Hueristic Approach to Spiking Neural Networks

Bryce Bagley
Washington University in St. Louis

Blake Bordelon
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/wuurd_vol13

Recommended Citation
https://openscholarship.wustl.edu/wuurd_vol13/11

This Abstract is brought to you for free and open access by the Washington University Undergraduate Research Digest at Washington University Open Scholarship. It has been accepted for inclusion in Volume 13 by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
The discrepancy between the time encoded (TE) and the rate encoded (RE) models of computation in neural networks motivates the investigation of weight optimization in spiking neural networks. Optimized TE networks would not only provide a faster alternative to traditional RE systems but also could offer insight into the mechanisms of neural coding in biological systems, in which many computations are dependent on precise timings of individual spikes. We apply heuristic algorithms to optimize the weight matrices of leaky integrate and fire (LIF) networks. Spike trains were produced from both small world LIF model networks with light Gaussian input currents and from calcium microscopy measurements of the mouse visual cortex. Each of these spike trains serve as goal spiking behavior for each application of the optimization algorithm. The proposed algorithm first optimally matches corresponding output spike trains of a naïve network and with the goal spike trains. By making small, targeted variations to the presynaptic weights, we then eliminate spikes in the naïve network that were unpaired or produce new spikes in the naïve network outputs to match those unpaired in the goal outputs. For both the model data and the data from biological measurements, the algorithm does reproduce statistical features in the outputs including inter-spike interval and CV distributions, suggesting that the algorithm often reduces to optimizing the rate of firing. In addition, we found that post-optimization inter-spike interval histograms tended towards exponential distributions. However, the precise reproduction of spike times remains elusive. Further inquiry could indicate if improved versions of our algorithm or other similar heuristics can be used to reproduce exact spike timings.