetic tree showing prokaryotes from the Domain Archaea (top) and 

Domain Bacteria (bottom) that are capable of As-redox.  The dissimilatory AsV-reducing 

prokaryotes (DARPs) are indicated by blue circles, chemoautotrophic AsIII oxidizers 

(CAOs) are indicated by red squares, and heterotrophic AsIII oxidizers (HAOs) are 

indicated by gold triangles.  Arsenic-resistant microorganisms are not shown.  Figure 

from Oremland and Stolz, 2005. 
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Figure 4a) Map showing location of Tutum Bay, Ambitle Island, Papua New Guinea. 

b) Plan view of Tutum Bay hydrothermal area showing sampling transect constructed 

from Vent 4B.  Water depth indicated by dashed lines. 
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Figure 5.  Tectonic setting of Ambitle and Babase Islands (indicated by blue-outlined 

box).  The yellow boxes indicate other known hydrothermal sites, the large purple arrows 

indicate plate motion, and the curved purple arrows indicate the sense of rotation on the 

microplates as defined by Global Positioning System geodesy (Tregoning et al., 1998) or 

by the opening and westward propagation of the Woodlark Basin (Taylor et al., 1995).  

Figure adapted from Shipboard Scientific Party, 2002. 
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Figure 6.  Area surrounding Vent 4, Tutum Bay.  Diffuse discharge of hydrothermal 

fluids occurs through a field of volcanic boulders with minor coral growth.  Depth is 

approximately 10 m and width of view is approximately 15 m.  Photo courtesy of 

Thomas Pichler. 
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Figure 7.  Hydrothermal vents in Tutum Bay with diffuse streams of gas bubbles venting 

from surrounding unconsolidated sediment (field of view ~5 m across).  Photo courtesy 

of Thomas Pichler. 
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Figure 8.  Close-up of hydrothermal vent orifice showing orange-colored iron-

oxyhydroxide coatings on surrounding rocks and coral. Vent orifice ~5 cm.  Photo 

courtesy of Thomas Pichler.
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Figure 9.  Schematic showing hydrothermal Vent 4 in Tutum Bay and its surrounding 

environment with likely locations of microbial AsIII oxidizers and AsV reducers indicated.   
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ABSTRACT 

The hydrothermally-influenced sediments of Tutum Bay, Ambitle Island, Papua 

New Guinea, are ideal for investigating the chemolithotrophic activities of microbes 

involved in arsenic-cycling because hydrothermal vents in the bay expel fluids with 

arsenite (AsIII) concentrations as high as 950 μg/L. These hot (~98ºC), slightly acidic (pH 

~6), chemically reduced shallow-sea vent fluids mix with cooler, oxidized seawater to 

create steep gradients in temperature, pH, and concentrations of As-, N-, Fe-, and S-redox 

species.  Near the vents, iron oxyhydroxides precipitate with up to 6.4 wt% arsenate 

(AsV).  Here, chemical analyses of sediment porewaters from 10 sites along a 300 m 

transect were combined with standard Gibbs energies to evaluate the energy available     

(−ΔGr) from 19 potential chemolithotrophic metabolisms, including AsV reduction, AsIII 

oxidation, FeIII reduction, and FeII oxidation reactions. The 19 reactions yielded between 

−2 kJ/mol e− and −94 kJ/mol e−, with aerobic oxidation of sulfide and arsenite the two 

most exergonic reactions.  Although arsenate reduction with sulfide as the electron donor 

and iron reduction with sulfide and arsenite as electron donors were among the least 

exergonic reactions investigated, they are still potential net metabolisms in this 

hydrothermal ecosystem. 

Energy yields from all but one of the arsenic redox reactions correlate linearly 

with pH, increasing with increasing pH for AsIII oxidation and decreasing with increasing 

pH for AsV reduction.  Many of the reactions evaluated in this study are known metabolic 

strategies utilized by microbes in hydrothermal and geothermal sites, and the calculated 

exergonic energy yields suggest that microorganisms utilizing diverse metabolisms may 
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be present in Tutum Bay.  Studies such as this can help target sampling sites for future 

microbial collection and cultivation studies. 

 

INTRODUCTION 

Chemolithotrophic microorganisms can be key primary producers in geochemical 

environments where temperatures are high and light may be scarce (Inskeep et al., 2005).  

A broad diversity of chemolithotrophic archaea and bacteria have been identified in deep-

sea hydrothermal systems (e.g., Reysenbach et al., 2000; Huber et al., 2002; Schrenk et 

al., 2003; Nakagawa et al., 2006) shallow-sea hydrothermal systems (e.g., Sievert et al., 

2000; Miroschnichenko, 2004; Nakagawa et al., 2005; Hirayama et al., 2007; Maugeri et 

al., 2009), terrestrial hot springs (e.g., Barns et al., 1994; Donahoe-Christiansen et al., 

2004; Meyer-Dombard et al., 2005; Wilson et al., 2008; Boyd et al., 2009), and in the 

deep subsurface (e.g., Stevens and McKinley, 1995; Parkes et al., 2000; Sørensen et al., 

2004; Kovacik et al., 2006, Trimarco et al., 2006).  Able to metabolize simple inorganic 

compounds, chemolithotrophs can play an important role in the biogeochemical cycling 

of many elements, including arsenic and iron (Brock and Gustafson, 1976; Reysenbach et 

al., 2000; Kulp et al., 2008).   

Several recent studies in hydrothermal ecosystems calculated redox reaction 

energetics to establish a quantitative framework within which to investigate the potential 

roles of chemolithotrophs.  For example, in one recent study of hot springs in 

Yellowstone National Park, USA (Shock et al., 2009), reactions yielded from around 0 to 

150 kJ/mol e- transferred.  Another study of four hot springs at acidic and near-neutral 

pH in Yellowstone showed that 33 chemolithotrophic reactions involving As, Fe, S, N, C, 
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and H2(aq) species yielded between −95 and +15 kJ/mol e− transferred (Inskeep et al., 

2005).  This range in energy was similar to that seen (~120 kJ/mol e−) in a similar study 

conducted in the hydrothermal system of Vulcano Island, Italy (Rogers and Amend, 

2006). 

 In the shallow-sea hydrothermal fluids at Tutum Bay, Ambitle Island, eastern 

Papua New Guinea (Fig. 1), arsenic and iron concentrations are highly elevated, with 

arsenite (AsIII) and Fe2+ levels measured as high as 950 μg/L and 0.81 mg/L, respectively.  

FeIII-oxyhydroxides with adsorbed and/or co-precipitated arsenate (AsV, up to 6.4 wt%) 

coat many rocks and corals near vent orifices (Pichler & Veizer, 1999).  Although high 

amounts of arsenic can be toxic to many microorganisms, some organisms can perform 

As-oxidation or As-reduction as metabolisms (for a review see Oremland and Stolz, 

2003).  Here in Tutum Bay, the co-occurrence of reduced and oxidized forms of As and 

Fe suggest active microbially mediated cycling of these metal(loid)s.  In this study, we 

calculated the Gibbs free energies for 19 chemolithotrophic reactions using a 

combination of in situ measurements and thermodynamic calculations, and we explore 

the potential of these reactions to support microbial metabolic activity.     

 

Study Site 

Ambitle, a volcanic island in eastern Papua New Guinea (Fig. 1), is part of a 

Quaternary stratovolcano in the Tabar-Feni island arc (Wallace et al., 1983).  Several hot 

mud pools, fumaroles, and springs with chloride or acid-sulfate waters dot the island 

(Wallace et al., 1983), while Tutum Bay, off the west coast, features shallow-sea 

hydrothermal vents among coral-algal reefs in 5 – 10 m water depth, circa 150 – 200 m 
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off shore (Pichler et al., 1999).  Two types of hydrothermal venting occur in Tutum Bay: 

focused discharge from 10 – 15 cm diameter orifices, and diffuse discharge of gas 

bubbles (94 – 98% CO2) through unconsolidated sediment on the seafloor (Pichler et al., 

1999; Price & Pichler, 2005).  Compared to ambient seawater, the Tutum Bay 

hydrothermal fluids are enriched in As, B, Mn, Si, Fe, and HCO3
−, and depleted in Na, Cl, 

SO4
2−, and Mg (Pichler et al., 1999; Price et al., 2007).  Arsenic is particularly elevated, 

with hydrothermal fluids containing up to ~950 μg/L AsIII, compared with ~5 μg/L total 

arsenic in local seawater.  Rocks and corals near vent orifices were coated in arsenate-

rich FeIII-oxyhydroxide precipitates.  These were varied in appearance, from soft orange 

and brown layers to hard greenish-brown layers; they contained up to 6.4 wt% arsenic, 

which is two orders of magnitude higher than that found in other marine FeIII-

oxyhydroxide deposits in hot spots and seamounts in the southwest Pacific (Stoffers et al. 

1993; Hein et al., 1994). 

 

METHODS 

Sampling and Laboratory Analyses 

A sampling transect was established beginning at one vent (designated Vent 4 in 

Pichler et al., 1999) and extended southwest for 30 m, then continued west out to 300 m.  

The change in direction was necessary to avoid coral reef outcrops.  A detailed discussion 

of sampling procedures and water analyses is given in Price et al. (2007).  In brief, 

porewaters were collected by SCUBA divers at 10 cm intervals up to 1 m depth with a 

specially-designed sampler.  Porewater temperature and pH were measured in situ using 

hand-held meters and probes.  Porewater samples were brought on ship for rapid analyses 
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of Σ PO4
3− and the redox-sensitive Fe2+, NO3

−, NO2
−, NH4

+, ΣS2-, and dissolved oxygen 

(DO) via portable spectrophotometers (HACH, Colorado), according to the 

manufacturer’s instructions.  The pH was re-measured on board using a pH meter with 

temperature compensation and results were very similar to in situ measurements.  Water 

samples were also collected and preserved for later analysis of major elements and 

arsenic concentration and speciation at the Center for Water and Environmental Analysis 

at the University of South Florida.  Concentrations of Na, Ca, Mg, K, Si, Sr, Mn, and B 

were measured via inductively coupled plasma-optical emission spectrometry (ICP-OES), 

and Cl−, Br−, and SO4
2- were measured by ion chromatography (IC).  Concentrations of 

arsenic were measured via hydride generation-atomic fluorescence spectrometry (HG-

AFS) and high pressure liquid chromatography (HPLC) was used to separate AsIII, AsV, 

dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) prior to detection by 

HG-AFS (see Price et al. (2007) and Price and Pichler (2005) for details).  The 

compositions of porewaters for the sites investigated are given in Table 1. 

 

Geochemical Calculations 

 The maximum amount of energy available from any chemical reaction is given by 

the Gibbs energy (ΔGr), which is a function of the chemical composition of the system, 

its temperature, pressure, and the standard Gibbs energy of reaction (ΔGr°).  The Gibbs 

energy can be calculated with the equation 

ΔGr = ΔGrº + RT ln Qr ,                 (1) 

where Qr is the reaction activity quotient, R is the universal gas constant, and T is the 

temperature in Kelvin.  Values of ΔGrº were calculated at the temperatures and pressures 
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of interest with the computer software package SUPCRT92 (Johnson et al., 1992), and 

thermodynamic properties given in Diakonov et al., 1994; Helgeson, 1985; Helgeson et 

al., 1978; King & Weller, 1970; Robie & Hemingway, 1995; Shock & Helgeson, 1988; 

Shock & Helgeson, 1989; Shock et al., 1989; Shock et al., 1997; Wagman et al., 1982.  

Values of Qr can be calculated from the equation 

Qr         (2) iv
ia∏=

where  is the activity of the ith species and νi is the stoichiometric reaction coefficient, 

which is positive for products and negative for reactants.  Activities were calculated from 

the measured porewater compositions (Table 1) using the geochemical speciation 

program module React in The Geochemist’s Workbench software package (v.7.0, 

Rockware, University of Illinois; Bethke and Yeakel, 2008).  Log activities of the 

aqueous species used in the energetics calculations are listed in Table 2.  To calculate 

ΔGr, activities of the dominant aqueous species were used, except in a few indicated 

cases where non-dominant species were substituted to keep the reactions consistent as 

written.  Activities of pure minerals were set to unity.   

ia

 Values of ΔGr were calculated for 19 inorganic redox reactions that represent 

potential chemolithotrophic metabolisms.  These reactions, listed in Table 3, involve the 

following aqueous species and one mineral: O2/H2O, H2AsO4
−/H3AsO3, NO3

−/NO2
−/NH4

+, 

SO4
2−/H2S, and Fe(OH)3(ferrihydrite)/Fe2+.  The ferric iron in Tutum Bay is 

predominately present as 2-line ferrihydrite (Pichler & Veizer, 1999).  The structure of 

ferrihydrite is still debated and thermodynamic data at elevated temperatures and 

pressures are not yet available; they are likely to be highly dependent on the particle size 

of ferrihydrite (Navrotsky et al., 2008).  To permit energy calculations of reactions with 
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ferrihydrite, we estimated the corresponding values of ΔGº at elevated temperatures using 

the van’t Hoff relation and thermodynamic properties at 25 ºC and 1 bar from Navrotsky 

et al. (2008). To facilitate direct comparison of energy yields between potential 

metabolisms, values of ΔGr for all redox reactions were normalized per mole of electrons 

transferred.  In addition, all reactions in the direction as written are exergonic. 

 

RESULTS AND DISCUSSION 

Composition of Porewaters 

 Geochemical analyses of Tutum Bay porewaters are given in Table 1.  The 

temperatures ranged from 69.9 to 81°C within the first 12 m, and then stayed constant at 

~30°C at 30 m and further distances.  The pH values were circumneutral at all sites, 

varying from 6.11 to 7.88.  The temperature, pH, and concentrations of several species 

(e.g., SiO2(aq), Mg2+, SO4
2-) demonstrate that porewaters at 0 – 12 m are dominated by 

hydrothermal fluid, while those further out are principally seawater.  However, As 

concentrations point to a hydrothermal influence even at 300 m.  All 10 sites are 

characterized by arsenic levels significantly higher than background total arsenic in local 

seawater (2.4 μg/L; Price et al., 2007).  Total arsenic in porewaters ranged from 6.5 to 

583.7 μg/L, with arsenite concentrations 1.8 – 395.7 μg/L, and arsenate concentrations 

2.4 – 188.0 μg/L.  Arsenate dominated arsenite at all sites except at 12, 20, and 240 m.  

Concentrations of Fe2+ were relatively low at all sites (≤ 0.13 mg/L), except at 30 m (0.81 

mg/L).  Concentrations of other redox species investigated were relatively constant at all 

sites. 
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Gibbs free energy calculations 

 The energy yields from the 19 redox reactions listed in Table 3 were calculated at 

up to 10 sites along the sampling transect.  Some reactions could not be evaluated at 

some of the sites, due to a lack of certain data.  For each reaction, the average energy 

yield (symbol) and range across the sites (horizontal lines) were calculated and plotted in 

Fig. 2.  Values of ΔGr are plotted from least exergonic at the top right to most exergonic 

at the bottom left, with a net range from –2.0 to −94.0 kJ/mol e−.  Aerobic sulfide 

oxidation yielded the highest average energy at –93.2 kJ/mol e−, followed closely by 

aerobic oxidation of AsIII (–76.0) and aerobic ferrous iron oxidation (−68.3).  The least 

exergonic reactions were anaerobic reduction of ferrihydrite with AsIII (−8.6) and 

ammonium oxidation to nitrite with nitrate as TEA (−14.8).  The only AsV reduction 

reaction investigated, with H2S as electron donor, also yielded minimal energy (−20.8).  

Three anaerobic AsIII oxidation reactions (9, 11, 15), with NO3
- or NO2

- as TEA, yielded 

moderate amounts of energy (−45.7, −34.9, −31.4, respectively), as did the anaerobic 

oxidation of H2S with ferrihydrite (−28.0).    

Values of ΔGr showed a moderately strong correlation with pH of the porefluid 

(R2 = 0.72 to 0.98) for all of the arsenic reactions except for reaction 18 which involved 

iron (see Fig. 3).  It can be seen that energy yields (ΔGr) increase with increasing pH for 

four of the five AsIII oxidation reactions (2, 9, 11, 15).  The opposite trend is true for the 

AsV reduction reaction (19), where energy yields decrease with increasing pH.  Reaction 

18 did not display any correlation between pH and ΔGr values.  No such correlations 

between energy and pH were observed for other reactions, nor were correlations seen 

between ΔGr values and temperature or ΔGr values and distance from the vent. 
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The energy yields calculated for the Tutum Bay system can be compared with 

those at other hydrothermal sites.  For example, the net range in ΔGr for inorganic redox 

reactions in the present study is 92 kJ/mol e−, compared to ~120 kJ/mol e− in the shallow-

sea hydrothermal system at Vulcano Island, Italy (Amend et al., 2003), and ~150 kJ/mol 

e− in an array of terrestrial hot springs at Yellowstone National Park, USA (Shock et al., 

2009).  It should be pointed out, however, that both the Vulcano study and the 

Yellowstone study were able to consider a far greater number of potential 

chemolithoautotrophic metabolisms—90 reactions at Vulcano and 150 at Yellowstone.  

This expanded coverage was possible there because more redox-sensitive compounds 

were above measurable detection limits, including H2 and CH4 in the gas phase.  In 

addition, the ranges of pH are broader at Vulcano (2.0 – 6.3) and Yellowstone (<2 to >9) 

than at Tutum Bay (6.1 – 7.9), which translates to variations in ΔGr for many redox 

reactions.  Similar to the ΔGr-pH trend observed in Tutum Bay (Fig. 3), most reactions 

investigated at Yellowstone showed this correlation (Shock et al., 2009).    Lastly, in the 

Vulcano system, concentrations of Fe2+ varied over 4 orders of magnitude and, 

consequently, the range of ΔGr values for Fe-redox reactions was > ~60 kJ/mol e−.  By 

comparison, at Tutum Bay, the concentrations of Fe2+ differed by less than 1 order of 

magnitude across all sites, and the corresponding ΔGr values of the iron redox reactions 

(3, 10, 12, 16, 17, 18) ranged by 74.1 kJ/mol e−. 

 

Microbial metabolic strategies 

Relatively few bacteria (and no archaea) are currently known to obtain metabolic 

energy from AsIII oxidation (Oremland and Stolz, 2003; Oremland et al., 2009).  
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Examples include the heterotrophic Hydrogenophaga strain NT-14, and the 

chemolithotrophic α-Proteobacteria NT-26 and BEN-5 isolated from Australian gold 

mines, all of which couple AsIII oxidation to O2 reduction (Santini et al., 2000; Santini et 

al., 2002; vanden Hoven and Santini, 2004), and the Soviet gold mine isolate 

Pseudomonas arsenitoxidans (Ilyaletdinov and Abdrashitova, 1981).  The latter species 

has been lost, preventing its further characterization, but the Australian isolates were 

grown at 28°C, similar to many of the temperatures recorded in Tutum Bay.  While there 

is no direct evidence of microbially-mediated As oxidation in the Tutum Bay 

hydrothermal system, we can use the energy framework developed in this study to 

constrain where this metabolic strategy is most favorable.  The high energy yield of 

reaction 2, aerobic arsenite oxidation, at all sites investigated suggests that microbes 

could catalyze this reaction for energy gain across Tutum Bay.  Reaction 2 was the most 

exergonic reaction investigated at 180 and 240 m, suggesting these sites in particular may 

host microbial consortia dominated by aerobic AsIII oxidizers.  Reaction 9, oxidation of 

AsIII with nitrate as the TEA, is catalyzed by the chemolithotrophic facultative anaerobe 

strain MLHE-1, isolated from the arsenic-rich waters of Mono Lake, California 

(Oremland et al., 2002).  The 200μM (0.015g/L) arsenic concentration of Mono Lake is 

approximately 15 times greater than Tutum Bay waters, but the significant amount of 

energy that could be gained from catalyzing reaction 9 (–39.0 to –53.5 kJ/mol e−) show 

that this metabolic process could also support microorganisms in the bay.  

Many of the other reactions investigated here are utilized by microorganisms in 

hydrothermal and geothermal sites and potentially support microorganisms in Tutum Bay 

as well.  Sulfur oxidation and reduction, for example, are widely utilized by 
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chemolithotrophs, especially thermophiles, as metabolic strategies.  Hydrothermal 

systems in both shallow-sea and deep-sea sites have included sulfide oxidizers.  Species 

of sulfide-oxidizing Thiomicrospira, for instance, have been observed in Milos, Greece 

and at deep-sea vents along the mid-Atlantic ridge, the Izu-Bonin arc in the Western 

Pacific, and in the Galapagos (Jannasch and Mottl, 1985; Muyzer et al., 1995, Brinkhoff 

et al., 1999; 2005; Kato et al., 2009).  Various Thiobacillus species are capable of sulfide 

oxidation coupled with oxygen and nitrate (Robertson and Kuenen, 2006). The sulfide 

oxidation reactions (1, 7, 8, 14), which used oxygen, nitrate, and nitrite as TEAs, all 

tended to yield the same amounts of energy (ranging between −48.8 and −93.4 kJ/mol e−) 

regardless of pH or temperature, and the aerobic sulfide oxidation reaction (1) was the 

most energetic reaction at all sites where it was evaluated, suggesting that 

microorganisms capable of any of these reactions could thrive throughout Tutum Bay. 

Reaction 5, the aerobic oxidation of ammonium to nitrate, yields −40.7 kJ/mol e− 

in Tutum Bay, a significant amount of energy.  The first isolated ammonia-oxidizing 

archaeon, Candidatus “Nitrosopumilus maritimus” (Könneke et al., 2005), was recently 

isolated from a tropical water environment at similar temperatures and pH values to those 

found in Tutum Bay and is believed to metabolize a reaction similar to reaction 5.  Based 

on 16S gene surveys, organisms similar to “Nitrosopumilus maritimus” and the archaeal 

marine sponge symbiont Cenarchaeum symbiosum, which contains putative ammonia-

oxidizing genes, have been identified in hydrothermally-influenced Tutum Bay sediment 

samples (Akerman and Amend, 2009); the energetics data in this study support the 

hypothesis that populations of microorganisms in the bay may be mediating similar 

NH3/NH4
+-oxidizing reactions for metabolic growth. 
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In Tutum Bay, the reduction of ferric iron produced −28.0 (reaction 17) and −8.6 

kJ/mol e− (reaction 18).  Reaction 18, the reduction of ferrihydrite coupled with arsenite 

oxidation, was the least energy yielding reaction observed in Tutum Bay, although the 

energy produced is still capable of supporting microbial growth; several studies have 

shown that some anaerobes can grow at energy yields close to ΔGr = 0 (Conrad et al., 

1986; Wu et al., 1994; Jackson and McInerney, 2002).  The reduction of ferric iron has 

previously been noted as an ability of all hyperthermophilic microorganisms, with many 

microbes able to harness energy from the reaction (Kashefi et al., 2002).  Thiobacillus 

species, in addition to oxidizing sulfur species, are also capable of oxidizing iron and 

although mainly found in highly acidic environments, some species are capable of 

growing in neutral pH (Robertson and Kuenen, 2006).  Other species capable of aerobic 

oxidation of ferrous iron include Sulfobacillus thermosulfidooxidans and S. acidophilus 

(Norris et al., 1996).  In addition, a number of species are able to use hydrogen gas as an 

electron donor in the reduction of ferric iron; however, H2(g) was measured at <0.01 

mmol/mol in Tutum Bay (Pichler et al., 1999), suggesting that reactions using H2(g) in 

this environment would be less energy-yielding and subsequently microbial species 

would be less likely to gain energy from such reactions. 

 

CONCLUSIONS 

In Tutum Bay, 19 different potential metabolic reactions were evaluated using in 

situ chemical composition and physical parameters and were found to yield a range of 

energy (−2.0 to −94.0 kJ/mol e−) across 10 different sample sites.  The top five most 

energy-yielding reactions used O2 and NO3
− as the terminal electron acceptor.  All 
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reactions yielded significant amounts of energy that could potentially support a variety of 

microbial life across a range of temperatures and pH values.  Although the hydrothermal 

system contains high amounts of arsenate, arsenite, and iron(III)-oxyhydroxide 

precipitates (predominately in the form of 2-line ferrihydrite), the most energy yielding 

reaction on average was aerobic sulfur oxidation.  Sulfur reduction and oxidation 

reactions are typically important and widespread in hydrothermal systems; sulfur redox 

reactions were the most energetic group of reactions evaluated in Tutum Bay and present 

a highly advantageous metabolic strategy for microorganisms.  Also of interest were the 

energy-yielding nitrogen redox reactions, which represent metabolic strategies for 

ammonia oxidizing archaea and bacteria.  The reactions involving arsenic and iron 

species are also known to support numerous microbial species, suggesting that Tutum 

Bay hydrothermal porewaters can support a variety of microbial communities that may 

play roles in the redox cycling of As, Fe, N, and S.  The pairing of energy with geography 

presents the possibility of using the calculated energetics as a framework for locating 

sampling areas where particular energy sources may be utilized by members of the local 

microbial community, and therefore microbial species with specific metabolic strategies 

may be targeted for sample collection. 
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Table 1.  Composition of hydrothermal pore waters along Transect 4B (distance 
from vent orifice in m) in Tutum Bay, 2005 
 

 0.5 7.5 12 20 30 60 140 180 240 300 P.I. a 
T (°C) 69.9 73.94 81 29.69 33.22 33.9 34 32.8 29.72 29.69 n.a. 

pH 6.14 6.89 6.22 7.64 6.9 6.34 6.11 7.84 7.88 7.08 7.6 
HCO3

− 327 415 605 156 176 264 244 142 154 167 186.2 
Na 975 2680 2132.5 9340 10283 8687 8975 9930 10300 10500 10800 
K 147 234 149.8 356 394 351 365 403 387 401 401 

Mg 164 636 143.8 1100 1257 1067 1075 1260 1260 1305 1289 
Ca 122 121 223.5 372 406 377 369 355 395 411 416 

Fe2+ 0.13 n.a. 0.04 0.11 0.81 0.05 n.a. 0.01 0.02 0.01 n.a. 
Sr n.a. n.a. 6.425 7 7.2 6.9 6.7 10 6.9 7.2 6.9 

Cl− 2069 6066 2753 15818 19040 16198 15715 18529 19350 20115 n.a. 
Br− 12 15.5 7.5 46.7 55.5 49.7 46.4 54.1 59 60 n.a. 

SO4
2− 879.5 1154.4 1174 2405.2 2734.4 2465.6 2401.3 2688 2785 2857.1 n.a. 

PO4
3− 1.43 0.19 1.48 0.67 0.23 1.8 0.67 0.08 0.03 0.2 n.a. 

As(III) n.a. 2.16 395.72 4.19 2.31 1.97 1.8 4.89 5.07 2.01 1.9 
As(V) n.a. 29.78 188 2.35 18.19 49.63 45.4 14.75 2.72 12.14 1.4 
NO3

− 11.8 8.3 1.3 4.1 4.3 6.4 8.5 7.5 7.1 8.4 n.a. 
NO2

−   0.008 0.0155 0.004 0.016 0.022 0.02 0.025 0.4 0.015 0.023 n.a. 
ΣS2− 8 3 n.a. n.a. 5 4 3 n.a. n.a. 2 n.a. 

NH3(aq) 0.38 0.02 0.35 0.11 n.a. n.a. 0.08 0.06 n.a. 0.07 n.a. 
B n.a. n.a. 0.75 5.2 4.8 5.6 5.9 n.a. 4.4 4.7 0.5 
Si n.a. n.a. 91.3 13.6 2.8 15.6 16.4 2 0.4 1 2 

O2(aq) 3 6.9 2.4 2.8 2 1.8 3.5 2.6 3.7 1.9 n.a. 

 
All concentrations are in mg/L except for As(III), As(V), and ΣS2− which are in μg/L. 
n.a. = not available 
a P.I. = Picnic Island Control.  Values from 2003. 
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Table 2.  Log activities of aqueous species used in energetic calculations 
 
 0.5 7.5 12 20 30 60 140 180 240 300 
H+ -6.14 -6.89 -6.22 -7.64 -6.9 -6.34 -6.11 -7.84 -7.88 -7.08 
H2O(l)

a 0.998 0.995 0.997 0.985 0.983 0.986 0.985 0.984 0.983 0.983 
O2(aq) -4.01 -3.64 -4.10 -4.00 -4.14 -4.19 -3.90 -4.02 -3.87 -4.16 
H3AsO3(aq) n.a. -7.54 -5.26 -7.27 -7.51 -7.58 -7.62 -7.21 -7.20 -7.57 
H2AsO4

− n.a. -7.19b -5.93 -9.15 b -7.60 b -6.73 -6.65 -8.56 b -9.34 b -7.93 b 
NO3

− -3.83 -4.03 -4.81 -4.37 -4.36 -4.18 -4.06 -4.11 -4.14 -4.07 
NO2

− -6.87 -6.62 -7.19 -6.65 -6.52 -6.55 -6.46 -5.26 -6.68 -6.50 
NH4

+ -4.77 -6.11 -4.83 -5.41 n.a. n.a. -5.54 -5.68 n.a. -5.61 
SO4

2− -2.64 -2.78 -2.63 -2.60 -2.57 -2.58 -2.60 -2.57 -2.56 -2.56 
H2S(aq) -6.76 -7.61c n.a. n.a. -7.20 -7.05 -7.12 n.a. n.a. -7.68c 
Fe2+ -6.19 n.a. -6.89 -6.47 -5.64 -6.82 n.a. -7.54 -7.23 -7.53 

 
a Represents activities, not log activities 
b HAsO4

2− dominates, but in the energy calculations the log activities of H2AsO4
− were 

used throughout 
c HS− dominates, but in the energy calculations the log activities of H2S(aq) were used 
throughout 
n.a. = not available 
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Table 3. Chemolithotrophic reactions evaluated for energy yield in Tutum Bay 
 Reaction                e− transferred 
1. H2S(aq) +  2O2(aq)  →  SO4

2−   +  2H+            8  
2. H3AsO3(aq) +  0.5O2(aq)

  →  H2AsO4
–  +  H+           2 

3. 4Fe2+ + O2(aq) + 10H2O → 4Fe(OH)3 + 8H+           4 

4. 2NH4
+ + 3O2(aq) → 2NO2

− + 2H2O + 4H+         12 
5. NH4

+ + 2O2(aq) → NO3
− + H2O + 2H+            8 

6. 2NO2
− + O2(aq)   → 2NO3

−             4 
7. H2S(aq) +  4NO3

−  →  SO4
2−   +  4NO2

−  + 2H+           8 
8. H2S(aq) +  NO3

−  +  H2O →  SO4
2−   +  NH4

+           8 
9. H3AsO3(aq) +  NO3

−  → H2AsO4
−  +  NO2

−  +  H+          2 
10. 2Fe2+  +  NO3

−  +  5H2O   →  2Fe(OH)3
  +  NO2

−  + 4H+         2 
11. 4H3AsO3(aq) +  NO3

−  +  H2O  →  4H2AsO4
−  +  NH4

+  + 2H+         8 
12. 8Fe2+  +  NO3

−  +  21H2O  →  8Fe(OH)3
  +  NH4

+  + 14H+         8 
13. NH4

+  +  3NO3
−  →  4NO2

− + 2H+ + H2O           6   
 

14. 3H2S(aq) +  4NO2
−  +  4H2O +  2H+   →  3SO4

2−   +  4NH4
+       24 

15. 3H3AsO3(aq) +  NO2
−  +  H2O  →  3H2AsO4

−  +  NH4
+  + H+         6 

16. 6Fe2+  +  NO2
−  +  16H2O   →  6Fe(OH)3

  +  NH4
+  + 10H+         6 

17. H2S(aq) +  8Fe(OH)3 + 14H+ →  SO4
2− +  8Fe2+ + 20H2O         8 

18. H3AsO3(aq) +  2Fe(OH)3
  +  3H+   →  H2AsO4

−  +  2Fe2+  +  5H2O          2 

19. H2S(aq) +  4H2AsO4
−  +  2H+   →  SO4

2−  +  4H3AsO3(aq)         8 
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Table 4. ΔGr of reactions in Tutum Bay (kJ/mol e– transferred) 
 
 0.5 7.5 12 20 30 60 140 180 240 300 Avg. 
Rxn1 -91.66 -92.72   -94.02 -93.20 -93.24   -94.03 -93.15 

2  -72.85 -72.96 -82.29 -74.67 -70.19 -69.58 -81.29 -83.92 -76.02 -75.97 
3 -65.44  -62.97 -76.05 -72.67 -59.18  -72.64 -74.60 -63.14 -68.34 
4 -44.13 -44.67 -44.49 -45.91   -42.81 -44.69  -44.26 -44.42 
5 -39.62 -40.48 -40.22 -42.18   -39.74 -42.04  -40.78 -40.72 
6 -26.10 -27.91 -27.40 -31.01 -30.95 -30.20 -30.54 -34.12 -30.42 -30.33 -29.90 
7 -65.56 -64.82   -63.07 -63.00 -62.71   -63.70 -63.81 
8 -52.04 -52.24     -53.50   -53.25 -52.76 
9  -44.95 -45.56 -51.28 -43.73 -39.99 -39.05 -47.17 -53.50 -45.69 -45.66 

10 -39.35  -35.56 -45.04 -41.72 -28.99  -38.52 -44.19 -32.81 -38.27 
11  -32.38 -32.74 -40.11   -29.84 -39.24  -35.24 -34.92 
12 -28.49  -25.28 -37.01    -33.70  -25.51 -30.00 
13 -18.03 -16.76 -17.08 -14.90   -12.27 -10.57  -13.93 -14.79 
14 -47.53 -48.05     -50.43   -49.77 -48.95 
15  -28.18 -28.47 -36.38   -26.77 -36.60  -31.76 -31.36 
16 -21.32  -18.48 -30.14    -27.95  -18.88 -23.35 
17 -26.20    -21.13 -33.84    -30.67 -27.96 
18   -10.00 -6.24 -2.00 -11.00  -8.65 -9.31 -12.88 -8.58 
19  -19.87   -19.34 -23.01 -23.66   -18.01 -20.78 
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Figure 1.  (a) Papua New Guinea, with Feni Islands (Ambitle and Babase) enlarged. (b) 

Plan view of Tutum Bay hydrothermal area with sampling transect constructed from Vent 

4B.  Sampled sites are indicated by Xs.  Water depth indicated by dashed lines. 
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Figure 2.  Average values of ΔGr (kJ/mol e−) of 19 chemolithotrophic reactions (listed in 

Table 3) in Tutum Bay porewaters.  Horizontal lines represent range of values across up 

to 11 sites.  Different symbols represent different TEAs in the reactions.    
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Figure 3.  ΔGr (kJ/mol e−) of arsenic redox reactions as a function of pH. Reaction 

numbers correspond to those in Table 3. 
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ABSTRACT 

Arsenic is a potentially lethal toxin to humans, but a variety of microorganisms 

can tolerate highly elevated levels of arsenic or even metabolize it for energy gain.  Most 

arsenic microbiology has focused on the role of bacteria with little attention paid to the 

archaea.  Hydrothermal systems are well-known archaeal habitats and often feature high 

concentrations of arsenic.  Here, we investigated the archaeal community structure in the 

arsenic-rich hydrothermally-influenced sediments of Tutum Bay, Ambitle Island, Papua 

New Guinea. Arsenic (up to 950 μg/L) is the only elevated toxin in the hot (~98ºC), 

slightly acidic (pH ~6), chemically reduced shallow-sea vent fluids.  Archaeal 16S clone 

libraries were constructed from bulk DNA extracted from shallow sediment at five sites 

along a 300 m transect. Phylogenetic analyses showed the presence of archaea at all the 

sites, with one phylotype of uncultured Crenarchaeota dominating (39 – 90%) at four of 

them; at the fifth site, a single euryarchaeotal phylotype made up ~50% of the clone 

library.  In addition, the clone libraries featured several clades within the Marine Group 1 

Crenarchaeota, a member of the Thermoprotei (which includes the only known As-

metabolizing archaeal genera Sulfolobus and Pyrobaculum), three sequences closely 

affiliated with the Hot Water Crenarchaeota Group 1, several sequences plotting among 

known marine hydrothermal vent groups in the Euryarchaeota phylum, and one 

Korarchaeota-like sequence. In general, the five sediment sites investigated were of low 

to moderate archaeal diversity with sequences falling into three to eight identified clades.  

 

 

 



INTRODUCTION 

Arsenic (As) can be highly toxic to humans, even in relatively small amounts 

(Dueñas-Laita et al., 2005), but a number of microbial species can tolerate elevated levels 

of As or even metabolize it.  Arsenic-metabolizing microorganisms have been isolated 

from a variety of environments, including gold mine rocks, muds, and tailings (Santini et 

al., 2000; Santini et al., 2002; Anderson & Cook, 2004), marshes (Stolz et al., 1999), lake 

sediments (Niggemyer et al., 2001; Liu et al., 2004; Oremland et al., 2005), and 

geothermal waters (Salmassi et al., 2002; Donahoe-Christiansen et al., 2004; Kulp et al., 

2008).  To date, more than two dozen species of microbes are known to be capable of 

reducing arsenate (AsV) for energy gain, while other strains gain energy by oxidizing 

arsenite (AsIII), and a number of strains can reduce or oxidize As as a detoxification 

mechanism (Oremland et al., 2009).  The majority of these species are bacteria, 

predominately Proteobacteria.  Only a few archaea are known to perform arsenic redox: 

Sulfolobus metallicus strain BC (formerly known as S. acidocaldarius strain BC) oxidizes 

arsenite, but does not harvest energy from this process (Sehlin & Lindström, 1992), while 

Pyrobaculum arsenaticum and P. aerophilum are both capable of respiring arsenate 

(Huber et al., 2000).  Both Pyrobaculum species are hyperthermophiles isolated from 

thermal sites near Naples, Italy.  P. arsenaticum was cultivated from slightly acidic 

sediment (pH 6.0) of the Pisciarelli solfataric area, and P. aerophilum was isolated from a 

marine hot spring on the island of Ischia in the Gulf of Naples (Völkl et al., 1993; Huber 

et al., 2000). 

Fluids, sediments, and mineral precipitates associated with hot springs and marine 

hydrothermal systems are often enriched in arsenic.  For instance, As concentrations in 
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Yellowstone National Park (USA) hot springs reach ~150,000 μg/L (Langner et al., 

2001), although concentrations more typically range from 750 to 3000 μg/L (Stauffer & 

Thompson, 1984; Ball et al., 1998).  Deep-sea hydrothermal vent fluids from Guaymas 

Basin (Gulf of California) and at 21°N on the East Pacific Rise contained approximately 

2 – 80 μg/L of arsenic, while in the Lau Basin the arsenic concentrations were much 

higher, ranging from approximately 450 to 824 μg/L (von Damm, 1995).  Polymetallic 

massive sulfide structures formed in conjunction with hydrothermal fluids at the 

Escanaba Trough on the southern part of the Gorda Ridge (in the northeast Pacific Ocean, 

off the coast of California) contained up to 5 wt% arsenic (Koski et al., 1988).  Shallow-

sea hydrothermal systems, located at < 200 mbsl, have also been observed to contain 

elevated levels of As in both vent fluids and nearby precipitates.  For example, the 

Champagne Hot Springs off the coast of Dominica, Lesser Antilles, contained 18 – 80 

μg/L of arsenic in 45 – 70°C vent fluids (McCarthy et al., 2005), and in the Bahía 

Concepción system in the Gulf of California, hydrothermal vent fluids at 0.5 – 15 mbsl 

contained up to 780 μg/L arsenic (Canet et al., 2005).  These two sites also featured 

sediments and vent precipitates with high As concentrations.  In Champagne Hot Springs, 

hydrous ferrous oxide precipitates contained up to 1880 ppm As, and sediments 

contained up to 311 ppm As, over 1000 and 100 times the levels found in typical 

Caribbean sediments, respectively (McCarthy et al., 2005). 

The microbial community compositions in several continental hot springs and 

marine hydrothermal systems have now been investigated via culture-independent 

techniques (e.g., Barns et al., 1994; Takai and Horikoshi, 1999; Reysenbach et al., 2000; 

Hirayama et al., 2007; Rusch and Amend, 2008).  Connon et al. (2008) studied the 
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bacterial mat communities in the Alvord hot spring system (Oregon, USA), characterized 

by 4495 μg/L As at circumneutral pH.  They found evidence for microbial arsenite 

oxidation, but archaeal communities were not identified.  Microbial mat communities in 

an arsenic-rich (~2472 μg/L), acidic hot spring of Norris Geyser Basin in Yellowstone 

National Park, USA also showed evidence of microbially-mediated arsenic oxidation 

(Jackson et al., 2001).  Intriguingly, the onset of arsenite oxidation in this hot spring 

coincided with the appearance of archaeal 16S rRNA sequences in the mats.  However, 

the role of non-biofilm forming microbes in both these hot spring environments has 

received only limited focus. 

In marine hydrothermal systems, the majority of microbial surveys are in deep-sea 

systems, with very little attention paid to their shallow-sea (< 200 m depth) counterparts.  

In most systems where microbial communities were well characterized, the 

corresponding fluid composition was not analyzed concurrently or in detail.  Notable 

exceptions include the sites at Vulcano Island, Italy (Rogers & Amend, 2005; Rusch & 

Amend, 2008), Milos Island, Greece (Sievert et al., 1999; Sievert et al., 2000), Taketomi 

Island, Japan (Hirayama et al., 2007), and Eyjafjordur, Iceland (Marteinsson et al., 

2001b).  However, at some of these sites the archaeal community composition was 

largely ignored.  In this study, we investigated the archaeal community structure of 

arsenic-rich sediments in the shallow-sea hydrothermal system of Tutum Bay, Papua 

New Guinea (Fig. 1), shedding light on their presence, distribution, and diversity.  

Archaeal 16S rRNA gene libraries were constructed for 5 shallow (0 – 10 cm deep) 

sediment sites along a transect leading away from an As-rich vent.  A corresponding 16S 
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rRNA survey of the bacterial communities is being evaluated separately, as was a depth 

profile for bacteria and archaea at a nearby site (Meyer-Dombard et al., 2009).  

 

RESULTS 

Field Site and Geochemical Context 

Ambitle is the southernmost island of the Tabar-Feni Island arc in eastern Papua 

New Guinea (Fig. 1a).  It is part of a Quaternary stratovolcano and features fumaroles, 

hot mud pools, and hot springs with chloride-rich and acid-sulfate waters (Wallace et al., 

1983; Pichler & Dix, 1996).  The Tutum Bay hydrothermal system located off the west 

coast of Ambitle Island features several discrete vents among coral algal reefs.  These 

vents are located ~150 m offshore at a water depth of 5 – 10 m.  In addition to focused 

discharge from discrete orifices, diffuse discharge of gas bubbles (94 – 98% CO2) 

through unconsolidated seafloor sediment is also present (Pichler et al., 1999a; Pichler et 

al., 2006).  The hydrothermal fluids are predominately of meteoric origin, based on the 

low total dissolved solids (< 3000 mg/L), molecular ratios indicative of diluted seawater, 

and δ18O values that match closely with local precipitation δ18O records (Pichler et al., 

1999b; Pichler, 2005).  These hydrothermal fluids contain up to 950 μg/L arsenic, 

exclusively as AsIII.  Arsenite expelled in fluids appears to be quickly oxidized, a process 

which may be microbially-mediated, and co-precipitated with ferric (oxy)hydroxides that 

coat sediments, rocks, and coral near vent orifices (Pichler & Veizer, 1999; Pichler et al., 

1999b; Pichler et al., 2006).  These ferric oxyhydroxide coatings range in color from 

bright orange to dark brown and green, with As concentrations (as AsV) measured up to 6 

wt% (Pichler & Veizer, 1999). 
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In this study, porewaters and sediments along a 300 m transect starting at a 

discrete vent (designated Vent 4B in Pichler et al. 1999a) were investigated (Fig. 1b).  

Geochemical analyses along the transect are discussed in detail elsewhere (Price & 

Pichler, 2005; Pichler et al., 2006; Price et al., 2007; Akerman et al., 2009), with several 

key parameters from porewaters at 10 cm depth summarized here (Fig. 2).  Note that the 

temperature was high (~70 – 80°C) along the transect out to a distance of 12 m, but then 

quickly dropped off to the ambient seawater value (~30°C) and stayed relatively constant 

along the rest of the transect.  The pH was circumneutral along the entire transect, 

fluctuating between 6 and 6.5 out to ~140 m with one spike to ~7 at 7.5m, and then pH 

ranged between 7 and 8 beyond 140 m.  The total arsenic concentration at all sites was 

elevated above the local background seawater level of 4.9 μg/L, although AsIII 

concentrations fluctuated above and below the local seawater level of 2.6 μg/L while AsV 

remained elevated at all sites above the local level of 2.3 μg/L.  The highest values for 

both oxidation states were recorded at 12 m, with 395.7 μg/L AsIII and 188 μg/L AsV.  

Beyond 12 m, arsenite levels decreased rapidly to < ~5 μg/L, remaining relatively 

constant out to 300 m.  Arsenate concentrations decreased more gradually with distance, 

reaching < 10 μg/L at 240 m, before increasing again to 12.1 μg/L at 300 m. 

 

Archaeal diversity 

 The archaeal diversity of the Tutum Bay hydrothermal system was investigated 

by cloning and sequencing 16S rRNA genes from five sites, located at 7.5, 30, 60, 140, 

and 300 m distance along the Vent 4 transect.  In total, 350 archaeal clones were 

successfully sequenced from the five sites, representing 15 different uncultured 
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phylotypes.  Composite phylogenetic trees from the five clone libraries show 11 

Crenarchaeota (Fig 3a.), three Euryarchaeota, and one Marine Hydrothermal Vent Group 

1 (MHVG1)-type phylotype that is closely related to, but distinct from, the Korarchaeota 

(Fig. 3b).  The majority of the crenarchaeal clones belonged to the Marine Group 1 

archaeal group.  

In Fig. 4, archaeal clones are grouped separately for each of the five sediment 

sample sites.  It can be seen that uncultured Crenarchaeota (denoted as CA groups in this 

study) dominate at each site.  All sites, except that at 30 m, were dominated (39 – 90%) 

by one phylotype, an uncultured Crenarchaeote designated CA5 in this study.  At 30 m, 

an uncultured Euryarchaeote (designated EA1) dominated, contributing 46% of the clone 

library.  It should be noted that Euryarchaeota were only found at the two sites closest to 

the vent, and in all, only one deep-branching MHVG1-type sequence was found – at the 

140 m site.  The two sites furthest from the vent displayed the only Hot Water 

Crenarchaeotic Group I (HWCG I) group sequences. 

The 7.5 m site contained eight phylotypes: two uncultured Euryarchaeota and six 

uncultured Crenarchaeota.  The CA5 group represented 40% of all clones at 7.5 m, and 

the CA4 group represented 25% of the clones.  The CA1 group, representing 13% of the 

clones, contained members which are closely related to the Cenarchaeales (97% 

identical).  Some clones in the CA2 group (12%) were 97% identical to the marine 

archaeon Candidatus “Nitrosopumilus maritimus.”  Eight percent of the clones identified 

as members of the Euryarchaeota phylum, with all but one clone (7.5_A148) falling in 

group EA1. 
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The 30 m site was dominated (46%) by the EA1 group, and contained the largest 

proportion of CA3 crenarchaeota (39%) of any site investigated.  These two groups were 

followed by clones in group CA1 (8%) and CA2 (5%).  This was the only site 

investigated that did not contain any clones from the CA5 group, and, as noted above, the 

only site to be comprised of nearly 50% euryarchaeal species.  It also contained one clone 

in the C3 group, a group not seen at any other site. 

 The 60 m and 140 m sites were both dominated by the same 3 groups: CA5 (71% 

at 60 m, 60% at 140 m), CA3 (15%, 15%), and CA1 (14%, 13%).  While these were the 

only groups identified at 60 m, however, five other minor groups were also noted at 140 

m, including clones in group CA2, the deep-branching clone MHVG1 (140_A053), and 

one clone (140_A057) affiliated with the HWCG I group. 

The 300 m site was dominated (90%) by group CA5 clones.  In addition, two 

clones each of the CA1 (300_A003, 300_A033) and HWCG I (300_A036, 300_A045) 

groups and one clone (300_A064) affiliating with the Thermoprotei were identified.  

Unlike the other sites, there were no group CA3 clones observed. 

   

DISCUSSION 

The clone libraries from Tutum Bay contain clones belonging to 15 phylotypes 

across the 5 sites studied.  Clones representing both of the two main archaeal phyla, the 

Crenarchaeota and Euryarchaeota, were observed, as well as one clone affiliating with the 

deep-branching Marine Hydrothermal Vent Group 1 (MHVG1) (Takai et al., 2001).  

Clones from these three groups were not evenly distributed across the 5 sample sites.  All 

but one of the clones found in this study placed within clades of uncultured organisms 
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represented only by 16S rRNA archaeal sequences (Fig. 3).  That one clone, 300_A064, 

affiliated phylogenetically with the Thermoprotei, which includes the three known As-

redox archaeal species.  Clone 300_A064 showed 86% sequenced identity to 

Pyrobaculum arsenaticum, but was more closely related (89%) to Thermofilum pendens 

Hrk 5, a thermophile and moderate acidophile isolated from a solfataric hot spring in 

Iceland (Zillig et al., 1983).  T. pendens respires sulfur and grows optimally at 88°C in 

the laboratory, but is capable of growth at pH ranging from 4 – 6.5 and temperatures from 

70 – 95°C (Stetter, 1999).  These temperatures are much higher than the 29.7°C recorded 

at 300 m in Tutum Bay, but do overlap the pH and temperature range measured in our 

study.  T. pendens is almost always found associated with Thermoproteus tenax, but no 

clones displaying similarity to Thermoprot. tenax were observed in the Tutum Bay clone 

libraries.  Genes associated with specific aspects of arsenic redox, such as an arsenite-

transporting ATPase, have been annotated in the complete genome of the organism T. 

pendens (Copeland et al., 2007).  While the arsenic oxidizing potential of T. pendens has 

not yet been explored, further work may reveal this metabolic potential.  Clone 

300_A064’s closest relative, however, at 99% sequence identity was the uncultured 

crenarchaeal clone TB2.5H2_A57, from an ~75°C site along Transect A in Tutum Bay 

(Meyer-Dombard et al., 2009). 

All other phylotypes observed in this study grouped with uncultured archaeal 

clades, making it impractical to say anything about their physiology or metabolic 

strategies.  Phylogenetic analyses showed that CA5 was the dominant crenarchaeal 

phylotype (39 – 90% of the clone library) at 4 of the 5 Tutum Bay sites investigated.  

Only the 30 m site did not contain CA5 clones.  CA5 clones are most closely affiliated 
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with clones Fhm2A82 from a hydrothermal sulfide structure at the southern Mariana 

Trough (Oba et al., 2007) and fosmid clones HAuD-UA44 and 45-H-12 in the Hot Water 

Crenarchaeotic Group III (HWCG III), sequenced from the upper layer of a microbial 

mat community in subsurface geothermal waters in the Hishikari gold mine, Japan 

(Nunoura et al., 2005).  The upper layer of the Hishikari mat consisted almost entirely of 

the HAuD-UA44 clone, while lower layers displayed mostly bacteria and no evidence of 

HAuD-UA44.  The upper layer of the mat grew in situ at 69°C, a temperature that 

overlaps some of the Tutum Bay temperatures but is hotter than most of the sites 

investigated here.  Furthermore, the Hishikari mat grew in low salinity water with 0.3 

mg/L dissolved oxygen and a pH of 5.1 (Hirayama et al., 2005).  At Tutum Bay, the 

dissolved oxygen (~2 – 7 mg/L) and pH values (~6 – 8) were higher, and the porefluids 

were marine influenced.  The Hishikari mat clones affiliate with the Hot Water 

Crenarchaeotic Group (HWCG), whose members have been identified in a variety of 

environments including subsurface geothermal fluids, terrestrial hot springs, and deep-sea 

hydrothermal vents (e.g., Barns et al., 1996; Takai & Sako, 1999; Marteinsson et al., 

2001a; Inagaki et al., 2003; Schrenk et al., 2003).  Nunoura et al. (2005) suggested that 

the HWCG forms a phylogenetic bridge between the hyperthermophilic Thermoprotei 

and the mesophilic Crenarchaeota and Eukarya.  The presence of CA5 clones in both 

moderate (~30°C) and high (73.9°C) temperature sites at Tutum Bay is consistent with 

this hypothesis.    

The majority of the remaining Crenarchaeota fell into 4 main groups, CA1, CA2, 

CA3, and CA4.  These four groups are tightly clustered within Marine Group I (MG I) on 

the phylogenetic tree (Fig. 3a).  CA1 clones were closely affiliated with Antarctic 
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bathypelagic sediment clones discovered in the Southern Ocean (Brandt et al., 2007), and 

clones from the top layer of deep sediment (4500 mbsl) on the NW Atlantic Ocean 

abyssal plain (Ventriani et al., 1999).  CA4 clones were also closely affiliated with deep-

sea clones, although they were more closely related to clones from active hydrothermal 

sulfide chimney structures on the Juan de Fuca Ridge (Schrenk et al., 2003).  Clones CA2 

and CA3 closely related to microbial species typically associated with sponges including 

Aciculites species (Holmes and Blanch, 2007).  CA2 and CA3 were most closely 

affiliated to clones SeAqRB09 and SeAqRB01, identified in the substratum of a tropical 

seawater tank in the Seattle Aquarium (Könneke et al., 2005).  The species Candidatus 

“Nitrosopumilus maritimus” recently isolated from this tank is closely related to clones in 

CA2 and CA3, and is the first cultured non-thermophilic chemolithoautotrophic 

ammonia-oxidizing marine archaeon (Könneke et al., 2005; Wuchter et al., 2005).  The 

average ammonia concentration in Tutum Bay measured ~0.1 mg/L (data not shown), but 

reached ~0.35 mg/L at several sites, and aerobic ammonia oxidation was calculated to be 

a thermodynamically favorable reaction at the 7.5, 140, and 300 m sites in Tutum Bay 

(Akerman et al., 2009), creating a favorable environment for N. maritimus and other 

similar species that are yet to be discovered.   

Interestingly, no clones in this study grouped with the Thermococcales, even 

though archaeal communities at deep-sea hydrothermal sites often consist of a high 

proportion of Thermococcales (Reysenbach et al., 2000).  The presence of a clone that 

identified with the Thermoprotei, on the other hand, is an exception to the absence of 

Thermoprotei usually seen in molecular surveys of other marine hydrothermal 

environments (Nercessian et al., 2004).  The phylogenetic affiliation of Tutum Bay 
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crenarchaeal clones with both deep-sea sedimentary clones and tropical sedimentary 

clones indicates that similar types of archaea may be present in both deep-sea and 

shallow-sea sediment environments.  This supports the reasoning by Tarasov et al. (2005) 

that shallow-sea hydrothermal systems should be viewed as a mid-point on the continuum 

between terrestrial and deep-sea hydrothermal systems.  Therefore, CA1 and CA4 clones, 

although previously found mainly in deep-sea sediment environments, may be important 

constituents of not only Tutum Bay but also other shallow-sea hydrothermal sediments.  

In total, only three euryarchaeotal clades were observed in this study, two of 

which were represented by a single clone sequence.  The dominant EA1 group is closely 

related to sequences from several hydrothermal systems, including ~100°C fluid 

discharged from a chimney at the Myojin Knoll, Izu-Ogasawara arc hydrothermal field 

(Takai & Horikoshi, 1999), and fluids at the southern Mariana Trough (Kato et al., 2009).  

Group EA1 and these affiliated clones are only distantly related to any isolated organisms, 

and therefore, their metabolisms are unknown.  Phylogenetically, they cluster with 

thermophilic clades, in particular, with the DHVE1 group (Fig. 3b).  The temperature 

(33°C) at the 30 m site in Tutum Bay, where group EA1 is most abundant, is much cooler 

than the temperatures recorded at these other sites.  It is important to note, however, that 

even in high-temperature deep-sea systems it was found that clones that identified with 

hyperthermophilic clades were amplified from the cooler zones around high temperature 

vents, suggesting that fluid flow and archaeal community expulsion in the subsurface is 

complex (Kormas et al., 2003; Ehrhardt et al., 2007).  

Only one clone (4B140H1_A53) in this study did not affiliate with either 

Crenarchaeota or Euryarchaeota, plotting closest to the Korarchaeota and MHVG I in Fig. 
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3b. The closest relatives are clones from deep-sea hydrothermal sulfide structures and 

from a shallow-sea (22 mbsl) hydrothermal vent fluid (128°C) in Tachibana Bay, Japan 

(Takai & Sako, 1999).  These clones are sometimes erroneously labeled as Korarchaeota, 

but instead appear to form a separate, marine specific clade, MHVG I (Takai et al., 2001; 

Auchtung et al., 2006); our data from the shallow-sea system in Papua New Guinea are 

consistent with this interpretation.  Note also that the 140 m clone library was the only 

one to display sequences of Crenarchaeota, Euryarchaeota, and the deep-branching 

MHVG1 clade of archaea.   

The diversity seen at the 140 m site may reflect the site’s geochemical signature.  

The 140 m porewater contained 47.2 μg/L total As at pH 6.1, compared to the 14.2 μg/L 

As and 7.1 pH observed at the less diverse 300 m site.  The 60 m site had similar pH, 

temperature, and arsenic concentrations to 140 m and was dominated by the same 3 

clades of archaea in similar proportions.  The communities closest to the vent (7.5 and 30 

m) were the only ones to contain euryarchaeal clones and also had some of the lowest 

total arsenic concentrations observed along the entire transect, especially in regards to 

AsV concentrations, which were 29.8 and 18.2 μg/L, respectively.  It is important to 

remember, though, that the physico-chemical parameters in the sediments are constantly 

in flux due to variable subsurface hydrothermal fluid flow, and that the microbial 

community composition at any one moment in time is a reflection of these changing 

parameters. 

To place our results into context, we compare them to culture-independent and 

culture-dependent archaeal surveys of other sites of interest: two depth horizons in a 

sedimentary core at Tutum Bay (Meyer-Dombard et al., 2009), a shallow-sea coral reef 

 80



hydrothermal system in Japan (Hirayama et al., 2007), an As-rich continental hot spring 

at Yellowstone National Park (Macur et al., 2004), and deltaic sediments of Papua New 

Guinea (Todorov et al., 2000) (Table 1).  The archaeal clones observed in the hotter 

(~75°C), more acidic (pH < 6), and more As-rich (> 350 μg/L) sediment core depth 

horizons were overall very different than those observed in this study, with the only 

overlap being Thermoprotei and Korarchaeota-like sequences were identified in both 

studies.  No euryarchaeota were identified, nor were any Marine Group I crenarchaeota, 

although 4 clades of MG I were observed in this study (Meyer-Dombard et al., 2009).  

The geochemical variations between the two transects may account for this high degree 

of variability.  The microbial community survey by Hirayama et al. (2007) at Taketomi 

Island, Japan, was conducted in the only other presently identified shallow-sea coral reef 

hydrothermal system.  Vent fluids from this system also contained clones from the MG I 

and DHVE groups, and mats contained MG I and HWCG sequences.  However, the 

Taketomi Island system was more diverse than Tutum Bay, with 25 phylotypes observed 

in vent fluids, and 39 phylotypes found in microbial mats.  The As-rich microbial mats of 

the Yellowstone hot spring also contained Thermoprotei, including members of the 

Sulfolobales, Desulfurococcales, and Thermoproteales (Macur et al, 2004).  In deltaic 

sediments from the Gulf of Papua, MG I clones were identified, but no Thermoproteales 

(Todorov et al., 2000); it is unknown whether these sediments contained arsenic. 

 Shallow porewaters in Tutum Bay are rich in arsenic, even at several hundred 

meters from the hydrothermal vent point source.  While arsenic metabolism—both the 

reduction of AsV and the oxidation of AsIII—is now well known among the bacteria (see, 

e.g., Oremland et al., 2009), these metabolic strategies have yet to be assigned to more 
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than a couple of archaea in laboratory culturing studies.  Here, we demonstrated the 

presence of a number of Crenarchaeota belonging to several different clades in the As-

rich sediments of Tutum Bay at both ambient and elevated temperatures.  Euryarchaeota 

were less common overall, but found to be the dominant archaeal phylum at one of the 

sites investigated.  It has also been shown that a variety of As-redox reactions are 

energetically favorable in the Tutum Bay hydrothermal system (Akerman et al., 2009).  

However, the role of archaea in As cycling in general, and in marine hydrothermal 

systems in particular, is entirely unknown.  The data presented here, coupled with the 

energetic framework outlined in Akerman et al. (2009) set the stage for investigations of 

archaea-mediated As cycling in marine systems. 

 

EXPERIMENTAL PROCEDURES 

Collection of sediments 

In May 2005, sediments along transect 4B were cored by SCUBA divers using 

PVC tubes (1m × 6 cm).  At the surface, sediment from the 0 – 10 cm depth range was 

homogenized, stored in sterile containers, and transported on ice to our laboratory in the 

USA.  There, all samples were stored at –20°C and thawed to room temperature prior to 

analysis. 

 

DNA extraction and 16S clone library construction 

Bulk DNA was extracted from each sediment sample via bead beating, using the 

FastPrep DNA Soil Extraction Kit (Bio101).  Polymerase chain reaction (PCR) of 

archaeal 16S rRNA genes from bulk DNA was performed using the archaea-targeting 
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primers 21F (5’–TTC-CGG-TTG-TAC-CYG-CCG-GA–3’) and 1391R (5’–GAC-GGG-

CGG-TGT-GTR-CA–3’) (Lane 1991).  The 20 μL PCR reaction mixture consisted of 1.8 

μL MgCl2, 2.0 μL GeneAmp 10X PCR buffer, 0.2 μL dNTPs, 0.25 μL AmpliTaq Gold 

DNA polymerase, 0.5 μL each of forward and reverse primers (1 μM), and 1 μL template 

DNA.  Thermocycling conditions on a Hybaid PCR Express thermalcycler consisted of 

initial denaturation at 95°C for 5 min, followed by 30 cycles at 95°C for 0.5 min, 55°C 

for 0.5 min, and 72°C for 1.5 min, followed by a final extension at 72°C for 15 min.  

PCR products were verified to be the correct size on a 1.5% agarose gel stained with 

ethidium bromide and photographed under UV light.  Products were then cleaned using 

the QIAquick PCR Purification Kit (Qiagen) using the manufacturer’s instructions. 

 PCR products were cloned using a TOPO TA Cloning Kit (Invitrogen) per 

manufacturer’s instructions.  Plasmids were plated on LB agar plates amended with 

ampicillin and X-gal.  Clones were selected randomly and incubated in 3 mL LB with 

ampicillin liquid growth medium overnight.  Plasmid DNA was extracted and purified 

using the QiaPrep Spin Miniprep Kit (Qiagen).  Purified plasmid DNA concentrations 

were determined via spectrophotometry, diluted to a concentration of 0.04 μg/μL and 

sequenced at Polymorphic DNA Technologies, Inc. (Alameda, CA) with either the M13 

forward and M13 reverse, or the T7 and SP6 sequencing primers.   

 

Analysis of 16S rRNA clones 

 Sequence data were assembled into contigs using Sequencher v.4.7 (Gene Codes) 

and manually edited.  Assembled sequences were aligned using the Greengenes NAST 

aligner (DeSantis et al., 2006) and checked for chimeras using the Bellerophon3 server at 
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Greengenes before they were imported into ARB (Swofford, 2003).  All sequences were 

compared to sequences in the NCBI GenBank database via BLAST, and also classified 

using the Simrank comparison method in the Classify module on Greengenes.  These data 

were used to construct rarefaction curves for each library; all rarefaction curves appeared 

asymptotic, suggesting the microbial diversity was sufficiently sampled (data not shown).  

For phylogenetic analysis, closely related sequences were found through BLAST 

searches and Greengenes.  Phylogenetic trees were created using the maximum 

parsimony insertion tool in ARB.  Phylogenetic topologies of 16S rRNA sequences from 

the 5 clone libraries were constructed in ARB (Ludwig et al., 2004) and PAUP* 

(Swofford, 2003) via maximum parsimony and neighbor-joining techniques; clone 

sequences used in the analyses were greater than 1250 nucleotides.  The phylogenetic 

trees show relationships between the clones from each phylotype in Tutum Bay to 

isolates and clones from other studies.  The trees were rooted to an outgroup of 3 bacteria. 

 

Nucleotide sequence accession numbers 

 The sequences reported herein have been deposited in the Genbank database 

(NCBI) under the following accession numbers: GU137351 through GU137395.  
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Table 1.  Comparison of 16S rRNA archaeal clone libraries and cultivation studies 
from other high-temperature and neighboring geographical sites 
 
Study Site and 
Description 

Geochemical Data Archaeal groups identified  References 

Sediments from Tutum 
Bay, Papua New Guinea: 
As-rich shallow-sea (~10 
mbsl ) hydrothermal 
system in a coral reef  

Temp = 64 – 81°C 
pH     = 5.8 – 6 
AsIII   = 13 – 95 
μg/L 
AsV    = 160 – 431 
μg/L 

Terrestrial miscellaneous 
crenarchaeal group, 
Miscellaneous crenarchaeal 
group, Hyperthermophilic 
crenarchaeota, Marine 
hydrothermal vent groups, 
Korarchaeota-type, 
Thermoprotei 

Meyer-Dombard 
et al., 2009 

Vent fluids from 
hydrothermal system near 
Taketomi Island, Japan: 
Methane- and sulfide-rich 
shallow-sea (23 mbsl) 
hydrothermal system in a 
coral reef 

Temp ≤ 52°C 
 

Anaerobic methane 
oxidation group I, 
Miscellaneous crenarchaeal 
group, Deep-sea 
hydrothermal vent 
euryarchaeal group, 
Archaeoglobales 
 

Hirayama et al., 
2007 

Microbial mats from 
hydrothermal system near 
Taketomi Island, Japan: 
Methane- and sulfide-rich 
shallow-sea (23 mbsl) 
hydrothermal system in a 
coral reef  
 

Temp ≤ 52°C 
 

Marine Crenarchaeotic 
Group I, Hot water 
crenarchaeotic group, 
deep-sea archaeal group 6, 
South African gold mine 
euryarchaeal group 

Hirayama et al., 
2007 

Succession Spring, 
Yellowstone National Park, 
USA: Arsenic-rich hot 
spring microbial mats    

Temp = 48.3 – 
79.2°C 
pH      ≈ 3 
AsTotal = 5244 – 
6743 μg/L 
 

Thermoprotei  Macur et al., 
2004 

Mobile deltaic sediments in 
the Gulf of Papua, Papua 
New Guinea:  Surface 10 
cm of sediment from 50 
mbsl  

 Marine Crenarchaeotic 
Group I, Methanobacteria 

Todorov et al., 
2000 

 
Clone groups in common with those found in this study are indicated in boldface. 
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Figure 1.  (a) Map of Papua New Guinea and Ambitle Island, with the Tutum Bay field 

site off the western coast.  (b) Plan view of Tutum Bay Vent 4B (marked by star) 

sediment transect, with sampling sites (marked by Xs).  Approximate water depths are 

indicated along the dashed lines. 
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Figure 2.  Temperature, pH and arsenic concentrations in porefluids (10 cm depth) 

along transect 4B.
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Figure 3.  Maximum parsimony archaeal phylogenetic trees (a – Crenarchaeota, b – 

Euryarchaeota and Korarchaeota) rooted to a bacterial outgroup, showing affiliations of 

clones from the 5 Tutum Bay sample sites.  Clones found in this study are indicated in 

boldface.  Scale bar represents 0.10 changes per unit.  Numbers in parentheses indicate 

number of clones in phylogenetic group.  Pyrobaculum arsenaticum, P. aerophilum, and 

Sulfolobus metallicus are the only archaea known to perform arsenic redox.  
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Figure 4.  Pie charts of archaeal clone library data from 5 sample sites in Tutum Bay(118 

clones at 7.5 m, 77 at 30 m, 59 at 60 m, 46 at 140 m, 54 at 300 m).  Solid colors represent 

phylotypes found in multiple clone libraries; striped patterns depict phylotypes observed 

in a single library.  All sites (except 30 m) were dominated by CA5 archaea.  

Euryarchaeota were present at only 7.5 m and 30 m. 
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CHAPTER 4 

 

Microbially mediated arsenic reduction in hydrothermally-influenced marine fluids 

and sediments 

 

ABSTRACT 

 Tutum Bay hydrothermal porefluids and sediments are rich in arsenic (up to 950 

μg/L and 33200 mg/kg, respectively) and present an ideal location in which to study 

microbially mediated arsenic cycling.  In this paper we examine sediments and 

enrichment cultures to determine whether or not microorganisms in the sediments and 

porefluids of Tutum Bay, Papua New Guinea are directly involved in As-reduction.  

Three complementary approaches were used: DNA and RNA screening of arsenic 

functional genes, analysis of arsenic speciation in a microbial culturing study, and the 

isolation of strain TB1 in a geochemically-designed As-rich medium.  Bulk DNA 

extracted from sediments in Tutum Bay was screened via PCR for arsenate reductase 

(arrA) and arsenite oxidase (aroA-type) genes.  Sediments at several sites along a transect 

to 60 m leading away from a shallow-sea vent orifice contained both genes, but only arrA 

was detected at farther sites, out to 300 m.  Bulk DNA and RNA extracted from 

enrichment cultures at the 30 m site were screened for arrA by PCR and RT-PCR.  The 

data indicate active arsenate (AsV) reduction.  Arsenic speciation analyses in incubation 

experiments with sediment inocula from 7.5 m and 30 m showed a demonstrable decrease 

of AsV and increase of AsIII over a 48 h period, supporting microbially-mediated arsenate 

reduction. A novel rod-shaped strain (TB1) belonging to the Bacillaceae was isolated at 



30ºC in AsV-rich medium; its net metabolism has not yet been identified.  These 

molecular and analytical data provide the first evidence of microorganisms in Tutum Bay 

sediments and porefluids capable of AsV reduction and likely AsIII oxidation.  

 

INTRODUCTION 

 The arsenic-rich hydrothermal vent fluids and sediments of Tutum Bay, Ambitle 

Island, Papua New Guinea (Figure 1) provide us with an ideal environment in which to 

study microbially mediated arsenic cycling.  The vents discharge hydrothermal fluids 

with up to 950 μg/L of arsenite (AsIII), and iron-oxyhydroxide coatings on rocks and coral 

in the bay contain up to 6 wt% of arsenic (Pichler et al, 1999; Pichler et al., 2006), 

although this arsenic (mainly present in the form of AsV arsenate) is thought to be stable, 

immobile, and not easily extracted from the sediment, and therefore unlikely to be 

available for microbial redox (Pichler et al., 2006).  As seen in Table 1, concentrations of 

arsenic in shallow sediments along a transect (referred to as transect 4B) from a 

hydrothermal vent are very high, ranging from 52 to 1483 mg/kg, compared to 2.2 mg/kg 

at a local non-hydrothermal control site (Price and Pichler, 2005).  Arsenic concentrations 

decreased with distance from the vent orifice.  On average, only ~3.6% of the arsenic in 

the sediment at any one site in Tutum Bay is “bioavailable,” defined as able to freely 

move into or onto an organism (Price and Pichler, 2005).  A previous thermodynamic 

modeling study of Tutum Bay (Akerman et al., 2009) evaluated the potential energy 

yields from an array of redox reactions, including those using As and Fe species, that 

could serve as net microbial metabolisms.  In addition, Akerman and Amend (2009) 

surveyed the archaeal community structure in the Tutum Bay sediments using 16S rRNA 
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gene sequence analyses and found a variety of archaeal species present, including 

members of the Thermoprotei.  Here, we investigate the role that microorganisms play in 

cycling the smaller but still significant portion of bioavailable arsenic in Tutum Bay, with 

a particular focus on arsenate reduction. 

Dissimilatory arsenate-reducing bacteria, first discovered in 1994 (Ahmann et al., 

1994), gain energy from AsV respiration, and they are likely important players in the 

global arsenic cycle.  At least 24 microbial species are known to use arsenate as a 

terminal electron acceptor (TEA), with two members in the Crenarchaeota, and the rest in 

the Bacteria among the Aquificae, Chrysiogenes, Deferribacteres, low G+C Gram-

Positives, and Proteobactiera (Oremland et al., 2009).  Both organic and inorganic 

compounds serve as electron donors in microbial arsenate reduction.  For example, delta-

Proteobacterium strain MLMS-1 couples hydrogen sulfide oxidation with arsenate 

reduction (Hoeft et al., 2004), while the haloalkaliphilic strain SLAS-1 can use either 

lactate or sulfide as the electron donor (Oremland et al., 2005).  Microorganisms capable 

of arsenate respiration are typically able to use other TEAs, including oxygen, nitrate, 

nitrite, ferric iron, sulfate and sulfur (Oremland and Stolz, 2003; Laverman et al., 1995); 

the only obligate arsenate-reducing organism is strain MLMS-1 (Hoeft et al., 2004).  

 There are two known pathways for AsV reduction to AsIII: the respiratory pathway 

(encoded by the arrA gene) couples the oxidation of an organic substrate to AsV 

reduction, resulting in cell growth, while the detoxification pathway (encoded by arsC) is 

used to convert AsV to AsIII, which is then transported out of the cell in a process that 

requires ATP (Campbell et al., 2006).  Respiratory arsenate reductases (Arr) have been 

purified and characterized from Chrysiogenes arsenatis, Bacillus selenitireducens, and 
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Shewanella sp. strain ANA-3 (Krafft et al., 1998; Afkar et al., 2003; Malasarn et al., 

2008); strain ANA-3 also contains arsC genes.  

Screening bulk DNA samples for As-redox functional genes helps identify subsets 

of the microbial community that have the capability of metabolizing arsenic.  

Additionally, screening samples of bulk RNA extracted from actively-growing 

enrichment cultures via reverse-transcription PCR (RT-PCR) can reveal whether targeted 

genes of interest are being expressed, and also helps identify cultures of interest for 

isolation and metabolism studies.  Primers (arrAfwd and arrArev) targeting a ~160–200 

bp section of arrA, the respiratory arsenate reductase gene, have been designed and tested 

on a variety of bacterial species (Malasarn et al., 2004).  The arrA sequence is well 

conserved, with 61 – 100% amino acid identity between 7 phylogenetically diverse 

bacterial species, and arrA proteins form a unique group within the family of dimethyl 

sulfoxide (DMSO) reductases.  The arrAfwd and arrArev primers were used successfully 

to amplify the target genes in 12 of 13 bacterial species, but these primers did not amplify 

arsenate reductase from archaeal species (Malasarn et al., 2004); at this time no primers 

are known to target archaeal arsenate reductases.   

Three different arsenite oxidases have been identified, but are all very similar in 

structure (Quéméneur et al., 2008).  They belong to the DMSO reductase family, and all 

consist of two subunits (Páez-Espino et al., 2009).  The genes encoding for the different 

arsenite oxidases are also similar in sequence (Inskeep et al., 2007; Lièvremont et al., 

2009).  The arsenite oxidase homologues aroA, asoA, and aoxB, are referred to in this 

paper as aroA-like proteins, while the respective genes are referred to as aroA-like genes, 

following the example of Inskeep et al. (2007).  Primers by Inskeep et al. (2007) target 
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bacterial aroA-like gene sequences and have been successful in amplifying over 160 

diverse aroA-like sequences from 10 geographically isolated, arsenic-contaminated sites 

and from 13 known arsenite-oxidizing bacteria.  Rhine et al. (2007) designed primers to 

target arsenite oxidase from both heterotrophic and autotrophic archaea and bacteria, with 

success in amplifying aroA-like genes from environmental bacteria.  

 In this chapter, the role of microorganisms in mediating arsenate reduction was 

investigated in the shallow-sea hydrothermal system of Tutum Bay, Papua New Guinea.  

Three complementary approaches were employed: screening cultures and sediments for 

the presence and expression of functional As genes via PCR and RT-PCR, chemical 

analyses of AsV and AsIII in a microbial incubation experiment, and culturing enrichments 

of microbes in a geochemically designed medium targeting As-reduction.  Screening 

cultures for arsenic functional genes can ascertain the existence of strains within the 

microbial community that have As-redox capabilities, and RT-PCR can reveal whether 

the functional genes are actively being expressed.  In the incubation experiment, 

enrichment cultures were grown in AsV-rich medium and subcultures of samples were 

taken over the course of 48 hours.  The AsIII and AsV concentrations in these samples 

were analyzed and compared to As concentrations in non-inoculated control samples to 

determine whether or not microbial species were responsible for reducing AsV over time.  

Designed geochemical media provides a growth environment that simulates the in situ 

environmental conditions. This technique has proved successful for culturing novel and 

previously “unculturable” organisms, often by using media with lower amounts of 

nutrients that more closely resembles the natural environment (e.g.,  Rappé et al., 2002; 

Connon and Giovannoni, 2002; Kaberlein et al., 2002; Amend et al., 2003; Stevenson et 
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al., 2004).  Designed media also can target one particular microbial metabolism by 

spiking the base medium with one particular electron donor and acceptor pair (Madsen, 

2005).  This approach has been used successfully to isolate diverse microbes from, for 

example, hot springs in Yellowstone National Park, USA (Meyer-Dombard, 2004).   

 
 
MATERIALS AND METHODS 

Sample Collection 

Sediment samples for DNA analysis were collected via SCUBA in May 2005 

using PVC tubes (1m x 6cm).  On ship, sediment from the 0 – 10 cm depth range of the 

seawater-surface interface was homogenized, stored in sterile containers, and transported 

frozen to our laboratory where all samples were stored at –20°C and thawed to room 

temperature prior to analysis.   

Sediment and porewater samples for culturing purposes were collected directly 

from the 0 – 10 cm depth range into sterile containers via SCUBA in May 2003 and 

stored at 4°C until inoculation.  

 

Growth Media Recipes  

 Geochemical growth medium “PNG AR2” was designed to simulate Tutum Bay 

hydrothermal vent fluid compositions as determined by Pichler et al. (1999).  The media 

contained 1.175 mg/L of AsV to act as an electron acceptor, and yeast extract and peptone 

to act as electron donors.  Growth medium “PNG AR2-A” was identical to medium 

“PNG AR2” except it contained 375,600 mg/L AsV; growth medium “PNG AR2-B” was 

also identical but contained 4.49 mg/L AsV.  The PNG base solution for all three media 
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contained 0.19 g KCl, 1.69 g NaCl, 1.1 g NaHCO3, and 0.5 g MgCl2 · 6H2O per liter of 

MilliQ distilled water.  One liter of PNG base solution was amended with 3 g yeast 

extract (Difco), 3 g peptone, from meat (Sigma), either 10 mL concentrated AsV solution 

(0.21 g Na2HAsO4 · 7H2O per L of water) for “PNG AR2,” 20 mL concentrated AsV 

solution A (7.8 g Na2HAsO4 · 7H2O per L of water) for “PNG AR2-A,” or 10 mL 

concentrated AsV solution B (1.68 g Na2HAsO4 · 7H2O per L of water), and 10 mL 

concentrated N/P solution (17.4 g NH4Cl, 3.6 g KH2PO4 per L of water), 0.5 mL 0.2% 

rezasurin as a redox indicator, 3 g PIPES sodium salt (1,4-Piperazinediethanesulfonic 

acid sodium salt, Sigma) as a pH buffer, and 10 mL trace element solution (1.03 g NaBr, 

4.95 g H3BO3, 0.62 g LiCl, 0.17 g MnCl2 · H2O, 0.05 g RbCl, 2.05 g SrCl2 · 6H2O, 2.28 

mg SbCl3, 0.31 g AsHNa2O4 · 7H2O, 0.06 mg CoCl2 · 6H2O, 3.3 mg ZnCl2, 7.7 mg CuCl2 

· 2H2O, 1.32 g AlCl3 · 6H2O, 0.18 mg Na2MoO4 · 2H2O, and 0.44 mg NiCl2 · 6H2O).  The 

pH was adjusted to 6.5 using 1.0 N NaOH or 1.0 N HCl.  After autoclaving at 121°C for 

20 minutes, the medium was amended via filter-sterilization (0.22 μm diameter) with 2 

mL concentrated FeII solution (1.53 g FeCl2 · 4H2O, 1.6 g EDTA [disodium 

ethylenediaminetetraacetate dehydrate] per L of water), 10 mL concentrated CaCl2 

solution (74.98 g CaCl2 per L of water), and 0.5 mL Archaeoglobus fulgidis vitamin 

solution (0.04 g biotin, 0.04 g folic acid, 0.1 g Pyridoxine-HCl [vitamin B6], 0.1 g 

Thiamine-HCl · 2H2O [B1], 0.1 g riboflavin [B2], 0.1 g nicotinic acid, 0.1 g D-Ca-

pantothenate, 0.1 g cobalamin [B12], 0.1 g p-aminobenzoic acid, and 0.1 g lipoic acid per 

L of water).  The medium was then heated to boiling under N2(g) and 10 mL at a time 

were pipetted into Balch tubes (Bellco Glass, Vineland, N.J.) from which the air was 

previously exchanged with N2(g) using a purpose-built gassing station (Balch and Wolfe, 
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1976).  The tubes were then sealed with gas impermeable butyl rubber stoppers, crimped 

with Al seals, and overpressured to 3 bar with N2(g).  Prior to inoculation, the medium 

was further reduced by the addition of 0.3 mL 2.5% Na2S solution (2.5 g Na2S·9H2O per 

100 mL water). 

 

Inoculation and Incubation 

 Tubes of “PNG AR2” and “PNG AR2 A” growth medium were inoculated with 1 

mL each of a sediment and porewater fluid mixture from 7.5, 12, or 30 m.  The tubes 

were incubated in 30°, 50°, and 80°C water baths and checked for growth via phase 

microscopy.  Tubes were pulled from the water bath and stored at 4°C when growth was 

visually verified. 

 

Growth of Shewanella species ANA-3 and ARM-1 

 Cultures of Shewanella species ANA-3 and ARM-1 were gifts of Chad Saltikov.  

Strain ANA-3 is a respiratory As-reducing prokaryote, and strain ARM-1 is a genetically 

modified version of ANA-3 that no longer contains the arrA gene which encodes the As-

reducing respiratory reductase.  Cultures of both microorganisms were grown overnight 

on LB agar plates and in 5.0 mL of liquid LB medium at room temperature. 

 

RNA and DNA extraction 

 Bulk DNA was extracted from sediments using the Fast DNA Soil Kit (MP 

Biomedicals) following the manufacturer’s protocol.  Initial enrichments of tubes 

inoculated with fluid and sediment slurries from 7.5, 12, and 30 m were successful at 30 
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and 50°C.  Actively growing cultures were immediately placed on ice for RNA and DNA 

extraction following visual verification of growth via phase microscopy.  RNA was 

extracted using the SV Total RNA Isolation System (Promega) generally following the 

manufacturer’s protocol for isolation of RNA from Gram-Positive and Gram-Negative 

bacteria, although cultures incubated overnight were used because even cultures grown 

overnight did not typically reach an OD600 of 0.6 – 1.0.  Also, it was assumed that the 

enrichment could contain a mixture of Gram-Positive and Gram-Negative Bacteria as 

well as Archaea, so 3 mL were extracted from each tube and 1.5 mL were treated 

following the protocol for Gram-Positive bacteria and 1.5 mL were treated as for Gram-

Negative bacteria.  In some cases, DNA was extracted (from the same sample from which 

RNA was extracted) using a modified protocol (Otto et al., 1998) of the SV Total RNA 

Isolation System.  Successful RNA and DNA extraction was verified using the 

appropriate Nucleic Acid Analysis method on a DU 800 Beckmann Coulter 

spectrophotometer. 

 Bulk DNA was also extracted from cultures of Shewanella sp. ANA-3 and 

Shewanella sp. ARM-1 following the protocol for Gram-negative bacteria in the Wizard 

Genomic DNA Purification Kit (Promega), for use as positive and negative controls in 

functional gene analyses.  Successful DNA extraction was verified via spectrophotometer. 

 

Functional gene analyses 

DNA extracted from enrichments and bulk DNA extracted from sediments were 

screened for the arrA gene using the ArrAfwd (5'-AAG-GTG-TAT-GGA-ATA-AAG-

CGT-TTgtbgghgaytt-3') and ArrArev (5'-CCT-GTG-ATT-TCA-GGT-GCC-caytyvggngt-
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3') primers (Malasarn et al., 2004).  The 20 μL PCR reaction mixture consisted of 2.8 μL 

MgCl2, 2.0 μL GeneAmp 10X PCR buffer, 0.2 μL dNTPs, 0.25 μL AmpliTaq Gold DNA 

polymerase, 1 μL each of forward and reverse primers (0.5 μM), and 2 μL template DNA.  

Thermocycling conditions on a Hybaid PCR Express thermalcycler consisted of initial 

denaturation at 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, 50°C 

for 40 seconds, and 72°C for 1min.  A positive control of Shewanella ANA-3 and a 

negative control of Shewanella ARM-1 were included for all PCR runs.  PCR products 

were verified to be the correct size (~160 – 200 bp) on a 1.5% agarose gel stained with 

SYBR Green and photographed under UV light.  PCR products or bands excised directly 

from the gel were cleaned using the Wizard® SV Gel and PCR Clean-Up System 

(Promega) using the manufacturer’s instructions. 

DNA extracted from enrichments and bulk DNA from sediments was also 

screened for the arsenite oxidase gene using two primer sets targeting aroA: set #1 

forward primer 5'-GTS-GGB-TGY-GGM-TAY-CAB-GYC-TA-3' and reverse primer  

5'-TTG-TAS-GCB-GGN-CGR-TTR-TGR-AT-3' and set #2 forward primer  

5'-GTC-GGY-TGY-GGM-TAY-CAY-GYY-TA-3' and reverse primer  

5'-YTC-DGA-RTT-GTA-GGC-YGG-BCG-3' (Inskeep et al., 2007).  Both primer sets 

amplify an ~500bp segment of aroA.  The 20 μL PCR reaction mixture consisted of 1.8 

μL MgCl2, 2.0 μL GeneAmp 10X PCR buffer, 0.2 μL dNTPs, 0.25 μL AmpliTaq Gold 

DNA polymerase, 2 μL each of forward and reverse primers (1 μM), and 1 μL template 

DNA.  Thermocycling conditions on a Hybaid PCR Express thermalcycler for primer set 

#1 consisted of initial denaturation at 95°C for 4 min, followed by 9 cycles of 95°C for 

45 s, 50°C for 45 s (decreased by 0.5°C for each cycle), and 72°C for 50 s, followed by 
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25 cycles of 95°C for 45 s, 46°C for 45 s, and 72°C for 50 s, followed by a final 

extension time of 72°C for 5 min.  For primer set #2, the PCR reaction mixture was the 

same, and thermocycling conditions were 90°C for 3 min, followed by 40 cycles of 92°C 

for 1 min, 50°C for 1.5 min, and 72°C for 1 min, followed by a final extension time of 

72°C for 5 min.  Thermocycling conditions were taken from Inskeep et al. (2007).  

Positive control consisted of bulk DNA extracted from Octopus Pool, Yellowstone 

National Park, USA.  PCR products were verified to be the correct size on a 1.5% 

agarose gel stained with SYBR Green and photographed under UV light.  Products were 

then cleaned using the Wizard® SV Gel and PCR Clean-Up System (Promega) using the 

manufacturer’s instructions. 

Reverse-transcription PCR (RT-PCR) was performed on enrichment samples 

which displayed correctly-sized bands in the screening of the bulk DNA for arsenate 

reductase.  RT-PCR was performed using the Access RT-PCR System (Promega) 

following the manufacturer’s instructions.  

 

Microbial incubation and arsenate reduction 

Two tubes of “PNG AR2” medium were inoculated with 1 mL each of 

enrichments cultured from the 7.5 and 30 m sites.  Tubes were incubated overnight in a 

30°C water bath.  Following visual verification via phase microscopy of microbial 

growth, each tube was well homogenized and 1 mL each used to inoculate 10 tubes.  Five 

of these tubes were reduced with 0.3 mL 2.5% Na2S prior to inoculation.  An additional 

10 tubes, 5 of which were amended with 0.3 mL 2.5% Na2S, served as Control tubes.  

Immediately after inoculation, one tube each of 7.5 m, 30 m, and Control both with and 
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without Na2S (6 tubes total) were flash frozen in liquid nitrogen.  All remaining tubes 

were then incubated in a 30°C water bath.   

At 24 and 48 hours after inoculation, one tube of each sample with and without 

Na2S were removed from the water bath, and 0.3 mL was withdrawn from each tube and 

stored in 0.15 mL formalin at 4°C before the tube was flash frozen in liquid nitrogen.  

Following freezing, all tubes were wrapped completely in aluminum foil and stored at 

−20°C until analysis. 

 

Total arsenic and arsenic speciation measurements 

For samples that were unfiltered at collection, ~2 mL of sample were filtered 

through a cellulose 0.22 μm filter.  High pressure liquid chromatography (HPLC) was 

used to separate AsV, AsIII, DMA (dimethylarsenic acid), and MMA (monomethylarsonic 

acid) prior to measurement of concentration with hydride generation-atomic fluorescence 

spectrometry (HG-AFS).  The arsenite and arsenate were separated on an anion exchange 

column and a volatile arsenic hydride generated, which was then detected via AFS.       

 

Isolation of Microbial Species 

 Successful enrichments cultured in “PNG AR2” medium that were inoculated 

with sediment and porewater slurries from 7.5 m, 12 m, and 30 m, and an enrichment 

cultured in “PNG AR2 A” inoculated from a porewater and sediment slurry of 7.5 m 

were identified as candidates for isolation of microbial species.  These samples were used 

as inoculum tubes in a dilution-to-extinction isolation technique.  A series of 10 tubes of 

growth medium was prepared and 1 mL of the inoculum was transferred to tube 1 in the 
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dilution series.  Tube 1 was then homogenized and 1 mL was transferred to tube 2 in the 

series, and so on until the last tube.  All tubes were then incubated in a 30°C water bath 

and microbial growth was observed via phase microscopy.  When growth was visually 

verified, tubes were stored at 4°C.  The last tube in each series that was observed to have 

microbial growth was used as the inoculum for a new dilution series of 10 tubes.  This 

procedure was followed for a total of 3 dilution series for all 4 samples. 

 The dilution-to-extinction method successfully yielded an isolate from the 7.5 m 

enrichment cultured in PNG AR2 medium at 30°C.  Bulk DNA and RNA were extracted 

from a tube of this isolate using the procedures outlined above.  PCR was performed to 

amplify the 16S gene from the bulk DNA.  The 20 μL PCR reaction mixture consisted of 

1.8 μL MgCl2, 2.0 μL GeneAmp 10X PCR buffer, 0.2 μL dNTPs, 0.25 μL AmpliTaq 

Gold DNA polymerase, 0.5 μL each of forward and reverse primers (0.25 μM), and 1 μL 

template DNA.  PCR was performed using both 21F (5’–TTC-CGG-TTG-TAC-CYG-

CCG-GA–3’) and 1391R (5’–GAC-GGG-CGG-TGT-GTR-CA–3’) primers targeting 

archaea, and 27F (5’–AGA-GTT-TGA-TCC-TGG-CTC-AG–3’)  and 1492R (5’–GGT-

TAC-CTT-GTT-ACG-ACT-T–3’) primers targeting bacteria.  Thermocycling conditions 

on a Hybaid PCR Express thermalcycler were 95°C for 5 min, followed by 30 cycles at 

95°C for 0.5 min, 55°C for 0.5 min, and 72°C for 1.5 min, followed by a final extension 

at 72°C for 15 min for archaeal primers, and  95°C for 5 min, followed by 35 cycles of 

95°C for 1 min, 52°C for 1 min, and 72°C for 1 min, followed by a final extension time 

of 72°C for 5 min for bacterial primers. 
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Microbial Isolate 16S rRNA Gene Sequencing and Analysis  

 16S rRNA DNA amplified from the microbial isolate was cleaned using the 

Wizard® SV Gel and PCR Clean-Up System (Promega) using the manufacturer’s 

instructions.  DNA sequencing was completed at both Protein and Nucleic Acid 

Chemistry Laboratory (Washington University School of Medicine, St. Louis, MO) and 

Molecular Cloning Laboratories (South San Francisco, CA). 

 Sequence data were manually edited and assembled into contigs using Sequencher 

v.4.7 (Gene Codes).  Assembled sequences were aligned using the Greengenes NAST 

aligner (DeSantis et al., 2006) and checked for chimeras using the Bellerophon3 server at 

Greengenes.  All sequences were compared to sequences in the NCBI GenBank database 

via BLAST. 

 

RESULTS AND DISCUSSION 

Functional gene screening and expression 

 Bulk DNA extracted from sediments at 7.5, 30, 60, 140, and 300 m was screened 

for arsenate reductase (arrA).  Four samples (7.5, 30, 60, and 300 m) were positive for 

arrA.  This is manifested as correctly-sized bands in the gel electrophoresis photograph 

(Figure 2) in lanes 4 (7.5 m sample), 5 (30 m), 6 (60 m), and 8 (300 m).  Bulk DNA 

extracted from Shewanella sp. ANA-3 was used as a positive control for respiratory 

arsenate reductase (lane 1), while bulk DNA extracted from Shewanella sp. ARM-1 was 

used as a negative control (lane 2).  Lane 2 shows the absence of a band at the size 

location of the positive control and strong banding in two places well above the control 

band location, verifying its negative control status.  Bands in lanes 4, 5, 6, and 8 at the 
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size fragment of the positive control indicate the presence of amplified arrA; the 

brightness in 4, 5, and 6 indicate that more DNA was amplified in those reactions than in 

lane 8, which shows a dimmer band.  Bulk DNA from the 5 sample sites was also 

screened for arsenite oxidase (aroA-like) genes. Three samples (7.5, 30, and 60 m) were 

positive for arsenite oxidase using primer set #2, as seen by the bands in lanes 6 (7.5 m), 

9 (60 m), and 10 (30 m) which are the same size as the control band in lane 2 (Figure 3).  

These gene screening results demonstrate that the sites closest to the vent (7.5, 30, and 60 

m) feature microbial populations apparently capable of both AsV-reduction and AsIII-

oxidation.  Despite elevated As concentrations even beyond 60 m along the transect, 

sedimentary microbial communities capable of As metabolism are less likely.  At the 140 

m site, both As functional genes were absent, and at the 300 m site aroA-type genes were 

absent—the arrA screen, however, was positive.   

 Bulk DNA extracted from several laboratory enrichment cultures was also 

screened for arrA and aroA-type genes.  Cultured enrichments from 7.5 m, 12 m, 30 m at 

30°C and enrichments from 12 m at 50°C, all cultured in “PNG AR2” medium, were all 

screened for both arrA and aroA-type genes.  Only the 30 m enrichment showed a 

positive band result during PCR screening for the arrA gene.  Bulk RNA extracted from 

an actively growing aliquot of the 30 m culture was then used in the RT-PCR reaction.  

Figure 4 shows the ladder (DNA size marker) band in lanes 1 and 5, the negative control 

(no band) in lane 2, the band in lane 3 identifies the amplification of the positive control, 

and the band in lane 4 represents the positive result of RT-PCR for the 30 m enrichment.  

The positive bands were excised from the gel, sequenced, and compared to other gene 

sequences deposited in the GenBank database (www.ncbi.nlm.nih.gov; Benson et al., 
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1999).  The band representing the 30 m enrichment identified 100% with an arrA-like 

gene from an uncultured bacterium (Genbank accession number AY707767; Malasarn et 

al., 2004), and 97% with the arrA gene from the uncultured bacterium clone HRR23 

(AY707770; Malasarn et al., 2004).  This is robust evidence that microorganisms in the 

enrichment culture were actively reducing arsenate for respiration at the time of sacrifice.  

It should be noted however, that these data cannot provide information regarding the 

relative proportion of respiratory AsV-reducing organisms compared to microorganisms 

utilizing other metabolic strategies within the sediments and porefluids of Tutum Bay. 

 

Arsenic speciation in microbial incubations  

 Enrichment cultures from 7.5 m and 30 m were inoculated in fresh PNG AR2 

medium and incubated, along with a Control sample (un-inoculated PNG AR2 medium) 

at 30 ºC for 48 h.  Growth medium samples of the 7.5 m, 30 m, and Control samples were 

taken at 0, 24, and 48 hours and analyzed for AsIII and AsV by high pressure liquid 

chromatography-hydride generation atomic fluorescence spectroscopy (HPLC-HG-AFS).  

The speciation data are listed in Table 2 and plotted as a function of time in Figure 5.  In 

Table 2, the AsIII and AsV concentrations, total arsenic (sum of the two species), and 

percentage of each species are listed for each sample at the 3 time points, in addition to 

the AsIII and AsV concentrations that were analyzed in a sample of un-inoculated, non-

incubated PNG AR2 growth medium (labeled Medium).  Only one sample that was 

amended with Na2S prior to inoculation was analyzed; these values are also given in 

Table 2. 
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It can be seen in Table 2 and Figure 5 that the inoculated tubes from both sites 

showed a marked decrease in AsV levels with a concurrent increase in AsIII.  For the 7.5 

m samples over a 48 h period, AsV decreased from 3.25 to 1.23 mg/L and AsIII increased 

from 0.58 to 1.94 mg/L.  For the 30 m samples, AsV showed an even larger decrease, 

from 3.29 to 0.54 mg/L while AsIII increased from 0.41 to 1.81 mg/L.  In the non-

inoculated Control samples, there was no change in the AsV or AsIII levels with time.  

Similar values of arsenic concentrations were observed in the Control and Medium 

samples.  The data clearly indicate microbially mediated AsV reduction in samples 

collected from 7.5 m and 30 m. 

 Arsenic mass balance in the inoculated samples was not achieved (see Table 2); 

the PNG AR2-B medium contained ~4.5 mg/L, as observed in the Control and Medium 

samples.  However, the inoculated samples displayed lower total concentrations of 

arsenic than the expected ~4.5 mg/L at all time points.  The cause of this phenomenon is 

currently unclear, but may be due to the fact that the growth medium in the injected 

inoculum had already been incubated with active microbial populations for ~18 hours, so 

AsV concentrations were already likely to be depleted and AsIII already present, which 

may have affected the overall speciation in the freshly-inoculated tubes.  In addition, 

some of the arsenic may have precipitated out of solution and subsequently could have 

been filtered out of the sample prior to HPLC-HG-AFS analyses.  Alternatively, 

organoarsenical species may have formed; non-methylated organic species were not 

detectable via HPLC-HG-AFS.   

Arsenic speciation in samples that were amended with sodium sulfide prior to 

inoculation was not analyzed in detail.  Initially, the concentration of arsenate detected 
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was much lower than expected and arsenite was not detected in the Control 0 hr with 

Na2S sample, but after treatment with H2O2, a second analysis of Control 0 hr was able to 

detect higher amounts of both species (Table 2).  It is believed that the addition of Na2S 

to the medium had caused the formation of As-S thiocompounds, which cannot be 

analyzed with HG-AFS.  The addition of Na2S likely affected arsenic speciation greatly, 

so no further analyses of the samples amended with Na2S before inoculation were 

undertaken. 

 

Isolation of Strain TB1  

 A novel bacterium, designated Strain TB1, was isolated in “PNG AR2” growth 

medium at 30 ºC using the dilution-to-extinction method.  The starting inocula were 

enrichments grown from sediment and porewater slurries from the 7.5 m site.  Strain TB1 

is rod-shaped with rounded ends, ~1.2 – 1.5 μm in width and ~2 – 8 μm in length (Figure 

6a, b).  Observations by phase microscopy show that the organism forms sub-terminally-

located endospores (Figure 6c) as well as free-floating mature endospores (not shown). 

A bacterial 16S rRNA gene was amplified successfully from bulk DNA extracted 

from a culture of TB1.  DNA sequencing of the 16S rRNA gene revealed TB1 to be most 

closely related (97%) to an uncultured clone identified as a Bacillaceae bacterium, in the 

“low G + C” phylum.  Many species of Bacillus form endospores, and several Bacillus 

species have been identified as arsenate-respiring, including Bacillus arsenicoselenatis, B. 

selenitireducens, B. benzoevorans str. HT-1, and B. macyae.  B. arsenicoselenatis and B. 

selenitireducens are both anaerobic haloalkaliphiles isolated from arsenic-rich Mono 

Lake, California; the former species forms endospores, but the latter species does not.  
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They both can grow via dissimilatory reduction of AsV to AsIII with the simultaneous 

oxidation of lactate to acetate and CO2 (Switzer Blum et al., 1998).  The anaerobic B. 

benzoevorans HT-1 was isolated from hamster feces, and is capable of growth using 

arsenate as the electron acceptor and H2 as the electron donor.  It was the first instance of 

an arsenate-reducer found inside a living creature (Herbel et al., 2002).  B. macyae is a 

strictly anaerobic, endospore-forming species, capable of respiring using arsenate and 

nitrate as terminal electron acceptors coupled with a variety of substrates as the electron 

donor, including acetate (Santini et al., 2004).  Based on 16S rRNA sequence 

comparisons, none of these particular Bacillus species were very closely (> 96%) related 

to TB1, however, and because the Bacillaceae that the isolate was most closely related to 

is uncharacterized, it is unclear whether this isolate is capable of respiratory arsenate 

reduction, or is arsenic tolerant. 

While the cause for the sporulation seen by Strain TB1 is currently unknown, 

limitations in metabolizable forms of carbon, nitrogen, or phosphorus, as well as 

extremes in metal concentrations and temperature can produce endospores (Madigan et 

al., 2003).  Here, it is not known if the high As concentrations in the growth medium 

were a trigger for sporulation.  Further work needs to be done to definitively determine 

whether or not TB1 is capable of respiratory arsenate reduction, and what factors may act 

as stressors in its environment to trigger sporulation. 

 

CONCLUSIONS 

 The results of the functional gene screening, the RT-PCR gene expression 

screening, and the incubation experiments all show that microorganisms extant in Tutum 
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Bay sediments/porefluids are capable of respiratory arsenate reduction and arsenite 

oxidation.  This is the first coupled microbiological and geochemical evidence of active 

microbially mediated As-cycling in shallow-sea hydrothermal environments.  Additional 

work is needed to fully characterize Strain TB-1, especially to determine its metabolic 

pathways and potential arsenic-respiration and resistance capabilities.  Phylogenetic 

comparison of this isolate to known As-redox microorganisms may also shed light on its 

role in As-cycling in Tutum Bay.  Other shallow-sea hydrothermal systems that are rich 

in arsenic, including Champagne Hot Springs in Dominica (Lesser Antilles) and the 

Hellenic Volcanic arc (McCarthy et al., 2005; Varnavas and Cronan, 2005), contain 

elevated levels of arsenic and are potential targets for further As-redox culturing studies, 

including isolation of thermophilic As-redox microorganisms.  It is clear that microbes 

play an important role in As-cycling and studying these organisms can provide greater 

insights into the biogeochemical cycling of arsenic in diverse environments around the 

world. 
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Table 1.  Arsenic concentrations in surface sediments along the 4B transect (data 
from Price and Pichler, 2005) 
 

Distance 
from vent 

(m) 

Depth (cm) As (ppm) 

  0 0 33200
  1 0 1483
7.5 0 783

 5 872
12 0 680
 2 473

30 0 539
 2 483

60 0 614
 5 635

90 0 443
 5 464

125 0 468
150 0 402

 5 411
175 0 360
200 0 163
225 0 52

 5 72
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Table 2. Results of As-Reduction Incubation Experiment  
 

 Time 
(Hrs) 

AsIII 
(mg/L) 

AsV 
(mg/L) 

Sum of 
species 
(mg/L) 

AsIII % AsV% 

Without Na2S      
Control  0 1.41 2.98 4.39 32.1 67.9 
Control 24 1.40 3.12 4.52 31.0 69.0 
Control 48 1.26 2.97 4.23 29.8 70.2 

      
7.5 m  0 0.58 3.25 3.83 15.1 84.9 
7.5 m 24 1.08 2.06 3.14 34.4 65.6 
7.5 m 48 1.94 1.23 3.17 61.2 38.8 

      
30 m 0 0.41 3.29 3.70 11.1 88.9 
30 m 24 1.53 0.99 2.52 60.7 39.3 
30 m 48 1.81 0.54 2.35 77.0 23.0 

      
Medium 1.29 3.29 4.58 28.2 71.8 
      
With Na2S      
Control 0 n.d. 2.95 2.95   
Control with H2O2 0 0.08 4.16 4.24   
      
n. d. = not detected 
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Figure 1.  (a) Papua New Guinea, with Feni Islands (Ambitle and Babase) enlarged. (b) 

Plan view of Tutum Bay hydrothermal area with sampling transect constructed from Vent 

4B.  Sampled sites are indicated by Xs.  Water depth indicated by dashed lines. 
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L  1  2  3  4  5  6  7  8  L 

 
 

Figure 2.  PCR results for arsenate reductase (arrA) gene amplification.  L = ladder. 1: 

Positive control (ANA-3) 2: Negative control (ARM-1) 3: 30 m enrichment culture (+) 4: 

7.5 m sediments (+) 5: 30 m sediments (+) 6: 60 m sediments (+) 7: 140 m sediments (–) 

8: 300 m sediments (+). 
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Figure 3.  PCR results for arsenite oxidase (aroA-like) gene amplification.  Lane 1: 

Negative control.  2: Positive control (Octopus Pool) 3, 4, 5:  The Grip (sample from 

Sicily) (all –) 6: 7.5 m sediments (+) 7: 300 m sediments (–) 8: 140 m sediments (–) 9: 60 

m sediments (+) 10: 30 m sediments (+) 
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    1          2          3         4         5 

 
 

Figure 4.  RT-PCR results for arrA cDNA.  Lanes 1, 5 = ladder.  2: Negative control (no 

amplifiable DNA present).  3: Positive control (+)  4: 30 m enrichment (+).  
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Figure 5.  Arsenic concentration versus time for 7.5 and 30 m inocula. 
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Figure 6a.  Phase microscopy photograph of isolate TB1, a rod-shaped microorganism 

closely related to Bacillus sp. 
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Figure 6b.  Photograph of strain TB-1 stained with DAPI. 
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Figure 6c. A culture of isolate TB1 with sub-terminal endospores (red arrows indicate 

their location).  
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CHAPTER 5 
 

CONCLUSIONS 
 

The Tutum Bay hydrothermal system provided an ideal location to study the 

effects of high concentrations of arsenic in a shallow marine environment.  In this 

environment, a number of chemolithotrophic metabolic reactions, including those 

involving the oxidation and reduction of arsenic species, were found to be energy 

yielding, and diverse groups of archaea were identified from the As-rich sediments of 

Tutum Bay at both ambient and elevated temperatures.  Laboratory experiments revealed 

that microorganisms capable of both AsV reduction and AsIII oxidation were extant in 

Tutum Bay sediments and porefluids.  Microbial consortia enriched from Tutum Bay 

were actively involved in AsV reduction, providing evidence for microbially-mediated As 

cycling in marine environments. 

Experiments to isolate additional microbial species from Tutum Bay are currently 

underway in the laboratory.  Further characterization experiments need to be done to 

determine the optimal growth conditions of the strain TB1 which has been isolated in this 

work, including determining its metabolism, phylogenetic relationship to other known 

organisms, and its arsenic-reducing or arsenic-tolerance potential.  In addition, two 

techniques that can be used in future research to learn more about the Tutum Bay 

microbial communities are high-throughput sequencing and gene screening (Sogin et al., 

2006; Huber et al., 2007), which can exponentially increase our knowledge of presently 

unculturable microorganisms, and high-throughput culturing techniques which can be 

used to more quickly isolate microbial species under environmental conditions of interest, 
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such as high temperature or pressure (Connon et al., 2002; Bollman et al., 2007; 

Giovannoni et al., 2007).   

 By understanding the role of microbes like strain TB1 in oxidizing and reducing 

arsenic, we can better predict the mobilization and transport of arsenic in natural systems.  

We can harness the arsenic-redox ability of microorganisms to help bioremediate 

ecosystems that have been contaminated with arsenic from mine waste or other 

manufacturing byproducts.  For example, in France a bioreactor containing a consortium 

of bacterial species known to be potential AsIII oxidizers and AsV reducers was used to 

treat arsenic-contaminated mine drainage water (Battaglia-Brunet et al., 2004; 2006), and 

the French village of Ambacourt has erected a biological processing unit to treat arsenic- 

and iron-contaminated water with natural biofilms (Casiot et al., 2006).  Other 

microorganisms, such as the highly arsenic-resistant Corynebacterium glutamicum, are 

being genetically engineered to help remove arsenic from contaminated waters (Mateos 

et al., 2006). 

In addition to their application in bioremediation techniques, the study of As-

redox microorganisms provides us with a greater understanding of the habitats within 

which life on Earth and even other planets can exist.  Life has an amazing ability to thrive 

in even the harshest of environments.  On Earth, it has been postulated that “weird life” 

which substitutes arsenic for phosphorus could exist in unusual niche environments 

(Wolfe-Simon et al., 2009).  It has also been hypothesized that on the early Earth, AsIII 

may have been one of the main energy sources for chemolithotrophic organisms, and that 

the microbial transformations of AsIII to AsV may have made early environments more 

hospitable for other forms of life (Lièvremont et al., 2009).   
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The potential for life also exists on other planetary bodies in what may prove to 

be challenging environments.  Explorations of our solar system have shown that the 

planet Mars, the Jovian moon Europa, and the Saturnian moon Enceladus are all believed 

to have or have had liquid water and ice in the subsurface (Chyba and Phillips, 2001; 

Hansen et al., 2006; Matson et al., 2007).  Europa in particular is believed to have a large 

liquid water ocean beneath its shell of ice, and potential heating sources that could 

promote submarine hydrothermal systems (Carr et al., 1998; Pappalardo et al., 1998).  

Recent studies have also pointed to evidence of ice at the poles and small amounts of 

water on the surface of our Moon (Pieters et al., 2009; Sunshine et al., 2009).  Water is a 

necessary component for life (at least as we know it) to exist, and these planetary bodies 

are all sites where we can explore for the existence of life outside of Earth.  The work 

discussed in this dissertation not only broadens our understanding of the environments 

that life can tolerate or even thrive in on Earth, but can help serve as a potential ground 

truth for exploring for life in challenging environments elsewhere in our solar system. 
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APPENDIX A. 
 

GLOSSARY OF TERMS 
 
All definitions taken from Brock Biology of Microorganisms, by M. T. Madigan, J. M. 
Martinko, J. Parker.  10th ed. 2003.  Prentice Hall: Upper Saddle River, New Jersey. 
 
 
Aerobe = An organism that grows in the presence of O2; may be facultative, obligate, or 
microaerophilic. 
 
Anaerobe = An organisms that grows in the absence of O2; some may even be killed by 
O2. 
 
Anaerobic respiration = Use of an electron acceptor other than O2 in an electron 
transport-based oxidation and leading to a proton motive force. 
 
Anoxic = Absence of oxygen.  Usually used in reference to a microbial habitat. 
 
Archaea = A phylogenetic domain of prokaryotes consisting of the methanogens, most 
extreme halophiles and hyperthermophiles, and Thermoplasma. 
 
ATP = Adenosine triphosphate, the principal energy carrier of the cell. 
 
Autotroph = An organism able to utilize CO2 as a sole source of carbon. 
 
Bacteria = All prokaryotes that are not members of the domain Archaea. 
 
Bioremediation = Use of microorganisms to remove or detoxify toxic or unwanted 
chemicals in an environment. 
 
Chemolithotroph = An organism obtaining its energy from the oxidation of inorganic 
compounds. 
 
Chemoorganotroph = An organism obtaining its energy from the oxidation of organic 
compounds. 
 
Clone = A number of copies of a DNA fragment obtained by allowing an inserted DNA 
fragment to be replicated by a phage or plasmid. 
 
Culture = A particular strain or kind of organism growing in a laboratory medium. 
 
Culture medium, or growth medium = An aqueous solution of various nutrients suitable 
for the growth of microorganisms. 
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Deoxyribonucleic acid (DNA) = A polymer of nucleotides connected via a phosphate-
deoxyribose sugar backbone; the genetic material of cells and some viruses. 
 
Domain = The highest level of biological classification.  The three domains of biological 
organisms are the Bacteria, the Archaea, and the Eukarya.  
 
Electron acceptor, or terminal electron acceptor = A substance that accepts electrons 
during an oxidation-reduction reaction. 
 
Electron donor = A compounds that donates electrons in an oxidation-reduction reaction. 
 
Electrophoresis = Separation of charged molecules in an electric field. 
 
Endospore = A differentiated cell formed within the cells of certain Gram-Positive 
Bacteria that is extremely resistant to heat as well as to other harmful agents. 
 
Enrichment culture = Use of selective culture media and incubation condition to isolate 
microorganisms from natural samples. 
 
Eukarya = The phylogenetic domain containing all eukaryotic organisms. 
 
Eukaryote = A cell or organism having a unit membrane-enclosed (true) nucleus and 
usually other organelles. 
 
Extremophile = An organism that grows optimally under one or more chemical or 
physical extremes, such as high or low temperature or pH. 
 
Facultative = A qualifying adjective indicating that an organism is able to grow in either 
the presence or absence of an environmental factor (for example, “facultative aerobe”). 
 
Gene = A unit of heredity; a segment of DNA specifying a particular protein or 
polypeptide chain, a tRNA or an RNA. 
 
Gram-Positive cell = A prokaryotic cell whose cell wall contains relatively little 
peptidoglycan but has an outer membrane composed of lipopolysaccharide, lipoprotein, 
and other complex macromolecules. 
 
Growth medium = see “culture medium.” 
 
Heterotroph = Chemoorganotroph. 
 
Hydrothermal vents = Warm or hot water-emitting springs associated with crustal 
spreading centers on the sea floor. 
 
Hyperthermophile = A prokaryote having a growth temperature optimum of 80°C or 
higher. 

 141



 
Inoculum = Material used to initiate a microbial culture. 
 
Mesophile = Organism living in the temperature range near that of warm-blooded 
animals, and usually showing a growth temperature optimum between 25 and 40°C. 
 
Messenger RNA (mRNA) = An RNA molecule transcribed from DNA that contains the 
genetic information necessary to encode a particular protein. 
 
Microaerophilic = Requiring O2 but at a level lower than atmospheric. 
 
Microorganism = A microscopic organism consisting of a single cell or cell cluster, also 
including the viruses. 
 
Molecular cloning = Isolation and incorporation of fragment of DNA into a vector where 
it can be replicated. 
 
Obligate = A qualifying adjective referring to an environmental factor always required 
for growth (for example, “obligate anaerobe”). 
 
Operon = A cluster of genes whose expression is controlled by a single operator.  Typical 
of prokaryotic cells. 
 
Oxic = Containing oxygen; aerobic.  Usually used in reference to a microbial habitat. 
 
Oxidation = A process by which a compound gives up electrons (or H atoms) and 
becomes oxidized. 
 
Oxidation-reduction (redox) reaction = A pair of reactions in which one compound 
becomes oxidized while another becomes reduced and takes up the electrons released in 
the oxidation reaction. 
 
PCR = see “Polymerase chain reaction.” 
 
Phototroph = An organism that obtains energy from light. 
 
Phylogeny = The ordering of species into higher taxa and the construction of 
evolutionary trees based on evolutionary (natural) relationships. 
 
Polymerase chain reaction (PCR) = A method used to amplify a specific DNA sequence 
in vitro by repeated cycles of synthesis using specific primers and DNA polymerase. 
 
Primer = A molecule (usually a polynucleotide) to which DNA polymerase can attach the 
first deoxyribonucleotide during DNA replication. 
 

 142



 143

Prokaryote = A cell or organism lacking a nucleus and other membrane-enclosed 
organelles, usually having its DNA in a single circular molecule. 
 
Redox = see “Oxidation-reduction reaction.” 
 
Reduction = A process by which a compound accepts electrons to become reduced. 
 
Respiration = Catabolic reactions producing ATP in which either organic or inorganic 
compounds are primary electron donors and organic or inorganic compounds are ultimate 
electron acceptors. 
 
Reverse transcription = The process of copying information found in RNA into DNA. 
Ribonucleic acid (RNA) = A polymer of nucleotides connected via a phosphate-ribose 
backbone; involved in protein synthesis or as a genetic material of some viruses. 
 
Ribosomal RNA (rRNA) = Type of RNA found in the ribosome; some rRNAs participate 
actively in the process of protein synthesis. 
 
Ribosome = A cytoplasmic particle composed of ribosomal RNA and protein, which is 
part of the protein-synthesizing machinery of the cell. 
 
Screening = Any of a number of procedures that permits the sorting of organisms by 
phenotype or genotype by allowing growth of some types but not others. 
 
16S rRNA = A large polynucleotide (~1500 bases) that functions as a part of the small 
subunit of the ribosome of prokaryotes (Bacteria and Archaea) and from whose sequence 
evolutionary relationships can be obtained; the eukaryotic counterpart is the 18S rRNA. 
 
Strain = A population of cells of a single species all descended from a single cell; a clone. 
 
Thermophile = An organism with a growth temperature optimum between 45 and 80°C. 
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