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2010



ABSTRACT OF THE DISSERTATION

Biologically Inspired Sensing and MIMO Radar Array Processing

by

Murat Akçakaya

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, December 2010

Research Advisor: Dr. Arye Nehorai

The contributions of this dissertation are in the fields of biologically inspired sensing

and multi-input multi-output (MIMO) radar array processing. In our research on

biologically inspired sensing, we focus on the mechanically coupled ears of the female

Ormia ochracea. Despite the small distance between its ears, the Ormia has a re-

markable localization ability. We statistically analyze the localization accuracy of the

Ormia’s coupled ears, and illustrate the improvement in the localization performance

due to the mechanical coupling.

Inspired by the Ormia’s ears, we analytically design coupled small-sized antenna

arrays with high localization accuracy and radiation performance. Such arrays are

essential for sensing systems in military and civil applications, which are confined to

small spaces. We quantitatively demonstrate the improvement in the antenna array’s

radiation and localization performance due to the biologically inspired coupling.

On MIMO radar, we first propose a statistical target detection method in the presence

of realistic clutter. We use a compound-Gaussian distribution to model the heavy

ii



tailed characteristics of sea and foliage clutter. We show that MIMO radars are useful

to discriminate a target from clutter using the spatial diversity of the illuminated

area, and hence MIMO radar outperforms conventional phased-array radar in terms

of target-detection capability.

Next, we develop a robust target detector for MIMO radar in the presence of a phase

synchronization mismatch between transmitter and receiver pairs. Such mismatch

often occurs due to imperfect knowledge of the locations as well as local oscillator

characteristics of the antennas, but this fact has been ignored by most researchers.

Considering such errors, we demonstrate the degradation in detection performance.

Finally, we analyze the sensitivity of MIMO radar target detection to changes in the

cross-correlation levels (CCLs) of the received signals. Prior research about MIMO

radar assumes orthogonality among the received signals for all delay and Doppler

pairs. However, due to the use of antennas which are widely separated in space, it is

impossible to maintain this orthogonality in practice. We develop a target-detection

method considering the non-orthogonality of the received data. In contrast to the

common assumption, we observe that the effect of non-orthogonality is significant on

detection performance.
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Chapter 1

Introduction

In this dissertation we present our research on biologically inspired sensing, specifically

inspired by the hearing system of the parasitoid fly Ormia ochracea, and then develop

multi-input multi-output (MIMO) radar applications in array signal processing. In

this chapter, we first discuss sound source localization for animals, with a focus on the

mechanically coupled ears of a female Ormia ochracea. As a part of our research on

biologically inspired sensing, we propose to design a coupled antenna system inspired

by the unique structure of the female Ormia’s ears. In the rest of this chapter, we

introduce the MIMO processing approach for radar signal processing. For MIMO

radar, our research addresses target detection in non-homogeneous clutter, the effect

of phase synchronization mismatch between transmitter and receiver pairs on the

detection performance, and sensitivity analysis for target detection performance.

1.1 Biologically Inspired Sensing

For animals, source localization through directional hearing relies on the interaural

acoustic cues: interaural time differences (ITD) and interaural intensity differences

1



(IID) of the incoming sound source [2]. The ears of large animals are acoustically

isolated from each other, i.e., the organs are located on opposite sides of the head

or body. For these animals the distance between the hearing organs provides rela-

tively large ITDs between the ipsilateral and contralateral ears (the ears closest to

and furthest from the sound source, respectively). Moreover, a large body or head,

with a size comparable to the incoming signals wavelength (above one tenth of the

wavelength [3]), diffracts the incoming sound and increases the IIDs between received

signals. Therefore, these big interaural differences can be detected by the hearing sys-

tems of large animals such as monkeys [4], [5]; human beings [6],[7]; cats [8]; horses

[9]; and pigs [10].

On the other hand, small animals may sense no diffractive effect in the incoming

signal, and hence have almost no IID between their two ears. Moreover, due to the

closely spaced ears, the ITD drops below the level where it can be processed by the

nervous systems of the animals. Therefore many small animals develop a mechanism

to improve these interaural differences [11]. A pressure difference receiver is the

most common mechanism employed by many animals in this category. In animals

with pressure difference receivers, the ears are acoustically coupled to each other

through internal air passages. Thus, the resulting force stimulating the eardrum is

the difference between the internal and external acoustic pressures, and hence the

name pressure difference receiver [2]. This structure amplifies the ITDs and IIDs and

improves the directional hearing performances of many small animals [12]-[17].

We focus on the hearing system of a parasitoid fly Ormia ochracea. For reproduction,

a female Ormia acoustically locates a male field cricket and deposits her larvae on or

near the cricket [18]. The localization occurs at night, relying on the cricket’s mating

call [19], [20]. The fly is very small and its ears are very closely separated, and

2



physically connected to each other, resulting in ITDs as small as 4 microseconds [21],

[22]. Moreover, there is a big incompatibility between the wavelength of the mating

call (a relatively pure frequency peak around 5KHz, with a resulting wavelength of 7

cm) and the size of the fly’s hearing organ (around 1.5 mm), resulting in negligible

IIDs [3]. It is theorized that these extremely small interaural differences can not be

processed by the nervous system of the Ormia. However, confounding theory, the

fly still locates the cricket very accurately, with as low as 2◦ of error in direction

estimation [23]. Female Ormias have a mechanical structure that connects their two

ears, and it is this structure that amplifies the interaural differences to improve the

localization accuracy [1], [24], [25]. This mechanical coupling is unique to the female

Ormia [2, Chapter 2]; even the male Ormias do not have anything similar [22].

In our research, we first quantitatively demonstrate the localization performance of

the female Ormia. Then, inspired by the Ormia’s mechanically coupled ears, we

develop an antenna array with coupling.

1.1.1 Performance of the Ormia Ochracea’s Coupled Ears

We quantitatively demonstrate the localization accuracy of a female Ormia ochracea

[26]. To feed its larvae, the female Ormia is able to locate a cricket’s mating call

despite the small distance between its ears compared with the incoming signal’s wave-

length. This phenomenon has been explained by the mechanical coupling between the

ears. In this research, we first show that the coupling enhances the differences in the

frequency responses of the ears to the incoming source signals. Then, by computing

the Cramèr-Rao bound (CRB) on the direction of arrival (DOA) estimation error,

we analyze the source localization accuracy of the Ormia. We rewrite the differential
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equations of the mechanical system in a state-space model, and calculate the ears’

impulse and frequency responses. Using the spectral properties of the system, we

asymptotically compute the CRB for multiple stochastic sources with unknown di-

rections and spectra. With numerical examples, we compare the CRB for the coupled

and the uncoupled cases, illustrating the effect of the coupling on reducing the errors

in estimating the DOA.

1.1.2 Biologically Inspired Antenna Array

We propose to design a small-size antenna array having high localization performance,

inspired by the female Ormia’s coupled ears [27]-[30]. The mechanical coupling be-

tween the Ormia’s ears has been modeled by a pair of differential equations. We

first solve the differential equations governing the Ormia’s ear response, and convert

the response to the pre-specified radio frequencies. Using the converted response, we

design passive and active transmitting antenna arrays. For the passive antenna array,

we implement the biologically inspired coupling (BIC) as a multi-input multi-output

filter on a uniform linear antenna array output. We derive the maximum likelihood

estimates (MLEs) of source DOAs, and compute the corresponding CRBs on the DOA

estimation error as a performance measure. We also consider a circular array config-

uration and compute the mean-square angular error bound on the three-dimensional

localization accuracy. For the active antenna system with BIC, we obtain the array

factor of the antenna array with BIC at the desired radio frequencies. We compute

the radiation intensity of this system and analyze its half-power beamwidth, sidelobe

levels, and directivity of the radiation pattern. Moreover, we propose an algorithm to

optimally choose the BIC for maximum localization and radiation performance. We

use numerical simulations to demonstrate the advantages of the coupling effect.
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Figure 1.1: MIMO radar with colocated antennas for 2 transmitters (Ts) and 3 re-
ceivers (Rs).

1.2 Multi-Input Multi-Output Radar

Multi-input multi-output (MIMO) radar is a remote sensing system that uses multiple

transmitters. It jointly processes the received signal from a moving or stationary

target at multiple receivers for detection, and for identification of the target’s range,

direction or speed in the presence of possible reflections from the target environment,

usually referred to as clutter [31], [32]. Over the last decade, the MIMO approach for

radar processing has drawn a great deal of attention from researchers and has been

applied to various radar scenarios and problems. MIMO radar has been studied using

both colocated [33] and widely separated antennas [34].

With colocated antennas, a MIMO radar is capable of transmitting multiple signals,

which can be uncorrelated or correlated with each other, providing transmitted wave-

form diversity. In this configuration every transmitter and receiver pair illuminates

the target from the same direction, so that the target returns are fully correlated for

all the pairs, as shown in Fig. 1.1. The advantages of such systems have been well

studied. They include improved parameter identifiability [35], improved detection
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Figure 1.2: MIMO radar with widely separated antennas for 2 transmitters (Ts) and
3 receivers (Rs).

performance and higher resolution [36], higher sensitivity for detecting moving tar-

gets [37], a radiation pattern with lower side lobes and better suppression [38], and

increased degrees of freedom for transmission beamforming [39]-[42].

MIMO radars with widely separated antennas exploit spatial diversity and hence the

spatial properties of the target’s radar cross section (RCS). The RCSs of complex

radar targets are quickly changing functions of the angle aspect [43]. These target

scintillations cause signal fading, which deteriorates the radar performance [32], [44].

When the transmitters are sufficiently separated, the multiple signals illuminate the

target from de-correlated angles, and hence each signal carries independent infor-

mation, as seen in Fig. 1.2 [45]. This spatial diversity allows the radar systems to

localize the target with high resolution [46], to improve the target parameter esti-

mation [47]-[50], and improve detection in homogeneous and inhomogeneous clutter

[45]-[53]. It also enhances tracking performance [54], and the ability to handle slow

moving targets by exploiting Doppler estimates from multiple directions [51], [55].
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In this dissertation, we focus on MIMO radar with widely separated antennas. From

here on, when we use the term MIMO radar, we refer to a MIMO radar with widely

separated antennas. We first solve the target detection problem for a MIMO radar in

the presence of sea or foliage clutter (compound-Gaussian clutter). We then continue

with more practical issues related to MIMO radar. Under appropriate assumptions,

everything seems to work very well for a theoretical MIMO radar system. However,

in practice MIMO radar suffers from the lack of phase synchronization among the

transmitter and receiver pairs [56], [57] and the non-orthogonality of the received

signals [58]. We address these issues in this dissertation by developing more robust

target detectors that consider the effect of phase synchronization mismatch between

transmitter and receiver pairs, and by demonstrating the sensitivity of the target

detection performance to changes in the cross-correlation levels among the received

signals.

1.2.1 Adaptive MIMO Radar Design and Detection in

Compound-Gaussian Clutter

MIMO radars are useful to discriminate a target from clutter using the spatial diver-

sity of the scatterers in the illuminated scene. We consider the detection of targets

in compound-Gaussian clutter, to fit such scenarios as scatterers with heavy-tailed

distributions for high-resolution and/or low-grazing-angle radars in the presence of

sea or foliage clutter [59], [60], [61]. First, we introduce a data model using an in-

verse gamma distribution to represent the clutter texture [62]. Then, we apply the

parameter-expanded expectation-maximization (PX-EM) algorithm to estimate the
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clutter texture and speckle as well as the target parameters [63]. We develop a statisti-

cal decision test using these estimates and approximate its statistical characteristics.

Based on this test, we propose an algorithm that adaptively distributes the total

transmitted energy among the transmitters to improve the detection performance.

1.2.2 MIMO Radar Detection and Adaptive Design Under a

Phase Synchronization Mismatch

We consider the problem of target detection for MIMO radar in the presence of a phase

synchronization mismatch between the transmitter and receiver pairs [64], [65]. Such

mismatch often occurs due to imperfect knowledge of the locations and local oscillator

characteristics of the antennas. First, we introduce a data model using a von-Mises

distribution to represent the phase error terms [66]. Then, we propose a method

based on the expectation-maximization algorithm to estimate the error distribution

parameter, target returns, and noise variance [67]. We develop a generalized likelihood

ratio test target detector using these estimates [68]. Based on the mutual information

[69] between the radar measurements and received target returns (and hence the

phase error), we propose an algorithm to adaptively distribute the total transmitted

energy among the transmitters. Using numerical simulations, we demonstrate that

the adaptive energy allocation, the increase in the phase information, and the realistic

measurement modeling improve detection performance.
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1.2.3 MIMO Radar Sensitivity Analysis for Target Detection

For MIMO radar, we consider the effect of the imperfect separability of the received

signals on detection performance [70]. In practice, mutual orthogonality among the

received signals cannot be achieved for all Doppler and delay pairs [58]. We introduce

a data model considering the correlation among the data from different transmitter-

receiver pairs as unknown parameters. We formulate a method to estimate the target,

correlation, and noise parameters, and then use these estimates to develop a statisti-

cal decision test. Using the asymptotical statistical characteristics and the numerical

performance of the test, we analyze the sensitivity of the MIMO radar with respect to

changes in the cross-correlation levels of the measurements. Using numerical exam-

ples, we demonstrate the effect of the increase in the correlation among the received

signals from different transmitters on the detection performance.

1.2.4 Outline of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we quantitatively

analyze the localization accuracy of a female Ormia ochracea’s coupled ears, using a

statistical approach. In Chapter 3, inspired by the coupled ears of Ormia ochracea,

we propose to develop an antenna array for improved localization accuracy and ra-

diation performance. Then, we continue with our results on target detection using

MIMO radar with widely separated antennas. First, in Chapter 4, we address the

target detection problem in the presence of sea or foliage clutter. Then, we consider

the practical limitations of MIMO radar processing. In this context, in Chapter 5, we

develop a more robust target detector, including the possible phase synchronization

errors between the transmitter and receiver antenna pairs. Then, in Chapter 6, we

9



analyze the sensitivity of the target detection performance of a MIMO radar system

to changes in the cross-correlation levels of the received signals from different trans-

mitters. Finally, we summarize our contributions and talk about possible future work

in Chapter 7.
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Chapter 2

Performance Analysis of the Ormia

Ochracea’s Coupled Ears1

The female Ormia ochracea, a parasitoid fly, locates male crickets very accurately as

part of its reproduction strategy. This is unexpected, as the distance between its ears

is much smaller than the wavelength of the cricket’s mating call. This phenomenon has

been explained by a mechanical coupling between the ears, which is represented by a

pair of differential equations. We analytically show the significance of the mechanical

coupling between the O. ochracea’s ears for localization accuracy. We first represent

the differential equations in state space, then solve the model and illustrate its time

and spectral properties. We find the impulse and frequency responses of the fly’s

ears, and compare these responses for coupled and uncoupled versions of the system

to demonstrate the effect of coupling on the intensity and time differences between

the two ears. We then develop a statistical model with multiple stochastic sources and

measurement noise to analyze the effect of the coupling on localization performance.

We compute the asymptotic Cramér-Rao bound (CRB) on estimating the direction

1Based on M. Akcakaya and A. Nehorai, “Performance Analysis of the Ormia Ochracea’s Coupled
Ears” The Journal of the Acoustical Society of America, vol. 124, pp. 2100–2105, Oct. 2008. c©[2008]
Acoustical Society of America.
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of arrival (DOA) of a source in two-dimensional (2D) space. Finally, we present

numerical examples which compare the CRB’s of the coupled and the uncoupled

systems, showing the improvement in the localization accuracy due to coupling.

2.1 Introduction

Most available array processing methods employ the time differences of arrival be-

tween the elements of a sensor array to estimate the directions of arrival (DOA) of

the incoming waves. Since the performance of such arrays is directly proportional to

the size of the array’s aperture, large aperture arrays are often required. However,

this is costly and may be impractical in many tactical and mobile applications. This

chapter demonstrates a high-performance array with very small aperture, namely of

the parasitoid fly called Ormia Ochracea.

A female O. ochracea is known to have a mechanical coupling between its ears to

enhance its hearing. There are also other small animals having interactions between

their ears for the same purpose [11], but the mechanical coupling is unique for the

O. ochracea. This coupling is necessary for the O. ochracea’s perpetuation. The

female O. ochracea must locate and deposit her parasitic maggots on or near a male

field cricket, relying on the cricket’s mating call which is relatively pure in frequency

(peak frequency 4.8 kHz). However, there is a tremendous incompatibility between

the distance between the two ears (≈ 1.2 mm) and the wavelength (≈ 7 cm) of the

cricket’s mating call. This disaccord leads to extremely small interaural intensity and

time of arrival differences between the ipsilateral and contralateral ears. It is believed

that the coupling mechanism magnifies these binaural differences and subsequently

improves the sound source localization accuracy [1], [21]-[25].
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A system which models the mechanical coupling between the ears of the O. ochracea

is introduced in [1]. The authors of [1] show experimentally that this model is well-

matched to the fly’s ear in terms of frequency and transient responses. In the follow-

ing, using this mechanical model, we quantitatively analyze the effect of the coupling

on the localization accuracy of the O. ochracea.

2.2 Modeling

In this section, we briefly review the anatomy of the ear of the female O. ochracea and

describe the mechanical model, associating its parameters with the parts of the ear

following [1]. Then, to demonstrate the effect of the coupling, we compute and com-

pare the impulse and frequency responses of the coupled and the uncoupled systems

for a far-field source.

Fig. 2.1(a) shows the female O. ochracea and its ear structure. Observe that:

• The ear is located on the front face of the thorax, behind the head.

• Prosternal tympanal membranes serve for hearing.

• Bulbae acustica (sensory organs) are connected to the tympanal pit.

• The tympanal pits and the pivot point are connected to each other by a cu-

ticular structure referred as intertympanal bridge. This improves the usage of

interaural differences.

A simple mechanical model, composed of springs and dash-pots, is proposed in [1]

to explain the mechanical coupling between the ears (Fig. 2.1(b)) with ki’s and ci’s
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(a) (b)

Figure 2.1: (a) Anatomy of the female Ormia ochracea’s ear. Top: side view of the
fly. Bottom: front view of the ear after the head was removed. (b) Top: front view
of the ear after the head was removed. Bottom: mechanical model [1].

(i = 1, 2, 3) as the spring and dash-pot constants, respectively. In this model, the

intertympanal bridge is assumed to consist of two rigid bars connected at the pivot

point through a coupling spring k3 and dash-pot c3. The springs and dash-pots at

the extreme ends of the bridge approximately represent the dynamic properties of the

tympanal membranes, bulbae acustica and surrounding structures. The numerical

values of the above model were empirically found for 45◦ incident angle, but they

were shown to hold also for a wide range of angles [1].

We can write the differential equations for the mechanical model in Fig. 2.1(b) in

matrix form following [1]:







k1 + k3 k3

k3 k2 + k3













z1(t)

z2(t)






+







c1 + c3 c3

c3 c2 + c3













ż1(t)

ż2(t)






+ (2.1)







m 0

0 m













z̈1(t)

z̈2(t)






=







f1(t,∆)

f2(t,∆)






= f (t,∆) , (2.2)
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Figure 2.2: Effect of coupling on the impulse responses of the Ormia’s two ears for
45◦ incident angle.

where

• fi(t,∆) = pi(t,∆) ∗ s, i = 1, 2, where p1(t,∆) and p2(t,∆) both correspond to

the same input sound source and are the pressure waves at the ipsilateral and

the contralateral ears, respectively, and s is the surface area of each tympanal

membrane (see Fig. 2.1)

• z1(t) and z2(t) are displacements at the first and the second ends of the inter-

tympanal bridge, respectively (see Fig.2.1(b))

• m is the effective mass of all moving elements and it is assumed to be concen-

trated at each end of the intertympanal bridge, and

• ∆ corresponds to the time difference of arrival between the two ears: ∆ =

d cosφ/v, where φ ∈ [−90◦, 90◦] is the direction of arrival, d is the distance

between force locations, and v is the speed of sound, roughly 344m/s.
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In order to find the solutions for z1(t) and z2(t), we write (2.2) as a state space model:

ẋ (t) = Ax (t) + Bf (t,∆),

y(t) = Cx (t), (2.3)

where x (t)= [ x1(t), x2(t), x3(t), x4(t)]
T = [z1(t), z2(t), ż1(t), ż2(t) ]T is the state

variable vector, A and B are constant matrices which are functions of the model

parameters in (2.2), C is a constant matrix depending on the observations; see, for

example [71]. C is chosen such that y(t) = [y1(t), y2(t)]
T = [z1(t), z2(t)]

T . Using

the variation of constants formula [72], the solution for the state space model can be

computed by

x (t) = Φ(t, t0)x (t0) +

t
∫

t0

Φ(t, τ)Bf (τ,∆)dτ,

y(t) = Cx (t). (2.4)

Here, t0 is the initial time referencing the instant when the input signal first arrives

at the ipsilateral ear, and Φ(t, t0) is the transition matrix depending on the matrix

A.

Figs. 2.2, 2.3, and 2.4 show the impulse, amplitude and phase responses, respectively

for both the coupled and uncoupled systems. We obtain the uncoupled system by

setting the coupling parameters k3 and c3 to zero. Fig. 2.2 illustrates the impulse

responses, h(t,∆) = [h1(t,∆), h2(t,∆)]T , calculated for φ = 45◦ using Dirac delta

function in (2.4) as an input. The responses h1(t,∆) and h2(t,∆) correspond to the

ipsilateral and contralateral ears, respectively. It is apparent that the interaural differ-

ences between the two ear outputs are enhanced for the coupled system (Figs. 2.2(a)
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Figure 2.3: Effect of coupling on the amplitude responses of the Ormia’s two ears for
45◦ incident angle.

and 2.2(b)). These differences can be explained more clearly in the frequency domain.

Therefore, the amplitude and phase responses are calculated by taking the discrete

time fourier transform (DTFT) [73] of the sampled impulse responses. Fig. 2.3 shows

that the gap between ipsilateral (H1(e
jω,∆)) and the contralateral (H2(e

jω,∆)) am-

plitude responses is bigger for the coupled system (Figs. 2.3(a) and 2.3(b)). This

confirms the improvement of the intensity differences between the ear outputs. Sim-

ilarly, Fig. 2.4 demonstrates how the phase difference between the responses of the

two ears are amplified, so is the difference in arrival time of the sound source to the

two ears, for coupled system (Figs. 2.4(a) and 2.4(b)). This analysis may explain how

the extremely small interaural differences in intensity and arrival time are increased

by the coupling to a level that the O. ochracea could use the improved binaural cues

to process the information more effectively.
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Figure 2.4: Effect of coupling on the phase responses of the Ormia’s two ears (blue,
red) for 45◦ incident angle.

2.3 Performance Analysis

In this section, we present a statistical model for measurements and compute the

Cramèr-Rao bound (CRB) on DOA estimation using the model in (2.4).

2.3.1 Statistical Model

The model consists of M multiple stochastic inputs pm(t) (m = 1, 2, ...,M) and

additive measurement noise e(t) = [e1(t), e2(t)]
T with e1(t) and e2(t) corresponding to

the measurement noise at the ipsilateral and contralateral ears, respectively (Fig. 2.5).

That is, M different angles for M different input signals are chosen to model the

environment. This model gives rise to:

y(t,∆) =

M
∑

m=1

pm(t) ∗ h(t,∆m) + e(t), t = 1, 2, ..., N, (2.5)

where ∆ = [∆1,∆2, ...,∆M ]T , and ∆m is the time difference between two ears corre-

sponding to the incidence angle φm of the input signal pm(t). The impulse response
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h(t,∆m) depends on the angle φm, due to the fact that for any signal pm(t) the equal-

ity pm(t − ∆m) ∗ h(t) = pm(t) ∗ h(t − ∆m) always holds. Thus, it can be concluded

that the system has different impulse responses and respective frequency responses

for different incidence angles.

Figure 2.5: Measurement model.

We assume that pm(t) and e(t) = [e1(t), e2(t)]
T are zero-mean wide-sense stationary

(WSS) Gaussian random processes, thus, y(t) is also WSS and Gaussian process since

the system in (2.4) is linear and time invariant for zero initial state. These assump-

tions are used to asymptotically compute the CRB on the variance of the error of

estimating the input signal incidence angle φm when there is an unbiased estimator

φ̂m available [74], [75]. However, for simplicity, we make the following further assump-

tions: e1(t) and e2(t) are white, have the same variance σ2
e , and are uncorrelated with

each other as well as with pm(t) (m = 1, 2, ...,M). These assumptions result in:

Sy(ω, θ) =

M
∑

m=1

H (ejω,∆m)Spm
(ω)HH(ejω,∆m) + σ2

eI, (2.6)

where

(i) Spm
(ω), σ2

eI and Sy(ω, θ) are the power spectral densities of pm(t), e(t) and

y(t,∆), respectively

(ii) θ = [∆1,∆2, ...,∆M , Sp1, ..., SpM
, σ2

e ]
T = [θ1, ..., θ2M+1], and
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(iii) H (ejω,∆m) = [H1(e
jω,∆m), H2(e

jω,∆m)]T (m = 1, 2, ...,M) is the frequency

response vector of the system related to the input signal pm(t) with incidence

angle φm.

2.3.2 Cramér-Rao Bound

Let y(t,∆) be defined as in (2.5) and satisfy the assumptions defined in Section 2.3.1.

Then, the elements of the Fisher information matrix corresponding to unknown pa-

rameter vector θ = [∆1,∆2, ...,∆M , Sp1, ..., SpM
, σ2

e ]
T can be found (for large N) as

follows [74], [75]:

[J(θ)]kl =
N

4π

+π
∫

−π

tr

{

∂Sy(ω, θ)

∂θk
S−1
y (ω, θ)

∂Sy(ω, θ)

∂θl
S−1
y (ω, θ)

}

dω,

[J(θ)]kl ≈
1

2

N
∑

n=1

tr

{

∂Sy(n, θ)

∂θk
S−1
y (n, θ)

∂Sy(n, θ)

∂θl
S−1
y (n, θ)

}

, (2.7)

where Sy(n, θ) is the discrete fourier transform (DFT) of the system output with

frequency index n, which is obtained by sampling Sy(ω, θ) in the frequency domain

[73].

Recall that ∆m = d cos(φm)/v. Hence, to find the CRB of estimating the direction

of arrival, φm, the transformation formula [75] is utilized:

Var(φ̂m) ≥
[

(

∂g(θ)

∂θ

)

J−1(θ)

(

∂g(θ)

∂θ

)T
]

mm

, (2.8)

where
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(i) g(θ) = [g1(θ), ..., gM(θ)], with mth element defined as gm(θ) = arccos

(

v∆m

d

)

,

and

(ii) J(θ) is the Fisher information matrix with [J(θ)]kl as defined in (2.7) (1 ≤

k, l ≤ 2M + 1).

2.4 Numerical Results

We compare the CRBs of estimating the DOAs for the coupled and uncoupled systems

to show the effect of the coupling. We use the following scenario for different signal-

to-noise ratio (SNR) values.

We assume that in (2.5), p1(t) with incidence angle φ1 is the incoming signal that

is to be localized, and similarly pm(t) and φm(t) (m = 2, 3, ...,M) are the signal

from the environment and corresponding incidence angle, respectively. For simulation

purposes only, φm is randomly chosen (φm is uniform in [−90◦, 90◦]) . Accordingly,

SNR is defined as:

SNR =

Tr

{

N
∑

n=1

H (n,∆1)Sp1(n)H H(n,∆1)

}

Tr

{

N
∑

n=1

(

M
∑

m=2

H (n,∆m)Spm
(n)H H(n,∆m)

)

+ σ2
eI

} , (2.9)

that is, pm(t) for m = 2, 3, ...,M contribute to the noise power. Note also that

similar to (2.7), H (n,∆m) = [H1(n,∆m), H2(n,∆m)] and Spm
(n) are the DFT of

H (ejω,∆m) and Spm
(ω) and n denotes the frequency index.

In addition to the assumptions in Section 2.3.1, for further simplification, we assume

that the spectrum corresponding to pm(t) is constant over the entire frequency range,
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Figure 2.6: Square-root of the Cramér-Rao bound on direction of arrival estimation
vs. SNR.

i.e., Spm
(w) = σpm

(ω ∈ [−π, π]). This simplification is reasonable in this prob-

lem, since the amplitude response of the mechanical model is already selective (see

Fig. 2.3.)

• Model parameters [1] are chosen as below:

– c1 = c2 = 1.15 ∗ 10−5 Ns/m and k1 = k2 = 0.576 N/m

– c3 = 3.88 ∗ 10−5 Ns/m and k3 = 5.18 N/m, and

– m = 2.88 ∗ 10−10kg.

• Note also that in these examples:

– φ0 = 45◦

– t0 = 0 (see eqn.(2.4)), and

– Ts = 0.02 ms is the sampling period.
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In Fig. 2.6, the improvement on the lower bound of the error in estimating DOA

when there is coupling in the system is shown by plotting the square-root of the CRB

with respect to SNR. This figure first illustrates the case where the number of the

time samples is 2000 (N = 2000), which correspond to a time range of 40ms, and

the number of input signals is two (M = 2), i.e., there is only one interference signal

other than the input itself. Note that the number of the time samples are chosen to

obtain CRB values of roughly one to two degrees for the coupled system to match

the experimental results in [23]. When the CRBs of the coupled and the uncoupled

system, for M = 2, are compared, a big difference is observed for the same SNR. This

clear difference shows how the mechanical coupling improves the localization ability

of the O. ochracea. For the coupled system, the error in azimuth angle drops down to

1-2 degrees, which is also in agreement with the experimental results demonstrated

in [23]. Note that for the uncoupled system when M = 2, the variance of the error is

markedly above the experimental results for SNR less than 12-14 dB.

Fig. 2.6 also demonstrates the performance of only the coupled system with N = 5000

and M = 4. For the chosen values of M and N , the CRB values for the uncoupled

system are too high, so the approximation (2.7) does not hold anymore. N = 5000

for M = 4 are chosen in the same way described for M = 2 to reach the desired CRB

values. It is observed that as the number of interference signals increases, so does the

number of time samples for the same CRB values, when the plots of coupled system

for M = 2 and M = 4 are compared. For the fly, this may correspond to requiring

more time to locate the source when background noise increases. It can also be seen

from the same figure that to achieve the same CRB values for M = 2, higher SNR

values are needed for M = 4.
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2.5 Summary

We analyzed the effect of coupling on the hearing system of the O. ochracea. By exam-

ining the impulse and frequency responses of the model, we showed that the coupling

increases the time and amplitude differences between the two ears. Using our statis-

tical model, we asymptotically computed the CRB of the DOA estimation error for

unknown input signal and noise spectra. Comparing the CRB of the coupled with the

uncoupled system, we illustrated the enhancement provided by the mechanical cou-

pling. We have proven the experimental results regarding the azimuthal localization

capacity of the O. ochracea.
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Chapter 3

Biologically Inspired Coupled

Antenna System2 3

We propose to design a small-size antenna array having high direction of arrival

(DOA) estimation accuracy and radiation performance, inspired by a female Ormia

ochracea’s coupled ears. The female Ormia is able to locate male crickets’ call ac-

curately, for reproduction purposes, despite the small distance between its ears com-

pared with the incoming wavelength. This phenomenon has been explained by the

mechanical coupling between the Ormia’s ears, modeled by a pair of differential equa-

tions. In this chapter, we first solve the differential equations governing the Ormia

ochracea’s ear response, and convert the response to the pre-specified radio frequen-

cies. We consider passive and active transmitting antenna arrays. First, to obtain a

passive antenna array with biologically inspired coupling (BIC), using the converted

response, we implement the BIC as a multi-input multi-output filter on a uniform

linear antenna array output. We derive the maximum likelihood estimates (MLEs) of

2Based on M. Akcakaya C.H Muravchik and A. Nehorai, “Biologically Inspired Coupled Antenna
Array for Direction of Arrival Estimation” in Proc. 44th Asilomar Conf. Signals, Syst. Compt.,
Pacific Grove, CA, USA, Nov. 7-10 2010. c©[2010] IEEE

3Based on M. Akcakaya and A. Nehorai, “Biologically Inspired Coupled Antenna Beampattern
Design” Bioinspiration and Biomimetics, vol.5, no.4, p.046003, 2010. c©[2010] IOP.
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source DOAs, and compute the corresponding Cramér-Rao bound (CRB) on the DOA

estimation error as a performance measure. We also consider circular array configu-

ration and compute the mean-square angular error bound on the three-dimensional

localization accuracy. Then, to obtain an active antenna array with BIC, together

with the undesired electromagnetic coupling among the array elements (due to their

proximity), we apply the BIC in the antenna array factor. We assume finite-length

dipoles as the antenna elements and compute the radiation intensity, and accord-

ingly the directivity gain, half-power beamwidth (HPBW) and side lobe level (SLL)

as radiation performance measures for this antenna system with BIC. For both the

passive and active antenna arrays, we propose an algorithm to optimally choose the

BIC for maximum localization and radiation performance. With numerical examples,

we demonstrate the improvement due to the BIC.

3.1 Introduction

Accurate source localization has attracted significant attention in many civil and mili-

tary applications over the past few decades [76]-[81]. These applications require array

of sensors (antennas) with high resolution and direction of arrival (DOA) estimation

accuracy, and radiation performance. Most existing array design methods rely on

the inter-element time delay of the antenna array for DOA estimation [82], [83], and

radiation pattern design [84]. The performance of the array is directly proportional to

the size of the array’s electrical aperture, such that large-aperture arrays are required

to achieve better DOA estimation and radiation performance. However, using a large

aperture array to improve performance can be costly and also may not be feasible,
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since in many tactical and mobile applications the sensing systems are confined to

small spaces, requiring small-sized arrays.

In this chapter, we propose biologically inspired antenna array to have high DOA

estimation accuracy and radiation performance with small-sized compact arrays. The

approach is inspired by a parasitoid fly called Ormia ochracea, which has a remarkable

localization ability despite its small size (see Chapters 1 and 2 for further discussions).

To perpetuate its species, a female Ormia ochracea must find a male field cricket using

the cricket’s mating call.

Next we demonstrate our results on the statistical analysis of DOA estimation and

beampattern design for biologically inspired coupled antenna array.

3.2 Biologically Inspired Coupled Antenna Array

for Direction of Arrival Estimation

In this section, we develop a biologically inspired small-sized coupled antenna array,

having high DOA estimation performance, inspired by the Ormia. First, we solve the

second order differential equations governing the Ormia’s coupled ear response, and

then convert this response to fit the desired radio frequencies. Using the converted

response, we implement the biologically inspired coupling (BIC) as a multi-input

multi-output filter and obtain the desired array response. By standard antenna array

we shall refer to a system without the BIC. Note here that to simplify the analysis,

we assume that we know the carrier frequency and the bandwidth of the incoming

signal.
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For two antennas, our approach of pre-filtering the measurements is similar to the

generalized cross-correlation (GCC) method proposed in [85]. The GCC method gen-

eralizes the widely used time delay estimation pre-filtering methods (and hence DOA

estimation) such as the Roth processor [86], smoothed coherence transform (SCOT)

[87], phase transform (PHAT) [88], Eckart processor [89], and Hannah Thomson (HT)

processor [90]. In Section 3.2.5 we compare our approach with the GCC method,

specifically with the HT processor. We choose the HT processor because it is identi-

cal to the maximum likelihood (ML) estimator of DOA’s using a standard array [90].

Moreover it was shown in [85] that under low signal-to-noise ratio (SNR) conditions

other pre-filtering methods are equivalent to the HT processor. The HT processor

achieves the CRB, and performance of a GCC processor can be analyzed using the

CRB [85] (see also [91], [92]). We demonstrate that, compared with a standard an-

tenna array, an antenna array with BIC has higher localization accuracy.

Similarly for multiple antennas, to demonstrate the improvement in the localization

performance due to the BIC, we compare our method with the multi-channel cross-

correlation technique [93]. Under our assumptions, the multi-channel cross-correlation

technique asymptotically reduces to ML estimator of the DOA’s using a standard

array. Therefore, for comparison purposes, we demonstrate the performances of the

ML estimators of the standard antenna array (standard array) and the antenna array

which uses the BIC (BIC array).

3.2.1 Antenna Array Model

In this section, we introduce the measurement and statistical models for the biologi-

cally inspired antenna array.
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Measurement Model

We develop a coupled multiple-antenna array at radio frequencies inspired by the

Ormia’s ears. We start with the measurement model of a standard antenna array

[82]. We assume narrow-band incoming signal and write the complex envelope of the

measurements as

x(t) = A(φ)s(t) + ee(t), t = 1, . . . , N (3.1)

where

• x(t) is M × 1 output vector of the array, with M antennas

• s(t) = [s1(t), . . . , sQ
(t)]T is the Q×1 input signal vector with Q as the number

of the sources

• A(φ) = [a(φ1) · · ·a(φ
Q
)] is the array response, with φq as the DOA of the qth

source

• a(φq) = [1, exp (−jω∆q), . . . , exp (−jω(M − 1)∆q)] for a uniform linear array

(later in Section 3.2.4, we extend our analysis also to a uniform circular array)

• ∆q =
d cosφq

v
with d as the distance between each antenna (we focus on 2-D

direction finding)

• v is the speed of signal propagation in the medium, and

• ee(t) is the additive environment noise.

Next, we implement the BIC as a filtering procedure and obtain the biologically

inspired array response. We first obtain the frequency response of the Ormia’s ears,
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and modify it to fit the desired radio frequencies. We then employ the converted

response as a two-input two-output filter and obtain a two-antenna array with the

BIC. We also generalize the BIC concept to multiple-antenna arrays.

Note that in practice, systems with closely spaced antennas typically undergo un-

desired electromagnetic coupling among the antennas. In our work, to simplify the

analysis we assume that the calibration is achieved beforehand and hence we ignore

the effect of the undesired coupling. Assuming known calibration, the performance

of the system should not be affected, therefore we do not include it in our analysis.

We will consider the effect of the combined coupling (BIC and unknown undesired)

in our future work.

Response of the Ormia’s Coupled Ears

To obtain the response of the Ormia’s coupled ears, we solve the second-order differ-

ential equations governing the mechanical model proposed in [1] for the Ormia’s ears

(Fig. 2.1), and find the corresponding transfer function. Note that these equations

represent a two-input two-output filter system. We rewrite the governing differential

equations:







k1 + k3 k3

k3 k2 + k3













y1

y2






+







c1 + c3 c3

c3 c2 + c3













ẏ1

ẏ2







+







m0

m0













ÿ1

ÿ2






=







x1(t,∆)

x2(t,∆)






= F (t,∆),(3.2)

where
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• xi(t,∆), i = 1, 2, are the input signals

• yi(t), i = 1, 2, are the displacements of each ear, and

• m0, k’s, and c’s are the effective mass, spring and dash-pot constants, respec-

tively.

To solve the differential equations and obtain the transfer function (and hence the

frequency response) of the system, we apply the Laplace transform to (3.2) assuming

zero initial values (See our approach in Chapter 2 for the state-space solution of

the Ormia’s ear responses. Here, we focus on the Laplace transform solution which

simplifies the solution.)







Y1(s)

Y2(s)






= 1/P (s)







D2(s) −N(s)

−N(s) D1(s)













X1(s)

X2(s)






, (3.3)

where

• Y1(s) and Y2(s) are the Laplace transforms of y1(t) and y2(t)

• X1(s) and X2(s) are the Laplace transforms of x1(t) and x2(t)

• D1(s) = m0s
2 + (c1 + c3)s+ k1 + k3 and D2(s) = m0s

2 + (c2 + c3)s+ k2 + k3

• N(s) = c3s+ k3 (coupling effect), and

• P (s) = D1(s)D2(s) −N2(s) is the characteristic function.

We obtain the Laplace transform of the impulse responses associated with (3.2) by

substituting
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x1(t) = δ(t) → X1(s) = 1,

x2(t) = x1(t − ∆) → X2(s) = e−s∆.

Then the responses of the two ears are

H1(s,∆) = [D2(s) −N(s)e−s∆]/P (s),

H2(s,∆) = [D1(s)e
−s∆ −N(s)]/P (s). (3.4)

For s = jω, we obtain the frequency responses of the Ormia’s coupled ears. See

Figs. 3.1 and 3.2 for the amplitude and phase responses of the Ormia’s ears. These

figures have already been shown in Chapter 2. The approach we use here is different

(time -vs- frequency domain), but the results coincide with Figs. 2.3 and 2.4 as it

should be. To demonstrate the effect of the mechanical coupling, we compare the

coupled response of the Ormia’s ear with a response assuming zero coupling, N(s) = 0,

i.e., c3 = 0 = k3. We observe that the coupling amplifies the amplitude and phase

differences between the responses of the Ormia’s two ears. The figures are presented

for 45◦ DOA using the effective mass, spring and dash-pot constants experimentally

obtained in [1]. Moreover in [1], it was shown analytically and experimentally that

similar responses hold for a wide range of DOAs.

Converting to Desired Radio Frequencies for Array Response Design

We now modify the frequency response of the Ormia’s ears to fit the desired radio

frequencies. We achieve this conversion by re-computing the poles of the transfer

function in (3.3), the roots of P (s) = D1(s)D2(s) − N2(s) = 0, for frequencies of

interest. We shift the resonance frequencies of the system, f1 and f2, by changing the
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Figure 3.1: Amplitude responses of the Ormia ochracea’s two ears. (a) Coupled
system. (b) Uncoupled system.
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Figure 3.2: Phase responses of the Ormia ochracea’s two ears. (a) Coupled system.
(b) Uncoupled system.

imaginary parts of the poles. This corresponds to changing the system parameters,

namely mass, spring and dash-pot constants defined in the analogous mechanical

model [see (2)]. We will keep the real parts, r1 and r2, as free variables which will

enable us to optimize the coupling without modifying the resonant frequencies, see

Section 3.2.3 for the details of the optimization procedure and computation of the

real and imaginary parts of the poles. Our purpose is to preserve a coupling structure

similar to Figs. 3.1 and 3.2 which amplifies the differences between the amplitude and
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Figure 3.3: (a) Amplitude and (b) phase responses of the converted system.

phase responses of the system outputs. For a narrowband signal with bandwidth B

and carrier frequency fc, we choose f1 = fc−B/2 and f2 = fc +B/2. See for example

Fig. 3.3 for the amplitude and phase responses of the converted system with f1 = 0.99

GHz and f2 = 1.01 GHz as the desired resonant frequencies considering a bandlimited

signal B = 20 MHz and fc = 1 GHz. Note that for this signal, we can easily show

that the propagation time of the signal across the array (for instance, consider as in

the section of Numerical Results an array with 5 elements and d = 0.1λ inter-element

spacing) is much smaller than the reciprocal of the signal bandwidth. The latter is a

standard narrowband criterion assumed in array signal processing (narrowband array

assumption)[94]. This figure is obtained for 45◦ DOA. Similar structure holds for

different DOAs. In Section 3.2.5, we demonstrate the performance of the converted

system for different DOAs.

Biologically Inspired Array Processing

We first consider two-antenna array for BIC implementation. For an antenna array

with two identical antennas, D1(jω) = D2(jω) = D(jω), we apply the BIC filter to
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the measurements in (3.1) and obtain in the frequency domain







Y1(jω)

Y2(jω)






= H I(jω)







X1(jω)

X2(jω)






, (3.5)

where H I(jω) =







D(jω) N(jω)

N(jω) D(jω)







−1

.

We assume that an incoming bandlimited signal, fitting the standard narrowband

assumption as mentioned in Section 3.2.1, with the carrier frequency ω = ωc = 2πfc,

can be approximated as a summation of components which are almost pure in fre-

quency such that s(t) =
∑F

f=1 sf (t), where F is the number of such components.

Then we obtain the measurement model in the time domain for biologically inspired

antenna array using the fact that for each component multiplication in the frequency

domain results in convolution in the time domain. Moreover, convolution of the BIC

filter with each component results in multiplication of the time domain incoming sig-

nal with the BIC filter computed at the corresponding frequencies of the components

[73]-[96]. Then under the above mentioned assumption, we approximate the output

of the BIC filter (3.5) to the f th component as

yf(t) =







y1(t)

y2(t)







f

= H I(jωf)A
f(φ)sf(t) + ẽf(t) t = 1, . . . , N, (3.6)

where ẽf (t) = efa(t)+H I(jωf)e
f
e (t), such that only the environment noise is affected

by the BIC. Here efa and efe are the amplifier and environment noise components

corresponding to sf (t), respectively. The implicit assumption here is that the array

will be designed with coupling between the antennas and/or by filtering to achieve
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a response matrix, H I(jωf)A
f(φ). Recall that in computing H I(jω), we use the

method explained in Section 3.2.1 for the selection of the resonant frequencies (as-

suming the starting and ending frequencies of the bandlimited signal are equal to the

first, f1, and second, f2, resonant frequencies, respectively). See also Section 3.2.3 for

the selection of the real parts of the roots of the characteristic function defined after

(3.3). We then collect the measurements corresponding to different components in a

vector as

y(t) =













y1(t)

· · ·

yF (t)













= H IA(φ)s̄(t) + ẽ(t), (3.7)

where

• H I = blkdiag (H I(jω1), . . . , H I(jωF )) is 2F × 2F block diagonal matrix with

H I(jωf) as the f th block diagonal entry

• A(φ) = blkdiag
(

A1(φ), . . . , AF (φ)
)

• s̄(t) =
[

(s1(t))
T
, . . . ,

(

sF (t)
)T
]

, and

• ẽ(t) =
[

(

ẽ1(t)
)T
, . . . ,

(

ẽF (t)
)T
]T

.

Under this approximation of the filter output, the measurements depend on the values

of the filter at F different frequencies (not just at the carrier frequency), and hence

the proposed procedure employs the dynamic properties of the filter.

We next extend the model in (3.6) to M identical antennas. We assume each antenna

is coupled to its immediate neighboring antennas in the array, i.e., each antenna (ex-

cept for the first and the last antennas) is coupled to two antennas. We will consider

in our future work other possible coupling configurations, more than coupling only
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the adjacent antennas. Note that other antenna array structures may also be possi-

ble, however we focus on the linear and circular arrays which are the most commonly

used structures in antenna array processing, see also Section 3.2.4. Different array

structures will also be investigated in our future work. Therefore we generalize the

two-input two-output filter by using it in a tridiagonal M ×M matrix form:

yf(t) =













y1(t)

· · ·

y
M

(t)













f

= H I(jωf)













x1(t)

· · ·

x
M

(t)













= H I(jωf)A
f(φ)sf(t) + ẽf(t) (3.8)

where H I(jωf)
−1 =

























D(jωf) N(jωf) 0 · · · 0

N(jωf ) D(jωf) N(jωf ) 0 · · · 0

0 N(jωf) D(jωf) N(jωf) 0 · · · 0

· · ·

0 · · · N(jωf ) D(jωf)

























.

Then we stack the measurements obtained from different components as in (3.7) and

obtain a measurement model for M-antenna system.

Filter Interpretation

In this section, we explain the physical effects of the biologically inspired coupling on

the linear antenna array.

• The mechanical coupling is represented as a two-input two-output filter (Fig. 3.4),

amplifying the differences between the outputs of the system, see Figures 3.1

and 3.2.
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Figure 3.4: Two-input two-output filter representation of the Ormia’s coupled ears’
response.

• Since the mechanical coupling amplifies the amplitude and phase differences

between the frequency responses of the Ormia’s ears [26], it effectively creates

larger distance between successive antennas, a virtual array with a larger aper-

ture.

• Applying the BIC to the antenna array, we generate a virtual array with a

larger aperture. Larger aperture improves the DOA estimation performance

(providing higher estimation accuracy).

Statistical Assumptions

We introduce our statistical assumptions on the measurement model. We assume, in

(3.1),

• φ = [φ1, . . . , φQ]T is the Q× 1 vector of deterministic unknown DOA param-

eters;
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• s̄(t) is a Gaussian input signal vector, E[s̄(t)] = 0, E[s̄(t)s̄(t′)H ] = P δtt′ and

E[s̄(t)s̄(t′)T ] = 0, with P as the QF ×QF unknown source covariance matrix,

and for t, t′ = 1, . . . , N δtt′ = 1 when t = t′ and zero otherwise

• ẽ(t) is Gaussian distributed and E[ẽ(t)] = 0, E[ẽ(t)ẽ(t′)H ] = (σ2
aI+σ2

eH IH
H
I )δtt′

and E[ẽ(t)ẽ(t′)T ] = 0, such that σ2
a and σ2

e are the unknown variances of am-

plifier and environment noise, respectively, and

• s̄(t) and ẽ(t′) are uncorrelated for all t and t′.

3.2.2 Maximum Likelihood Estimation and Performance Anal-

ysis

In this section, we demonstrate the derivation of the DOA estimation, and the

Cramér-Rao bound computation for statistical performance analysis of the array’s

localization accuracy.

Maximum Likelihood Estimation

The maximum likelihood estimate of the DOA is defined as the value that maximizes

the likelihood function (see (3.11)). It is asymptotically optimal, namely it is unbiased

and it attains the CRB of minimum variance [75]. Following the statistical assump-

tions in Section 3.2.1, we write the probability density function of the measurements

as

N
∏

t=1

p[y(t); φ,P , σ2
a, σ

2
e ] =

N
∏

t=1

1

|πR| exp
[

y(t)R−1y(t)
]

, (3.9)
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where

• R = E[y(t)y(t)H ] = Ã(φ)PÃ(φ)H + σ2
eΣ(ρ), with Σ(ρ) = ρI + H IH

H
I , and

ρ = σ2
a/σ

2
e

• Ã(φ) = H IA(φ).

We obtain Σ(ρ)−1/2, then we define ȳ = Σ(ρ)−1/2y, and Ā(θ) = Σ(ρ)−1/2Ã(φ),

where θ = [ρ,φ]T is (Q + 1) × 1 vector of unknown parameters. Next, we rewrite

(3.9)

N
∏

t=1

p[ȳ(t); φ, ρ,P , σ2
e ] =

N
∏

t=1

1
∣

∣

∣
πR̃
∣

∣

∣

exp
[

ȳ(t)R̃
−1

ȳ(t)
]

, (3.10)

where R̃ = E[ȳ(t)ȳ(t)H ] = Ā(θ)PĀ(θ)H + σ2
eI.

Then taking the logarithm of (3.10) and considering it as a function of the unknown

parameters, we obtain the log-likelihood function as

LF(θ,P , σ2
e ) = −N

[

M ln(π) + ln|R̃| + tr(R̃
−1

R̂)
]

, (3.11)

where R̂ = 1
N

∑N
t=1 ȳ(t)ȳ(t)H , is the sample covariance.

We follow the procedure explained in [97], such that we derive the MLEs of P and

σ2
e as a function of θ:

• P̂ (θ) = Ā(θ)†R̂(Ā(θ)†)H − σ̂2
e (θ)(Ā(θ)HĀ(θ))−1

• σ̂2
e (θ) = tr(Π⊥R̂)/(M −Q)
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• Ā(θ)† = [Ā(θ)HĀ(θ)]−1Ā(θ)H

• Π = Ā(θ)Ā(θ)†, and

• Π⊥ = I −Π.

Concentrating the likelihood function using these estimates, F (θ) = L[θ, P̂ (θ), σ̂2
e (θ)],

we obtain the MLE of θ through

θ̂ = argminθ F (θ) = argminθ ln
∣

∣

∣
Ā(θ)P̂ (θ)Ā(θ)H + σ̂2

e (θ)I
∣

∣

∣
. (3.12)

Cramér-Rao Bound

We analyze the array’s statistical performance, i.e., accuracy in estimating the source

direction, by computing the Cramér-Rao bound. The CRB is the lower bound on

estimation error for any unbiased estimator. We concentrate the likelihood function

in (3.11) with respect to P and σ2
e and compute the CRB on the covariance matrix

of any unbiased estimator of θ. Using the results in [98] and [99], we define

CRB−1(θ) = N · F ”
0(θ), (3.13)

where

F ”
0(θ) = lim

N→∞

∂2

∂θ∂θT
F (θ), (3.14)

with F (θ) as defined in (3.12).

Then we apply the Lemma C.1 and C.2 of [99], and obtain

[

CRB−1(θ)
]

ij
=

2N

σ2
e

Re
{

tr
[

UDH
j Π⊥Di

]}

, (3.15)
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where

• i, j = 1, . . . , Q+ 1, and

• U = P
[

Ā
H

(θ)Ā(θ)P + σ2I
]−1

Ā
H

(θ)Ā(θ)P ,

• Di =
∂Ā(θ)

∂θi
.

Then collecting the terms we have

CRB(θ) =
σ2

e

2N

{

Re
(

btr
[

(1 ⊗ U) ⊡ (DHΠ⊥D)bT )
])}−1

, (3.16)

where,

• 1 is a Q+ 1 ×Q+ 1 matrix of ones

• D = [D1 · · · DQ+1]

• btr is block trace operator

• ⊗ Kronecker product

• ⊡ is block Schur-Hadamard product, and

• bT is block transpose operator.

See Appendix A for the definition of the block matrix operators. Note that we

modified the results in [99] to account for our assumptions and filtering effect.
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3.2.3 Optimization of the Biologically Inspired Coupling

In this section, we develop a method to maximize the localization performance of the

antenna array by optimizing the BIC. We first introduce the optimization param-

eters, and then formulate a cost function employing the CRB on DOA estimation

for optimum performance. Note here that we optimize the value of the BIC for the

antenna array structures (linear and circular) and coupling configurations (coupling

with adjacent antennas) as discussed in Section 3.2.1. Other array structures and

different coupling configurations are left as a future work.

Recall from Section 3.2.1 that we change the imaginary parts of the poles of the

characteristic function to shift the resonance frequencies of the system response while

we keep the real parts as free variables. Therefore, under the constraints that we

explain below, we have the freedom of choosing the real parts for optimum coupling

design. We compute the poles of the system as a function of system parameters (‘ks’,

‘cs’ and ‘m0’). Recalling the discussions after (3.3), we assume identical antennas

(D1 = D2 = D, and hence k1 = k2 = k, c1 = c2 = c), and write the characteristic

function as

P (s) = D(s)2 −N(s)2

= m2
0[(s

2 + b1s+ a1)
2 − (b2s + a2)

2], (3.17)

where a1 = (k + k3)/m0, a2 = k3/m0, b1 = (c+ c3)/m0, and b2 = c3/m0. We assume

that the parameters a1, a2, b1, and b2 are positive. Then we obtain the roots (the
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poles of the system) as

p1,2 = −r1 ±
√
i1 (3.18)

p3,4 = −r2 ±
√
i2, (3.19)

where r1 = 1
2
(b1 + b2), r2 = 1

2
(b1 − b2), i1 = 1

4
[(b1 + b2)

2 − 4(a1 + a2)], and i2 = 1
4
[(b1 −

b2)
2−4(a1−a2)]. In order to change the resonance frequencies, we change the values of

the imaginary parts such that i1 = −(2πf1)
2 and i2 = −(2πf2)

2, where f1 and f2 are

the new resonant frequencies. We set r1 and r2 as the free parameters. We have the

freedom to control the real parts as long as r1 > r2 due to the positivity assumption

on the parameters a1, a2, b1, and b2. Define r = [r1, r2]
T , then CRB(θ, r), i.e., the

CRB is also a function of the real parts of the characteristic function. Minimizing

the CRB w.r.t. the real parts also preserves the dynamic properties of the filter.

Next we formulate the optimization problem to improve the localization performance.

We choose the CRB on DOA estimation as the utility function to be minimized. This

is a reasonable choice since minimizing the CRB minimizes the lower bound on the

error of the MLE of DOA. Therefore we formulate the problem as

argminr tr [CRB(θ, r)] s.t. r1 − r2 > 0, (3.20)

where by taking the trace of the CRB(θ, r), we minimize the sum of the variance

of the errors on the DOA, φ, and noise-to-interference ratio (NIR) estimation. We

define the numerical value of NIR as ρ = σ2
a/σ

2
e . Different weights on the tr[CRB(θ, r)]

summation can be introduced; for example assigning larger weights on the components

of CRB related to DOA estimation means considering the localization accuracy with
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Figure 3.5: (a) Circular array and a source . (b) Angular Error

a higher importance than NIR estimation. Different choice of weights can further

improve the CRB on DOA estimation.

Note that other optimization approaches are possible, for instance using pole place-

ment procedure with feedback on H I.

3.2.4 Circular Antenna Array With Biologically Inspired Cou-

pling

In this section, we extend our analysis to design biologically inspired coupled circular

antenna array, and compute CRB on three dimensional (3D) localization error.

To obtain the measurement model, we generalize the steering matrix A(φ) in (3.1).

Assuming M-antenna circular array, and Q sources impinging on the array:

• A(φ) = [a(φ1
1, φ

1
2) · · ·a(φQ

1 , φ
Q

2 )] is the array response, with φq1 and φq2 as the

azimuth and and the elevation of the qth source respectively, see Fig.3.5(a);

• a(φq1, φ
q
2) = [exp (−jω∆q

1), . . . , exp (−jω∆q
M)] for a circular array;
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• ∆q
m =

r sin(φq2) cos(φq1 − µm)

v
(see Fig. 3.5(a), and [84]) where

– r is the radius of the circular array,

– µm is the azimuth angle of the location of the mth antenna,

– v is the speed of the signal propagation.

The statistical assumptions on the input signal and noise are the same as we defined

in Section 3.2.1, but for the circular antenna array we have:

• φ = [φ1
1, φ

1
2, . . . , φ

Q

1 , φ
Q

2 ]T is the 2Q× 1 vector of deterministic unknown DOA

parameters (azimuth and elevation for each source).

We apply the same procedure that we explained in Section 3.2.1 to obtain the BIC

among the circular array elements.

To compute the CRB on azimuth and elevation estimation, we modify (3.16) such

that

• θ = [ρ, φ1
1, φ

1
2, . . . , φ

Q

1 , φ
Q

2 ]T is the 2Q+ 1 × 1 vector of deterministic unknown

parameters

• 1 is a 2Q+ 1 × 2Q+ 1 matrix of ones, and

• D = [D1 · · · D
2Q+1

].

For each source, we define MSAE
sq

CR as the lower bound on the mean-square angular

error (MSAE), 3D direction of arrival (azimuth and elevation) estimation error (δ in

Fig. 3.5(b)), which is a function of the CRBs of the azimuth and elevation [99].
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MSAEq
CR(φq1, φ

q
2, r) = N

[

sin2(φq2) · CRB(φq1, r) + CRB(φq2, r)
]

, (3.21)

where CRB(φq1, r) and CRB(φq2, r) are the CRB on the azimuth and elevation esti-

mation errors corresponding to the qth source, respectively. Recall from Section 3.2.3

that the CRBs on DOA estimation depend on the real parts of the characteristic

function, r.

For the circular array with BIC, we change the utility function for the optimum BIC

selection algorithm that we propose in Section 3.2.3 to include the MSAEq
CR(φq1, φ

q
2, r)

of all the incoming signals:

argmin

r

tr
[

∑Q
q=1 MSAEq

CR(φq1, φ
q
2, r) + CRB(ρ, r)

]

s.t r1 − r2 > 0, (3.22)

where CRB(ρ, r) is the CRB on the noise-to-interference ratio (ρ) estimation error,

which also depends on the real parts of the characteristic function roots, r. The

cost function in (3.22) is similar to (3.20) such that both are the summations of the

estimation error variances.

3.2.5 Numerical Results

We compare the localization performances of the biologically inspired coupled and

standard multiple-antenna arrays using Monte Carlo simulations. By BIC and stan-

dard arrays we refer to the systems with and without the BIC. In these examples,

we focus on the optimally designed BIC as described in Section 3.2.3. We follow
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the statistical assumptions mentioned in Section 3.2.1. We first compare the perfor-

mances of the BIC array and HT processor for two antenna systems, then for multiple

antenna systems we compare the BIC array with the multi-channel cross-correlation

method. Under our statistical assumptions both HT processor and multi-channel

cross-correlation methods asymptotically reduce to the ML estimation of DOA using

standard antenna array. Therefore for comparison, we demonstrate the results of the

ML estimation of the DOA and compute the corresponding CRB using the standard

antenna array and the antenna array with BIC (BIC array). We use the following

scenario for the multiple-antenna array.

For Uniform Linear Array (ULA):

• 5 identical dipole antennas.

• d = 0.1λ and d = 0.2λ inter-element distances.

For Uniform Circular Array (UCA):

• 6 identical dipole antennas.

• r = 0.1λ and r = 0.2λ as different radius values for the circular array.

For Both ULA and UCA: fc = 1 GHz is the carrier and f1 = 0.99 GHz and

f2 = 1.01 GHz are the resonant frequencies (as also explained in Section 3.2.1), and

ρ = σ2
a/σ

2
e = 0.5 is the NIR.

We focus on the small-sized arrays and demonstrate the effect of the BIC on DOA

estimation accuracy. Such compact arrays are very important for civil and military
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purposes to be used in tactical and mobile applications which are confined in small

spaces.

We define the signal-to-noise ratio, SNR =
tr[ÃPÃ]
σ2

etr [Σ(ρ)]
and root mean-square error,

RMSE =

√

1
MC

∑MC
i=1

(

φ̂i − φ0

)2

, where MC is the number of the Monte Carlo sim-

ulations, φ0 is the true value of DOA and φ̂i is the estimate of the true DOA at the

ith simulation. In our examples, we obtain the results after 1000 Monte Carlo runs,

MC= 1000.

Using two-antenna arrays, we compare our approach with the HT processor and

demonstrate our results in Figs. 3.6 and 3.7. In these figures the true value of the

azimuth of the DOA, φ0 = 55◦. As we explain in Section 3.1, the HT processor is

identical to the ML estimator using standard array and hence it achieves the CRB.

Moreover it was shown that other GCC methods are equivalent to the HT processor

under low SNR conditions [85], and the performance of a GCC method can be mea-

sured using the CRB on DOA estimation [91] and [92]. Therefore, under low SNR

conditions, which is reasonable for antenna array systems operating as passive radar

systems etc., we focus on the HT processor (ML estimation using standard array) to

compare our approach.

In Figs. 3.6(a) and 3.6(b), for a fixed SNR=-10 dB, we plot the RMSE on the

maximum likelihood estimation of direction of arrival, and CRB of DOA estimation

for the standard and BIC two-antenna arrays with d = 0.1λ and d = 0.2λ inter-

element spacings, respectively. We observe that the CRB on DOA estimation error

and RMSE of MLE are smaller for the BIC array, meaning a decrease in estimation

error and an improvement in the localization performance. The MLE algorithm

attains the bound asymptotically.
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Figure 3.6: Square-root of the mean-square error in the direction estimation and corre-
sponding Cramér-Rao bounds vs. number of time samples for the standard (blue) and BIC
(red) uniform linear arrays with different inter-element spacings, d, and SNR=-10 dB. (a)
d = 0.1λ. (b) d = 0.2λ

In Fig. 3.7, for N = 10 time samples, we plot the CRB on DOA estimation for the

standard and BIC two-antenna arrays for different SNR values and demonstrate the

decrease in the minimum bound on the estimation error due to the BIC. Figs. 3.6

and 3.7 confirm that the BIC decreases the minimum bound on estimation error and

improves the performance of DOA estimation compared to the HT processor. The

physical reason of the improvement in the localization performance is that the BIC

works as a two-input two-output filter as shown in Fig. 3.4, magnifying the phase

differences (time differences) between the signals received at successive antennas and

creating a virtual array with a larger aperture. The HT processor is also a pre-filtering

procedure, however it is different than the BIC filter such that the cross-filtering in

Fig. 3.4 is not present for the HT processor, see also [85]. Note that in these examples

the improvement effect of the BIC increases as the inter-element spacing of the array,

d, decreases.

We extend our results to the BIC uniform linear array with multiple antennas, we

demonstrate our results on estimation of direction of arrival in Figs. 3.8, 3.9, 3.10
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Figure 3.7: Square-root of the Cramér-Rao bound on direction of arrival estimation vs.
SNR for standard and BIC uniform linear arrays with d = 0.1λ and d = 0.2λ inter-element
spacings and N=10 time samples.

and 3.12. In Figs. 3.8(a) and 3.8(b) for a fixed SNR=-10 dB and the true value

of the azimuth of DOA, φ0 = 55◦, we plot the RMSE for the maximum likelihood

estimation of DOA, and CRB of DOA estimation for the standard and BIC arrays

with d = 0.1λ and d = 0.2λ inter-element spacings, respectively. We observe that

the CRB on DOA estimation error and RMSE of MLE are smaller for the BIC

array, meaning a decrease in estimation error and an improvement in the localization

performance. Moreover the MLE algorithm attains the bound asymptotically. BIC

array outperforms the standard array in ML estimation of DOA accuracy. Therefore

asymptotically BIC array is better than the multi-channel cross-correlation method,

which is asymptotically the ML estimation of DOA using standard array.

In Fig. 3.9, for N = 10 time samples and φ0 = 55◦, we plot the CRB on DOA

estimation for the standard and BIC uniform linear arrays for different SNR values

and demonstrate the decrease in the minimum bound on the estimation error due

to the BIC. Figs. 3.8 and 3.9 confirm that the BIC decreases the minimum bound

on estimation error and improves the performance of DOA estimation. Comparisons

of Figs. 3.6 and 3.8, and Figs. 3.7 and 3.9 demonstrate that there is performance
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Figure 3.8: Square-root of the mean-square error in the direction estimation and corre-
sponding Cramér-Rao bounds vs. number of time samples for the standard (blue) and BIC
(red) uniform linear arrays with different inter-element spacings, d, and SNR=-10 dB. (a)
d = 0.1λ. (b) d = 0.2λ

improvement in extending the two-antenna array to multiple-antenna linear array. In

the multiple-antenna case, the BIC works as a multi-input multi-output filter creating

a virtual array with a larger aperture.

In Fig. 3.10, we illustrate the CRB on the error of the DOA estimation as a function

of the azimuth values of the DOA for fixed N = 10 time samples and SNR= −10 dB.

We observe that the BIC array always outperforms the standard array, and as the

azimuth increases the estimation accuracy increases.

In Fig. 3.11, for fixed N = 10 time samples and SNR= −10 dB, we demonstrate the

CRB on the error of DOA estimation as a function of the inter-element spacing of

the antennas (d). We observe that the improvement due to the BIC decreases as d

increases. For d = 0.5λ, the performances of the standard and the BIC array are the

same. We conclude that for the antenna systems that have inter-element spacings

lower than 0.5λ, the BIC provides an improvement in the localization performance.

From a practical standpoint this comparison favors even more BIC over standard
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arrays. Indeed, it is very hard to implement a standard array with small d due to

the unwanted coupling among close elements. However, a BIC array may be designed

to absorb, to a certain extent, the unwanted coupling. This will be the subject of

further work.

In Fig. 3.12, we show the performances of the BIC and standard linear arrays for

multiple incoming sources. In this example the inter-element distance is d = 0.2λ.

For the linear array with, since we use M = 5 antennas for our examples, we assume

the maximum number of the incoming sources is Q = 4 (in order to have a well-posed

problem.) Well-posedness is a necessary condition for the Fisher information matrix

to be nonsingular (see [100] for details). For this figure 55◦, 10◦, 45◦, and 85◦ are the

azimuths of the true DOA of the incoming sources 1, 2, 3 and 4, respectively. In this

figure, we plot the CRB on DOA estimation as a function of the SNR for the first

source in the presence of multiple sources. Other sources have similar results, but

due to the space limitation, we do not show those results here. For Q = 2, we use the

sources 1 and 2, for Q = 3 we use sources 1,2 and 3 etc. We observe that the BIC

array has better localization performance than the standard array in the presence of

multiple sources.

In Figs 3.13, 3.14, 3.15 and 3.16, we demonstrate the CRB results on the errors of

3D DOA estimations for the BIC circular array. In Figs 3.13 and 3.14, the true value

of the elevation, φ01 and azimuth, φ02 of the DOA are (φ01, φ02) = (45◦, 55◦). In

Fig. 3.13, for circular arrays of radius r = 0.1λ and r = 0.2λ, we plot the CRB on

the azimuth and elevation estimations as a function of SNR. Similar to the uniform

linear array case, we observe that the BIC improves both the elevation and azimuth

estimation; the improvement in the elevation estimation is higher than the azimuth

estimation; as the size of the array gets smaller the effect of the BIC increases. To gain
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Figure 3.9: Square-root of the Cramér-Rao bound on direction of arrival estimation vs.
SNR for standard (blue), and BIC (red) uniform linear arrays with different inter-element
spacings, d = 0.1λ and d = 0.2λ, and N=10 time samples.
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Figure 3.10: Square-root of the Cramér-Rao bound on direction of arrival estimation vs.
direction of arrival (azimuth) for standard (blue), and BIC (red) uniform linear arrays
with different inter-element spacings, d = 0.1λ and d = 0.2λ, N=10 time samples, and
SNR= −10 dB.

more physical insight into the 3D localization error, we also illustrate the MSAECR,

a quality that measures 3D angular error, see Fig. 3.5(b), as a function of the SNR

in Fig. 3.14, which confirms the improvement provided by the BIC.

In Fig. 3.15, we plot the MSAECR as a function of the elevation of the DOA for fixed

azimuth, φ02 = 55◦. Note that for UCA, MSAECR is constant w.r.t. the azimuth

of the DOA. We demonstrate that for different elevation angles, the BIC array has
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Figure 3.11: Square-root of the Cramér-Rao bound on direction of arrival estimation vs.
inter-element spacing (d) for standard (blue), and BIC (red) uniform linear arrays, SNR=
−10 dB and N=10 time samples.

always better localization performance than the standard array, and as the elevation

angle increases the localization performance also increases.

For multiple incoming sources, we plot the MSAECR as a function of the SNR in

Fig. 3.16. We illustrate the results for a circular array of radius, r = 0.2λ. To

have a well-posed problem, we assume the maximum number of the incoming signals,

Q = 4. For this figure, (45, 55), (10, 80), (30, 70) and (20, 65) are the true DOA of

the incoming sources 1, 2, 3 and 4, respectively. Similar to Fig. 3.12, for Q = 2, we

use the sources 1 and 2, for Q = 3 we use sources 1,2 and 3 etc; and demonstrate the

MSAECR value for the first source in the presence of multiple sources. We observe

that for multiple incoming signals the BIC array outperforms the standard array.
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Figure 3.12: Square-root of the Cramér-Rao bound on direction of arrival estimation vs.
SNR for standard (blue), and BIC (red) uniform linear arrays with different number of
sources, M , N=10 time samples. (a) M = 2, 3. (b) M = 4.

3.3 Biologically Inspired Coupled Antenna Beam-

pattern Design

The concept of electrically small antenna arrays with high radiation performance,

superdirective (supergain) arrays, is quite old [84], and has attracted antenna re-

searchers for the last few decades. Different methods have been proposed to achieve

the superdirectivity namely by decoupling the antennas (reducing the effects of the

undesired electromagnetic coupling among the antennas) and changing the current

distributions applied to the array elements [101], [102], [103], [104]. In this section,

inspired by the female Ormia’s coupled ears, we show that applying biologically in-

spired coupling amongst antennas is beneficial to achieve high radiation performance.

Our goal is to demonstrate the effect of the BIC on the radiation performance. The

implementation of the BIC system and the investigation of the relationship between

the superdirective arrays and the BIC system remain as a future work. We would like

to note that our approach, namely employing BIC, might be also used to complement
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Figure 3.13: Square-root of the Cramér-Rao bound on direction of arrival estimation vs.
SNR for the standard (blue) and BIC (red) circular arrays of radius (a) r = 0.1λ (b) r = 0.2λ
and N=10 time samples.

the existing superdirective array design methods that overcome issues; for example,

the effect of the undesired coupling on individual antenna impedance.

3.3.1 Array Factor

In this section, we compute the array factor of the proposed biologically inspired

uniform linear array (ULA). We start with the array factor of a standard ULA,

positioned without loss of generality along the z-axis (see Fig. 3.17). Since we focus

on systems confined in small spaces, we also consider the undesired electromagnetic

coupling between the array elements.

Under the far-field radiation and narrow-band signal assumption, we modify the uni-

form linear array factor to include the undesired coupling between the elements (see

also [105]):

AF(θ) =
M
∑

m=1

pm exp(−j(m− 1)(ω∆ + β)), (3.23)

where,
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Figure 3.14: Square-root of the mean-square angular error vs. SNR for the standard (blue),
and BIC (red) circular arrays with different radius values, r = 0.1λ and r = 0.2λ, N=10
time samples.
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Figure 3.15: Square-root of the mean-square angular error vs. DOA angle (elevation) for
the standard (blue), and BIC (red) circular arrays with different radius values, r = 0.1λ
and r = 0.2λ, N=10 time samples, and SNR= −10 dB.

• AF(θ) is the radiation pattern (desired amplitude and phase in each direction) of

M-element array assuming isotropic antennas, which depends on the positions

and excitations of the sensing elements in the system

• p = [p1, . . . , pM ]T = Cvg is the vector of the currents on the antennas

• vg = [v1, . . . , vM ]T is the vector of generator (excitation) voltages at the input

of the antennas
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Figure 3.16: Square-root of the mean-square angular error vs. SNR for the standard (blue),
and BIC (red) circular arrays with different number of sources, M , N=10 time samples.
(a) M = 2, 3 (b) M = 4.

• C is the undesired electromagnetic coupling between the array elements, (a

transformation matrix, transforming generator voltages to the induced currents

on each antenna)

• ω = 2πf with f as the frequency of the radiated signal

• ∆ = d cos θ
v

is the inter-element time difference

• d is the inter-element distance

• v is the speed of signal propagation in the medium

• θ is the elevation angle (see Fig. 3.17), and

• β is the excitation phase.

We compute C similar to [105] as a function of self and mutual impedances between

the antennas (see also discussions in [106] and [107]). We summarize the computation

of C in Appendix B. When the mutual impedances are zero, when there is no

electromagnetic coupling, C reduces to a diagonal matrix. We compute the self and
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Figure 3.17: Far-field radiation geometry of M-element antenna array.

mutual impedances, assuming finite-length dipole antennas as the elements of the

array, as explained in [84, Chapter 8], see also section 3.3.4. Note that the standard

literature often ignores C, which is reasonable for sufficiently large inter-elemental

distances.

The usual goal of the array-factor design is to select the excitation voltages, vg, and

phase, β, to obtain a desired radiation pattern. Our goal is to include the BIC in

the array factor for fixed vg and β values and demonstrate the improvement in the

directivity gain, half-power beamwidth (HPBW) and side lobe level (SLL) of the

radiation pattern.

Biologically Inspired Coupled Array Factor

We generalize (3.23) to include also the coupling biologically inspired by the Ormia’s

coupled ears. First, we obtain the response of the Ormia’s coupled ears. We convert

this response to fit the desired radio frequencies and obtain the BIC. Then we modify

the array factor to also include BIC. We follow the discussions in Section 3.2.1 to
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obtain the frequency responses of the converted system and compute the ratio

H2(ω,∆)

H1(ω,∆)
=
D1(jω)e−jω∆ −N(jω)

D2(jω) −N(jω)e−jω∆
(3.24)

choosing the frequency ω depending on the application (see also section 3.3.4).

To apply the BIC concept to the array factor in (3.23), we replace the exponential

terms in (3.23) with the ratio in (3.24)

AFI(θ) =
M
∑

m=1

pm

(

H2(ω,∆, β)

H1(ω,∆, β)

)(m−1)

, (3.25)

where

H2(ω,∆, β)

H1(ω,∆, β)
=
D(jω) exp(−j(ω∆ + β)) −N(jω)

D(jω) −N(jω) exp(−j(ω∆ + β))
,

with D(jω) and N(jω) as defined after (3.3), substituting s = jω. We assume

identical antennas D1(jω) = D2(jω) = D(jω). The ratio in (3.24) generalizes the

exponential terms in (3.23) to include the BIC.

Note that N(jω) represents the BIC and when there is no coupling (N(jω) = 0),

AFI(θ) in (3.25) reduces to AF(θ) in (3.23). In this paper, we analytically demonstrate

the biologically inspired beampattern design. The actual implementation is left for

future work.

3.3.2 Radiation Intensity, Directivity, Half-power Beamwidth

and Side Lobe Level

In this section, we describe our measures to analyze the radiation performance. First,

taking into account the antenna factor (element factor) and the BIC, we compute the
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radiation intensity of the antenna array in a given direction [84]

UI(θ, φ) = [EF(θ, φ)]2n[AFI(θ)]
2
n, (3.26)

where

• [EF(θ, φ)]n is the normalized element factor, far-zone electric field of a single

element (in our work we assume that the array is formed with finite-length

dipoles, see also section 3.3.4)

• [AFI(θ)]n is the normalized array factor, and

• UI(θ, φ), the radiation intensity in a given direction, is the power radiated from

an antenna array per unit solid angle.

• Hence the radiated power Prad is

Prad =

∫ 2π

0

∫ π

0

UI(θ, φ) sin θ dθ dφ,

where θ and φ are the elevation and azimuth angles, respectively, sin θ dθ dφ is

the unit solid angle.

Using the radiation intensity, we consider the following measures to analyze the per-

formance of the beampattern design:

• The directivity, DI(θ, φ), is the ratio of the radiation intensity in a given direc-

tion to the average radiation intensity.

DI(θ, φ) =
4πUI(θ, φ)

Prad

, (3.27)
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where 1
4π
Prad is the average radiation intensity over all angles. In our work, for

comparison purposes, we consider the directivity gain in a desired direction (at

elevation θ = 0◦ and azimuth φ = 90◦, see also section 3.3.4).

• Half-power beamwidth, HPBW, in terms of the elevation angle, θ, for a fixed

azimuth angle, φ. HPBW is defined as the angle between two half-power direc-

tions [84].

• Sidelobe level (SLL) defined as the maximum value of the radiation pattern in

any direction other than the desired one (direction other than θ = 0◦ on φ = 90◦

plane for our case).

The directivity gain, HPBW and SLL measure how effectively the power is directed

(steered) in a given direction. For a good performance, it is desirable to have large

DI(θ, φ), small SLL and narrow HPBW in a desired direction.

3.3.3 Optimization of the Biologically Inspired Coupling

In this section, we develop a method to maximize the radiation performance by op-

timizing the BIC. We formulate the optimization problem to improve the radiation

performance. For an antenna array, we choose the directivity gain in a desired direc-

tion as the utility function to be maximized. This is a reasonable choice since the

directivity gain is also related to the SLL and the HPBW of the radiation pattern.

Generally it is true that the patterns with smaller SLL and HPBW values have larger

directivity gain. Therefore, we formulate the problem as

maximize DI(θ, φ)

subject to r1 − r2 > 0,
(3.28)
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where θ and φ are the elevation and the azimuth of the desired direction of transmis-

sion. Recall the discussions in section 3.2.3 for the condition on r1 and r2, which are

the free parameters in H2(ω,∆,β)
H1(ω,∆,β)

of (3.25), not the distances to antennas 1 and 2 in

Fig. 3.17.

3.3.4 Numerical Examples for Beampattern Design

In this section, we compare the radiation performances of the BIC and standard

antenna arrays. For comparison, we plot the radiation pattern and compare the

directivity gain, half-power beamwidths and sidelobe attenuation of these systems.

Similar to Section 3.2.5, by BIC and standard arrays we refer to the systems with

and without the BIC. BIC parameters are optimally designed using the algorithm

described in section 3.3.3. We use the following scenario:

• We consider uniform (uniform excitation voltages) ordinary and binomial (bi-

nomial expansion coefficients as the excitation voltage values) end-fire arrays

[84, Chapter 8], maximum at θ = 0◦, then β = −w∆

• Frequency of interest, f = 1 GHz

• Uniform linear array composed of 20 identical dipole antennas

• The undesired coupling matrices, C for 0.5λ-wavelength antenna system with

different inter-element distances (d = 0.25λ and d = 0.1λ) are calculated ac-

cording to [84, Chapter8] for finite-length thin-dipole antennas, and

• The antennas are located on the z-axis parallel to y-axis, then assuming azimuth

φ = 90 (on the y-z plane, see Fig. 3.17), the element factor for a finite-length
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Figure 3.18: Power patterns of the uniform ordinary end-fire antenna arrays using standard
(blue), and BIC (green) for (a) d = 0.25λ, (b) d = 0.1λ inter-element spacings. The bottom
halves of the figures present the half-power beamwidth.

dipole antenna is computed as

EF(θ, 90◦) =

[

cos(kl
2

sin θ) − cos(kl
2
)

cos θ

]

.

where k = 2π
λ

, λ is the wavelength of the radiated signal and l is the length of

each antenna.

Recall that we focus on 2-D beampattern design in terms of elevation angle, θ.

We demonstrate our results for standard, and BIC arrays in Figures 3.18 and 3.19,

and summarize the calculated directivity gains, and HPBW values in Tables 3.1 and

3.2, respectively. We observe that the BIC array with uniform excitation voltages

outperforms the uniform standard array in terms of sidelobe suppression, directivity,

and HPBW (see Fig. 3.18, and Tables 3.1 and 3.2). For binomial array, in Fig. 3.19, we

observe that neither the standard nor the BIC array have sidelobes, but the BIC array

has much narrower HPBW and hence better directivity gain (see also Tables 3.1 and

3.2). The physical reason of the improvement in the radiation performance is that the
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Figure 3.19: Power patterns of the binomial end-fire antenna arrays using standard (blue),
and BIC (green) for (a) d = 0.25λ, (b) d = 0.1λ inter-element spacings. The bottom halves
of the figures present the half-power beamwidth.

Uniform Binomial
d = 0.25λ d = 0.1λ d = 0.25λ d = 0.1λ

Standard Array 13.96 10.77 10.81 8.08
BIC Array 25.62 22.16 22.75 20.35

Table 3.1: Directivity gains of the antenna arrays in the desired direction θ = 0◦ and
φ = 90◦ (dB)

BIC works as a multi-input multi-output filter, magnifying the amplitude and phase

differences (time differences) between the outputs of the successive antennas and

creating a virtual array with a larger aperture. In the beampattern design, the virtual

array with larger aperture creates a radiation pattern with higher directivity and

sidelobe supression, and lower half-power beamwidth. Note that in these examples

the effect of the BIC increases as the distance between the antennas, d, decreases.
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Uniform Binomial
d = 0.25λ d = 0.1λ d = 0.25λ d = 0.1λ

Standard Array 45◦ 62◦ 63◦ 76◦

BIC Array 9.8◦ 14.6◦ 14.2◦ 17.4◦

Table 3.2: Half-power beamwidths of the antenna arrays (degrees)

3.4 Summary

We designed a small-sized multiple-antenna array with couplings biologically inspired

by the mechanically coupled ears of Ormia ochracea. First, we obtained the response

of the mechanical model representing the coupling between the Ormia’s ears. We then

converted this response to the desired radio frequencies. Assuming uniform linear

antenna array, we implemented the biologically inspired coupling using the converted

system as a multi-input multi-output filter, and obtained a passive antenna system

with BIC. For the resulting system, we derived the maximum likelihood estimates

of the direction of arrival and computed the Cramér-Rao lower bound on estimation

error as a performance measure. We extended our analysis to consider circular arrays

and computed the mean-square angular error bound on the 3D localization error.

We later developed an active transmitting antenna array with BIC. For the resulting

system we computed the directivity gain, half-power beamwidth, and side lobe level

as radiation performance measures. For both the passive and active antenna arrays,

we proposed an algorithm to optimally choose the BIC for maximum localization and

radiation performance. With numerical examples we demonstrated the improvement

in localization and radiation performance due to the BIC.
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Chapter 4

Adaptive MIMO Radar Design and

Detection in Compound-Gaussian

Clutter4

We consider target detection with multiple-input multiple-output (MIMO) radars un-

der high-resolution and/or low-grazing-angle transmission scenarios in the presence

of sea or foliage clutter. We model the clutter using a compound-Gaussian distri-

bution. This distribution fits well with the heavy-tailed statistics of the clutter in

such scenarios. We first choose an inverse gamma distribution as the clutter texture,

and accordingly introduce a measurement model. We present a parameter-expanded

expectation-maximization (PX-EM) algorithm to estimate the target and clutter pa-

rameters. Using these estimates, we then formulate a statistical decision test based

on the generalized likelihood ratio test (GLRT). Moreover, we develop an adaptive

power distribution algorithm, based on the asymptotical characteristics of the GLRT,

4Based on M. Akcakaya and A. Nehorai, “Adaptive MIMO Radar Design and Detection in
Compound-Gaussian Clutter” IEEE Trans. Aerospace and Electronic Systems, accepted for publi-
cation c©[2010] IEEE.

68



to improve the detection performance of the radar system. With Monte Carlo sim-

ulations, we demonstrate the advantages of MIMO radar and the proposed adaptive

algorithm.

4.1 Introduction

Target detection for MIMO systems has been addressed with white and colored Gaus-

sian noise in [45] and [52], respectively. However, real clutter often deviates from the

complex Gaussian model. We model the clutter reflections at the receiver with a

compound-Gaussian model. This model represents the heavy-tailed clutter statistics

that are distinctive of several scenarios, e.g., high-resolution and/or low-grazing-angle

radars in the presence of sea or foliage clutter [108], [109]. The compound-Gaussian

clutter e =
√
uX , where u and X are the texture and speckle components of the com-

pound model, respectively. The fast-changing X is a realization of a stationary zero

mean complex Gaussian process, and the slow-changing u is modeled as a nonneg-

ative real random process [110]. Gamma distribution for the texture is investigated

in [53] for MIMO radar systems, leading to the well-known K-clutter model. In this

work, we specifically consider the inverse gamma distribution for texture component

u, since similar to its gamma distributed counterpart inverse gamma fits well with

real clutter data [62]. Moreover this choice of distribution simplifies in a closed-form

maximum likelihood solution for the joint target and clutter estimation as it follows

a complex multivariate-t distribution [111].

The applications investigated for MIMO radar assume that the total energy is divided

equally among the transmitters (see [31, Chapters 8 and 9]). We believe that this

assumption may not be optimal, since MIMO radar systems are sensitive to RCS
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variations of the target w.r.t. angle and since transmitting signals with different

energies from different transmitters may change the total received power under the

same environmental conditions.

In the following, we demonstrate our analytical and numerical results on target de-

tection MIMO radar under compound-Gaussian clutter assumption using generalized

likelihood ratio test (GLRT) [68], [112].

4.2 Radar Model

In this section, we develop measurement and statistical models for a MIMO radar

system to detect a target in the range cell of interest (COI). Our goal is to present

an algorithm, within a generalized multivariate analysis of variance (GMANOVA)

framework [113] when the signal and noise parameters are unknown.

4.2.1 Measurement Model

We consider a two dimensional (2D) system with M transmitters and N receivers.

Define (x
Txm

, y
Txm

), m = 1, . . . , M , and (x
Rxn

, y
Rxn

), n = 1, . . . , N , as the locations

of the transmitters and receivers, respectively. We also assume a stationary point like

target located at (x0, y0) and having reflection coefficient values changing w.r.t. the

angle aspect (e.g., multiple scatterers, which cannot be resolved by the transmitted

signals, with (x0, y0) as the center of gravity) [31]. Define the complex envelope of

the signal from the mth transmitter as βmsm(t), m = 1, . . . , M , such that |βm|2

is the transmitted energy with
∑M

m=1 |βm|2 = E (E is constant for any M) and
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∫

Ts
|sm(t)|2dt = 1, m = 1, . . . , M , with Ts as the signal duration. We write the

lowpass equivalent of the received signal at the nth receiver following [31]:

rn(t) =
M
∑

m=1

αnmxnmβmsm(t− τnm)e−jψnm + en(t), (4.1)

where

• xnm is the complex target reflection coefficient seen by the mth transmitter and

nth receiver pair, such that the amplitude of xnm corresponds to the radar cross

section (RCS)

• αnm =

√

GtxGrxλ
2

(4π)3R2
mR

2
n

is the channel parameter from the mth transmitter to

the nth receiver, with Gtx and Grx as the gains of the transmitting and re-

ceiving antennas, respectively; λ as the wavelength of the incoming signal;

Rm =
√

(x
Txm

− x0)2 + (y
Txm

− y0)2 and Rn =
√

(x
Rxn

− x0)2 + (y
Rxn

− y0)2

as the distances from transmitter and receiver to target, respectively

• τnm = (Rm+Rn)/c, and c is the speed of the signal propagation in the medium

• ψnm = 2πfcτnm, with fc as the carrier frequency, and

• e(t) is additive clutter noise.

To enable the data separation at the receiver side due to the reflection of the multi-

ple transmitted signals from the target, we assume low–cross-correlation transmitted

signals. The design of signals with these properties is a challenging research subject

[58], but to simplify the problem and demonstrate our methods and analysis, we as-

sume that the assumed signal characteristics are met (this assumption is commonly

made in MIMO radar, see [31, Chapters 8 and 9] and references therein.) Hence, we
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apply matched-filtering and range gating, then obtain the output of the nth receiver

corresponding to the ith transmitter:

rni = βiαnixnie
−jψni + eni, (4.2)

where rni =
∫ τni+Ts

τni
rn(t)s

∗
i (t − τni)dt, and eni =

∫ τni+Ts

τni
en(t) s

∗
i (t − τni)dt. Since we

apply range gating, we represent the range cell of interest using the delay τni observed

by the nth receiver and ith transmitter. Note that different transmitter receiver pairs

have different delays corresponding to the same range cell of interest. However since

we know the array configuration and the range cell of interest, we assume we have the

knowledge of these delays. Moreover τni might be interpreted as the sampling time

after the match filtering for the signal transmitted by the ith transmitter and received

by the nth receiver representing the range cell of interest, see for example [114].

Then, combining the received data corresponding to the transmitted signal si(t) for

one pulse, we obtain

ri = Aixi + ei, (4.3)

where

• ri = [r1i, . . . , rNi]
T

• Ai = βidiag(α1ie
−jψ1i, . . . , αNie

−jψNi)

• xi = [x1i, . . . , xNi]
T , and

• ei = [e1i, . . . , eNi]
T .
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We stack the receiver outputs corresponding to all the signals into an NM ×1 vector

y = Ax + e, (4.4)

where

• y = [rT1 , . . . rTM ]T

• A = blkdiag(A1, . . . , AM)

• x = [xT
1 , . . . xT

M ]T , and

• e = [eT1 , . . . eTM ]T .

We transmit K pulses and assume that the target is stationary during this observation

time; then

Y = [y(1) y(2) · · · y(K)]
NM×K

= Axφ + E, (4.5)

where φ = [1, . . . 1]1×K , and E = [e(1) e(2) · · · e(K)]
NM×K

is the additive noise.

4.2.2 Statistical Model

In (4.5), we assume that x (target reflection coefficients) is an unknown determinis-

tic. We consider the compound-Gaussian distribution e(k)=
√
uX (k), k = 1, . . . , K,

to model the clutter with u and X (k) as the texture and speckle components, re-

spectively; see [111] and references therein. The realizations of the fast-changing

component, X (k), k = 1, . . . , K, are independent and identically distributed (i.i.d.)

and follow a complex Gaussian distribution with zero mean and covariance Σ. The

texture is the slow-changing component; thus, we consider it to be constant during
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the coherent processing interval (CPI), but changing from CPI to CPI according to

a probability density function of a non-negative random variable [110], [115]. There-

fore, e(k)|u k = 1, ..., K, are i.i.d., and we can write the conditional distribution for

the observation Y in (4.5) as

K
∏

k=1

py|u(y(k)|u) =

K
∏

k=1

1

|πuΣ| exp
{

− [y(k) − Axφ(k)]H

· [uΣ]−1 [y(k) − Axφ(k)]
}

. (4.6)

Observe that conditioned on u, with known A and φ and unknown x and Σ, (4.5)

is a GMANOVA model. We assume that w = 1/u follows the gamma distribution

(consequently u follows the inverse gamma distribution) with unit mean and unknown

shape parameter v > 0 as in [111]; i.e.,

pw(w; v) =
1

Γ(v)
vvwv−1 exp [−vw] , (4.7)

where Γ(·) is the gamma function. Therefore, we consider x, Σ, and v as the unknown

parameters.

4.3 Detection and Estimation Algorithms

We compute in this section the maximum likelihood estimates (MLE) of the un-

known parameters, and the target detection test. There is no closed form solution

for the MLEs of the unknown parameters, and hence we apply a parameter-expanded

expectation-maximization (PX-EM) algorithm to estimate the clutter texture and
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speckle as well as the target parameters [63]. Note that we define y, u, and (y, u) as

the observed, unobserved, and complete data, respectively.

Using the MLEs of the unknown parameters in the observed-data likelihood function,

we derive a statistical decision test based on the GLRT to determine the presence of

a target in the COI. We choose between two hypotheses H0 (the target-free case) and

H1 (the target-present case) with the speckle covariance Σ and the inverse texture

shape parameter v as the nuisance parameters. We compute the GLRT by replacing

the unknown parameters with their MLEs in the likelihood ratio test. Then, we reject

H0 in favor of H1 when

GLRT =
p1(Y ; x̂1, Σ̂1, v̂1)

p0(Y ; Σ̂0, v̂0)
> η, (4.8)

where

• p0(·) and p1(·) are the observed-data likelihood functions under H0 and H1

• Σ̂0 and Σ̂1 are the MLEs of Σ, and v̂0 and v̂1 are the MLEs of the shape

parameter v under H0 and H1, respectively

• x̂1 is the MLE of x under H1, and

• η is the detection threshold.

We compute the observed-data likelihood function

p1(Y ; x,Σ, v) =
Γ(v +KNM)

|πΣ|KΓ(v)vKNM
(

1 +
K
∑

k=1

[y(k) − Axφ(k)]H [Σ]−1 [y(k) −Axφ(k)] /v

)−v−KNM

,(4.9)
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and under H0, p0(Y ; Σ, v) is the same as (4.9) with x = 0.

We compute the MLEs of the vector x, speckle covariance matrix Σ, and texture

distribution shape parameter v using the hierarchical data model presented in (4.6)

and (4.7). Similar to the work presented in [111], we apply two iterative loops for

the MLE computations: (i) inner loop and (ii) outer loop. In the inner loop, first we

introduce the PX-EM algorithm to obtain the MLEs of x̂, and Σ̂ for a fixed v. The

PX-EM algorithm has the same convergence properties as the classical EM algorithm,

but it outperforms the EM algorithm in global rate of convergence [63]. In the outer

loop, we estimate v using the MLEs from the inner loop [111].

Inner Loop

PX-EM algorithm for inverse gamma texture.

Recall that x, Σ, and v are the unknown parameters. We first estimate θ = {x,Σ},

assuming that v is known. We implement the PX-EM algorithm by adding a new

unknown parameter µw, the mean of w, to this set; i.e., θ∗ = {x,Σ∗, µw}. In this

model, the maximization step performs a more efficient analysis by fitting the ex-

panded parameter set [63]. Under this expanded model the pdf of w is

pw(w; v, µw) =
1

Γ(v)

(

v

µw

)v

wv−1 exp [−vw/µw] . (4.10)

Consider θ = R(θ∗) = {x,Σ∗/µw}, where R(·) is the reduction function (many-to-

one) from the expanded to the original space. Moreover, µ0
w = 1 is the null value such

that the complete-data model is preserved.

76



We define i and j as the inner and outer loop iteration indexes, respectively. Since

the complete-data likelihood function belongs to an exponential family, the PX-EM

algorithm reduces to first obtaining the conditional mean of the sufficient statistics

using the unobserved data given the observed data, and then plugging these sufficient

statistics values in the MLE expressions of the unknown variables (see also [111],

[116]).

PX-E Step: Calculate the conditional expectation of the sufficient statistics under

H1, concentrated at v̂(j), the jth iteration step estimate of v.

Using the properties of the compound-Gaussian model with inverse gamma dis-

tributed texture [117], we observe that w|Y follows a gamma distribution with

ŵ
(i)
1 = Ew|Y [w|Y ; θ̂

(i)

∗ ] = (v̂(j) +KMN) ·
{

v̂(j) +

K
∑

k=1

d(k, θ̂
(i)

∗ )

}−1

, (4.11)

where θ̂
(i)

∗ = {x̂(i), Σ̂
(i)

∗ , µ̂
(i)
w = µ̂0

w = 1} is the estimate of θ∗ at the ith iteration and

d(k, θ̂
(i)

∗ ) =
[

y(k) − Ax̂(i)φ(k)
]H [

Σ̂
(i)
]−1 [

y(k) − Ax̂(i)φ(k)
]

. Then,

T
(i)
1 =

1

K

K
∑

k=1

y(k)φ(k)Hŵ
(i)
1 , (4.12a)

T
(i)
2 =

1

K

K
∑

k=1

y(k)y(k)Hŵ
(i)
1 , (4.12b)

T
(i)
3 =

1

K

K
∑

k=1

φ(k)φ(k)Hŵ
(i)
1 , (4.12c)

T
(i)
4 = ŵ

(i)
1 . (4.12d)
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PX-M Step: We obtain the maximum likelihood estimates similar to [113]

x̂
(i+1)
1 =

[

AH
(

S(i)
)−1

A

]−1

AH
(

S(i)
)−1

T
(i)
1

(

T
(i)
3

)−1

, (4.13a)

Σ̂
(i+1)

∗ =
(

S(i)
)−1

+

[

I
MN

− Q(i)
(

S(i)
)−1
]

T
(i)
1

(

T
(i)
3

)−1

·
(

T
(i)
1

)H
[

I
MN

− Q(i)
(

S(i)
)−1
]H

, (4.13b)

µ̂(i+1)
w = T

(i)
4 , (4.13c)

Σ̂
(i+1)

1 = Σ̂
(i+1)

∗ /µ̂(i+1)
w , (4.13d)

where S(i) = T
(i)
2 − T

(i)
1

(

T
(i)
3

)−1 (

T
(i)
1

)H

and Q(i) = A

[

AH
(

S(i)
)−1

A]−1AH .

Under H0, we calculate Σ̂0 and ŵ0 with x = 0 and update the sufficient statistics

accordingly.

Outer Loop

MLE of the shape parameter of the inverse gamma texture.

We compute v̂(j+1) by maximizing the concentrated observed data (y(k), k = 1, . . . , K)

log-likelihood function using the estimates from the PX-EM step. We denote x̂(∞),

Σ̂
(∞)

0 , and Σ̂
(∞)

1 as the estimates of x and Σ obtained upon the convergence of the

inner loop and compute

[

v̂
(j+1)
1

]T

=
argmax

v

[

ln p1

(

Y , x̂
(∞)
1 , Σ̂

(∞)

1 , v
)]

(4.14)

Under H0, we calculate v̂
(j+1)
0 using x = 0 and Σ̂

(∞)

0 in (4.14).
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The GLRT (4.8), computed upon convergence of (4.12), (4.13) and (4.14) under H0

and H1, results in a complicated form which is not possible to analyze statistically.

Therefore, we simplify it to the ratio of determinants of the covariance estimates

under different hypotheses, (see (4.15)), which is also similar to the general form of

GLRT presented in [113], to analyze its statistical characteristics (see Section 4.4).

First, for a fixed texture component, we compute the GLRT. Then we assume that

the target is present only in the range cell of interest and the texture is completely

correlated over few neighboring range cells. Since the texture is the slow changing

component, this assumption is reasonable for high resolution radar (see also [53]).

Next, using the data from the target-free neighboring cells as the secondary data, we

run the inner and outer loops of the estimation algorithm to compute the conditional

mean of the texture component in (4.11) given the secondary data. We replace the

texture component with its corresponding conditional mean value reducing the GLRT

to

λ =

∣

∣

∣
T

(∞)
2

∣

∣

∣

∣

∣

∣

∣

T
(∞)
2 − Q(∞)

(

S(∞)
)−1

T
(∞)
1

(

T
(∞)
3

)−1 (

T
(∞)
1

)−1
∣

∣

∣

∣

> η
′

, (4.15)

where | · | is the determinant operator, and T
(∞)
1 , T

(∞)
2 , T

(∞)
3 , S(∞) and Q(∞) are

obtained using (4.11) in (4.12) in one step. That is, using the secondary data and the

PX-EM algorithm the conditional mean of the texture component is computed as in

(4.11). Then using (4.11) in (4.12), (4.15) is computed in one step.

4.4 Adaptive Design

In this section, we first demonstrate the asymptotic statistical characteristics of the

detection test derived in Section 4.3. Based on this result, we then construct a utility
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function for adaptive energy allocation to improve the detection performance. We

determine the optimum transmitted energy by each transmitter according to this

utility function.

We define ŵ∞
s as the conditional mean value of the texture component obtained from

(4.11) upon the convergence of (4.12) and (4.14) using the target free secondary data.

Note that since the unknown parameters Σ, and v of the secondary data belong to

a canonical exponential family (since the complete-data likelihood function belongs

to an exponential family and could be written in canonical form), their estimates

are consistent and hence the conditional mean value in (4.11), computed given the

secondary data, converges to the minimum mean-square error estimate (MMSE) of

the texture component in probability (converges in probability) as the number of the

observations increases (asymptotically) [116, Theorem 5.2.2]. Moreover from Theorem

5.5.2 and Theorem 5.5.3 of [116], we know that the MMSE asymptotically converges

to MLE with probability 1 (almost surely). Therefore, since MLE is consistent in

probability, ŵ∞
s asymptotically converges to the true texture value w0 in probability.

The test λ in (4.15) is a function of ŵ∞
s y(k) for k = 1, . . . , K. We observe that

ŵ∞
s → w0 and ŵ∞

s y(k) → w0y(k) = z(k) in probability, such that z(k) ∼

CN (0,Σ) and CN (Axφ,Σ) under H0 and H1, respectively. Then from [116, Ap-

pendix A.14.8], λ (ŵ∞
s y(k)) asymptotically converges to λ(z(k)) for k = 1, . . . , K in

distribution. Moreover following a similar approach taken for real Gaussian random

variables in [118], [119], we find that (4.15), as a function of z(k) (complex version of

Wilks’ lambda) as K → ∞, K lnλ has a complex chi-square distribution with NM

degrees of freedom under H0. Since this distribution does not depend on the speckle

covariance, in the limit (4.15) is asymptotically a constant false-alarm rate (CFAR)

test.
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Under H1, as K → ∞, K lnλ has a non-central complex chi-square distribution with

NM degrees of freedom. That is, K lnλ ∼ Cχ2
NM(δ) [118] , [120]. The non-centrality

parameter is

δ = tr
(

Σ−1(Axφ)(Axφ)H
)

. (4.16)

We observe that detection performance is optimized by maximizing the detection

probability for a fixed value of probability of false alarm. It is shown in [120] that,

under asymptotic approximation, the non-centrality parameter and probability of

detection are positively proportional. Therefore we maximize the non-centrality pa-

rameter with respect to the energy parameters, βm, m = 1, . . . , M (see (4.3) and

(4.4) for the relation between the non-centrality parameter, and β’s). We also in-

corporate an energy constraint in the maximization,
∑M

m=1 |βm|2 = E, such that the

total transmitted energy is the same, independent of the system configuration and

energy distribution. We define β = [β1, . . . , βM ]T , then the optimization problem

reduces to

β̂ =
argmax

β

[

tr(Σ−1(Axφ)(Axφ)H) − µ(
M
∑

m=1

|βm|2 −E)

]

, (4.17)

where µ is the Lagrange multiplier. Without loss of generality, we assume E = 1,

then after some algebraic manipulations using the structure of matrix A from (4.4),

we show that this optimization problem further reduces to

β̂ =
argmax

β s.t βT β = 1

[

βTPβ
]

, (4.18)
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where P is computed as in Appendix C such that

P = Kdiag(p11, . . . , pMM),

= Kdiag(
(

Ā1x1

)H
Σ−1

1

(

Ā1x1

)

, . . . ,
(

ĀMxM
)H

Σ−1
M

(

ĀMxM

)

), (4.19)

where (recalling from (4.5))

• A = blkdiag(A1, . . . , AM)

• Ai = βidiag(α1ie
−jψ1i, . . . , αNie

−jψNi) = βiĀi

• x = [xT
1 , . . . xT

M ]T

• xi = [x1i, . . . , xNi]
T , and

• Σ = blkdiag(Σ1, . . . , ΣM), see also Section 4.5 for the covariance matrix

assumption.

Here qmm corresponds to the total received power at all the receivers due to the mth

transmitter.

We solve (4.18) to obtain the optimum power allocation. This equation has a unique

solution such that β̂ is the eigenvector corresponding to the largest eigenvalue of

the matrix P . Since P is diagonal , the maximum eigenvalue is the maximum of

pmm, m = 1, . . . , M , (maximum total received power at all the receivers, max-

imum diagonal entry of Q). If pii is the maximum eigenvalue, the eigenvector is

ui = [0 · · · 0 1 0 · · · 0], all zeros but 1 at the ith location. This suggests that for op-

timum power allocation we transmit all the power from the ith transmitter. However,

we modify this result and put minimum and maximum power constraints for each
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transmitter, this means that for adaptive design we transmit the maximum available

power from the transmitter having the maximum eigenvalue, and transmit minimum

power from the rest of the transmitters. This approach also provides the positivity

constraint. Note that Σ, x are unknown in practice and we replace them with their

estimates for the adaptive design.

4.5 Numerical Examples

We present numerical examples using Monte Carlo (MC) simulations to illustrate our

analytical results. We show the receiver operating characteristics and improvement in

detection performance due to adaptive energy allocation for the MIMO system. The

results are obtained from 2 ∗ 104 MC runs. We follow the scenario shown in Fig. 4.1.

We assume that our system is composed of M transmitters and N receivers, where the

antennas are widely separated. The transmitters are located on the y-axis, whereas

the receivers are on the x-axis; the target is 10km from each of the axes; the antenna

gains (Gtx and Grx) are 30dB; the signal frequency (fc) is 1GHz. The angle between

the transmitted signals a1 = a2 = ... = aM = 10◦ and similarly between the received

signals b1 = ... = bN = 10◦. Hence Rm, m = 1, . . . , M , and Rn, n = 1, . . . , N , in

(4.1) are calculated accordingly. In this scenario, all the transmitters and receivers

see the target from different angles. Throughout the numerical examples, we choose

M = 2 and K = 40 pulses for each transmitted signal.

We choose the spatial covariance of the speckle components in a block diagonal form

(Σ = blkdiag[Σ1, . . . , ΣM ]) due to the assumption of low–cross-correlation signal

transmission, see eqns. (4.2) and (4.3). Σm, m = 1, . . . , M , are positive definite

N × N matrices with entries Σm[i, j] = ρ
|i−j|
s , with i, j = 1, . . . , N . This form
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Figure 4.1: MIMO antenna system with M transmitters and N receivers.

of covariance for MIMO radar is used in [53] to account for the correlation between

the received signals at different receivers due to the same transmitter. The target

parameters x are chosen randomly for simulation purposes; that is, the entries are

assigned as the realizations of a zero mean complex Gaussian random variable with

unit variance. Later, x is scaled to meet the desired signal-to-clutter ratio (SCR)

conditions. We define the SCR similar to [111] in (4.20). Moreover, the shape pa-

rameter of the texture component is chosen to be v = 4 (values between 3 and 9 are

often good choices for heavy tail fitting [117]).

SCR =
1

K

∑K
k=1(Axφ(k))H(Axφ(k))

E{u(k)}trΣ . (4.20)

In Fig. 4.2(a). MIMO M×N and Conv. M×N stand for the MIMO and conventional

radar systems, respectively, with M transmitters and N receivers. The model of

Conv. radar is obtained from (4.1) similar to [45] using the fact that all the channel

coefficients of the system (target RCS and distances of the radars to the target) are

the same, since each transmitter and receiver pair sees the target from the same angle
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Figure 4.2: (a) Receiver operating characteristics of MIMO and conventional phased-
array radar (Conv.). (b) Receiver operating characteristics of MIMO radar with and
without adaptive energy allocation.

and distance. For fairness of comparison, the total transmitted energy, E, is kept the

same for both Conv. and MIMO systems.

In Fig. 4.2(a), we assume for that spatial correlation ρs = 0.01 (low correlation due

to widely separated setups), SCR=−10 dB, and the total energy is equally divided

among the transmitters. In MIMO radar applications, the use of multiple orthogonal

waveforms results in 10log10(M) dB loss in SCR [31, Chapter8]. Then, for fair com-

parison, we set SCR=−7 dB for Conv. system. The observed advantage of MIMO

over Conv. radar stems from the diversity gain obtained by multiple looks at the
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target. That is, MIMO radar systems have the ability to exploit the spatial diver-

sities, gaining sensitivity about the RCS variations of the target to enhance system

performance.

In Fig. 4.2(b), we demonstrate the improvement in the detection performance due to

the adaptive energy allocation. We compute the receiver operating characteristics for

MIMO radar when the total energy (E) is equally divided among the transmitters

(MIMO M × N on the figure) and subsequently when E is adaptively distributed

among the transmitters using our algorithm (MIMO M × N Adap. on the figure).

The adaptive method optimally allocates the total energy to transmitters depending

on the target RCS values such that the signal-to-clutter ratio increases for the same

total energy, E, and environment conditions. Increasing the SCR under the same

target and environment conditions also increases the performance.

4.6 Summary

We developed a statistical detector based on GLR for a MIMO radar system in

compound-Gaussian clutter with inverse gamma distributed texture when the target

and clutter parameters are unknown. First, we introduced measurement and statisti-

cal models within the GMANOVA framework and applied the PX-EM algorithm to

estimate the unknown parameters. Using these parameters, we developed the statis-

tical decision test detector. Moreover, we asymptotically approximated the statistical

characteristics of this decision test and used it to propose an algorithm to adaptively

distribute the total transmitted energy among the transmitters. We used Monte

Carlo simulations and demonstrated the advantage of MIMO over conventional radar
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for target detection and the detection performance enhancement due to our adaptive

energy distribution algorithm.
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Chapter 5

MIMO Radar Detection and

Adaptive Design Under a Phase

Synchronization Mismatch5

Due to imperfect knowledge of the locations and due to the local oscillator char-

acteristics of the antennas, MIMO radars suffer from the phase error between each

transmitter and receiver. We address target detection with MIMO radar under such

phase errors. We model these phase errors using a von-Mises distribution and ac-

cordingly introduce a data measurement model. We develop a generalized likelihood

ratio test (GLRT) target detector using estimates of the error distribution parameter,

of target returns and of noise variance, all of which we obtain through an estimation

algorithm based on an expectation-maximization (EM) algorithm. We compute an

upper bound on the mutual information between the radar measurements and the

phase error. Using this bound, we then propose an adaptive power distribution al-

gorithm for the MIMO system. With numerical examples, we demonstrate both the

5Based on M. Akcakaya and A. Nehorai, “MIMO Radar Detection and Adaptive Design Under a
Phase Synchronization Mismatch,” IEEE Trans. Signal Process., vol.58, no.10, pp.4994-5005, Oct.
2010 c©[2010] IEEE.
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advantages of the robust detector that considers the phase error and the improvement

in detection performance due to the adaptive power distribution.

5.1 Introduction

MIMO radars with widely separated antennas are categorized into two processing

modes (i) non-coherent and (ii) coherent, depending on whether the phase information

is ignored or included, respectively [31, Chapters 8 and 9]. For the non-coherent

mode, with random target assumption, these systems have the ability to improve

both target parameter estimation [47] and detection performance [45]; and they can

handle slow-moving targets by exploiting Doppler estimates from multiple directions

[55], [51].

In addition to the unknown deterministic target parameters assumption, the coher-

ent MIMO radar assumes perfect knowledge of the orientation, location, and local

oscillator characteristics of all the antennas (hence a perfect knowledge of phase in-

formation). In this mode, the MIMO systems are shown to support high-resolution

target localization [46], and to improve target estimation [121] and detection in non-

homogeneous clutter [59],[60],[61].

To realistically model the radar measurements, we consider the phase error, which

is due to the widely separated nature of the radar system. The effect of the phase

error within coherent MIMO radar has been investigated for target estimation [56],

[57]. In our work, we develop a generalized likelihood-ratio test (GLRT) target detec-

tor for a MIMO radar system in the presence of a phase synchronization mismatch

(phase error) between the transmitter and receiver pairs. In practice, the receivers
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and transmitters may be frequency synchronized to a master source; however, phase

mismatch may still occur due to imperfect knowledge of the locations and to the local

oscillator/electronics characteristics of the antennas causing a phase offset between

the transmitter receiver pairs [122], [123].

We assume that an estimate of the phase offset is available as a result of the tracking

process of a phase-locked loop (PLL). For a transmitter receiver pair, the output of

the PLL (the phase estimation error) was shown to follow a von-Mises distribution

[124], [125], [126]. Therefore, we model the phase error terms randomly, using a von-

Mises distribution (see Fig. 5.1). The von-Mises distribution is used in applications

of directional statistics and generalizes the uniform distribution (with a zero shape

parameter (∆ = 0), the von-Mises reduces to a uniform distribution) [66]. We model

the uncertainty in the phase error using different shape parameters, and we demon-

strate its negative effect on detection performance. We observe that an increase in

the shape parameter (increasing the concentration of the phase error distribution

around the mean value, zero in our case), decreases the uncertainty (the entropy),

which corresponds to an increase in detection performance. Our assumption about

the phase error distributions generalizes the assumptions in [56] and [57], which are

respectively, Gaussian distribution and uniform distribution with a parameter that

controls the range of the phase error.

Our work generalizes the coherent MIMO radar assuming the presence of the phase

error. As the shape parameter of the phase error distribution goes to infinity, as the

uncertainty becomes zero, our model converges to a coherent MIMO radar. Therefore,

to demonstrate the effect of our approach, we use measurements that have a phase

error and compare our detector with a coherent MIMO radar detector that ignores the

phase error. For the non-coherent MIMO radar, the target reflection coefficients are
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assumed to be random. An example is a complex Gaussian distribution. This example

corresponds to the assumption that the amplitudes of the reflection coefficients follow

a Rayleigh distribution and that the phases of the target reflections follow uniform

distribution (shape parameter ∆ = 0). For different ∆ values, there is no closed-form

solution for the target reflection coefficient distribution, and hence to consider more

general cases with different ∆ values, we assume a deterministic unknown model for

the amplitude of the target reflection coefficients.
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Figure 5.1: Probability density function of von-Mises distribution with shape parameter
∆.

We propose an adaptive transmitted energy allocation scheme in Section 5.4. The

mutual information (MI) between the received target responses and the radar mea-

surements corresponds to the MI between the phase error and radar measurements.

Since an analytical solution does not exist, we compute an upper bound for the latter

MI. Then we develop an adaptive energy allocation algorithm that distributes the to-

tal transmitted energy among the transmitters, exploiting the RCS sensitivity of the

system and optimizing the upper bound on the MI between the phase error and radar

measurements. We show that our algorithm improves the detection performance. To

study the MI, we follow a similar approach that has been taken for radar waveform
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design (c.f. [127], [128]), but we model the randomness of the target returns with the

phase error.

5.2 Radar Model

In this section, we develop the measurement and statistical models for a MIMO

radar system to detect a target in a range cell of interest (COI). We will use these

models to present an algorithm within a generalized multivariate analysis of variance

(GMANOVA) framework [113] in the presence of the phase error when the signal and

noise parameters are unknown.

5.2.1 Measurement Model

We consider a two dimensional (2D) spatial system with M transmitters and N re-

ceivers. Define (x
Txm

, y
Txm

), m = 1, ...,M , and (x
Rxn

, y
Rxn

), n = 1, ..., N , as the

locations of the transmitters and receivers, respectively. We also assume a station-

ary point target located at (x0, y0) and having radar cross section values changing

with respect to different angles (e.g., multiple scatterers, which cannot be resolved

by the transmitted signals, with (x0, y0) as the center of gravity) [31]. Define the

complex envelope of the narrow-band signal from the mth transmitter as βmsm(t),

m = 1, . . . , M , such that |βm|2 is the transmitted energy with
∑M

m=1 |βm|2 = E (E

is constant for any M) and
∫

Ts
|sm(t)|2dt = 1, m = 1, . . . , M , with Ts as the signal

duration. We write the low-pass equivalent of the received signal at the nth receiver
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as follows [31]:

rn(t) =
M
∑

m=1

αnmσnmβmsm(t− τnm)e−j(ψnm+θnm) + en(t), (5.1)

where

• αnm =

√

GTxGRxλ
2

(4π)3R2
mR

2
n

is the channel parameter from the mth transmitter to the

nth receiver, with GTx and GRx as the gains of the transmitting and receiving

antennas, respectively; λ as the wavelength of the incoming signal; Rm and

Rn as the distances from the mth transmitter and nth receiver to the target,

respectively

• σnm is the amplitude of the target reflection coefficient seen by the mth trans-

mitter and nth receiver

• τnm = (Rm +Rn)/c with c the speed of the signal propagation in the medium

• ψnm = 2πfcτnm, with fc as the carrier frequency

• θnm is the phase offset between the nth receiver and mth transmitter, and

• e(t) is additive noise.

To enable the data separation at the receiver side arriving from the different trans-

mitters, we assume low–cross-correlation transmitted signals. The design of signals

with these properties is a challenging research subject [58], but for simplification of

the problem and demonstration of our methods and analysis, we assume that the

required signal criteria are met (this assumption is commonly made for MIMO radar,

see [31, Chapters 8 and 9] and references therein). Moreover, we use a PLL to obtain

an estimate of the phase offset between each transmitter and receiver pair. Hence,
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we apply matched-filtering and then the PLL, and we obtain the output of the nth

receiver corresponding to the ith transmitter:

rni = βiαniσnie
−j(ψni+θ̃ni) + eni, (5.2)

where

• rni =
∫ τni+Ts

τni
rn(t)s

∗
i (t− τni)dt

• θ̃ni is the output of the PLL (phase error, estimation error), and

• eni =
∫ τni+Ts

τni
en(t) s

∗
i (t− τni)dt.

Then, combining all the N received data corresponding to the transmitted signal si(t)

for one pulse, we obtain

ri = AiX iφi + ei, (5.3)

where

• ri = [r1i, . . . , rNi]
T

• Ai = βidiag(α1ie
−jψ1i, . . . , αNie

−jψNi)

• X i = diag(σ1i, . . . , σNi)

• φi = [e−jθ̃1i , . . . , e−jθ̃Ni ]T , and

• ei = [e1i, . . . , eNi]
T .

We stack the receiver outputs corresponding to all the signals into an NM ×1 vector:

y = AXφ + e, (5.4)
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where

• y = [rT1 , . . . , rTM ]T

• A = blkdiag(A1, . . . , AM)

• X = blkdiag(X1, . . . , XM)

• φ = [φT
1 , . . . , φT

M ]T , and

• e = [eT1 , . . . , eTM ]T .

We transmit K pulses and assume that the target is stationary during this observation

time; then

Y = [y(1) y(2) · · · y(K)]
NM×K

= AXΦ + E, (5.5)

where Φ = [φ(1) · · · φ(K)]NM×K , and E = [e(1) e(2) · · · e(K)]
NM×K

is the additive

noise.

5.2.2 Statistical Model

In (5.4), we assume that X (target reflection coefficients) is an unknown determin-

istic. Moreover, in our analysis e(k), for k = 1, . . . , K are independent identi-

cally distributed (i.i.d.) zero-mean complex multivariate normal random vectors with

σ2
eIMN×MN

as covariance for unknown σ2
e . Define φ(k) = exp(θ̃(k)) with θ̃(k) =

[θ̃11(k), θ̃21(k), . . . , θ̃NM(k)] (see also (5.3)), where θ̃nm(k) is the phase error between

the nth receiver andmth transmitter pair at the kth pulse. Then, Θ = [θ̃(1) · · · θ̃(K)].

We model θ̃nm(k) as i.i.d. von-Mises distributed random variables following [66] (re-

call that the output of a PLL is shown to follow von-Mises distribution [124], [125],
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[126] ):

p(θ̃nm(k); ∆) =
exp[∆cosθ̃nm(k)]

2πI0(∆)
− π ≤ θ̃nm(k) ≤ π, (5.6)

where ∆ ≥ 0 is the (unknown) shape parameter and I0(·) is the modified Bessel

function of the first kind and order zero; ∆ controls the spread of the density, reducing

the density to uniform distribution when ∆ = 0 [66].

For each pulse, at each receiver, we assume that the signals from M transmitters

are processed through M different channels and independent PLLs. Hence the out-

puts of the PLLs are independent from each other, which justifies the independence

of θ̃n1(k), θ̃n2(k), . . . , θ̃nM(k). Also since the receivers are widely separated from

each other, we assume that the PLLs are independent from receiver to receiver,

which justifies the independence of θ̃1m(k), θ̃2m(k), . . . , θ̃Nm(k). After receiving each

pulse, the matched-filtering and PLL tracking is repeated at each receiver; there-

fore, there might be time correlation between the successive outputs of the each PLL

(θ̃nm(k), θ̃nm(k + 1)). However, due to the narrow-band signal assumption, the time

correlation can be ignored, which justifies the pulse-to-pulse independence.

Observe that conditioned on Θ, with known A and unknown X and σ2
e , we get a

GMANOVA model for (5.5) with the following distribution:

K
∏

k=1

p(y(k)|θ̃(k); X, σ2
e) =

∏K
k=1

1

|πσ2
eI|

exp

{−1

σ2
e

[y(k)−

AXφ(k)]H [y(k) − AXφ(k)]
}

. (5.7)
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5.3 Detection and Estimation Algorithm

We derive the GLRT using the observed data likelihood function, with Y as the

observed and θ̃(k), k = 1, . . . , K as the unobserved data to decide about the presence

of a target in the COI. Specifically, we choose between two hypotheses in the following

parametric test:










H0 : X = 0, σ2
e

H1 : X 6= 0, σ2
e ,∆

, (5.8)

with σ2
e and ∆ as the nuisance parameters. We compute the GLRT and reject H0

(target-free case) in favor of H1 (target-present case) when

GLRT =
p1(Y ; X̂, σ̂2

e1, ∆̂)

p0(Y ; σ̂2
e0)

> η, (5.9)

where pi(·) and σ̂2
e i are the observed data likelihood function and the maximum-

likelihood estimate (MLE) of σ2
e under Hi for i = 0, 1, respectively; where X̂ and ∆̂

are the MLEs of X and ∆ under H1; and where η is the detection threshold.

Under the given statistical assumptions in section 5.2.2, there is no closed-form solu-

tion for the MLEs of X, σ2
e , and ∆ (see also (5.16) for the observed data probability

density function). Therefore, we compute the MLEs of the unknown parameters us-

ing an EM algorithm with the hierarchical data model presented in (5.6) and (5.7).

We define Y , Θ, and (Y ,Θ) as the observed, unobserved, and complete data, re-

spectively. First, we write the complete data log-likelihood function in canonical
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exponential family form [116]:

Lc(X, σ2
e ,∆) = lnp(Y ,Θ; X, σ2

e ,∆)

= ln
K
∏

k=1

p(y(k)|θ̃(k); X, σ2
e)p(θ̃(k); ∆)

= const +
−K
σ2
e

(

tr[XHAHAX T 3]

+tr[T 2] − 2Re(tr[TH
1 AX])

)

−NMKlnI0(∆) + ∆T4, (5.10)

where T i, i = 1, 2, 3 and T4 are the natural complete-data sufficient statistics (see

(5.11) for the definitions) and “tr” stands for the trace. Since the complete-data

likelihood function belongs to an exponential family, we simplify the EM algorithm

[116]. In E step, we first calculate the conditional expectation of the natural complete-

data sufficient statistics given the observed data (using p(Θ|Y ; X, σ2
e ,∆)). Then, in

the M step, in the MLE expressions, we simply replace the natural complete-data

sufficient statistics with the ones obtained in the E step.

E Step: We define the ith iteration estimates of the set of the unknown parameters

as Γ(i) = {X̂(i)
, (σ̂e

2)(i), ∆̂(i)} and compute the conditional expectation [Ep(Θ|Y )(·)

expectation w.r.t. p(Θ|Y ; X, σ2
e ,∆)] of the sufficient statistics under H1:

T
(i)
1 = Ep(Θ|Y )(

1

K

K
∑

k=1

y(k)φ(k)H ; Γ(i)), (5.11a)

T
(i)
2 =

1

K

K
∑

k=1

y(k)y(k)H , (5.11b)

T
(i)
3 = Ep(Θ|Y )(

1

K

K
∑

k=1

φ(k)φ(k)H ; Γ(i)), (5.11c)

T
(i)
4 = Ep(Θ|Y )(

K
∑

k=1

N
∑

n=1

M
∑

m=1

cos(θ̃nm(k)); Γ(i)). (5.11d)
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M Step: We simply replace the natural complete-data sufficient statistics with their

conditional expectations from (5.11) in the MLE expressions. We apply the results of

GMANOVA [113] for the MLEs of X and σ2
e (for the MLE of σ2

e ; these results have

been improved to fit in our case). We define S(i) = T
(i)
2 − T

(i)
1

(

T
(i)
3

)−1 (

T
(i)
1

)H

and

P = NMK, then compute

X̂
(i+1)

=

[

AH
(

S(i)
)−1

A

]−1

AH ·
(

S(i)
)−1

T
(i)
1

(

T
(i)
3

)−1

(5.12a)

(σ̂2
e)

(i+1) = 1
P

(

tr[T
(i)
2 ] − 2Re(tr[(TH

1 )(i)AX(i+1)])

+tr[(XH)(i+1)AHAX (i+1)]
)

(5.12b)

Concentrating (5.10) w.r.t. X̂
(i+1)

and (σ̂2
e)

(i+1), we compute

∆̂(i+1) = arg max
∆

−P lnI0(∆) + ∆T
(i)
4 . (5.13)

Under H0, p0(Y ; σ̂2
e) is Gaussian distributed and hence the only unknown σ̂2

e = tr(T 2).

The above iteration is performed until X̂
(i)

, (σ̂2
e)

(i), and ∆̂(i) converge. The compu-

tation of ∆̂(i+1) is achieved by maximizing (5.13) using the Newton-Raphson method

embedded within the “outer” EM iteration, similar to [129], [111]. We assume that

the shape parameter of the phase error does not change in the processing time inter-

val, therefore after the initial estimation, this estimate can be used in the successive

radar dwells. The estimation of the shape parameter could also be achieved during

a calibration process, and hence the estimation step (5.13) can be eliminated from

the iterations of the EM algorithm. This elimination increases the processing speed;

however, the performance of the system may change under possible modeling errors.
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We provide numerical examples in Section 5.5 to compare the performances of the

GLRT detector under known and unknown ∆ assumptions. We also consider possible

modeling errors in the detector and illustrate the sensitivity of the system to changes

in the shape parameter.

Recalling the assumptions from Sec. 5.2.2, we compute the conditional distribution,

p(Θ|Y ; X, σ2
e ,∆) =

∏K
k=1 p(θ̃(k)|y(k); X, σ2

e ,∆).

First, to obtain the marginal distribution

p(y(k); X, σ2
e ,∆) =

∫ π

−π

· · ·
∫ π

−π

p(y(k)|θ̃(k))p(θ̃(k))dθ̃(k), (5.14)

we employ
∫ π

−π

exp(a cos θ̃ + b sin θ̃)dθ̃ = 2πI0(
√
a2 + b2) (5.15)

for any complex a and b (see Appendix D for the proof of the identity in (5.15)); then

p(y(k); X, σ2
e ,∆) =

exp(−1
σ2

e
(y(k)Hy(k) + h))

(σ2
eπ)NM

M
∏

m=1

N
∏

n=1

I0(cnm(k))

I0(∆)
, (5.16)

where

• h = 1TXHAHAX1, and 1 is an NM × 1 vector of ones

• cnm(k) =
√

anm(k)2 + bnm(k)2

• anm(k) = 2
σ2

e
Re{r∗nm(k)αnmβme

−jψnmσnm} + ∆

• bnm(k) = 2
σ2

e
Im{r∗nm(k)αnmβme

−jψnmσnm}

• r∗nm(k) is the complex conjugate of the (N(m− 1) + n)th entry of y(k)

• αnmβme
−jψnm is the (N(m− 1) + n)th diagonal entry of A, and

100



• σnm is the (N(m− 1) + n)th diagonal entry of X (see (5.4) and (5.5)).

Then, using (5.6), (5.7), and (5.16), we find the conditional distribution

p(θ̃(k)|y(k); X, σ2
e ,∆) =

M
∏

m=1

N
∏

n=1

exp(dnm(k))

2πI0(cnm(k))
, (5.17)

where dnm(k) = anm(k) cos θ̃nm(k) + bnm(k) sin θ̃nm(k).

We compute the conditional mean of the natural complete-data sufficient statistics

in (5.11) using (5.17). We apply

∫ π

−π

e±jθ̃ exp(a cos θ̃ + b sin θ̃)dθ̃ = 2π
a± jb√
a2 + b2

I1(
√
a2 + b2) (5.18)

for any complex a and b where I1(·) is the modified Bessel function of the first kind

with order one. We provide a proof of the identity in (5.18) in Appendix E. Then we

obtain

Ep(Θ|Y )(e
±jθ̃nm(k)) =

anm(k) ± jbnm(k)

cnm(k)

I1(cnm(k))

I0(cnm(k))
. (5.19)

We denote X̂, σ̂2
e , and ∆̂ as the estimates of X, σ2

e , and ∆ obtained upon the

convergence of the EM algorithm under H1, and using (5.9), (5.12), (5.13), and

(5.16), we obtain

(GLRT)
1
P =

exp( −1
NMσ̂2

e
(tr(T 2) + h))

exp(−1)

tr(T 2)

σ̂2
e

g
1
P

I0(∆̂)
, (5.20)

where g =
∏K

k=1

∏M
m=1

∏N
n=1 I0(cnm(k)).
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5.4 Adaptive Design

In this section, we compute an upper bound on the mutual information (MI) between

the received target responses (AXΦ in (5.5)) and the radar measurements [69]. Then

we use this upper bound as a utility function for adaptive allocation of the total

transmitted energy among the transmitters, exploiting the RCS sensitivity of the

system. We determine the optimum transmitted energy by each transmitter according

to this utility function. We show the effect of the optimum energy allocation on

detection performance in Section 5.5.

Given the statistical assumptions in Section 5.2.2 and (5.5), the MI between the

received target responses and the radar measurements is equal to the MI between

the phase error and the radar measurements. Then, recalling (5.7), (5.14), and the

statistical assumptions from Section 5.2.2, we compute the MI, I(Θ; Y ), between the

phase error (Θ) and the radar measurements (Y ):

I(Θ; Y ) = Ep(Y ,Θ)

(

log
p(Y |Θ; X, σ2

e)

p(Y ; X, σ2
e ,∆)

)

, (5.21)

where

• p(Y ,Θ; X, σ2
e ,∆) =

∏K
k=1 p(y(k), θ̃(k); X, σ2

e ,∆) is the complete data likeli-

hood function

• p(Y |Θ; X, σ2
e) =

∏K
k=1 p(y(k)|θ̃(k); X, σ2

e), and

• p(Y ; X, σ2
e ,∆) =

∏K
k=1 p(y(k); X, σ2

e ,∆).

Since an increase in the MI between Y and Θ corresponds to an increase in informa-

tion about the received target returns, we expect to see an increase in the detection
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performance as the MI between Y and Θ increases (see the results in [31, Chap-

ter 10] explaining the relationship between the MI and the probability of detection).

Therefore, for the adaptive energy allocation scheme, we form a utility function that

depends on the mutual information and maximize it with respect to the the energy

parameters, βm, m = 1, . . . , M (see (5.1)).

Since a closed-form solution does not exist, we compute an upper bound on the

MI between Y and Θ for the optimization problem. Recall that the noise and the

phase error are independent from pulse to pulse (see Section 5.2.2); then I(Θ; Y )

=
∑K

k=1 I(θ̃(k); y(k)) = KI(θ̃(1); y(1)) (MI for every pulse is equal). Hence we focus

on mutual information for a single pulse (we drop the k dependency to simplify the

notation).

Theorem 5.1. The mutual information between the phase error (and hence the re-

ceived target responses) and the radar measurements modeled in (5.4) is bounded by

I(θ̃; y) ≤
M
∑

m=1

log

(

N
∏

n=1

[

1 +
β2
mα

2
nmσ

2
nm

σ2
e

]

)

, (5.22)

where

• M , N , βm, αnm, and σnm are as defined in (5.1), and

• σ2
e is as defined in Section 5.2.2.

Proof. See Appendix F.

In order to optimize the upper bound in (5.22), we define ξ2
nm = α2

nmσ
2
nm and rewrite

it as
M
∑

m=1

log

(

N
∏

n=1

[

1 +
β2
mξ

2
nm

σ2
e

]

)

=

M
∑

m=1

log

(

1 +
q2
m

σ2
e

)

, (5.23)
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where q2
m is obtained after algebraic manipulation of (5.22):

q2
m = β2

m

N
∑

n=1

ξ2
nm +

β4
m

(

∑N−1
n1=1 ξ

2
n1m

∑N
n2=n1+1 ξ

2
n2m

)

σ2
e

+ · · ·

+
β2N−2
m

(

∑N−(N−2)
n1=1 ξ2

n1m

∑N−(N−3)
n2=n1+1 ξ

2
n2m

· · ·∑N
n

N−1
=n

N−2
+1 ξ

2
n

N−1
m

)

σ2N−4
e

+
β2N
m

(

∏N
n−1 ξ

2
nm

)

σ2N−2
e

. (5.24)

We optimize the upper bound with respect to q = [q1, . . . , qM ]T < 0, where “<” is

element-wise inequality. Since we assume
∑M

m=1 β
2
m = E, 0 ≤ σ2

nm ≤ 1, and 0 ≤ α2
nm

and since 0 ≤ σ2
e are finite for n = 1, . . . , N and m = 1, . . . , M , we obtain a finite

value p such that
∑M

m=1 q
2
m ≤ p. Then we write the optimization problem as

maximize
∑M

m=1 log
(

1 + q2m
σ2

e

)

subject to q < 0,
∑M

m=1 q
2
m ≤ p.

(5.25)

We apply a “water-filling” type of strategy, which is commonly encountered in infor-

mation theory for power allocation to communication channels, to solve the problem

of finding the unique maximizer [130]:

q2
m = (ν − σ2

e) Select ν s.t.

M
∑

m=1

max(0, q2
m) = p. (5.26)

Since σ2
e is the same for all the summands of the objective function in (5.25), then

from (5.26) the optimum solution is q1 = · · · = qM and
∑M

m=1 β
2
m = E. In Appendix

G, we provide a solution for M = 2 and N = 2, 4. In practice, since we do not know
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the target reflection coefficients X and the noise variance σ2
e , we replace them with

their estimates. Once there is a detection at one radar dwell, before continuing with

the next dwell, we apply the adaptive energy allocation algorithm that we propose.

We use the estimates of X , σ2
e and ∆ (estimates obtained in the current dwell), and

obtain new power distribution among the transmitters to use in the next dwell. As

we demonstrate in Section 5.5, if the next dwell contains detection, this detection will

be with a higher probability.

5.5 Numerical Examples

We demonstrate the performance of the GLRT detector with numerical examples us-

ing Monte Carlo (MC) simulations. First we consider an unknown shape parameter

∆ for the phase error distribution, and we compute the receiver operating character-

istics (ROC) of the GLRT detector. We then assume that the system is calibrated

beforehand and so ∆ is known. We compare the ROC of the GLRT detector under

the unknown and known ∆ assumptions. We apply the adaptive energy allocation al-

gorithm under these two assumptions and demonstrate the improvement in the ROC

curves. We consider possible modeling errors and show our results on the sensitivity of

the GLRT detector to the changes in the shape parameter ∆. Finally, to demonstrate

the advantages of employing phase information (realistic modeling), we compare the

GLRT detector that we propose with a coherent MIMO radar detector that ignores

the phase error.

The results are obtained from 104 MC runs. We assume that M transmitters and N

receivers (denoting MIMO M ×N) are located on the y-axis and x-axis, respectively.

The target is 10km from each axis. The antenna gains (GTx and GRx) are 30dB;
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the signal frequency (fc) is 1GHz. The angle between the transmitters µ1 = ... =

µM = 10◦ and similarly between the receivers δ1 = ... = δN = 10◦ (see Fig. 5.2). We

choose M = 2, K = 25 pulses for each transmitted signal throughout the numerical

examples.

Target

(x0 , y0)

x

y

T1

T2

R1 R2 R3

10 km

10 km

 1

 2

!1

!2
!3

Figure 5.2: MIMO antenna system with M = 2 transmitters and N = 3 receivers.

We define signal-to-noise ratio (SNR) in a similar fashion to its definition in [111]

SNR =
K
∑

k=1

(AX1)H(AX1)/(NMKσ2
e ) (5.27)

The RCS values, X, are assigned as the realizations of a zero-mean Gaussian random

variable with unit variance for the simulation purposes. Later, σ2
e is chosen to meet

the desired SNR.
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Figure 5.3: Receiver operating characteristics of MIMO radar for different number of
receivers and shape parameter values, unknown shape parameter ∆.

To obtain Figs. 5.3 and 5.4, we assume an unknown ∆, and SNR=-7dB. In Fig. 5.3, we

plot the receiver operating characteristics (ROC) of the MIMO radar detection in the

presence of a phase error for a different number of receivers, N , and for different shape

parameter (of the von-Mises distribution), ∆, values. As expected when N increases,

the performance of the MIMO system improves. We also observe that as ∆ increases,

detection performance increases. We believe that the change in performance is due

to the change in the entropy of the von-Mises distributed phase error. For a von-

Mises distributed random variable θ̃ with a shape parameter ∆, the entropy (h(θ̃)) is

calculated by

h(θ̃) = −
∫ π

−π
p(θ̃; ∆) ln(p(θ̃; ∆))dθ̃

= ln(2πI0(∆)) − ∆
I1(∆)

I0(∆)
, (5.28)

where p(θ̃; ∆) is as defined in (5.6). The equation (5.28) is a decreasing function of

∆. When ∆ = 0, it has the maximum entropy (maximum uncertainty, minimum

performance); as ∆ increases, this entropy decreases, giving rise to an increase in the

detection performance [66].
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In Fig. 5.4, we demonstrate improvement in detection performance due to the adaptive

energy allocation for different N and ∆ values. We compute the receiver operating

characteristics for MIMO radar when the total energy (E) is equally divided among

the transmitters (MIMO M×N on the figure) and subsequently when E is adaptively

distributed among the transmitters using our algorithm (MIMO M×N Adap. on the

figure). We observe that our adaptive algorithm improves the detection performance.

The adaptive method optimally allocates the total energy to transmitters depending

on the target RCS values and noise variance such that the mutual information between

the phase error and the radar measurements increases. This increase corresponds to

an increase in the information about the received target responses; hence, there is

improvement in detection performance.

In Figs. 5.5, 5.6, 5.7, and 5.8, we assume that the calibration was achieved before-

hand, and hence ∆ is known. In Figs. 5.5, 5.6 and 5.8, SNR=-7dB. The known ∆

assumption increases the speed of the algorithm (because there is no Newton-Raphson

step within the outer EM algorithm), and also improves the detection performance of

the system. Comparing Figs. 5.3 and 5.5, one can observe improvement in the ROC

curves. Moreover, in Fig. 5.5, we illustrate the performance of the GLRT detector

for the extreme cases of ∆. As ∆ → ∞, the uncertainty in the phase error decreases,

and the detector that we propose converges to the coherent MIMO radar detector (as

∆ → ∞, there is no phase error in the measurements). The coherent MIMO radar

detector under no phase error sets an upper bound for the detection performance.

On the other hand, as ∆ → 0, a small decrement in ∆ causes a larger decrease in the

performance of the GLRT detector.

In Fig. 5.6, we apply the adaptive energy allocation algorithm and obtain further

improvement in detection performance. The performance of the adaptively designed
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Figure 5.4: Receiver operating characteristics of MIMO radar with and without adap-
tive energy allocation for (a) ∆ = 5; (b) ∆ = 25; (c) ∆ = 100, unknown shape
parameter ∆.
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Figure 5.5: Receiver operating characteristics of MIMO radar for different number of
receivers and shape parameter values, known shape parameter ∆.

detector is better under the known ∆ assumption (see Fig. 5.4). In Fig. 5.7, to gain

further insight into the system performance, we plot the probability of detection (PD)

as a function of SNR for a fixed probability of false alarm (PFA= 10−2). The outcome

supports the results of Fig. 5.5, such that as both the number of the receivers and

the value of the shape parameter ∆ increase, the PD also increases.

To demonstrate the improvement due to employing the phase error information, we

compare the GLRT detector that we propose with a coherent MIMO radar detector

that ignores the phase error. In Fig. 5.8, CMIMO M×N ∆ = d refers to the coherent

MIMO radar detector with M transmitters and N receivers, which ignores the phase

error, and the phase error follows a von-Mises distribution with ∆ = d. The detector

that we propose outperforms the coherent MIMO detector (the measurements include

the phase error). Ignoring the phase error causes model mismatch, which deteriorates

detection performance.

In Figs. 5.3 and 5.5, we compare the performances of the GLRT detector under both

the unknown and the known shape parameter ∆ assumptions. We illustrate the

improvement in the system performance for the known ∆ assumption. We assume
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Figure 5.6: Receiver operating characteristics of MIMO radar with and without adap-
tive energy allocation for (a) ∆ = 5; (b) ∆ = 25; (c) ∆ = 100, and known shape
parameter ∆.
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that ∆ estimation is achieved beforehand during the calibration process. However,

estimation errors may deteriorate detection performance. In Fig. 5.9, we demonstrate

the sensitivity of the detector to the changes in the shape parameter ∆. We consider

the cases where ∆ is set high but has a smaller value in the real data. In the Fig 5.9,

∆r and ∆s correspond, respectively, to the real and assumed (set) values of the shape

parameter. That is, the real data has a phase error with a shape parameter ∆r, but

the detector assumes this parameter is known and has the value ∆s. For ∆s = 100,

we plot ∆r = 5, 10, 25, and we demonstrate that as the ∆r value goes below 10, the

change in the detection performance is significant. However, for ∆r values larger than

10, the detector is more robust to the phase modeling errors.
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Figure 5.7: Probability of detection vs. signal-to-noise ratio for a fixed PFA=10−2,
and known shape parameter ∆.

5.6 Summary

We developed a GLRT target detector for a MIMO radar system with widely sepa-

rated antennas in the presence of a phase synchronization error. Using a von-Mises

distribution to represent the phase error terms, we introduced a measurement model
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Figure 5.8: Comparison of the receiver operating characteristics of the coherent
MIMO radar and MIMO radar phase error (GLRT) detectors, for known shape pa-
rameter ∆.
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Figure 5.9: Receiver operating characteristics of MIMO radar under model mismatch
(a) MIMO 2 × 2 (b) MIMO 2 × 4.

under the GMANOVA framework and applied the EM algorithm to estimate the

unknown parameters. We developed the GLRT detector using these estimates. In

addition, we computed an upper bound on the mutual information between the radar

measurements and the phase error, and we used the upper bound to propose an

adaptive energy allocation algorithm that employs the RCS sensitivity of the sys-

tem. Then, we solved the optimization problem analytically using a water-filling

type strategy. We studied the GLRT detector under unknown and known shape
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parameter assumptions. With different shape parameters, we modeled different un-

certainties in the phase error distribution and demonstrated their effect on detection

performance using Monte Carlo simulations. We considered the error in the modeling

of the phase error in the detector, and we analyzed the sensitivity of the GLRT detec-

tor to changes in the phase error shape parameter. Comparing the GLRT detector,

which we propose, with a coherent MIMO radar detector, we showed an improve-

ment in detection performance due to employing the phase error information. We

also illustrated the detection performance enhancement using our adaptive energy

distribution algorithm.
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Chapter 6

MIMO Radar Sensitivity Analysis

for Target Detection6

For MIMO radar processing, in practice, mutual orthogonality among the received

signals cannot be achieved for all delay and Doppler pairs. In this chapter, we address

the effect of the imperfect orthogonality of the received signals on the detection per-

formance. We introduce a data model considering the correlation terms among the

received data as deterministic unknown. Using this model, we develop an algorithm

to estimate the target, correlation, and noise parameters, and then we use these esti-

mates to formulate a Wald target detection test. Next we compute the Cramér-Rao

bound (CRB) on the error of parameter estimation, and using the CRB results, we

analyze the asymptotic statistical characteristics of the Wald test. Using Monte Carlo

simulations and theoretical results, we analyze the changes in the performance of the

target detection for different cross-correlation levels (CCLs) among the received sig-

nals, and hence demonstrate the sensitivity of the MIMO radar target detection to

the imperfect separation of different transmitted signals at each receiver.

6Based on M. Akcakaya and A. Nehorai, “MIMO Radar Sensitivity Analysis for Target Detection”
IEEE Trans. Signal Process., in revision.
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6.1 Introduction

Previous work on MIMO radar assumes signal transmission with insignificant cross-

correlation to separate the transmitted waveforms from each other at each receiver [31,

Chapters 8 and 9], [34]. However, for a MIMO radar, since the waveform separation

is limited by the Doppler and time delay resolution [58] (see also [131], [132]), the

absent or low cross-correlation of the waveform for any Doppler and time delay is

not only important but also challenging. In our work, to realistically model the

radar measurements, we also consider the non-zero cross-correlation among the signals

received from different transmitters. We model these parameters as deterministic

unknowns, and then we analyze the sensitivity of the MIMO radar target detection

with respect to changes in the cross-correlation levels (CCLs) of the received signals.

To the best of our knowledge, this issue has never been addressed before. We here

show that an increase in the CCL decreases the detection performance. Moreover,

we observe that radar systems with more receivers and/or transmitters have better

detection performance, but such systems are more sensitive to changes in the CCL.

Therefore, the performance analysis that was made under an assumption of no– or

low–cross-correlation signal might be too optimistic. To simplify the analysis and

better demonstrate our results, we focus on stationary target scenarios; however, we

will extend our results to moving target detection in future work.

In the following, we demonstrate our analytical and numerical results on MIMO radar

target detection in the presence of cross-correlation among the received signals using

a Wald decision test [68], [112]. We demonstrate the sensitivity of the detection

performance to changes in the CCL.
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6.2 Radar Model

In this section, we develop measurement and statistical models for a MIMO radar sys-

tem in the presence of non-zero cross-correlation among the transmitted waveforms.

We use these models to develop a statistical decision test and obtain its asymptotical

statistical characteristics.

6.2.1 Measurement Model

We consider a two dimensional (2D) spatial system with M transmitters and N

receivers. We define (x
Txm

, y
Txm

), m = 1, ...,M , and (x
Rxn

, y
Rxn

), n = 1, ..., N , as

the locations of the transmitters and receivers, respectively. We assume a stationary

point target located at (x0, y0) and having RCS values changing w.r.t. the angle

aspect (e.g., multiple scatterers, which cannot be resolved by the transmitted signals,

with (x0, y0) as the center of gravity) [31]. Define the complex envelope of the narrow-

band signal from the mth transmitter as βmsm(t), m = 1, . . . , M , such that |βm|2

is the transmitted energy with
∑M

m=1 |βm|2 = E (E is constant for any M) and
∫

Ts
|sm(t)|2dt = 1, m = 1, . . . , M , with Ts as the signal duration. We write the

complex envelope of the received signal at the nth receiver as follows [31]:

rn(t) =

M
∑

m=1

αnmξnmβmsm(t− τnm)e−jψnm + en(t), (6.1)

where

• ξnm is the complex target reflection coefficient seen by the mth transmitter and

nth receiver pair
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• αnm =

√

GTxGRxλ
2

(4π)3R2
mR

2
n

is the channel parameter from the mth transmitter to the

nth receiver, with GTx and GRx as the gains of the transmitting and receiving

antennas, respectively; λ is the wavelength of the incoming signal; and Rm =
√

(x
Txm

− x0)2 + (y
Txm

− y0)2 and Rn =
√

(x
Rxn

− x0)2 + (y
Rxn

− y0)2 are the

distances from transmitter and receiver to target, respectively

• τnm = (Rm+Rn)/c, and c is the speed of the signal propagation in the medium

• ψnm = 2πfcτnm, with fc as the carrier frequency, and

• e(t) is additive measurement noise.

We will apply matched filtering to (6.1) and obtain the measurement at the nth

receiver corresponding to the ith transmitter for a single pulse as

rni = βiαniξnie
−j(ψni)xnii +

M
∑

m=1,m6=i

βmαnmξnme
−j(ψnm)xnmi + eni, (6.2)

where

• rni =
∫ τni+Ts

τni
rn(t) s

∗
i (t− τni)dt

• xnii =
∫ τni+Ts

τni
si(t− τni)s

∗
i (t− τni)dt, self correlation of the ith signal

• xnmi =
∫ min (τni,τnm)+Ts

max (τni,τnm)
sm(t − τnm)s∗i (t − τni)dt is the cross-correlation between

mth and ith signals at the nth receiver, and

• eni =
∫ τni+Ts

τni
en(t)s

∗
i (t− τni)dt.

Note here that since perfect signal separation is not possible for all delay and Doppler

values, unlike previous approaches, we do not ignore the cross-correlation terms xnmi.
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Then, we collect the data at the nth receiver corresponding to different transmitters

for one pulse in an M × 1 column vector

rn = XnΦ̃nξn + en, (6.3)

where

• rn = [rn1, . . . , rnM ]T

• [Xn]mm′ = ([Xn]m′m)∗ = xn
m′m

for (·)∗ as the complex conjugate, m,m
′

=

1, . . . , M and m 6= m
′

• for m = m
′

, [Xn]mm = xnmm

• Φ̃n = diag(β1αn1e
−j(ψn1), . . . , βMαnMe

−j(ψnM )) is an M ×M diagonal matrix

with mmth entry as βmαnme
−j(ψnm)

• ξn = [ξn1, . . . , ξnM ]T , and

• en = [en1, . . . , en2].

We stack the receiver outputs corresponding to all the signals into an NM ×1 vector:

y = XΦ̃ξ + e, (6.4)

where

• y = [rT1 , . . . , rTN ]T

• X = blkdiag(X1, . . . , XN) is an NM ×NM block diagonal matrix with Xn

as the nth block diagonal entry
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• Φ̃ = blkdiag(Φ̃1, . . . , Φ̃N)

• ξ = [ξT1 , . . . , ξTN ]T , and

• e = [eT1 , . . . , eTN ]T .

We assume that K pulses are transmitted from each transmitter; then

Y = [y(1) y(2) · · · y(K)]
NM×K

= XΦ̃Ξ + E, (6.5)

where Ξ = [ξ(1) · · · ξ(K)]NM×K , and E = [e(1) e(2) · · · e(K)]
NM×K

is the additive

noise.

6.2.2 Statistical Model

We now introduce our statistical assumptions for the measurement model. We as-

sume, in (6.5),

• X is theNM×NM matrix of the deterministic unknown correlation parameters

• ξ(k) is the NM ×1 vector of the complex Gaussian distributed target reflection

coefficients, E[ξ(k)] = 0, E[ξ(k)ξ(k′)H ] = σ2
ξIδkk′ and E[ξ(k)ξ(k′)T ] = 0, with

σ2
ξ as the unknown variance, and for k, k′ = 1, . . . , K δkk′ = 1 when k = k′,

and zero otherwise

• e(k) is the NM × 1 vector of the complex Gaussian distributed additive noise,

E[e(k)] = 0, E[e(k)e(k′)H ] = σ2
eIδkk′ and E[e(k)e(k′)T ] = 0, such that σ2

e is

the unknown variance, and

• ξ(k) and e(k′) are uncorrelated for all k and k′.
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To sum up, we consider the reflection coefficient variance σ2
ξ , noise variance σ2

e , and

the correlation terms X as the deterministic unknown parameters. We use the de-

terministic unknown parameter assumption for X to demonstrate the sensitivity of

the system to changes in the level of the cross-correlation values among the received

signals. In practice, the matched-filter output is sampled at discrete delay values

[114] (see also [32]), and we assume each range gate is represented by a single sample.

However a target in one range gate, even though represented by a delay τ , might

actually be located at a delay τ̃ such that |τ − τ̃ | ≤ Tr, and cTr is the range that

can be resolved by the system. Therefore, even though we know the delay τ that

represents the range gate of interest, we assume we do not know the exact value of

the matched-filter output (cross-correlation and self correlation terms). Hence we

represent the correlation terms as deterministic unknowns. Note also that since mul-

tiple orthogonal signals are transmitted, the ambiguity in the matched-filter output is

larger for a MIMO radar than a single antenna radar [58]. The increase in ambiguity

for MIMO radar also justifies the deterministic unknown assumption for correlation

terms.

Due to the distributed nature of the MIMO radar system, we assume that the target

returns for different transmitter and receiver pairs are independent from each other.

We also assume that the target returns for different pulses are independent realizations

of the same random variable. Under these assumptions, we write the distribution of

the data in (6.5) as

K
∏

k=1

p(y(k); σ2
ξ , σ

2
e ,X) =

K
∏

k=1

1

|πΣ| exp−
(

y(k)HΣ−1y(k)
)

, (6.6)

where
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• Σ = blkdiag(Σ1, . . . , ΣN), and

• Σn = σ2
ξXnΦ̃nΦ̃

H

n XH
n + σ2

eI.

6.3 Statistical Decision Test for Target Detection

In this Section, we propose a Wald test for the detection of a target located in the

range cell of interest (COI). This test depends on the maximum likelihood estimates

(MLEs) of the unknown parameters as well as on the CRB on the estimation error

under the alternative hypothesis. Therefore, we also develop a method for the es-

timation of the unknown parameters based on the expectation-maximization (EM)

algorithm, then accordingly compute the CRB on the estimation error to derive the

statistical test.

6.3.1 Wald Test

We choose between two hypotheses in the following parametric test:











H0 : σ2
ξ = 0,X, σ2

e

H1 : σ2
ξ 6= 0,X, σ2

e

, (6.7)

where the correlation X and the noise variance σ2
e are the nuisance parameters. This

is a composite hypothesis test, therefore a uniformly most powerful (UMP) test does

not exist for the problem. As a sub-optimum approximation, a generalized likelihood

ratio test (GLRT) is the most commonly used solution. Even though there is no

optimality associated with the GLRT solution [68], it is known to work well in practice
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[112], [133], [134], [135]. However, in (6.7), since the MLEs of the nuisance parameters

cannot be obtained under H0, we do not use the GLRT; instead, we propose to use a

Wald test. The Wald test depends only on the estimates of the unknown parameters

under H1. Moreover, to demonstrate the results of our analysis, we focus on the

asymptotic statistical characteristics of the decision test. Because the Wald test and

GLRT were shown to have the same asymptotic performance [68], we choose a Wald

test instead of the GLRT.

We define the set of unknown variables as θ =
{

σ2
ξ , σ

2
e ,X

}

, and compute the Wald

test as

Tw =
(

σ̂2
ξ1 − σ̂2

ξ0

)

(

[

J−1(θ̂1)
]

σ2
ξ
σ2

ξ

)−1
(

σ̂2
ξ1 − σ̂2

ξ0

)

, (6.8)

where

• σ̂2
ξ1 and σ̂2

ξ0 are the estimates of σ2
ξ under H1 and H0, respectively (σ̂2

ξ0 = 0

under H0)

• J−1(θ̂1) is the inverse of the Fisher information matrix (FIM) calculated at the

estimate of θ under H1, and

• the subscript σ2
ξσ

2
ξ of the inverse of the FIM is the value of the inverse FIM

corresponding to σ2
ξ , that is, the CRB on the σ2

ξ estimation error.

We reject H0 (the target-free case) in favor of H1 (the target-present case) when Tw

is greater than a preset threshold value.
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6.3.2 Estimation Algorithm

The Wald test proposed in (6.8) requires estimation of the unknown parameters θ

under the alternative hypothesis H1. Since the number of the measurements is the

same as the number of the random reflections from the target, there is no closed-form

solution to the estimates of unknown parameters, so we cannot use the concentrated

likelihood methods proposed in [82], [97], [96], [83] to estimate θ. Instead we propose

to develop an estimation method based on the EM algorithm.

We consider Y , Ξ, and (Y ,Ξ) as the observed, unobserved, and complete data,

respectively. Then, we rewrite the distribution of the observed data in (6.6) as a

hierarchical data model:

p(Y |Ξ; σ2
e ,X) =

K
∏

k=1

p(y(k)|ξ(k); σ2
e ,X)

=
K
∏

k=1

N
∏

n=1

p(yn(k)|ξn(k); σ2
e ,Xn)

=

K
∏

k=1

N
∏

n=1

1

|πσ2
eI|

exp

{

− 1

σ2
e

(

yn(k) − XnΦ̃nξn(k)
)H

(

yn(k) − XnΦ̃nξn(k)
)}

, (6.9)

and

p(Ξ; σ2
ξ ) =

K
∏

k=1

p(ξ(k); σ2
ξ )

=
K
∏

k=1

N
∏

n=1

p(ξn(k); σ
2
ξ )

=

K
∏

k=1

N
∏

n=1

1
∣

∣πσ2
ξI
∣

∣

exp

{

− 1

σ2
ξ

ξHn (k)ξn(k)

}

. (6.10)
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Then, using (6.9) and (6.10), we write the complete data log-likelihood function in

canonical exponential family form as [116]

L(σ2
ξ , σ

2
e ,X) = lnp(Y ,Ξ; σ2

ξ , σ
2
e ,X)

= const −NMKln
(

σ2
e

)

− K

σ2
e

[

N
∑

n=1

tr (T 1n) + tr
(

XH
n XnT 2n

)

+

2Re
{

tr
(

T 3nX
H
n

)}]

−NMKln
(

σ2
ξ

)

− K

σ2
ξ

N
∑

n=1

tr (T 4n) , (6.11)

where

T 1n =
1

K

K
∑

k=1

yn(k)y
H
n ,

T 2n =
1

K

K
∑

k=1

Φ̃nξn(k)ξ
H
n Φ̃

H

n ,

T 3n =
1

K

K
∑

k=1

yn(k)ξ
H
n Φ̃

H

n ,

T 4n =

K
∑

k=1

ξn(k)ξ
H
n ,

for n = 1, . . . , N , are the natural complete-data sufficient statistics.

The complete-data likelihood function belongs to an exponential family; hence we

simplify the EM algorithm [116]. In the estimation (E) step, we first calculate the

conditional expectation of the natural complete-data sufficient statistics given the

observed data [using p(ξn(k)|yn(k); σξ, σ2
e ,Xn)]. Then, in the maximization (M)

step, we obtain the MLE expressions for the unknown parameters using the complete-

data log-likelihood function, and simply replacing the natural complete-data sufficient

statistics, obtained in the E step, in the MLE expressions.
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E Step: We assume that the ith iteration estimates of the set of the unknown param-

eters as θ(i)
n = {(σ̂ξ2)(i), (σ̂e

2)(i), X̂
(i)

n }, and we compute the conditional expectation

w.r.t. p
(

ξn(k)|yn(k); θ(i)
n

)

of the sufficient statistics under H1:

T
(i)
1n =

1

K

K
∑

k=1

yn(k)yn(k)
H , (6.12a)

T
(i)
2n =

1

K

K
∑

k=1

Φ̃n(k)
[

Σ̃
(i)

n + µ(i)
n (k)

(

µ(i)
n (k)

)H
]

Φ̃
H

n (k), (6.12b)

T
(i)
3n =

1

K

K
∑

k=1

yn(k)
(

µ(i)
n (k)

)H
Φ̃
H

n (k), (6.12c)

T
(i)
4n =

1

K

K
∑

k=1

Σ̃
(i)

n + µ(i)
n (k)

(

µ(i)
n (k)

)H
, (6.12d)

where

• µ
(i)
n (k) = (σ̂ξ

2)(i)Φ̃
H

n

(

X̂
(i)

n

)H (

Σ(i)
n

)−1

yn(k), and

• Σ̃
(i)

n = (σ̂ξ
2)(i)I−(σ̂s

2)(i)Φ̃
H

n

(

X̂
(i)

n

)H (

Σ(i)
n

)−1

X̂
(i)

n Φ̃n, where from (6.6), Σ(i)
n =

(σ̂ξ
2)(i)X̂

(i)

n Φ̃nΦ̃
H

n

(

X̂
(i)

n

)H

+ (σ̂e
2)(i)I.

Thus, µ
(i)
n (k) and Σ̃

(i)

n are the mean and the covariance of the conditional distribution

p(ξn(k)|yn(k); θ(i)
n )), see Appendix H for the details of the computation.

M Step: We replace the natural complete-data sufficient statistics with their condi-

tional expectations from (6.12) in the MLE expressions. We first apply the results of

the generalized multivariate analysis of variance framework [113] for the MLE of Xn,

for n = 1, . . . , N . After concentrating the complete data log-likelihood function in
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(6.11) w.r.t. the MLE of Xn, we compute the MLEs of σ2
ξ and σ2

e .

X̂
(i+1)

n = T
(i)
3n

(

T
(i)
2n

)−1

, (6.13a)

(σ̂2
e )

(i+1) =
1

NM

M
∑

n=1

(

tr
[

T
(i)
1n

]

− 2Re(tr
[

(TH
3n)

(i)X(i+1)
n Φ̃n

]

)

+tr
[

(XH)(i+1)Φ̃
H

n Φ̃nX
(i+1)T 2n

])

, (6.13b)

(σ̂2
ξ )

(i+1) =
1

NM

N
∑

n=1

tr
[

T
(i)
4n

]

. (6.13c)

The above iteration is performed until (σ̂2
ξ )

(i), (σ̂2
e )

(i), and X̂
(i)

converge.

6.3.3 Computation of the Cramér-Rao Bound

In this section, to obtain the Wald test in (6.8), we compute the CRB on the error

of the σ2
ξ estimation. We define ρ = [σ2

ξ , σ
2
e ,Re{vech(X1)}T , Im{vech(X1)}T , . . . ,

Re{vech(Xn)}T , Im{vech(Xn)}T ]T , such that vech creates a single column vector by

stacking elements on and below the main diagonal. Then

vech(Xn) = [xn11, x
n
21, . . . , x

n
M1
, xn22, x

n
32, . . . , x

n
M2
, . . . , xn

(M−1)(M−1)
, xn

(M−1)(M−2)
,

xn
M(M−2)

, xn
M(M−1)

, xn
MM

]T is an
(

M2+M
2

)

× 1 vector of the unknown correlation

terms at the nth receiver.

Recall that Xn for n = 1, . . . , N is Hermitian symmetric. Therefore, estimating ρ

is the same as estimating θ in Section 6.3.1.
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Considering the statistical assumptions in Section 6.2.2, we obtain the elements of

the FIM [136]:

[J(ρ)]ij = tr
K
∑

k=1

N
∑

n=1

(

Σ−1
n

∂Σn

∂ρi
Σ−1
n

∂Σn

∂ρj

)

. (6.14)

Next, we obtain

∂Σn

∂σ2
ξ

= XnΦ̃nΦ̃
H

n XH
n ,

∂Σn

∂σ2
e

= I,

∂Σn

∂Re{xnm′m}
= σ2

ξ

∂Xn

∂Re{xnm′m}
Φ̃nΦ̃

H

n XH
n +

σ2
ξXnΦ̃nΦ̃

H

n

∂XH
n

∂Re{xnm′m}
, m′ ≥ m

∂Σn

∂Im{xnm′m}
= σ2

ξ

∂Xn

∂Im{xnm′m}
Φ̃nΦ̃

H

n XH
n +

σ2
ξXnΦ̃nΦ̃

H

n

∂XH
n

∂Im{xnm′m}
, m′ ≥ m, (6.15)

where

• ∂Xn

∂Re{xnm′m}
is an M ×M matrix of zeros, except for the (m′m)th and (mm′)th

elements, which are equal to one

• ∂Xn

∂Re{xnmm}
is an M ×M matrix of zeros, except for the (mm)th element, which

is equal to one

• ∂Xn

∂Im{xnm′m}
is an M ×M matrix of zeros, except that the (mm′)th element is

equal to i =
√

( − 1) and the (m′m)th element is equal to −i, and

• ∂Xn

∂Im{xnmm}
is an M ×M matrix of zeros, except for the (mm)th element, which

is equal to i.
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The elements of the Fisher information matrix can easily be obtained using (6.15) in

(6.14), see Appendix I.

Then [J (−1)(ρ)]σ2
ξ
σ2

ξ
= [J (−1)(ρ)]11 is the CRB on the σ2

s estimation error.

6.3.4 Detection Performance

In this section, we analyze the asymptotic statistical characteristics of the Wald test

proposed in (6.8). In Section 6.4, we use these asymptotic characteristics to demon-

strate the change in detection performance due to changes in the level of the cross-

correlation terms.

When we apply the Wald test in (6.8) to the hypothesis testing problem formulated

in (6.7), following the results in [68, Chapter 6 and Appendix 6C], we can show that

TW ∼











X 2
1 under H0

X 2
1 (λ) under H1

, (6.16)

where

• X 2
1 is a central chi-square distribution with one degree of freedom

• X 2
1 (λ) is a non-central chi-square distribution with one degree of freedom and

a non-centrality parameter λ, and

• λ =
(

σ2
ξ

)

(

CRBσ2
ξ

)−1
(

σ2
ξ

)

.
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Here σ2
ξ is the true value under H1, and following the discussions in Section 6.3.3,

CRBσ2
ξ

= [J (−1)(ρ)]σ2
ξ
σ2

ξ
is the CRB on σ2

s estimation error, and it is computed using

the true values of ρ under H1.

We rewrite ρ = [σ2
ξ , ρ̃

T ]T , such that ρ̃ = [σ2
e ,Re{vech(X1)}T , Im{vech(X1)}T , . . . ,

Re{vech(Xn)}T , Im{vech(Xn)}T ]T . Accordingly we partition the Fisher information

matrix

J(ρ) =







Jσ2
ξ
σ2

ξ
(ρ) Jσ2

ξ
ρ̃(ρ)

J ρ̃σ2
ξ
(ρ) J ρ̃ρ̃(ρ)






. (6.17)

Then [J (−1)(ρ)]σ2
ξ
σ2

ξ
=
[

Jσ2
ξ
σ2

ξ
− Jσ2

ξ
ρ̃(ρ)J−1

ρ̃ρ̃(ρ)J ρ̃σ2
ξ
(ρ)
]−1

is a scalar, and hence

λ = (σ2
ξ )

2
(

Jσ2
ξ
σ2

ξ
(ρ) − Jσ2

ξ
ρ̃(ρ)J−1

ρ̃ρ̃(ρ)J ρ̃σ2
ξ
(ρ)
)

. (6.18)

Using the asymptotic distribution of the detector, we compute the probability of false

alarm (P
FA

) and probability of detection (P
D
):

P
FA

= QX 2
1
(ν) = η, (6.19)

where QX 2
1
(·) is the right tail of the central chi-square X 2

1 probability density function

(pdf). For a given P
FA

, the threshold value is ν = Q−1
X 2

1
(η). Then considering ν,

P
D

= QX 2
1 (λ)(ν), (6.20)

where QX 2
1 (λ)(·) is the right tail of the non-central chi-square X 2

1 (λ) pdf, with λ as

the non-centrality parameter.
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Figure 6.1: MIMO antenna system with M transmitters and N receivers.

6.4 Numerical Examples

We present numerical examples to illustrate our analytical results on the sensitivity

of MIMO radar target detection to changes in the cross-correlation levels of multiple

signals received from different transmitters. Using the asymptotic theoretical results

from Section 6.3.4, we show the effect of the changes in CCL on the distribution, the

receiver operating characteristics (ROC), and the detection probability of the statis-

tical test. We also compare the asymptotic and actual ROCs of the Wald detector.

We use the EM algorithm from Section 6.3.2 to numerically compute the actual ROC

curve of the decision test in Section 6.3.1. The numerical results are obtained from

2 ∗ 103 Monte Carlo simulation runs.

We follow the scenario shown in Fig. 6.1. We assume that our system is composed

of M transmitters and N receivers, where the antennas are widely separated. The
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transmitters are located on the y-axis, whereas the receivers are on the x-axis; the

target is 10km from each of the axes (i.e., (x0, y0) = (10 km, 10 km)); the antenna

gains (GTx and GRx) are 30dB; the signal frequency (fc) is 1GHz. The angles between

the transmitted signals are µ1, µ2, ..., µM and similarly between the received signals

are δ1, ..., δN . We consider three different MIMO setups in our examples.

• M = 2 and N = 3 (MIMO 2 × 3); µ1 = 10◦, and µ2 = 20◦; δ1 = 10◦, δ2 = 10◦,

and δ3 = 25◦;

• M = 3 and N = 3 (MIMO 3 × 3); µ1, µ2 are the same as MIMO 2 × 3, and

µ3 = 35◦; δ1, δ2, and δ3 are the same as MIMO 2 × 3;

• M = 3 and N = 5 (MIMO 3× 5); µ1, µ2, and µ3 are the same as MIMO 3× 3;

δ1, δ2, and δ3 are the same as MIMO 2 × 3, δ4 = 20◦, and δ5 = 20◦.

Then Rm, m = 1, . . . , M , and Rn, n = 1, . . . , N , in (6.1) are calculated accordingly.

In this scenario, all the transmitters and receivers see the target from different angles.

We define the signal-to-noise ratio (SNR) as the ratio between the traces of the signal

covariance and noise covariance:

SNR =
σ2
ξ

σ2
e





∑N
n=1 tr

(

XnΦ̃nΦ̃
H

n XH
n

)

NM



 . (6.21)

We define the average CCL (ACLL) as the ratio between the total power of the non-

zero cross-correlation terms and the self correlation of the individual signals, then

ACCL becomes

ACCL = −10 log10

[

M − 1

2

(

∑N
n=1

∑M
m=1(x

n
mm)(xnmm)∗

∑N
n=1

∑M
m′=2

∑m′

m=1(x
n
m′m)(xnm′m)∗

)]

. (6.22)
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For example ACCL = −10 dB means that the ACCL is 10 dB below the average

self-correlation values. As the ACCL decreases, separation of the transmitted signals

for different delays gets easier. In the following we investigate the effect of changes

in the ACCL on detection performance.

In Fig. 6.2, for fixed P
FA

= 0.01 and SNR = −5 dB, using the asymptotic statistical

characteristics from Section 6.3.4, we plot the pdf of the Wald test detector for differ-

ent MIMO configurations, MIMO 2 × 3 (Fig. 6.2(a)), MIMO 3 × 3 (Fig. 6.2(b)) and

MIMO 3×5 (Fig. 6.2(c)) at different ACCL values (-5, -10 and -20 dB). In the figure,

λx corresponds to the non-centrality λ in (6.18) computed for ACCL = x dB. For

Figs. 6.2(a), 6.2(b) and 6.2(c), we observe that as the ACCL decreases, the pdf shifts

to the right. For non-central X 2
1 , this corresponds to an increase in the non-centrality

parameter λ. This increase is expected because as the ACCL decreases, the CRB for

σ2
ξ decreases, and accordingly λ increases [see (6.18)]. For a given P

FA
= 0.01 and the

corresponding threshold ν = 6.6349, the P
D

is obtained by computing the area under

the pdf starting from ν (right tail probability). Therefore, as λ increases, P
D

also

increases. Then, we conclude that a decrease in the ACCL corresponds to an increase

in P
D
. Moreover, in these figures, we observe that as the number of the receivers and

transmitters increases, the P
D

increases, but a system with more receivers and/or

transmitters is more sensitive to changes in the ACCL.

In Fig. 6.3, for fixed SNR = −5 dB and for different MIMO configurations, MIMO

2×3 (Fig. 6.3(a)), MIMO 3×3 (Fig. 6.3(b)) and MIMO 3×5 (Fig. 6.3(c)) at different

ACCL values (-5, -10 and -20 dB), we demonstrate both the asymptotic and numerical

receiver operating characteristics of the statistical decision test. For a large number of

transmitted pulses, K = 500, we obtain the numerical ROC using the EM algorithm

proposed in Section 6.3.2 in (6.8). We show that for sufficiently large K, the actual

133



ROC of the Wald test is very close to the asymptotic one. Similar to Fig. 6.3, we

observe that as the ACCL decreases, the detection performance improves. As we also

mention above, this improvement is due to the fact that a decrease in the ACCL

results in a decrease in the CRB of the σ2
ξ estimation error, causing an increase in the

non-centrality parameter in (6.18), and hence an increase in P
D
. Moreover, a system

with more transmitters and/or receivers has better detection performance, but also

more sensitivity to changes in ACCL.

In Fig. 6.4, for fixed P
FA

= 0.01, we plot the P
D

as a function of the SNR for different

MIMO configurations and different ACCL values. This figure also supports our argu-

ment on the relationship between changes in the ACCL and detection performance: a

decrease in the ACCL improves the detection performance. In this figure, we can also

observe the effect of the number of the transmitters and/or receivers on the detection

performance. Systems with more antennas have better performance, but the increase

in performance comes with a price: such a system becomes more sensitive to changes

in the ACCL.

6.5 Summary

We analyzed the detection sensitivity of MIMO radar to changes in the cross-correlation

levels of the signals at each receiver from different transmitters. We formulated a

MIMO radar measurement model considering the correlation terms as determinis-

tic unknowns. We proposed to use an EM based algorithm to estimate the target,

correlation, and noise parameters. We then developed a Wald test for target detec-

tion, using the estimates obtained from the EM estimation step. We also computed

the CRB on the error of parameter estimation, and used these results to obtain an
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asymptotical statistical characterization of the detection test. Using the asymptotical

results and Monte Carlo simulations, we demonstrated the sensitivity of the MIMO

radar target detection performance to changes in the cross-correlation levels of the re-

ceived signals. We showed that as the level of the correlation increases, the detection

performance deteriorates. We observed that MIMO systems with more transmitters

and/or receivers have better detection performance, but they are more sensitive to

changes in the correlation levels.
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Figure 6.2: Probability density function of the test statistics under H1 for different
ACCL values and (a) MIMO 2 × 3 (b) MIMO 3 × 3 (c) MIMO 3 × 5 configurations.
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Figure 6.3: Receiver operating characteristics of the target detector for different
ACCL values and (a) MIMO 2 × 3 (b) MIMO 3 × 3 (c) MIMO 3 × 5 configurations.
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= 0.01).

138



Chapter 7

Conclusions and Future Work

In this dissertation, we reported our contributions to biologically inspired sensing

and multi-input multi-output radar processing. We quantitatively demonstrated the

localization accuracy of the mechanically coupled ears of a female Ormia ochracea.

Then inspired by the Ormia’s ears we developed a multiple-antenna array system with

improved localization and radiation performance. Moreover, we addressed multiple

problems related to target detection using MIMO radar: target detection in non-

homogeneous clutter, the effect of phase synchronization mismatch between trans-

mitter and receiver pairs on the detection performance, and the sensitivity analysis

for the target detection performance. In the following, first we summarize our results

and then give some examples as possible future extensions to our work.

7.1 Conclusions

In our work on biologically inspired sensing we focused on the mechanically coupled

ears of a female Ormia ochracea. The female Ormia ochracea, a parasitoid fly, locates

male crickets very accurately as part of its reproduction. This is unexpected as the
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distance between its ears is much smaller than the wavelength of the cricket’s mating

call. This phenomenon has been explained by a mechanical coupling between the ears.

In our research, we analyzed the localization accuracy of the female Ormia’s coupled

ears using a statistical approach. We converted the mechanical coupling model to

a statistical one and analyzed the accuracy by computing the Cramér-Rao bound

(CRB) on estimating directions of arrival. We quantitatively demonstrated that the

coupling improves the accuracy of direction estimation in the presence of interference

and noise.

We developed a multiple-antenna array system with couplings inspired by the female

Ormia ochracea’s ears. The mechanical coupling between the Ormia’s ears has been

modeled by a pair of differential equations. We first solved the differential equations

governing the female Ormia’s ear response. We then transformed the response to fit

desired radio frequencies, and computed the array response of the biologically inspired

multiple-antenna array. For the resulting system, we derived the maximum likelihood

estimates of source directions and analyzed the performance improvement by com-

puting the error bounds. Moreover, we considered an active transmitting antenna

array with coupling, and obtained the array factor of the desired multiple-antenna

system for pre-specified radio frequencies. We computed the radiation intensity of

this system and analyzed its half-power beamwidth, sidelobe levels and directivity

of the radiation pattern. We demonstrated the improvement in these performance

measures due to the biologically inspired coupling using numerical examples. The

improvement in the localization and radiation performance of small-sized arrays is

very exciting, since such compact systems are crucial for many applications that re-

quire small confined spaces (cellular phones using their own signals for localization,

for instance).
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Next, we studied target detection problems using MIMO radar in the presence of

realistic clutter and practical limitations. MIMO radars are useful to discriminate

a target from clutter using the spatial diversity of the scatterers in the illuminated

scene. We considered the detection of targets in compound-Gaussian clutter, to fit

such scenarios as scatterers with heavy-tailed distributions for high-resolution and/or

low-grazing-angle radars in the presence of sea or foliage clutter. First, we introduced

a data model using an inverse gamma distribution to represent the clutter texture.

Then, we applied the parameter-expanded expectation-maximization algorithm to es-

timate the clutter texture and speckle as well as the target parameters. We developed

a statistical decision test using these estimates and approximate its statistical char-

acteristics. Based on this test, we proposed an algorithm that adaptively distributes

the total transmitted energy among the transmitters to improve the detection per-

formance. We demonstrated the advantages of MIMO radar and the adaptive power

allocation algorithm in clutter environments using Monte Carlo simulations.

Then, we considered the problem of target detection for MIMO radar in the presence

of a phase synchronization mismatch between the transmitter and receiver pairs. Such

mismatch often occurs due to imperfect knowledge of the locations and local oscillator

characteristics of the antennas. First, we introduced a data model using a von-Mises

distribution to represent the phase error terms. Then, we proposed a method based

on the expectation-maximization algorithm to estimate the error distribution param-

eter, target returns, and noise variance. We developed a generalized likelihood ratio

test target detector using these estimates. Based on the mutual information between

the radar measurements and received target returns (and hence the phase error), we

proposed an algorithm to adaptively distribute the total transmitted energy among
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the transmitters. Using Monte Carlo simulations, we demonstrated that the adap-

tive energy allocation, increase in the phase information, and realistic measurement

modeling improve the detection performance.

Finally, we considered the effect of the imperfect separability of the received signals

on detection performance. In practice, mutual orthogonality among the received sig-

nals cannot be achieved for all delay and Doppler pairs. We introduced a data model

considering the correlation among the data from different transmitter-receiver pairs

as unknown parameters. We formulated a method to estimate the target, correlation,

and noise parameters, and then used these estimates to develop a statistical decision

test. Using the asymptotical statistical characteristics and the numerical performance

of the test, we analyzed the sensitivity of the MIMO radar with respect to changes

in the cross-correlation levels of the measurements. Using theoretical results and nu-

merical examples, we demonstrated the effect of changes in the correlation among

the received signals from different transmitters on the detection performance. We

observed that a decrease in the correlation corresponds to an increase in detection

performance, and that as the number of the receivers and transmitters increases, the

probability of detection increases, but a system with more receivers and/or transmit-

ters is more sensitive to changes in the correlation values.

7.2 Future Work

We believe our results on biologically inspired antenna array design are promising,

and building on them motivates our future plans as follows. We will consider other

possible array configurations. We will develop algorithms to optimize the array con-

figuration for the maximum biologically inspired coupling effect. We will consider
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realistic unknown undesired electromagnetic coupling. It is of interest to investigate

the deterioration in performance due to the undesired coupling. In this context,

we will compute the maximum likelihood estimation algorithm and corresponding

Cramér-Rao bound for finding the source directions as well as the unknown, unde-

sired mutual coupling parameters (calibration). Then, we will also analyze the effect

of calibration error on the estimation accuracy by computing the Cramér-Rao bound

on direction of arrival estimation error in the presence of calibration error. Moreover,

we will add polarimetry vector sensors, and demonstrate the improvement in the

source identifiability capacity and angular resolution of the system. We will employ

the different polarizations as additional degrees of freedom for optimum beampattern

design.

For the MIMO radar, we have analyzed the effects of the phase mismatch between the

transmitting and receiving antennas, and the cross-correlation levels of the received

signals on the detection performance separately. For more realistic radar processing,

we will extend our model to include the effects of both the phase ambiguity and non-

orthogonality of the received signals, and demonstrate the changes in the detection

performance. We will also analyze the effect of these practical limitations in the pres-

ence of homogeneous and non-homogeneous clutter. We will develop more realistic

target models to demonstrate the effect of spatial diversity. Then, we will apply our

approach to the moving target scenarios, first for target detection and then for target

tracking. Considering realistic scenarios and conditions, we will develop target track-

ing algorithms for MIMO radar using sequential Bayesian inference approach. The

use of sequential Bayesian framework will also allow us to predict the future system-

states making it feasible to adaptively design the system. We will use sequential
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Morkov chain Monte Carlo methods to deal with the complexity and non-linearity of

the realistic target environments.
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Appendix A

Definitions of Block Matrix

Operators

In this appendix we define several block matrix operators used in Section 3.2.2 similar

to [99]. We employ the following notation for a blockwise partitioned matrix A of

mµ× nν

A =

























A<11> · · · A<1n>

· ·

· ·

· ·

A<m1> · · · A<mn>

























, (A.1)

where Aij is an µ× ν sized block matrix. We use the following definitions.

Definition A.1. Block transpose The block transposed matrix AbT is an nµ × mν

matrix with block entries
(

AbT
)

<ij>
= A<ji>. (A.2)
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Definition A.2. Block Schur-Hadamard product Similar to A, a matrix B of size

mν × nη has blocks B<ij> of dimension ν × η (equal size). Then the block Schur-

Hadamard product A ⊡ B is an mµ × nη block-wise partitioned matrix with the fol-

lowing entries:

(A ⊡ B)<ij> = A<ij>B<ij>, (A.3)

such that each block entry is an µ× η matrix.

Definition A.3. Block trace operator Assume A of (A.1) has µ = ν. Then the block

trace operator btr[A] is an m× n matrix with entries

(btr[A])ij = trA<ij>. (A.4)
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Appendix B

Computation of Matrix C in (3.23)

An antenna in the transmitting mode can be modeled as in Figure B.1. Assuming

M element antenna array, and considering the mutual effect of the other antennas in

the array, the induced current on the ith antenna can be computed through (see also

[84] and [105])

pi(Zii + Zg) = vgi −
M
∑

k 6=i

pkZik, (B.1)

where,

• pj, j = 1, . . . , M , is the induced current on the jth antenna;

• Zjj is the self impedance of the jth antenna;

Zii

Zgi

pi

vgi

Figure B.1: Circuit model of the ith antenna element in the transmitting mode.
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• Zg is the generator impedance;

• vgj is the generator voltage applied to the jth antenna; and

• Zjk is the mutual impedance between the jth and kth antennas.

Assuming identical antennas and generators (identical self and generator impedances),

we can rewrite (B.1) and obtain



















Z11 + Zg Z12 · · · Z1M

Z21 Z22 + Zg · · · Z2M

· · ·

ZM1 ZM2 · · · ZMM + Zg











































p1

·

·

·

pM

























=

























vg1

·

·

·

vgM

























. (B.2)

Then recalling from Section 3.3.1 that p = Cv, we get

C =



















Z11 + Zg Z12 · · · Z1M

Z21 Z22 + Zg · · · Z2M

· · ·

ZM1 ZM2 · · · ZMM + Zg



















−1

(B.3)
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Appendix C

Computation of the matrix P in

(4.18)

In this appendix, we compute the matrix P of (4.18). Since φ = [1, . . . 1]1×K ,

tr
(

Σ−1(Axφ)(Axφ)H
)

= K(Ax)HΣ−1(Ax). (C.1)

Recall from (4.5) that

• A = blkdiag(A1, . . . , AM)

• Ai = βidiag(α1ie
−jψ1i, . . . , αNie

−jψNi) = βiĀi

• x = [xT
1 , . . . xT

M ]T

• xi = [x1i, . . . , xNi]
T , and

• Σ = blkdiag(Σ1, . . . , ΣM), see also Section 4.5 for the covariance matrix

assumption.
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Then

K(Ax)HΣ−1(Ax) = K
M
∑

m=1

β2
m

(

Āmxm
)H

Σ−1
m

(

Āmxm

)

,

= βHPβ, (C.2)

where P = Kdiag(
(

Ā1x1

)H
Σ−1

1

(

Ā1x1

)

, . . . ,
(

ĀMxM

)H
Σ−1
M

(

ĀMxM
)

).
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Appendix D

Proof of the identity in (5.15)

The identity in (5.15) is in common use; c.f. [66]. However, for the sake of complete-

ness, we provide an outline of the proof in this section.

To prove the identity, we need the following lemma.

Lemma D.1.

B(
1

2
, m+

1

2
) = 2

∫ π/2

0

(cos θ̃)2mdθ̃, (D.1)

and

B(
1

2
, m+

1

2
) =

π(2m)!

22mΓ(m+ 1)Γ(m+ 1)
, (D.2)

where B(·, ·) and Γ(·) are the Beta and Gamma functions, respectively.

Proof. Taking the definition of Beta function from [137]:

B(x, y) = 2
∫ π/2

0
(sin θ̃)2x−1(cos θ̃)2y−1dθ̃

=
Γ(x)Γ(y)

Γ(x+ y)
. (D.3)
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Direct application of x = 1/2 and y = m+ 1/2 results in (D.1). To obtain (D.2), we

use the Legendre duplication formula [137]:

Γ(m)Γ(m+
1

2
) = 2

1
2
−2m
√

(2π)Γ(2m).

In the proof of (5.15), we also employ the series expansion of the modified Bessel

function of the first kind with order p [66, Appendix A]:

Ip(K) =
∞
∑

m=0

1

Γ(p+m+ 1)Γ(m+ 1)

(

K

2

)2m+p

. (D.4)

Using the Maclauren series expansion of the exponential function, (5.15) becomes

Q1 =

∫ π

−π

∞
∑

r=0

(a cos θ̃ + b sin θ̃)r

r!
dθ̃. (D.5)

It is not difficult to show that the integral of terms corresponding to r = 2m + 1,

m = 0, 1, , ... in (D.5) is equal to zero.

For r = 2m, m = 1, 2, ..., using the binomial expansion of (a cos θ̃+ b sin θ̃)r, we write

Q1 =
∫ π

−π

∑∞
r=0,2, (even)

1

r!

∑r
k=0,2, (even)







r

k






ar−kbk(cos θ̃)r−k(sin θ̃)kdθ̃

=
∫ π

−π

∑∞
r=0,2 (even)

1

r!

∑r
k=0,2, (even)







r

k






ar−kbk

∑k/2
n=0







k/2

n






(−1)n(cos θ̃)r−k+2ndθ̃.

(D.6)
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The integration of odd powers in the binomial expansion results in zero. On the right

hand side (R.H.S.) of the second line in (D.6), we write (sin θ̃)k = (1−(cos θ̃)2)k/2 and

use its binomial expansion. Then computing the integration and using (D.1) from

Lemma D.1, we obtain

Q1 =
∞
∑

r=0,2, (even)

1

r!

r
∑

k=0,2, (even)







r

k






ar−kbk

k/2
∑

n=0







k/2

n






(−1)n2B

(

1/2,
r − k + 2n

2
+

1

2

)

.

(D.7)

We define r = 2m and compute the last summation on the R.H.S. of (D.7) employing

(D.2) from Lemma D.1. Then

Q1 =
∑∞

m=0

1

(2m)!

∑2m
k=0,2, (even) 2







m

k/2






a2(m−k/2)b2(k/2)B(1

2
, m+ 1

2
)

=
∑∞

m=0

2π

Γ(m+ 1)Γ(m+ 1)

(

(a2 + b2)1/2

2

)2m

= 2πI0(
√
a2 + b2). (D.8)

To compute the second line from the first, we use (D.2) and the identity
∑2m

k=0,2,(even)







m

k/2







a2(m−k/2) b2(k/2) =
(

(a2 + b2)1/2
)2m

. To obtain the third line from the second we em-

ploy the series expansion of the modified Bessel function of the first kind with order

0 from (D.4).
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Appendix E

Proof of the identity in (5.18)

We follow an approach similar to Appendix D for the proof of (5.18). Using the

Maclauren series expansion of the exponential function, we write (5.18) as

Q2 =

∫ π

−π

(cos θ̃ + j sin θ̃)

∞
∑

r=1,3, (odd)

(a cos θ̃ + b sin θ̃)r

r!
dθ̃. (E.1)

The integral of the terms corresponding to r = 2m, m = 0, 1, , ... in (E.1) is equal to

zero.

We separate (E.1) into two integrals (E.2) and (E.5). Using the binomial expansion

of (a cos θ̃ + b sin θ̃)r, we have

Q21 =

∫ π

−π

∞
∑

r=1,3, (odd)

1

r!
cos θ̃

r−1
∑

k=0,2, (even)







r

k






ar−kbk(cos θ̃)r−k(sin θ̃)kdθ̃. (E.2)
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The integral of the terms with odd k in (E.2) is equal to zero. Following the steps in

(D.6) and (D.7),

Q21 =

∞
∑

r=1,3, (odd)

1

r!

r−1
∑

k=0,2, (even)







r

k






ar−kbk

k/2
∑

n=0







k/2

n






(−1)n2B

(

1/2,
r − k + 2n+ 1

2
+

1

2

)

.

(E.3)

Employing (D.2) from Lemma D.1 and computing the last summation on the R.H.S.,

Q21 =

∞
∑

r=1,3, (odd)

1

r!

r−1
∑

k=0,2, (even)







(r − 1)/2

k/2






ar−kbkB

(

1/2,
r + 1

2
+

1

2

)

. (E.4)

Similarly,

Q22 = j

∫ π

−π

∞
∑

r=1,3, (odd)

1

r!
sin θ̃

r
∑

k=1,3, (odd)







r

k






ar−kbk(cos θ̃)r−k(sin θ̃)kdθ̃. (E.5)

Note that the integral of the binomial expansion terms for which k = 2m, m = 1, 2, ...

is zero. Writing the binomial expansion of (sin θ̃)k+1 = (1 − (cos θ̃)2)
k+1
2 and using

the definition of Beta function from (D.1),

Q22 = j
∞
∑

r=1,3, (odd)

1

r!

r
∑

k=1,3, (odd)







r

k






ar−kbk

(k+1)/2
∑

n=0







(k + 1)/2

n






(−1)n2B

(

1/2,
r − k + 2n

2
+

1

2

)

. (E.6)
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Plugging (D.2) into (E.6) and computing the last summation on the R.H.S. yields

Q22 = j
∞
∑

r=1,3, (odd)

1

r!

r
∑

k=1,3, (odd)

2







(r − 1)/2

(k − 1)/2






ar−kbkB

(

1/2,
r + 1

2
+

1

2

)

. (E.7)

Noting that r = 2m+ 1, m = 1, 2, ..., we combine (E.4) and (E.7):

Q2 = Q21 +Q22 (E.8)

= (a + jb)

∞
∑

m=0

1

r!

2m
∑

k=0,2, (even)

2







m

(k)/2







(a2)(m− k
2
)(b2)

k
2B

(

1/2,
2m+ 2

2
+

1

2

)

. (E.9)

We use (D.2) and multiply and divide (E.9) by (a2 + b2)
1
2

Q2 =
a+ jb

√

(a2 + b2)
2π
∑∞

m=0

1

Γ(m+ 2)Γ(m+ 1)

(

√

(a2 + b2)

2

)2m+1

=
a+ jb

√

(a2 + b2)
I1(
√

(a2 + b2)). (E.10)

To obtain the second line from the first, we used the series expansion of the modified

Bessel function of the first kind with order 1 from (D.4)
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Appendix F

Proof of Theorem 5.1

We rewrite y from (5.4)

y = [yT1 , . . . , yTM ] + [eT1 , eT2 , . . . , eTM ]

= [β1γ
T
1 , β2γ

T
2 , . . . , βMγTM ]T + [eT1 , eT2 , . . . , eTM ], (F.1)

where

• γm = [α1mσ1me
−jψ1me−jθ̃1m, . . . , αNmσnme

−jψNme−jψNi]T , for m = 1, . . . , M

(see also (5.2) and (5.3)),

• em ∼ CN (0, σ2
eI) for m = 1, . . . , M are i.i.d.

We define θ̃ = [θ̃
T

1 · · · θ̃
T

M ]T , where θ̃m = [θ̃1m, . . . , θ̃Nm]T . Recalling from Section

5.2.2 that the θ̃nm for n = 1, . . . , N and m = 1, . . . , M are i.i.d. and independent

of the noise, em, we obtain

I(θ̃; y) =
∑M

m=1 I(θ̃m; ym)

=
∑M

m=1H(ym) −H(ym|θ̃m), (F.2)
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where H(·) and H(·|·) are entropy and conditional entropy, respectively. Note that

H(ym|θ̃) = H(em), and since em ∼ CN (0, σ2
eI), then following an argument analo-

gous to [69, Theorem 8.4.1]

H(e) = log
(

(πe)N
∣

∣σ2
eI
∣

∣

)

, (F.3)

where “| · |” represents the determinant. Similarly, for H(ym) we follow an argument

analogous to [69, Theorem 8.6.5], which shows that multivariate normal distribution

maximizes the entropy over all distributions with the same covariance. Then

H(ym) ≤ log
(

(πe)N |Cov(ym)|
)

. (F.4)

We apply
∫ π

−π
exp(−jθ̃) exp(∆ cos(θ̃))dθ̃ = 2πI1(∆) (recall that Ip(·) is the modified

Bessel function of the first kind with order p), and compute

Cov(ym) = β2
mdiag

(

ξ2
1m

[

1 −
(

I1(∆)

I0(∆)

)2
]

, . . . , ξ2
Nm

[

1 −
(

I1(∆)

I0(∆)

)2
])

+ σeI,

(F.5)

with for ξ2
nm = α2

nmσ
2
nm. Since

I1(∆)

I0(∆)
≤ 1, then

|Cov(ym)| ≤
∣

∣β2
mdiag(ξ2

1m, . . . , ξ
2
Nm) + σeI

∣

∣ = |Wm + σeI|. (F.6)

From (F.3), (F.4), and (F.6), we obtain

H(ym) −H(ym|θ̃m) ≤ log

( |Wm + σeI|
|σeI|

)

. (F.7)

Then the result in (5.22) follows from (F.2) and (F.7).
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Appendix G

Solution to (5.25) for M = 2 and

N = 2, 4

For M = 2 and N = 2, (5.24) reduces to

qm = β2
m(ξ2

1m + ξ2
2m) + β2

m

(

ξ2
1mξ

2
2m

σ2
e

)

for m = 1, 2. (G.1)

We showed in (5.26) that the optimum solution to (5.25) is achieved when q1 = q2.

Then using also the transmitted energy constraint β2
2 = E − β2

1 (without loss of

generality we take E = 1), we obtain

c1β
4
1 + c2β

2
1 + c3 = 0, (G.2)

where

• c1 =

(

ξ2
11ξ

2
21 − ξ2

12ξ
2
22

σ2
e

)

• c2 =

(

ξ2
11 + ξ2

21 + ξ2
12 + ξ2

22 +
2ξ2

12ξ
2
22

σ2
e

)

, and

• c3 = −
(

ξ2
12 + ξ2

22 +
ξ2
12ξ

2
22

σ2
e

)

.
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We easily find the roots of (G.2):

β2
1 =

−c2 ±
√

c22 − 4c1c3
2c1

. (G.3)

Similarly for M = 2 and N = 4, the problem reduces to a root finding of a polynomial

equation of β2
1 of the fourth degree. The result can be obtained numerically using,

for example, Newton’s or a BFGS method [138].
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Appendix H

Computation of the Conditional

Mean and Covariance in (6.12)

In this appendix, we demonstrate how to obtain the conditional distribution, p (ξn(k)|yn(k); σ2
s ,

σ2
e ,Xn), and its mean µn and covariance, Σ̃n in (6.12). First, using (6.9) and (6.10),

we write the joint distribution of yn and ξn:







yn(k)

ξn(k)






= A







ξn(k)

en(k)







=







XnΦ̃n I

I 0













ξn(k)

en(k)






. (H.1)

From Section 6.2.2, we know that







ξn(k)

en(k)






∽ CN






0,







σ2
ξI 0

0 σ2
eI












.

Then







yn(k)

ξn(k)






∽ CN






0,







Σn σ2
ξXnΦ̃n

σ2
ξΦ̃

H

n XH
n σ2

ξI












[see (6.6) for the definition of

Σn].
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Using the results from [118], we can show that ξn|yn ∽ CN (µn, Σ̃n), where

• µn(k) = (σ̂ξ
2)Φ̃

H

n

(

X̂n

)H

(Σn)
−1

yn(k), and

• Σ̃n = (σ̂ξ
2)(i)I − (σ̂ξ

2)Φ̃
H

n

(

X̂n

)H

(Σn)
−1

X̂nΦ̃n.
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Appendix I

Computation of the Elements of

the Fisher Information Matrix in

(6.14)

In this appendix, using (6.14) and (6.15), we compute the elements of the FIM.

We can easily show that

• J(ρ)
(Re[vech(Xn)]Re[vech(X

n′ )])
= J(ρ)

(Re[vech(X
n′ )]Re[vech(Xn)])

= J(ρ)
(Re[vech(Xn)]Im[vech(X

n′ )])
=

J(ρ)
(Im[vech(X

n′ )]Re[vech(Xn)])
= J(ρ)

(Im[vech(Xn)]Re[vech(X
n′ )])

= J(ρ)
(Im[vech(X

n′ )]Re[vech(Xn)])
=

0, for n, n′ = 1, . . . , N and n 6= n′.

Here, for example, J(ρ)
(Re[vech(Xn)]Re[vech(X

n′ )])
is a partition of the Fisher information

matrix corresponding to cross information between the elements of Re[vech(Xn)]

and Re[vech(Xn′)], such that the index i in (6.14) is chosen from the index set of the

elements of Re[vech(Xn)], and similarly j is chosen from the index set of the elements

of Re[vech(Xn′)].

163



Using the identity 3.4 from [139]

(I − A)−1 = I − A + A2 − A3 + . . . , (I.1)

(6.15) , and the definition of Σn in (6.6), we show that

∂Σn

∂σ2
ξ

Σ−1
n =

1

σ2
ξ

(

I − σ2
eΣ

−1
n

)

. (I.2)

Then

[J(ρ)]σ2
ξ
σ2

ξ
=

N
∑

n=1

(

1

σ2
ξ

)2
[

M − 2σ2
e tr
(

Σ−1
n

)

+ σ4
e [J(ρ)]σ2

eσ
2
e

]

, (I.3)

[J(ρ)]σ2
eσ

2
e

=
N
∑

n=1

tr
(

Σ−1
n Σ−1

n

)

, (I.4)

[J(ρ)]σ2
ξ
σ2
e

=

N
∑

n=1

1

σ2
ξ

[

tr
(

Σ−1
n

)

− σ2
e [J(ρ)]σ2

eσ
2
e

]

. (I.5)

We define Xn = [X(1)
n · · · X(M)

n ], s.t. X(m)
n is the mth column. Then

∂Σn

∂Re{xnm1m2
} = σ2

ξ

(

[0 · · · 0 QT
m2

0 · · · QT
m1

0 · · · 0]T (I.6)

[0 · · · 0 QH
m2

0 · · · QH
m1

0 · · · 0]
)

, (I.7)

where Qm1
= β2

m2
α2
nm2

(

X(m2)
n

)T

, and Qm2
= β2

m1
α2
nm1

(

X(m1)
n

)T

(recall the defini-

tions of β and α from (6.1)). We define Σn = [σ1 · · · σM ] with σn as the nth column,
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and for m1 ≥ m2, we obtain

∂Σn

∂Re{xnm1m2
}Σ−1

n = σ2
ξQQ + σ2

ξ

(

QH
m1

σH
m1

+ QH
m2

σH
m2

)

, (I.8)

where QQ =













































0 · · · 0

· · ·

Qm1
σ1 · · · Qm1

σM

0 · · · 0

· · ·

Qm2
σ1 · · · Qm2

σM

0 · · · 0

· · ·













































. Note here that only the mth
1 and mth

2 rows

are non-zero. For m1 = m2 = m, only one row mth row will be non-zero. Therefore

we have only one Qm = β2
mα

2
nm

(

X(m)
n

)T

. We update (I.9) and (I.10) accordingly.

Then

[J(ρ)]Re{xn
m1m2

}σ2
e

=
M
∑

i=1

(σm1)iQm1
σi + (σm2)iQm2

σi +

σH
m1

(QH
m1

)iσi + σH
m2

(QH
m2

)iσi, (I.9)

where for example (σm1)i and (QH
m1

)i are the ith elements of the column vectors σm2

and QH
m1

, respectively.

We then compute

[J(ρ)]Re{xn
m1m2

}σ2
ξ

= 2Re{Qm1
σm1 + Qm1

σm1}. (I.10)

165



Finally, we obtain

[J(ρ)]Re{xn
m1m2

}Re{xn
m3m4

} = 2σ4
ξ

[

Re
{

Qm1
σm3Qm3

σm1 + Qm1
σm4Qm4

σm1+

Qm2
σm3Qm3

σm2 + Qm2
σm4Qm4

σm2

}

+QQm1m2m3 +

QQm1m2m4 +QQm3m4m1 +QQm3m4m2 ] , (I.11)

where QQmnp = tr{(σH
p )m

∑M
i=1 Qmσi(Q

H
p )i + (σH

p )n
∑M

i=1 Qnσi(Q
H
p )i}.

For Im{xnm1m2
}, the Fisher information matrix elements are obtained similar to (I.9),

(I.10), and (I.11) simply by replacing Qm1
and Qm2

with Qm1
= iβ2

m2
α2
nm2

(

X(m2)
n

)T

,

and Qm2
= −iβ2

m1
α2
nm1

(

X(m1)
n

)T

.
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