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ABSTRACT OF THE DISSERTATION

An Airloads Theory for Morphing Airfoils in

Dynamic Stall with Experimental Correlation

by

Loren A. Ahaus

Doctor of Philosophy in Mechanical Engineering

Washington University in St. Louis, 2010

Research Advisor: Professor David A. Peters

Helicopter rotor blades frequently encounter dynamic stall during normal flight condi-

tions, limiting the applicability of classical thin-airfoil theory at large angles of attack.

Also, it is evident that because of the largely different conditions on the advancing

and retreating sides of the rotor, future rotorcraft may incorporate dynamically mor-

phing airfoils (trailing-edge flaps, dynamic camber, dynamic droop, etc.). Reduced-

order aerodynamic models are needed for preliminary design and flight simulation.

A unified model for predicting the airloads on a morphing airfoil in dynamic stall

is presented, consisting of three components. First, a linear airloads theory allows

for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to cap-

ture the effects of the wake, the airloads theory is coupled to an induced flow model.

Third, the overshoot and time delay associated with dynamic stall are modeled by

a second-order dynamic filter, along the lines of the ONERA dynamic stall model.

This paper presents a unified airloads model that allows arbitrary airfoil morphing

with dynamic stall. Correlations with experimental data validate the theory.
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Chapter 1

Introduction

1.1 Motivation

The analysis of helicopter rotors remains one of the most challenging problems in aero-

dynamics. Much of this difficulty is related to the substantially different aerodynamic

environments on the advancing and retreating sides of the rotor in forward flight. The

advancing side of the rotor is characterized by large Mach numbers and relatively low

angles of attack. By contrast, the retreating side of the rotor experiences lower Mach

numbers and larger angles of attack, causing the airfoil to stall. This cyclic varia-

tion in pitch and time-varying freestream, cycling in and out of the stall regime of

the airfoil, leads to the phenomenon of dynamic stall. No complete physical model

of dynamic stall based on first principles has yet been developed. However, various

empirical models have been employed to simulate dynamic stall behavior. One such

model, first developed by ONERA [1] [2] and later extended by Peters and Rudy [3],

is investigated in this thesis and integrated with a state-space airloads theory.

As though the presence of dynamic stall were not enough of a complication,

many future helicopter designs may include morphing airfoils to improve efficiency,

reduce noise and vibration, and alleviate dynamic stall. NASA is interested in ad-

dressing these problems to increase U.S. competitiveness in world aerospace markets.

The U.S. Army and NASA are interested in morphing airfoils for next generation high

efficiency rotorcraft, including heavy-lift concepts. With advances in smart materials

and actuator technology, there are many possible morphologies beyond the simple

trailing-edge flap. These may include dynamic droop, dynamic camber, leading-edge

slats, gurney flaps, and many others. Thus, a useful aerodynamic analysis tool is

1



needed that would be able to transform morphing airfoil motions into lift, pitching

moment, and drag for a two-dimensional airfoil section.

The goal of this work is to offer a unified airloads theory for morphing airfoils,

which is integrated with a dynamic stall model. This theory is not intended to

supplant wind-tunnel testing or CFD analysis, but rather is intended as a reduced-

order model for preliminary design calculations and flight simulation. The model is

constructed so as to take a limited data base of airfoil response (from either wind

tunnel tests or CFD) and to use those data to construct a reduced-order model that

can be taken beyond the individual test cases.

This work was funded by the U.S. Army through the Georgia Tech Center

of Excellence for Rotorcraft Technology, Michael Rutkowski technical monitor; and

by NASA Ames Research Center, Grant NN A05CV28G, William Warmbrodt tech-

nical monitor. This project supports other funded work at the Georgia Institute of

Technology and the University of Michigan.

1.2 Problem Statement and Approach

The problem to be addressed in this thesis is how to integrate the finite-state air-

loads theory of Ref. [4] with a hierarchichal model of dynamic stall. The following

issues related to the integration of these models into a consistent, unified theory are

addressed:

1. How are the airload and dynamic stall equations to be coupled?

2. How should static, unstalled corrections be made to the theory?

3. Should all generalized loads have the same stall dynamics, or should each load

have a unique set of poles and zeros?

4. What is the minimum amount of static and dynamic stall data necessary to

model the airfoil behavior adequately?

5. How can the theory be made hierarchical so that the level of modeling fidelity

can be varied?

2



The unified model presented herein consists of three basic components that

are coupled together in a consistent manner. A schematic of the model is given in

Fig. 1.1. The idea related in the figure is that airfoil motions (angle of attack plus

morphing dynamics) would be transformed into a generalized set of coordinates (hn

and h′n). The use of generalized coordinates makes the theory independent of the

specific morphing geometry used. These generalized coordinates, when combined

both with the flowfield geometry (u0, v0, v1) and with the induced flow distribution

at the airfoil from the shed wake (λn) provide the boundary conditions that can be fed

into the first component to be synthesized—a linear airloads theory. This theory

should compute the desired bound circulation to match the nonpenetration boundary

condition. That process then provides the generalized loads (Ln) corresponding to

the virtual work of the generalized displacements hn. Those linear loads, along with

any modifications due to stall, are then fed into the second component of the present

approach—an induced flow model. In principle, this model could come from any

physical description of the wake, depending upon the geometry of the flow (e.g., wind

tunnel tests, fixed wing, rotating wing, etc.). The induced-flow model would give

the induced flow due to the shed wake (λn). The third component of the present

approach is the dynamic stall model. The concept proposed here is that the airfoil

boundary conditions in terms of generalized coordinates would be utilized in some

representation of nonlinear static stall data in order to determine what the static

stall correction to the airloads might be (∆Cn). This set of static corrections then

drives a dynamic filter (the dynamic stall model proper) that produces the dynamic

modifications to the airloads (Γn). The idea is that the dynamic filter can provide

the time delay and overshoot known to be typical of dynamic stall. Finally, the linear

loads (Ln) and the stall corrections (Γn) are combined for the total airloads (Ln (total))

that will drive both any structural dynamics and any induced flow model. This is the

general approach we wish to formulate, as developed to follow.

Our choice for the Airloads component of this model is the Johnson/Peters

thin-airfoil theory that allows for airfoil deformations consistent with a morphing

airfoil [4]. These airfoil deformations may arise from a trailing-edge flap, nose droop,

dynamic camber, or any of a variety of other possible deformation morphologies. The

Johnson/Peters theory is general enough to capture any of these, and it is written in

terms of generalized coordinates associated with Chebychev polynomials. The theory

takes as an input arbitrary induced flow from any induced-flow model and provides a

3



time history of both blade loads and total bound circulation as an output. It may be

coupled to any induced-flow model—two-dimensional or three-dimensional. Thus, it

is ideal. In this work, since we are correlating two-dimensional test data, we will be

using the 2-D finite-state theory of Karunamoorthy [5] for the induced-flow model.

However, the present approach is easily applied in conjunction with any other induced-

flow theory. Third, we develop a dynamic stall model that utilizes a dynamic filter

after the manner of the ONERA model in order to generate the corrections to airloads

and bound circulation that are due to dynamic stall. In particular, we generalize the

ONERA approach to be applicable to arbitrary generalized loads, and we synthesize

static data in terms of the generalized coordinates.

The validation of the overall model is accomplished by first validating the indi-

vidual components of the theory. These include comparing the model to Theodorsen

theory for harmonic motions, correlating NACA 0012 dynamic stall data, and devel-

oping a database of static airfoil data parameterized by generalized airfoil coordinates.

Then the unified model is used to correlate wind-tunnel test data on three different

morphing airfoils:

1. NACA 0012 airfoil with trailing-edge flaps

2. Boeing VR-12 airfoil with variable droop leading edge

3. Sikorsky SC-1095 airfoil with leading-edge warping

Correlations are done at various Mach numbers, reduced frequencies, and morphing

combinations.

1.3 Literature Review

A review of previous work from the literature has been separated into the following

sections:

1. Early work in thin-airfoil theory

2. Finite-state models
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3. Dynamic stall

4. Morphing airfoils

5. Optimization

1.3.1 Early Work in Thin-Airfoil Theory

Thin-airfoil theory was developed in the early 1920’s, a time of rapid expansion in

understanding aerodynamics. Max Munk developed a general theory for thin wing

sections [6]. The theory was intended as a simple tool to calculate the aerodynamic

loads on thin airfoil sections. It assumes inviscid, incompressible fluid flow, with

the airfoil being replace by a line of vorticity distributed along the mean camber

line. Munk derives general integral relationships for the zero lift angle, static pitching

moment, and center of pressure, and shows that these are properties of only the

mean camber line geometry for sufficiently thin airfoils. Solutions are presented for

several common configurations. Munk also investigates the effectiveness of tail plane

elevators in the context of the theory.

Thin-airfoil theory was further refined by Theodorsen and Garrick [7] [8], in

which conformal mapping is used to map a circle into various airfoil shapes for poten-

tial flow analysis. Theodorsen also authored various NACA reports concerned with

the mechanism of flutter on wing-aileron configurations [9]. It was observed that—at

a certain free-stream velocity, called the flutter speed—aerodynamic forces could lead

to exponentially increasing flap oscillations. Theodorsen considered the borderline

case of neutrally stable (simple harmonic) motion. The analysis is based on potential

flow and application of the Kutta condition (i.e., zero pressure drop across the trail-

ing edge). The result is a frequency-response function for airfoils undergoing simple

harmonic motion. Thus, Theodorsen’s work is not restricted to fixed wing-aileron

configurations, but also lays the foundation for analyzing rotary wings.

Extensions of Theodorsen’s work were made during the next two decades.

Theodore von Kármán analyzed the leading edge suction peaks on a thin airfoil [10].

Garrick used von Kármán’s equations to analyze the drag or propulsive force gener-

ated by flapping or oscillating airfoils [11]. He showed that it is possible to derive a
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propulsive force from a flapping wing. In the 1940’s, Issacs extended Theodorsen the-

ory to the case of an airfoil undergoing simple-harmonic oscillations in a free-stream

that is also undergoing simple-harmonic variation [12] [13]. This was an important

extension for rotorcraft, due to the periodic free-stream velocity of a helicopter in

forward flight. Greenberg simplified the result of Issacs by neglecting the periodic

vortex spacing [14]. Reference [15] shows that the Greenberg approximation can lead

to significant error in lift coefficient. Nonetheless, the actual lift predicted by the the-

ory is in fairly good agreement with Issacs. This is because the greatest errors in lift

coefficient occur when the free-stream velocity is relatively small. Many simulation

codes use the Greenberg approximation. Loewy generalized Theodorsen theory to a

helicopter in hover or climb by assuming a layered wake approximation [16].

While much work was being done in the frequency domain, others attempted

to analyze unsteady aerodynamics in the time domain. Wagner derived an indicial

function for the unsteady aerodynamics on a thin airfoil [17]. W. P. Jones showed that

the Wagner function (in the time domain) is related to the Theodorsen function (in the

frequency domain) through a Fourier Transform pair [18]. R. T. Jones derived a two-

state approximation to both the Wagner and Theodorsen functions [19] [20]. Later

work by Edwards, et. al. [21] [22], developed an exact expression for the Theodorsen

function in the Laplace domain in terms of Bessel functions.

1.3.2 Finite-State Models

Up until the 1970’s, most time-domain aerodynamic analysis focused on indicial meth-

ods, in which arbitrary motion is analyzed by application of the convolution integral.

These methods provide a link between the step response and time-domain response.

However, they can be cumbersome. Various other methods of transforming frequency

domain aerodynamics into the time domain were developed during the 1980’s and

1990’s. Work by Vepa [23] and Dowell [24] [25] introduced a simple method for de-

veloping a finite-state model in the time domain by use of Padé approximants. This

method gives a best approximation for a transfer function by a rational function

of a given order. Friedmann used this method to convert Loewy theory into state-

space [26] [27]. Dowell also showed how singular-value decomposition could be used

to transform CFD grids into reduced-order finite-state models [24].
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Recent work by Ref. [28] uses a reduced-order model to analyze pitching/plunging

airfoils. The model uses Kriging interpolation to map CFD results into a reduced-

order surrogate model to capture non-linearities of the flow. However, both the

surrogate models and the CFD data from which they were generated are for a two-

dimensional flow. Thus they inherently include Theodorsen/Wagner two-dimensional

induced flow. These induced flow assumptions cannot be separated from the model,

so the surrogate models cannot be applied directly to three-dimensional flows.

Peters, et al., developed an alternative finite-state aerodynamic model, via

expansions in a Glauert series [5] [15] [29]. This model is used in the current work to

compute the linear airloads. The model is based on two-dimensional potential flow,

with the non-penetration boundary condition applied on the airfoil and the Kutta

condition applied at the trailing edge. The Peters state-space airloads model has

several advantages over previous state-space models. First, the theory is couched in

terms of Chebychev polynomials, which are a natural coordinate system for airfoil

motions. The first three polynomials correspond physically to plunge, pitch, and

camber about the mid-chord. The model is hierarchical, and only a limited number

of terms are required to capture the essential physics. For instance, a symmetric

airfoil undergoing simple pitch motions can be modeled exactly using only the first

two terms. A more complicated airfoil geometry necessitates using additional terms.

The theory can be coupled with any induced-flow model, two- or three-dimensional,

allowing it to be easily incorporated into rotorcraft aerodynamic analysis tools. The

model is general, allowing large-frame motions, unsteady free stream, and arbitrarily

morphing airfoil shape. It is computationally efficient due to the limited number of

terms required, making it well suited for preliminary design work or flight simulation.

Reference [29] shows that the Karunamoorthy approach (with unsteady free-stream)

gives a virtually exact correlation with Issacs’ Theory.

1.3.3 Dynamic Stall

Dynamic stall is a complicated aerodynamic phenomenon in which a vortex-like dis-

turbance is shed by an airfoil at large angle of attack. The disturbance often originates

near the leading edge and translates along the airfoil, resulting in a highly non-linear

pressure disturbance. This nonlinearity causes the airloads to diverge significantly
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from those predicted by linear, thin-airfoil theory. There have been many semi-

empirical models designed to quantify the effect of dynamic stall on airloads [30].

Most of these models share certain characteristics. Namely, the difference between

static and dynamic stall increases as the pitch rate increases, and the stall takes a

finite time to develop. The models are typically applied as empirical corrections to

steady data, and are based on wind tunnel testing. They apply over a fairly restric-

tive range of airfoil types, angle of attack, Mach number, etc.—based on the test

conditions from which they were derived.

ONERA developed a third-order model of dynamic stall [1] [2]. A first-order

equation is used to simulate the Theodorsen function (for low angles of attack). This,

coupled with apparent mass terms gives a reasonable approximation for rigid, un-

stalled airfoils. Then, the static changes in stall (as observed in static test data) are

sent through a second-order dynamic filter (one zero and two poles) to simulate the

delay of stall onset and the stall overshoot observed in test data. The locations of the

complex-conjugate poles (and real zero) are made functions of angle of attack. This

is effected by the conduct of small-oscillation experiments about various static angles

and identification of the coefficients as functions of angle of attack (or, equivalently)

as functions of the lift deficiency due to stall.

Reference [31] presents the results of a fairly extensive wind-tunnel test pro-

gram at the NASA Ames research facility to validate the ONERA model. While the

model is unable to reproduce some of the severe overshoot associated with certain

dynamic stall scenarios, it does capture the character of the stall. Its ease of incorpo-

ration into the state-space airloads theory makes it an attractive model for handling

dynamic stall in preliminary design and real-time flight simulation.

1.3.4 Morphing Airfoils

Most helicopters have historically used a swashplate mechanism for 1/rev cyclic con-

trol of rotor blades. Due to the need for improved rotor performance for heavy-lift

applications, as well as noise and vibration reduction, there has been increasing in-

terest in dynamically morphing airfoils. The idea of Individual Blade Control (IBC)
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for higher harmonic control of individual blades is becoming more feasible with im-

provements in smart structure technology, materials, and adaptive control. Morphing

airfoils may take various forms: trailing-edge flaps, dynamically varying droop, cam-

ber, or twist, to name a few. References [32] and [33] describe the use of variable

leading-edge droop to mitigate the effects of dynamic stall including test data. These

data provide one of the test cases for validating the current airfoil theory.

Reduction in vibration associated with dynamic stall flutter has also been

demonstrated using actively controlled trailing-edge flaps [34]. The U.S. Army pub-

lished a comparison of various active control concepts on the VR-12 airfoil [35]. The

concepts studied were: leading edge slat, variable droop leading edge, oscillatory jet,

Gurney flap, individual blade control, active twist, and trailing-edge flap. The compu-

tational results were based on the CAMRAD II comprehensive code. Of the concepts

studied, individual blade control, trailing-edge flap, and active twist showed the most

promise of improved performance. The authors note that the results depend strongly

on the static airfoil tables used. This underscores the importance of accurate static

airfoil section characteristics for application of the theory. This is one of the major

goals of the current research.

Various approaches for the solution of aerodynamic loads on morphing airfoils

have been presented. Hariharan and Leishman use an indicial approach to develop a

state-space model of unsteady airloads for a flapped airfoil [36]. They present exper-

imental correlations for small-amplitude, harmonic flap deflections using the indicial

approach, with corrections for Mach number and flap effectiveness. These same data

were later used in Ref. [29] to compare the Peters state-space airloads theory to the

indicial approach. Good correlation was found between the Peters approach and the

data for lift, pitching moment, and moment about the trailing-edge flap hinge. In

general, the Peters model performed better than did the indicial approach. Wick-

enheiser and Garcia present a solution approach that employs lifting-line analysis to

determine the airloads for wings of morphing cross-section and planform [37].
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1.3.5 Optimization

Engineering analysis typically approximates physical behavior with a mathematical

model. The parameters for the model are selected to minimize the error between

theoretical and experimental data. Thus, identification of these parameters is often

couched as an optimization problem. Optimization methods are generally divided into

two types: deterministic and heuristic. Deterministic approaches, such as Newton’s

and steepest descent methods, start from a single point and use gradient calculations

with respect to the design variables to locate local optima. Heuristic approaches, such

as genetic algorithms and simulated annealing, search the entire design population

and use probabilistic transition rules to move toward an optimum. These methods are

often faster, because they do not require gradient and hessian computations. They

are also better suited to multi-modal design spaces.

In Ref. [38], Pulliam et al compare the heuristic genetic algorithm method

to the deterministic adjoint-gradient method for optimization of a transonic airfoil

design. The fitness function is a weighted combination of multiple objectives: to min-

imize drag and maximize lift. The authors found that both optimization techniques

found similar optimal airfoil shapes, with nearly identical Pareto fronts. In Ref. [39],

a non-linear indicial approach is used to determine the unsteady lift and pitching

moment for an aircraft at high angles of attack. The fitness is determined by the

least-squares error between wind-tunnel test data and the mathematical model. The

resulting parameter fit is validated by correlation of experimental data at various re-

duced frequencies. Thus, genetic algorithms have been shown effective in optimization

problems for unsteady aerodynamics.

1.4 Overview

We have established that there is a need for an airloads model that can treat both

unstalled and stalled conditions for morphing airfoils. The model should be capable

of handling unsteady freestream, large frame motions, and generalized wakes—and

should be able to do so efficiently. We have also outlined the building blocks in the
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literature that will be synthesized into such a model. In the sections to follow, such

a model will be developed and validated.

Static 
Data

T

Dynamic 
Stall Model

Airloads
Theory

Inflow
Model

+

+

+

Flowfield

Boundary
Conditions

Figure 1.1: Schematic of the unified airloads model.
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Chapter 2

Development of the Unified Model

A unified airloads model must allow for arbitrary airfoil motion, unsteady free stream,

morphing airfoil shape, and dynamic stall. There are three key elements of the unified

model: the Peters flexible airloads theory, the 2D dynamic inflow model, and the

modified ONERA dynamic stall model. This chapter summarizes the derivation and

development of each of these components of the theory.

2.1 Johnson/Peters Flexible Airloads Theory

The derivation of the Johnson/Peters flexible airloads theory from first principles is

presented here, following the procedure of Ref. [15]. Consider a thin airfoil of arbitrary

shape moving through a mass of still air, as shown in Fig. 2.1. The coordinate system

is centered at the mid-chord, so that −b ≤ x ≤ +b, where b is the semi-chord. The

coordinate system is moving with some arbitrary motion, described by horizontal

velocity u0, vertical velocity v0, and rotation v1. The deformations of the airfoil

within the reference frame are considered small, such that h << b, ∂h/∂x << 1, and

∂h/∂t << u0. Furthermore, circulation is assumed to be shed along the x-axis. These

small-angle assumptions are less restrictive than many airfoil theories. While the

airfoil motions within the frame are assumed to be small, the reference frame itself is

allowed to have arbitrarily large motion. This makes the theory particularly suited

to analysis of rotary wings.

As is the case for classical thin-airfoil theory, the system is constrained by

the non-penetration boundary condition at the airfoil surface. The non-penetration
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boundary condition can be expressed as:

w = v + λ = u0
∂h

∂x
+
∂h

∂t
+ v0 + v1

x

b
(2.1)

where w is the total induced flow, λ is the induced flow from shed circulation, and v is

the induced flow from bound circulation. The first two terms on the right-hand side of

Eq. 2.1 are the result of the shape of the airfoil mean-line, and the second two terms are

from frame motion. It is apparent that the theory captures both static and dynamic

shape changes, making the theory applicable to dynamically morphing airfoils. From

the Biot-Savart law, v may be expressed in terms of the bound circulation per unit

length γb over the interval −b ≤ x ≤ +b, corresponding to the airfoil surface:

v = − 1

2π

∫ +b

−b

γb(ξ, t)

x− ξ
dξ (2.2)

Similarly, the induced flow from shed circulation may be expressed in terms of the

wake circulation:

λ = − 1

2π

∫ ∞
+b

γw(ξ, t)

x− ξ
dξ (2.3)

The pressure-vorticity relation gives the loading due to the circulation as:

∆P = ρu0γb + ρ

∫ x

−b

∂γb
∂t

dξ (−b ≤ x ≤ +b) (2.4)

The spatial gradient of the induced flow due to the shed wake is related to the temporal

gradient of the induced flow by the relation:

∂λ

∂t
+ u0

∂λ

∂x
=

1

2π

dΓ/dt

b− x
(2.5)

where Γ is the total bound circulation on the airfoil. Equations (2.1-2.5) define the

airloads theory, which must be expressed in terms of the generalized loads, frame

motions, and blade deformations. To do this, all of the variables are expressed as

expansions with respect to the Glauert variable, ϕ. The change of variable is given

by:

x = b cosϕ (−b ≤ x ≤ +b, 0 ≤ ϕ ≤ π) (2.6)
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The expansions are defined as follows:

γb = 2

[
+γs
sinϕ

− γ0 cosϕ

sinϕ
+
∞∑
n=1

γn sin(nϕ)

]
(2.7)

∆P = 2ρ

[
+τs
sinϕ

− τ0 cosϕ

sinϕ
+
∞∑
n=1

τn sin(nϕ)

]
(2.8)

It follows that Γ = 2πb(γs + γ0/2). Similarly, the blade deformation, velocity, and

induced flow may be expressed as expansions in the Glauert variable.

h =
∞∑
n=0

hn cos(nϕ) (2.9)

w =
∞∑
n=0

wn cos(nϕ) (2.10)

λ =
∞∑
n=0

λn cos(nϕ) (2.11)

The cos(nϕ) terms in Eqs. (2.9)-(2.11) are equivalent to the Chebychev polynomials,

Tn(x/b). These shape functions are quite intuitive, as illustrated in Fig. 2.2. The first

three correspond to plunge, pitch and camber respectively.

One can simplify the pressure expression in Eq. 2.8, by means of the Kutta

condition:

τs = fτ0 (2.12)

where f is the reversed-flow parameter. This is needed to enforce the condition that

∆P = 0 at the trailing edge. When the flow reverses, the leading and trailing edges

are interchanged, so the sign of f must also change. In general, there are various

choices of f to account for reversed flow. For instance, if f ≡ sgn(u0), the loads will

change sign instantaneously (full reversed flow). For a smoother transition to the

reversed flow region, one could define f ≡ cosα (soft reversed flow). Alternatively,

one can neglect reversed flow by setting f = 1. Some assumption must be made

for helicopters in forward flight, where reversed flow exists. However, since the data

correlated in this thesis are for two-dimensional wind tunnel tests, there is no reversed

flow; and the value of f will be set equal to unity.
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The airloads can be expressed in terms of the circulation γn (and γ̇n) by use

of expansion of the vorticity equation, Eq. (2.4) and the expansion in Eq. (2.7). The

left-hand side of Eq. (2.1), along with the expression for v in Eq. (2.2), then allow

the substitution γn = wn− λn. That equation can then be simplified by the addition

of Eq. (2.5)—with the expansion in Eq. (2.11)—to obtain a loads equation entirely

in terms of wn and λ0.

u0(w0 − λ0) = τ0

b(ẇ0 −
1

2
ẇ2) + u0w1 = τ1 (2.13)

b

2n
(ẇn−1 − ẇn+1) + u0wn = τn n > 2

The generalized loads are determined by substitution into the following relation from

virtual work:

Ln =

∫ +b

−b
∆P cos(nϕ) dx = −

∫ π

0

b∆P cos(nϕ) sinϕ dϕ (2.14)

The final results for the generalized loads are:

L0 = −2πρbfu0(w0 − λ0)− πρbu0w1 − πρb2(ẇ0 −
1

2
ẇ2)

L1 = πρbu0(w0 − λ0)− 1

2
πρbu0w2 −

1

8
πρb2(ẇ1 − ẇ3)

L2 =
1

2
πρbu0(w1 − w3) +

1

2
πρb2(ẇ0 −

1

2
ẇ2)− 1

12
πρb2(ẇ2 − ẇ4) (2.15)

Ln =
1

2
πρbu0(wn−1 − wn+1) +

1

4(n− 1)
πρb2(ẇn−2 − ẇn)

− 1

4(n+ 1)
πρb2(ẇn − ẇn+2) n ≥ 3

The generalized loads above also correspond to the virtual work of each shape function

described earlier. For instance, the load L0 is a uniform force acting in the negative y-

direction; i.e. the negative of the conventional definition of lift. The load L1 is a linear

force distribution, so the quantity L1x/2 is the conventional nose-up pitching moment

about the mid-chord. The first two generalized loads are sufficient to determine the

lift and pitching moment about any point on the airfoil. However, if other airloads
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are desired, for instance flap-hinge moment, other generalized loads would participate

in the expansion.

The total bound circulation is found to be:

Γ = 2πb

[
f(w0 − λ0) +

1

2
w1 −

1

2
λ1

]
(2.16)

Although the local lift is alway perpendicular to the local airfoil surface, there

is also a leading-edge suction load along the airfoil. These loads combine and can

create a component of lift in the direction of the free stream, which can be either

induced drag or a propulsive force. [Although classicl thin-airfoil theory does not

give profile drag, quasi-steady profile drag can be incorporated based on experimental

data]. The total induced drag is given by

D =

∫ π

0

b (∆P ) (∂h/∂x) sinϕ dϕ− 2πρbf (w0 − λ0)2 (2.17)

where a negative value implies a propulsive force.

The generalized loads, circulations, and drag may then be written in terms of

blade motions and deformations hn(t) through the right-hand side of Eq. (2.1).

w0 = v0 + ḣ0 + u0

∞∑
n=1,3,5

nhn/b

w1 = v1 + ḣ1 + 2u0

∞∑
n=2,4,6

nhn/b (2.18)

wm = ḣm + 2u0

∞∑
n=m+1,m+3

nhn/b m ≥ 2
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Equations (2.15-2.17) form the basis of the airloads theory. They can be

written more compactly in matrix form as follows:

1

2πρ
{Ln} = −b2[M ]

{
ḧn + v̇n

}
− bu0[C]

{
ḣn + vn − λ0

}
− u0

2[K] {hn}

− b[G] {u̇0hn − u0vn + u0λ0} (2.19)

1

2π
Γ = b {1}T [C −G]

{
ḣn + vn − λ1

}
+ u0 {1}T [K] {hn} (2.20)

1

2πρ
D = −b

{
ḣn + vn − λ0

}T
[S]
{
ḣn + vn − λ0

}
+ b
{
ḧn + v̇n

}T
[G] {hn}

− u0

{
ḣn + vn − λ0

}T
[K −H] {hn}+ {u̇0hn − u0vn + u0λ0}T [H] {hn}

(2.21)

where [K]{hn} may be alternatively written in terms of the generalized gradients,

[K]{hn} = b[K ′]{h′n}. The definitions of the various matrices and vectors are given

in Appendix A.

2.2 Two-dimensional Dynamic Inflow Model

As described above, the state-space airloads theory requires knowledge of the λ0

component of the induced flow. [To obtain the total bound circulation, one also needs

λ1.] There are various models that could provide the induced flow. For a helicopter

in forward flight, the Peters-He 3D Dynamic Inflow model could be used [40] [41].

However, for consideration of airloads in two dimensions, a two-dimensional dynamic

inflow model is used. Reference [5] utilizes a potential function expansion of the

induced wake velocity, expressed in functional form. Application of the identity in

Eq. (2.5) gives the resulting differential equation for the generalized inflow states:

b

(
λ̇0 −

1

2
λ̇2

)
+ u0λ1 =

Γ̇

π
(2.22)

b

2n
(λ̇n−1 − λ̇n+1) + u0λn =

Γ̇

nπ
n ≥ 2

[It should be noted that the induced flow coefficients are driven by the time derivative

of the total circulation. This circulation includes both the lift-generating circulation
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from thin-airfoil theory, as well as the changes in circulation due to dynamic stall.

Thus, when dynamic stall is included in the analysis, there is a coupling between the

inflow and dynamic stall equations, Fig. 1.1. This will be further illustrated in the

following section.] Equation (2.22) is a system of N differential equations in N + 1

Glauert inflow coefficients λ0, . . ., λN that is valid for any wake model. However, one

additional equation is needed based on wake geometry. Reference [5] shows that—for

a flat wake—λ0 may be approximated by the relation

λ0 ≈
1

2

N∑
n=1

bn λn (2.23)

with the constraint that
∑
bn = 1. [The Peters-He model alternatively provides λ0 for

a 3-D wake.] While there are several consistent choices for defining bn, the augmented

least squares approach produces the best approximation to classical aerodynamic

theories, as given by Eq. (2.24).

bn = (−1)n−1 (N + n)!

(N − n)!

1

(n!)2
n = 1, 2, · · · , N − 1

bN = (−1)(N+1) (2.24)

Equations (2.16), (2.23), and (2.24) are combined and differentiated to give

the right-hand side of Eq. (2.22).

Γ̇ = 2πb

[
f(ẇ0 −

1

2
{b}T{λ̇}) +

(ẇ1 − λ̇1)

2

]
+ Γ̇0 (2.25)

where Γ0 is the change in total bound circulation due to stall. Substitution into

Eq. (2.22) yields:(
1

2
+ f

)
{b}T {λ̇}+ λ̇1 −

1

2
λ̇2 = 2

(
fẇ0 +

1

2
ẇ1

)
+

1

bπ
Γ̇0 −

u0

b
λ1 n = 1

f

2
{b}T {λ̇}+

3

4
λ̇1 −

1

4
λ̇3 =

(
fẇ0 +

1

2
ẇ1

)
+

1

2bπ
Γ̇0 −

u0

b
λ2 n = 2 (2.26)

f

n
{b}T {λ̇}+

1

n
λ̇1 +

1

2n
λ̇n−1 −

1

2n
λ̇n+1 =

2

n

(
fẇ0 +

1

2
ẇ1

)
+

1

nbπ
Γ̇0 −

u0

b
λn n ≥ 3
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Equation (2.26) can be written in matrix form.

[A]{λ̇} = {c}(fẇ0 +
1

2
ẇ1) +

1

2bπ
{c}Γ̇0 −

u0

b
{λ} (2.27)

where the matrices and vectors are defined in Appendix A. The velocity vector {w}
may be expanded in terms of the blade motions and free-stream velocities with the

help of Eq. (2.18), resulting in the expression:

{λ̇} = [A]−1

[
{c}

(
{e}T{v̇n + ḧn}+

u0

b
{f}T{ḣn}+

Γ̇0

2bπ

)
− u0

b
{λ}

]
(2.28)

Equation (2.28) is the form of the induced flow equations used in the simulations

here. Only the λ0 component is required for the airloads, but the λn are coupled, so

that several states are required. For unsteady u0, these equations have time-varying

coefficients.

The induced-flow model may be validated by comparison to Theodorsen the-

ory. Consider simple harmonic inflow of the form λn = λne
iku0t/b and wn = wne

iku0t/b,

with no dynamic stall or reversed flow. Substitution of these relations into Eq. (2.27)

yields:

[Aik + I]{λ} = {c}ik(w0 +
1

2
w1) (2.29)

For the case w0 + 1
2
w1 = 1, then

{λ} = [Aik + I]−1{c}ik (2.30)

The Theodorsen lift deficiency function C(k) is given by the ratio of circulatory lift

to quasisteady lift for simple harmonic motion.

C(k) =
w0 + 1

2
w1 − λ0

w0 + 1
2
w1

= 1− λ0 = 1− 1

2
{b}T{λ} (2.31)

The exact solution, derived by Theodorsen in terms of Bessel functions is:

C(k) =
J1(k)− iY1(k)

[J1(k) + Y0(k)] + i [J0(k)− Y1(k)]
(2.32)
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A comparison of the exact and approximate Theodorsen functions is shown in Fig. 2.3.

The ratio k/(1 + k) is plotted on the abscissa to allow comparison of the functions

over the entire frequency range from k = 0 to k = ∞. Eight inflow states are used.

Reference [5] shows that the 2-norm of the error for this approximation is less than

1%.

2.3 Dynamic Stall Model

In the early 1980’s, the French aerospace research institute ONERA sought to develop

a differential equation model of dynamic stall. This was motivated largely by rotor-

craft in forward flight, where there is always a portion of the rotor on the retreating

side that undergoes dynamic stall. As the blades rotate around the azimuth, some

blade sections oscillate in and out of the stall regime, resulting in hysteresis of the

lift and moment curves.

Figure 2.4 illustrates the phenomenon of static stall. Up to the static stall

angle αss, the airfoil behaves according to linear, thin-airfoil theory. Beyond that

point, the airfoil begins to stall, and there is a deficiency between the projection of

the linear lift and the actual lift. That difference is the static loss of lift, denoted

∆CL. The static loss of lift acts as a forcing function to drive the ONERA differential

equation for dynamic stall. Similarly, a static loss ∆Cq may be defined for any of the

airloads Cq of interest.

It is not presently possible to anaylze dynamic stall fully in a purely theoret-

ical way. However, Ref. [1] notes that physical systems may be modeled as transfer

functions, with inputs and outputs. These transfer functions and their associated

differential equations may be based upon experimental observation, even if the un-

derlying physics are not completely defined. It is along this line that the ONERA

dynamic stall model was developed, and extensive experimental correlations are pre-

sented in Refs. [1], [2], [31], and by others. ONERA assumed that in the linear regime

(below αss), the behavior of the airloads can be described by a first-order transfer

function. This is a single pole approximation to Theodorsen theory. In the stalled

regime, airloads display a time delay and overshoot due to the passing of shed vor-

ticity. In order to allow for this phenomenon, a second-order transfer function is

20



introduced. Thus, the form of the original ONERA model is given by Eqs. (2.33)

- (2.35), where the parameters λ̂, â, ŝ, δ̂, η̂, ω̂, and ê are determined by parameter

identification.

CL = CL1 + CL2 (2.33)
∗
CL1 + λ̂CL1 = λ̂âθ + (λ̂ŝ+ δ̂)

∗
θ + ŝ

∗∗
θ (2.34)

∗∗
CL2 + η̂

∗
CL2 + ω̂2CL2 = −ω̂2

[
∆CL + ê

∂∆CL
∂θ

∗
θ

]
(2.35)

[Implicit in the ONERA derivation is a steady free-stream velocity.] Equation (2.34)

in the ONERA model is for calculating the linear lift coefficient, and Eq. (2.35)

is for calculating the loss of lift due to dynamic stall. The results are combined in

Eq. (2.33) to determine the total lift coefficient. ONERA found that correlation could

be improved by introduction of a pure time delay for the onset of stall, following the

work of Beddoes [42] [43]. However, this pure time delay introduces an infinite number

of states into the system. Therefore, in the work here, we will deal with differential

equations without pure time delay.

References [44] and [3] note that the ONERA model may be written alter-

nately in terms of either lift coefficient CL, nondimensional circulation Γ = UCL, or

nondimensional lift, L = U2CL (where U is the nondimensional free-stream velocity).

For example, the alternate forms of the linear lift coefficient in Eq. (2.34) become:

∗
Γ1 + λ̂Γ1 = λ̂âUθ + (λ̂ŝ+ δ̂)U

∗
θ + ŝU

∗∗
θ (2.36)

∗
L1 + λ̂L1 = λ̂âU2θ + (λ̂ŝ+ δ̂)U2

∗
θ + ŝU2

∗∗
θ (2.37)

(Similar alternate versions also exist for the CL2 equation.) For a steady free stream,

these three forms are exactly equivalent, so any of the three may be considered the

original ONERA model. If an unsteady free stream is considered, the three forms are

not the same, due to
∗
U terms that arise from the transformation of one form to the

other. Using the flap response of a simplified rotor, Peters and Rudy showed that the

original ONERA formulation, using lift coefficient, has an instability that can occur

at large angles of attack. They determined that the formulation of the model that is

best behaved and agrees most closely with experimental data is Eq. (2.36), in terms

of circulation. This is intuitive, as dynamic stall is the result of lost circulation as
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vortices are shed at the leading edge. In addition, they showed that angle of attack

due to plunge must be treated independently from that due to pitch. Third, they

showed that apparent mass lift should not be treated by the same transfer function

that is used for circulatory lift. They then made appropriate modifications to the

ONERA model based on these observations, and these modifications extended the

model into the rotorcraft regime, allowing an unsteady free stream velocity, large

angles of attack, and plunge. ONERA ultimately adopted the changes proposed by

Peters and Rudy [2].

The final form of the modified ONERA model in a rotating reference frame,

with velocities divided into x and y components, is

k
+

Γ1 + λ̂Γ1 = λ̂âU + δ̂b ε̂ (2.38)

k
2

++

Γ 2 + kη̂
+

Γ2 + ω̂2Γ2 = −ω̂2

[
U∆CL + êk

(
+

U∆CL +
∂∆CL
∂θ

+

U

)]
(2.39)

where
+

( ) implies differentiation with respect to nondimensional time based on the

average u0, k = b/r, b = b/R, and ε̂ is the rotation rate of the airfoil with respect to

the air mass.

In general, these differential equations have time-varying coefficients that will

depend upon a dynamically varying angle of attack. ONERA identifies these param-

eters by dynamic perturbations about a number of mean angles of attack. Thus, an

assumption is made that the coefficients change sufficiently slowly to allow the per-

turbation results to define the coefficients. Experience has shown that good results

can be achieved with the model if the stall parameters are identified carefully in this

manner [1]. ONERA and NASA ran a series of small-amplitude tests to determine

the stall parameters, linearized about various mean angles of attack, Refs. [1], [31].

From these tests the functional form of the stall coefficients was determined to be

ω̂ = ω0 + ω2(∆CL)2

η̂ = η0 + η2(∆CL)2 (2.40)

ê = e2(∆CL)2
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In the sections to follow, this Peters/ONERA approach for stall will be generalized

and then integrated into the dynamic stall approach. However, we will not use the

crude first-order approximation for linear circulation expressed by Eq. (2.34). Rather,

we will utilize the more accurate 8-state version of the Karunamoorthy model.

2.4 The Unified Model

2.4.1 Theory

The fundamental concept of the unified model is to begin with the flexible airfoil

theory of section 2.1, but then to correct each generalized loading Ln with its own

ONERA-like stall correction. In order to avoid the confusion that often arises due to

the different nondimensional definitions of the classical ONERA approach, we further

elect to write both the linear loads and the stall corrections in dimensional form.

Thus, the linear airloads are calculated by the Johnson/Peters state-space airloads

theory with an appropriate inflow model, Eqs. (2.19) through (2.21). Simultaneously,

the total load including dynamic stall for each generalized coordinate is computed as

follows:

b2

uT 2
Γ̈n + η

b

uT
Γ̇n + ω2 Γn

= −b uT ω2

[
∆Cn + e

d∆Cn
dt

b

uT

]
(2.41)

where the total derivative d(∆Cn)/dt is accomplished through the chain rule with

respect to all appropriate variables, [∂(∆Cn)/∂z] ż.

Ln = Ln(linear) + ρuTΓn (2.42)

Γ = Γn linear + Γ0

Thus, the stall corrections feed back through the induced flow in Eq. (2.25)and modify

the linear airloads. The lift and moment coefficients (along with any other loads of

interest) can then be calculated from the generalized loads. The result is a hierarchical

unsteady airloads theory for morphing airfoils in dynamic stall.
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One of the benefits of the morphing airloads theory presented here is that

one does not need to assume that linear lift is oriented in a particular direction.

Rigorous application of the definitions of the free-stream velocities and generalized

airfoil motions give both the x and y components of lift and thus orient the lift vector

correctly, without small angle assumptions. In application of the stall corrections, on

the other hand, we must make some assumptions about the direction of lift and drag.

Since the stall model is set in a flow-based reference system, it is logically consistent

to assume that the stall corrections to lift and drag are perpendicular to and parallel

to the local free-stream direction. However, the local free stream can change direction

rapidly; and it is not clear a priori whether or not the lift and drag should be allowed

such rapid tilt.

Results have shown best correlation with data when the dynamic stall loads are

oriented with respect to a time-averaged free-stream velocity. To account for this, the

uT term in Eqs. (2.41) and (2.42) is taken as the total averaged free-stream velocity,

which is the resultant of the time-averaged horizontal and vertical velocity compo-

nents. Figure 2.5 illustrates the directions of the various aerodynamic forces within

this reference frame. The time averaging of the free-stream velocity components is

accomplished by a first order filter.(
T
b

uT

)
v̇L + vL = v0 + ḣ− λ0 (2.43)(

T
b

uT

)
u̇0 + u0 = u0 (2.44)

uT =
√
u0

2 + vL
2 (2.45)

In Eqs. (2.43) through (2.45) above, T is a non-dimensional characteristic time

constant. We propose a value of T = 15π. This attenuates velocity fluctuations over

one rotor revolution by a factor of 1− 1/
√

1 + (kT )2. For typical helicopters, where

once-per-rev reduced frequencies are on the order of k = 0.1, this is an attenuation

of about 79%. However, lower-frequency variations due to maneuvering flight are

attenuated less. If desired, the value of T could be refined from flight-test data. The
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total lift and drag forces in the large angle reference frame are then given by

LT0 = L0 − ρu0Γ0 − ρbcduTvL (2.46)

DT = D − ρvLΓ0 + ρbcduTu0 (2.47)

[Note that L0 is in the negative y direction, and D is in the positive x direction.]

2.4.2 Application

To illustrate how the above is integrated into a unified model, consider the case of

an airfoil with a trailing-edge flap. A flap deflection results in an effective change in

airfoil shape. In theory, to apply the ONERA dynamic stall model, static data should

be known for each combination of flap deflection β and angle of attack α. However,

the collection of static stall data at all combinations of α and β (followed by dynamic

perturbations about each combination to identify the dynamic stall coefficients) is

impractical. Here, we choose to represent stall behavior in terms of the Glauert

expansion terms rather than discrete airfoil geometry changes. In so doing, existing

static wind tunnel data are leveraged to generate a general stall model for a morphing

airfoil, which can be used for a wide variety of configurations. In this approach, stall

is represented by just enough generalized coordinates to capture the essential physical

behavior. Typcially, three terms of the expansion are sufficient; however, additional

terms could be used if desired.

For example, published data on cambered NACAmp12 airfoils provide a static

stall database for morphing of the NACA 0012 airfoil. The static stall model is

couched in terms of the generalized spatial gradients h′0, h′1, and h′2. Further, it is

assumed that data collected at a low Mach number may be scaled up to higher Mach

numbers, as demonstrated by Ref. [29]. It is shown in Chapter 3 that, to first order,

one can determine any airload on any type of morphing airfoil by using a single set

of static stall data and a single set of stall parameters for a given airfoil family. This

will be expanded in greater detail in Chapter 3.
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2.5 Static Correction Factors

In order to adequately correlate experimental data, where thickness and compressibil-

ity effects exist, correction factors must be added to the theory. For example, NASA

has compiled an extensive set of wind tunnel data for the NACA 0012 airfoil [45].

Thin-airfoil theory predicts the slope of the lift curve to be 2π for any thin airfoil, but

analysis of the wind tunnel data shows the slope to be a function of both Reynolds

number and Mach number. For Reynolds number between 2 × 106 and 2 × 107, the

lift curve slope per radian is approximated by:

C`α =
5.8728 + 0.2997 log(Re/106)√

1−M2
(2.48)

Such a correction can be incorporated into the present theory by exchange of the

factor of 2π in the load equation with C`α from Eq. (2.48). This is equivalent to

multiplying the thin-airfoil loads by a factor of fL = C`α/2π.

A complete analysis of the best practices for Mach number corrections can be

found in Ref.[29], which validates the flexible airfoil theory and the unsteady free-

stream aspects of the Peters/Johnson model. That paper correlates lift, pitching

moment, and moments about the trailing-edge flap hinge at reduced frequencies of

0.098 and 0.268 and Mach numbers of 0.5 and 0.748. That reference shows that the

Mach number correction factor of
√

1−M2 should be applied exactly as the Prandtl

stretching variable implies. That is, it should be treated as an equivalent length

stretching. Thus, the convective derivative becomes:

D[ ] =
∂

∂t
+

u0√
1−M2

∂

∂x
(2.49)

Reference [29] shows that there are two alternative ways to incorporate this

transform. One is to make the Mach number correction to all of the matrices in the

loads equations ([M ], [C], [K], and [G]) and also to correct reduced time by changing

b to b
√

1−M2. The second method is to make no change to reduced time but to

alter the [K] and [G] matrices (but not [C] and [G]) by the Mach number correction

1/
√

1−M2. In either case, the best results were also found to occur when making

the static correction at M = 0 only on the [K] matrix. In the present results, we
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do not scale M = 0 results up to other Mach numbers because we have data at the

Mach numbers of interest. Also, since we correct both load and deflections, we have

no need to differentiate as to which matrix we are correcting. However, the best-

practice procedures of Ref. [29] would be important when using data taken at one

Mach number to correlate at other Mach numbers.

The methodology of Ref. [29] is a correction on the output of the theory.

However, it is possible to apply correction factors to the inputs as well. Consider the

case of an airfoil with a trailing-edge flap. There are two input variables: pitch angle

α and flap angle β. Inherent in the thin-airfoil theory is the assumption that a flap

deflection is 100% efficient. That is, a flap deflection is assumed to change the shape

of the mean camber line of the airfoil; and the lift changes accordingly. However, in

reality there is significant loss of effectiveness in the flap’s ability to generate lift, due

to viscous effects. Reference [36] suggests several contributing factors for this loss of

effectiveness: the flap operates in a thick turbulent boundary layer, the flap hinge

creates an adverse pressure gradient, and gaps or protusions in the vicinity of the flap

hinge alter the boundary layer. To first order, these effects may be accounted for by a

simple correction factor applied to the flap deflection angle, β, to obtain an effective

β. Similarly, a correction may be applied to the pitch angle α to account for viscous

effects, such as those suggested by Eq. (2.48).

In general, it is more difficult to obtain good agreement with experimental

pitching moment data because they depend on the lift, the shape of the camber line,

and the location of the center of rotation ab, as shown in Fig. 2.6. Experience has

shown that the effective center of rotation in the thin-airfoil coordinate system may

need to be adjusted slightly in order to correlate experimental moment data.

In results to be presented later in Chapter 5, we will consider airfoils with

trailing-edge flaps. Before the dynamic loads (stalled and unstalled) are considered,

we will choose the appropriate static correction factors. Five factors are considered:

1.) correction to α, 2.) correction to β (flap angle), 3.) correction to CL, 4.) correction

to CM , and 5.) correction to a (center of rotation). The convention for applying the
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static correction factors is summarized below.

{hn} = [T ]

[
fα 0

0 fβ

]{
α

β

}
(2.50)

CL = fL

(
− L0

ρu2
0b

)
, CM = fM

(
L1 + L0 acorr. b

2ρu2
0b

2

)
Of these five coefficients, only four are linearly independent. For instance, if the

coefficients on α and β are doubled, while those on CL and CM are halved, the

resulting loads are the same. These static correction factors will be identified from

the available static airfoil data before the stall parameters are identified.

x

-b +b

h(x,t) 

x 

y 

v0 

u0 

v1 

Figure 2.1: General airfoil coordinate system
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Figure 2.2: Physical significance of first three shape functions.
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29



Figure 2.5: Coordinate system for large angles.

Figure 2.6: Air loads on a typical airfoil section.
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Chapter 3

Static Airfoil Section

Characteristics

The dynamic stall model used herein is driven by the static stall, which depends on

airfoil shape. For fixed geometry airfoils, section characteristics [lift, pitching moment,

and drag as a function of angle of attack] can be obtained from published airfoil

tables, wind tunnel testing, boundary-layer analysis codes, or other available sources.

However, morphing airfoils have static section characteristics that change with the

airfoil shape. There are no tables available for morphing airfoils, and only limited wind

tunnel testing is available. Reference [46] utilizes a table lookup with data generated

by the XFOIL boundary-layer analysis software for a morphing airfoil. The current

research uses a different approach to assemble databases of section characteristics

for families of morphing airfoils. To accomplish this, one needs static airload data

for the baseline airfoil, as well as for a range of values of the morphing variables of

interest. The generalized spatial gradient coefficients h′n are calculated either by a

transformation from the morphing variables, or by a summation of the generalized

deformations hn. Finally, the curves are parameterized as a function of h′n. The result

is a static database which may be used for any arbitrary morphology of the baseline

airfoil in terms of generalized coordinates.

In the following sections, this process is illustrated and validated for three

different baseline airfoil geometries:

1. NACA 0012 12% symmetric airfoil

2. SC-1095 cambered airfoil
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3. Boeing VR-12 12% cambered airfoil

All of the airfoils studied share several common characteristics. For small angles of

attack, the airfoils behave linearly. From thin airfoil theory, this behavior is given by

the relation

CL = CLα(α− α0L) (3.1)

where α0L is the angle at which zero lift is produced. Thus, the linear portions of

the lift curves collapse onto a single line passing through the origin when plotted as

a function of α − α0L. In order to adequately correlate experimental data, where

thickness and compressibility effects exist, correction factors must be added to the

thin-airfoil theory, as discussed in Section 2.5.

The post-stall behaviors of each of the airfoils within a family are character-

istically similar to each other. Although some differences occur due to the softening

of the stall inception due to the morphing, this behavior can be approximated to

first order by a single curve for each of the airfoil families. The accuracy of this

approximation is in keeping with the nature of the model. The lift curve for any of

these airfoils is thus obtained by a synthesis of the linear portion of the lift curve and

the post-stall behavior. The transition from the linear regime to the stall regime is

defined to occur at a static stall angle αss, which is assumed to be a function of the

generalized coordinates.

Figure 3.1 illustrates the process of parameterizing the static lift for a morphed

airfoil. The black curves indicate the baseline airfoil. The red curves indicate a

notional morphed airfoil, where the baseline geometry has been modified through one

or more morphing variables. This could be a trailing-edge flap, leading-edge droop,

camber or any other morphology. The figure shows a four-stage process for identifying

the necessary parameters.

1. Stage 1 shows the raw data plotted as a function of angle of attack, α. From

these data, one may calculate the angle of zero lift α0L, at which the lift curve

crosses the x-axis. This is typically a negative value for a cambered airfoil. The

static stall angle, where maximum lift occurs, is further denoted as αss. The

subscripts (b) or (m) refer to baseline or morphed.
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2. Stage 2 shows the data plotted as a function of α − α0L. As mentioned above,

this collapses the linear portion of the lift curve for each of the airfoils onto a

single line. The difference between the peak of the morphed airfoil and the peak

of the baseline airfoil is indicated by αshift.

3. Stage 3 shows the lift residuals as a function of α − α0L. The lift residuals

are the difference between the expected linear lift given by thin-airfoil theory

(including appropriate static corrections) and the experimental lift. Calculation

of these residuals is discussed in more detail in following sections.

4. Stage 4 shows the lift residuals as a function of α − α0L − αshift. This aligns

the baseline and morphed curves. These curves may be averaged, or fit with a

polynomial to provide the appoximate static lift for any airfoil as a function of

α− α0L − αshift, where αshift ≡ 0 for the baseline airfoil.

A similar process is used for pitching moment, flap hinge moment, or any other airload

of interest. As the final step, the values of α0L and αshift are parameterized in terms

of generalized morphing variables.

Note that ∆CL (or, for that matter, any generalized load residual ∆Cn) will

be zero until α approaches the static stall angle αss. This implies that ∆Cn should

be expressed (either in tabular or parametric form) in terms of u(z − z0)f(z), where

u(z − z0) is the unit step function, z = α− αss, and z0 is the value of z below which

the stall residual is negligible. The selection of a suitable z0 is left to the discretion of

the user. It allows for a smooth transition from unstalled to stalled behavior at αss.

To put this into the notation of Fig. 3.1 step 4, we may write z for a morphed airfoil

in terms of the shifted parameters:

z = α− αss(m) = [α− α0L(m) − αshift]− [αss(b) − α0L(b)] (3.2)

For the baseline airfoil, αshift = 0 and (m) becomes (b) so that z = α− αss(b).
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3.1 Theoretical Background

3.1.1 Linear Airloads

From the non-penetration boundary condition at the airfoil, one may write:

w = u0 ∂h/∂x+ ∂h/∂t+ v0 + v1 x/b =
∞∑
n=0

wn cos(nϕ) (3.3)

For an airfoil of arbitrary shape in a steady horizontal free stream at a fixed angle of

attack α, this can be simplified to

w = u0(α + ∂h/∂x) =
∞∑
n=0

wn cos(nϕ) (3.4)

where we have removed the angle of attack from h(x) so that h(x) contains only

morphing. The spatial gradient is then expanded in a Glauert series.

∂h/∂x =
∞∑
n=1

h′n cosnϕ (3.5)

Substitution of this expansion into Eq. (3.4) and collection of like terms gives the

generalized velocities as

w0 = u0(α + h′0) (3.6)

wn = u0h
′
n n ≥ 1

From Eq. (3.6), we see that the spatial gradient coefficients h′n are the components

of total velocity due to morphing only, non-dimensionalized on u0. From thin-airfoil

theory, the lift coefficient is given by

CL =
2π

u0

(w0 + 0.5w1) (3.7)

Thus the ideal zero lift condition is given by

α0L = −(h′0 + 0.5h′1) (3.8)
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where h′n is the expansion of the morphing part of dh/dx. If the airfoil is symmetric,

i.e. h′0 = h′1 = 0, then one recovers the flat-plate airfoil result that α0L = 0. An

alternate form of Eq. (3.8) can be obtained in terms of the generalized deformations

hn, rather than in terms of the gradient.

∂h/∂x =
∞∑
n=1

hn
n sin(nϕ)

b sinϕ

=
∞∑

n=1,3,5,...

n
hn
b

+
∞∑
m=1

cos(mϕ)

[
∞∑

n=m+1,m+3,...

2n
hn
b

]
(3.9)

Substitution of this relation into Eq. (3.5) gives the zero-lift angle in terms of the

generalized deformations.

α0L =
1

b

∞∑
n=1

nhn (3.10)

Only two terms of the h′n expansion in Eq. (3.8) are needed to determine the angle

of zero lift. However, with Eq. (3.10), many more terms are required to converge to

the same result in terms of hn. This leads to a distinction in application between

unstalled and stalled airloads. For the linear thin-airfoil theory, the loads are given in

terms only of the airfoil deformations hn. When analyzing stalled loads, the data are

parameterized in terms of the spatial gradient coefficients, h′n. Of course, Eq. (3.8)

is only the ideal approximation to α0L. When experimental data are available, they

must be used to correct α0L accordingly.

With the angle of zero lift established, it is convenient to plot all of the section

characteristics with α − α0L on the abcissa, as motiviated by Eq. (3.1). Plotted in

this way, all of the curves coincide in the linear regisme, and all of the curves behave

similarly following the onset of stall. The distinguishing characteristic for each airfoil

is the angle at which stall occurs. There is some ambiguitiy in the definition of this

angle, as static stall occurs slowly at first, followed by a rapid change in lift and

pitching moment. For instance, one could define the static stall angle as the angle

at which the experimental lift differs from the linear value by some fixed amount.

This can be problematic, however, as some airfoils have softer stall characteristics

than others. Instead, we define the static stall angle αss as the angle corresponding

to maximum CL. From Fig. 3.1 we see that αshift may be calculated in terms of αss
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and α0L by the following equation.

αshift =
[
αss(m) − α0L(m)

]
−
[
αss(b) − α0L(b)

]
(3.11)

where (m) implies the morphed airfoil and (b) implies the baseline.

3.1.2 Static Stall Residuals

In order to implement the equations for dynamic stall, one must know the static stall

residuals, (i.e., the difference between the thin-airfoil values for the airloads—with

appropriate static corrections—and the experimental observations). In principle, the

static stall residuals can be found from stage 4 of the process described in Fig. 3.1.

However, for data with very large values of α (such as NACA 0012 data for 0◦ ≤ α <

360◦), the unstalled theory is not truly linear. For such cases, Ref. [47] shows that

these residuals may be computed from experimental data by

∆CL = CL0 cosα + CLα sinα− CL (3.12)

∆CM = CM0 cos2 α + CMα sinα cosα +
a

2
CD sinα− CM (3.13)

where CL0 and CLα are the magnitude and the slope of the lift curve at α = 0,

respectively; and CM0 and CMα are the value and the slope of the moment curve at

α = 0. Note that calculating the residuals from the factors CL0, CLα, CM0, and CMα

(identified from static data) gives an empirical static correction consistent with the

corrections to the airload theory discussed in Chapter 2. If one chooses not to make

these static corrections, the thin-airfoil values could alternately be used [CLα = 2π,

CL0 = 2π(h′0 + 0.5h′1), CMα = 0, CM0 = −π/4(h′1 + h′2)]. The static residuals given

by Eqs. (3.12)-(3.13) act as the forcing function for the dynamic stall equations.

The unified model also employs an unsteady approximation for drag. Thin-

airfoil theory gives only the induced drag, which must be combined with the profile

drag to determine the total drag. The unstalled profile drag is generally proportional

to a constant plus a term proportional to α2. Thus, a parabola can be fit to the

supplied drag data in the unstalled region, defining the unstalled profile drag. The

parabolic profile drag is treated as quasi-steady. The increment in drag due to stall
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beyond the parabolic shape is then defined by:

∆CD = CD(exp.) − CD(profile) − CD(induced) (3.14)

The drag residual can be processed through a dynamic filter, exactly as lift and

pitching moment are, or it can be treated as quasi-steady. We will consider both

approaches. Even when ∆CD is applied as a quasi-steady correction to the induced

drag, there is still some unsteadiness due to the feedback of circulation loss due to

stall in the calculation of induced drag.

It is often necessary to adjust the angle at which stall onset occurs in the model

to obtain good correlation to experimental data. The motiviation for this correction

comes from the difference between steady and quasi-steady airload data, as discussed

in Ref. [48]. In the left panel of Fig. 3.2, the steady and quasi-steady experimental

lift have been digitized from Ref. [48] for a Boeing VR-12 airfoil. The red curve

indicates the steady lift, obtained at fixed angle of attack after the transients have

decayed. The black curve indicates a quasi-steady test, where the angle of attack is

varied sinusoidally at very low reduced frequency, k = 0.003. The solid portion of the

black curve—obtained for increasing α—is very similar to the steady curve, except

that the onset of stall is delayed by about 2◦. For decreasing α, shown as the dashed

black curve, there is significant hysteresis with a gradual recovery to the steady lift.

The right-hand panel of Fig. 3.2 shows the lift residuals as calculated by Eq. (3.12).

Occasionally, only quasi-steady data may be available. When that is the case (such

as for the VR-12 airfoil treated below), the quasi-steady data for increasing α can be

used with a negative shift in stall onset on the order of 1◦ − 2◦.

3.2 NACA 0012 Airfoil

The NACA 0012 airfoil is a 12% thick symmetric airfoil, so the airfoil meanline has

no slope or curvature. We desire to create a database of static data for morphing of

the 0012 airfoil. At first, it would seem that to analyze stall for a morphing airfoil,

one would need to perform static tests for every possible combination of morphing

variables and angle of attack. This would be quite a daunting experimental task, and

would limit the value of this approach. However, we propose that a small subset of
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static data at various values of the morphing variables be parameterized in terms of

h′0, h′1, and h′2. This database can then be used to analyze any morphing airfoil in

terms of these generalized coordinates, regardless of the particular morphology used

to create them.

3.2.1 Definitions

To consider small perturbations in meanline geometry around the 0012 airfoil, we

turn to published data on eighteen NACA four-digit airfoils, digitized from Ref. [49].

NACA four-digit airfoils are denoted NACAmpxy. The first digit m represents the

percent camber. The second digit p is the chordwise position of the maximum ordi-

nate, in tenths of a chord. The last two digits xy indicate the percent thickness of

the airfoil. Thus, the variables m = 0.01m and p = 0.10p directly relate to the shape

of the meanline (as described in Appendix B). The lift and pitching moment data

are shown in the top-left panels of Figs. 3.3 and 3.4. The thickness distribution of

these airfoils is identical to the 0012, but the airfoils have cambered mean lines. The

data were collected in the NACA variable-density wind tunnel under uniform flow

conditions—with 12% thickness and with camber ranging from 0 to 6%. The point

of maximum camber ranges from 0.2 to 0.7 chord.

For NACA four digit airfoils, the shape of the mean line is known in closed

form, so the velocity contributions due to mean line geometry can be computed

directly. The first three terms of the expansion are given below, where q = 2p− 1.

h′0 =
4mq

(1− q2)2

[
4

π

(
q sin−1 q +

√
1− q2

)
−
(
1 + q2

)]
(3.15)

h′1 =
4m

(1− q2)2

[(
1 + q2

)
− 4

π

(
q sin−1 q + q2

√
1− q2

)]
(3.16)

h′2 =
32m

3π

q√
1− q2

(3.17)

The complete derivation of the first four terms is included in Appendix B, as well as

some useful approximations. However, only h′0, h′1, and h′2 are considered in building

the static stall model developed herein.
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Table 3.1 shows the computed angle of zero lift from −(h′0 +0.5h′1), along with

a comparison with experimental results from Ref. [49] for the eighteen airfoils being

considered. In order to improve the fit of α0L, an empirical correction is made with

an additional term in h′2. The corrected angle is given by:

α0L = −0.87(h′0 +
1

2
h′1) + 0.087h′2 (3.18)

The correction factor is consistent with the correction made to the slope of the lift

curve, in order to compensate for thickness and viscous effects. Equation (3.18) agrees

well with experimental values of α0L, as shown in the predicted results from Fig. 3.5.

In the top right panel of Fig. (3.3), lift coefficient is plotted with α − α0L on

the abscissa, ensuring that each of the lift curves passes through the origin. From the

location of maximum CL, the stall angle in radians is approximated in terms of h′1

and h′2 by:

αss − α0L = 0.293 + 0.336h′1 + 0.403h′2 (3.19)

Table 3.1 compares this fit of αss with the experimental values for the eighteen airfoils.

The fit is excellent. It should be noted that in Eq. (3.19), h′0 is absent. The effect of

the h′0 term is included in the definition of α0L. The combination of Eqs. (3.18) and

(3.19) gives the static stall angle as:

αss = 0.293− 0.870h′0 − 0.099h′1 + 0.490h′2 (3.20)

The constant term in Eq. (3.20) represents the stall angle of the baseline NACA 0012

airfoil, for which h′0 = h′1 = h′2 = 0. The stall angles of the other airfoils are shifted

in proportion to their h′n coefficients. Figure 3.6 compares the observed stall angle

to the curve fit given by Eq. (3.20). The angle by which each of the morphed airfoil

curves is shifted with respect to the baseline 0012 curve is given by

αshift = 0.336h′1 + 0.403h′2 (3.21)

As expected, αshift depends only on the morphing h′1 and h′2.

The bottom-left panel of Fig. 3.3 shows the static lift residuals as functions

of α − α0L. It can be seen that each of the cambered airfoils has similar post-stall
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behavior, but the angle at which the large increase in ∆CL associated with static stall

occurs is a function of the airfoil shape. In the bottom-right panel of Fig. 3.3, the

lift residuals are plotted as a function of α − α0L − αshift, where αshift is calculated

by Eq. (3.21). At this point, a single typical curve or polynomial fit can be used to

give the static lift residual for any morphed airfoil in terms of h′0, h′1, and h′2. An

approximate closed-form expression for the mean lift residual is given by

∆CL ≈ 0.2689 tan−1 (54.54z) + 15.89(z + 0.3192)4 + 0.4070 (3.22)

where z = α−αss = [α−α0L−αshift]− [αss(b)−α0L(b)], assumed greater than or equal

to z0 = −0.3192. Tabulated values of the mean lift residuals are given in Table 3.2.

3.2.2 Pitching Moment

As shown in top-left and top-right panels of Fig. 3.4, there is vertical offset in the

moment curves due to the non-zero pitching moment created by a cambered airfoil.

A fit of the data shows the moment offset to be

CM0 = −0.615(h′1 + h′2) (3.23)

This is approximately 20% less than the theoretical value of −(π/4)(h′1 +h′2). Again,

this is consistent with the types of static corrections made in the linear airload theory.

The static pitching moment residuals are shown in the bottom-left and bottom-right

panels of Fig. 3.4.

For simplicity, it is assumed that stall occurs simultaneously on the lift and mo-

ment curves. Comparison of the curves shows that this approximation is reasonable.

If one desired a finer texture in the model, this angle could be derived independently

for pitching moment. With this assumption, αshift is determined by Eq. (3.21) in the

bottom-right panel. Using this approach, it is again possible to fit all of the data with

a typical ∆CM curve or a polynomial fit. An approximate closed-form expression for

the mean pitching moment residual is given by

∆CM ≈ 0.0276 tan−1 (54.54z) + 2.177(z + 0.3048)4 + .0435 z ≥ −0.3192 (3.24)
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Tabulated values of the mean pitching moment residuals are given in Table 3.2. One

can see the marked rise in residuals for angles greater than the static stall angle,

αss = 0.29 (17◦).

3.3 SC1095 Airfoil

The NACA 0012 airfoil is frequently used as a baseline for demonstrating the validity

of an analytical or computational approach, as was done in the previous section.

However, this airfoil is not commonly used in helicopter rotors. Reference [50] presents

a CFD study on various morphologies of the SC-1095 airfoil, which is used in the

UH-60A helicopter. The authors consider three different morphologies: trailing-edge

deflection (TED), leading-edge deflection (LED), and active twist. The latter does

not involve sectional airfoil shape changes, so it is not considered here. The TED and

LED geometries are generated using a non-uniform rational B-spline methodology

(NURBS), with control points to ensure a smooth transition to the baseline geometry.

This results in a more streamlined geometry than either a simple hinged flap or a nose

droop.

The geometric details of the deflected upper and lower surfaces from the study

were not released. However, only the meanline geometry is needed for analysis of

airloads in the current theory. Therefore, an approximate parabolic representation

of the meanline is sufficient. The geometry is illustrated in Fig. 3.7, and a detailed

description of the methodology is found in Appendix C for the LED and TED ge-

ometry, repsectively. As before, the static characterstics are parameterized in terms

of h′0, h′1, and h′2. These generalized gradients are given as functions of the deflec-

tion angles (θLE or δTE) and the transition points to the baseline geometry (e or d).

The leading-edge and trailing-edge deflections are considered separately in Ref. [50],

but they can be combined into a single expression for the generalized deflections and

gradients, as shown in Appendix C.

As verification of the mean-line approximation of Appendix C, consider the

angle of zero lift. Equation (3.18) indicates that the experimentally determined angle
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for a morphing 0012 airfoil is given by:

α0L = −0.87(h′0 +
1

2
h′1) + 0.087h′2 (3.25)

Based on the mean-line expansion in Appendix C, the angle of zero lift from CFD

data for the SC-1095 airfoil is given by:

α0L = −0.88(h′0 +
1

2
h′1)− 0.012 (3.26)

The correction factor is nearly identical to the 0012 (0.88 vs. 0.87), which indicates

that the mean-line does indeed predict the zero-lift angle. The constant offset -0.012

is due to the camber of the baseline airfoil, because the SC-1095 is not symmetric.

Figure 3.8 shows the correlation of the zero lift angles for both leading-edge and

trailing-edge deflections. The fit is excellent.

The same four-step process used to parameterize the 0012 static data is used

for the SC-1095 airfoil. The resulting fit for the shift angle is given by

αshift = 0.481h′1 + 1.10h′2 (3.27)

Figures 3.9 and 3.10 show the lift and pitching moment correlations for the leading-

edge deflection. Figures 3.11 and 3.12 show the correlations for the trailing-edge

deflection. Figures 3.13 and 3.14 show all of the correlations on one plot. The

shifted data in the bottom-right panel of Fig. 3.13 show that all fourteen morphed

configurations of the baseline airfoil can be collapsed very well onto a single curve.

The heavy black curve indicates the least-squares fit of all of the collapsed curves.

This single curve can be used in a simulation to compute the static lift residual for

any aribtrary morphing of the SC-1095 airfoil.

Note that we earlier plotted the NACA data for positive angles of attack

only. Here, for the SC-1095, we plot both positive and negative angles of attack.

Interestingly, the stall behavior of the residuals ∆CL or ∆CM at both positive and

negative angles of attack (shown in Figs. 3.9-3.14) all collapse onto a single curve

when shifted by the same α0L and αshift. There is not a separate shift required for

positive and negative angles of attack (i.e., for positive and negative stall). The

post-stall behavior is different for the positive and negative realms, and there are
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distinctly different values of |αss| for the onset of stall on the negative and positive

sides. Despite these differences, the curves for ∆CL or ∆CM at both positive and

negatives angles—and for either leading-edge or trailing-edge droop—collapse onto a

single unified curve with only one shift parameter.

Table 3.3 gives ∆CL and ∆CM versus the shifted variable α− α0L − αshift for

both positive and negative angles. On the positive side, we can see the rapid rise

in the residuals for angles greater than 0.22 (12.6◦). On the negative side, residuals

begin to rise for angles less than −0.09 (−5.2◦). These are the positive and negative

shifted static stall angles. An approximate fit of ∆CL and ∆CM at positive angles of

attack, with either leading-edge or trailing-edge morphing, and for morphing angles

from −10◦ to +15◦, is given by the following formulas:

∆CL ≈ 0.2959 tan−1 (42.76z) + 21.83(z + 0.2320)4 + 0.4351 (3.28)

∆CM ≈ 0.9246 tan−1 (7.940z)− 5.956z − 0.166z2

+ 50.23z3 + 5.354z4 − 248.9z5 + 0.0561 (3.29)

where z = α − αss = [α − α0L − αshift] − [αss(b) − α0L(b)]; and where α0L is from

Eq. (3.26), αshift is from Eq. (3.27), αss(b) = 0.21 (12◦), and α0L(b) = −0.012 (−0.7◦).

The formulas in Eqs. (3.28) and (3.29) can be considered valid for z > −0.22. This

is equivalent to the parameter α − α0L − αshift being greater than 0. That all of

these results can be combined in this way—and that the equations for the residuals

(along with α0L and αshift) are each represented by unified formulas in terms of h′n—is

validation of the approach that we are using in this thesis.

The shifted data in the bottom-right panel of Fig. 3.14 show that the pitching

moment data are more sensitive to the type of morphing employed. For example,

for the largest positive and negative trailing-edge deflections, there is a significant

curvature in the pitching moment curve, while for other morphologies the pitching

moment curve is fairly linear in the small-angle regime. Thus, the correlation of ∆CM

at higher deflections has some discrepancies near the stall angle. At large angles of

attack, the curves once again coalesce. The heavy black curve indicates the least-

squares fit of all of the collapse pitching-moment curves, which can be used in a
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numerical simulation. Reference [51] proposes a method of improving the correlation

by blending the two extreme curves as a function of the generalized gradients. This

method would result in improved correlations of the static data near the onset of

stall.

3.4 Boeing VR-12 Airfoil

For the VR-12 airfoil considered in Ref. [33], variety of static data are available,

from which the lift, moment, and drag residuals may be computed. Static curves are

available for fixed nose droop angles of 0◦, 5◦, 10◦, 15◦, and 20◦, and for the Variable

Droop Leading Edge (VDLE) configuration. In the VDLE configuration, the leading

25% of the airfoil is fixed at zero incidence to the oncoming flow, while the remainder

of the airfoil undergoes pitch oscillations (e = 0.5). Thus, the nose droop angle is

equal to the pitch angle at all times. It is logical that the static curves for the VDLE

airfoil should be a cross-plot of the fixed droop cases. For instance, at 5◦ angle of

attack (with droop of 5◦), the VDLE airfoil should intersect the curve of the 5◦ fixed

droop airfoil. At 10◦ angle of attack it will follow the 10◦ fixed droop curve, etc.

Figure 3.15 shows the static lift, moment, and drag curves for the VDLE airfoil at

M = 0.3, as well as the fixed droop cases from 0◦ to 15◦. The square markers indicate

points at which the VDLE curve should intersect the fixed droop curves. For instance,

at 5◦ the VDLE curve (dashed line) should intersect the 5◦ curve (green line). The

figure shows that the VDLE static characteristics follow the predicted values from

the fixed droop tests reasonably well.

Dynamic cases for the baseline VR-12 and VDLE airfoil configurations are

given in Ref. [33] at Mach numbers of 0.2, 0.3, and 0.4. Each of these cases has

corresponding quasi-static data from which to calculate the stall residuals directly.

Therefore, for the purpose of correlating dynamic data, it is not necessary to create

a generalized static database for the VR-12 airfoil. Figures 3.16 and 3.17 show the

lift and pitching moment residuals for the VR-12 baseline and VDLE airfoils at each

Mach number. The values have been corrected to M = 0, so the linear portion of

the curves are expected to align. The top panels show the raw data versus α. As

expected, the VDLE airfoil has a reduced lift slope due to the effective reduction in
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angle of attack at the leading edge. To allow for a better comparison, the middle

panels show the data plotted with α+h′0 + 0.5h′1 on the abscissa. This represents the

effective angle of attack, including the effects of morphing. The bottom panels shows

the lift and moment residuals, ∆CL and ∆CM , plotted in the same way.

The effect of Mach number is clearly visible. At higher Mach numbers the

onset of stall occurs earlier. This shift is more pronounced for the baseline VR-12

airfoil than the VDLE configuration. Figure 3.18 shows the static stall angle for each

of the cases. The experimental data are given by the individual data points. The

lines indicate a least-squares fit for the stall angle as a function of Mach number. The

static stall angles are given approximately by

αss = 0.271(1− 2.02M2) (Baseline VR− 12) (3.30)

αss = 0.241(1− 1.30M2) (VDLE VR− 12) (3.31)

These three figures, taken together, indicate that Mach number significantly affects

the onset of stall, with the onset of stall occurring at a lower angle of attack for higher

Mach number flows. However, the lift and pitching moment residuals have the same

general shape at each of the Mach numbers, and could be approximated by a single

curve, which could be shifted as a function of Mach number.

3.5 Conclusions on Static Data

Static data have been presented for three morphing airfoils: NACA 0012, SC-1095,

and VR-12. For the first two cases, the airfoil mean-line shapes are transformed into

generalized slopes. The static data are then parameterized in terms of the first three

components of this expansion. The result is a single static curve that can be used to

predict the static section characteristics for any arbitrary morphology of the baseline

airfoil. For the VR-12 airfoil, the effect of Mach number is explored. At higher Mach

numbers, the airfoil tends to stall more quickly than at lower Mach numbers, and this

variation in the static stall angle can be fit by a quadratic expression in M . Even

though the onset of stall is affected by Mach number, the overall shape of the static
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residuals is relatively independent of Mach number and can be approximated to first

order by a single curve.
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Figure 3.3: Section lift curves for NACA mp12 airfoils.
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Figure 3.4: Section moment curves for NACA mp12 airfoils.
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Figure 3.7: Deflected geometry for LED and TED SC1095 airfoils.
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Figure 3.9: Section lift curves for SC-1095 airfoil with leading-edge deflection.
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Figure 3.10: Section moment curves for SC-1095 airfoil with leading-edge deflection.
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Figure 3.11: Section lift curves for SC-1095 airfoil with trailing-edge deflection.
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Figure 3.12: Section moment curves for SC-1095 airfoil with trailing-edge deflection.
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Figure 3.13: Section lift curves for SC-1095 airfoil with arbitrary morphing.
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Figure 3.14: Section moment curves for SC-1095 airfoil with arbitrary morphing.
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Figure 3.16: Static lift residuals for the VR-12 baseline and VDLE airfoils at
M = 0.2, 0.3, 0.4.
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Figure 3.17: Static moment residuals for the VR-12 baseline and VDLE airfoils at
M = 0.2, 0.3, 0.4.
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Table 3.1: Angle of zero lift for NACA mp12 airfoils.

Exp. -(h′0 + 0.5h′1) Pred. Exp. Pred.
Airfoil h′0 h′1 h′2 α0L (◦) α0L (◦) α0L (◦) αss (◦) αss (◦)

0012 0.0000 0.0000 0.0000 0.0 0.0 0.0 16.3 16.8
2212 -0.0176 0.0980 -0.0509 -1.8 -1.8 -1.8 15.8 15.7
2312 -0.0098 0.0866 -0.0296 -1.9 -1.9 -1.8 16.0 16.0
2412 -0.0045 0.0815 -0.0139 -1.8 -2.1 -1.9 16.4 16.2
2512 0.0000 0.0800 0.0000 -2.1 -2.3 -2.0 16.5 16.3
2612 0.0045 0.0815 0.0139 -2.3 -2.6 -2.2 16.4 16.5
4212 -0.0352 0.1960 -0.1019 -3.4 -3.6 -3.6 15.7 14.6
4312 -0.0196 0.1732 -0.0593 -3.9 -3.8 -3.6 15.7 15.1
4412 -0.0090 0.1630 -0.0277 -3.9 -4.2 -3.8 16.4 15.5
4512 0.0000 0.1600 0.0000 -4.2 -4.6 -4.0 17.0 15.9
4612 0.0090 0.1630 0.0277 -4.6 -5.2 -4.4 16.9 16.2
4712 0.0196 0.1732 0.0593 -5.0 -6.1 -5.0 17.5 16.5
6212 -0.0528 0.2940 -0.1528 -5.2 -5.4 -5.5 15.1 13.5
6312 -0.0295 0.2598 -0.0889 -5.5 -5.8 -5.4 14.6 14.3
6412 -0.0135 0.2445 -0.0416 -5.7 -6.2 -5.6 15.0 14.9
6512 0.0000 0.2400 0.0000 -6.2 -6.9 -6.0 16.4 15.4
6612 0.0135 0.2445 0.0416 -6.6 -7.8 -6.6 17.3 15.9
6712 0.0295 0.2598 0.0889 -7.0 -9.1 -7.5 17.9 16.3
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Table 3.2: Tabulated values for ∆CL and ∆CM for morphed NACA 0012 airfoil.

α− α0L − αshift ∆CL ∆CM

0.00 0.0000 0.0000
0.14 0.0000 0.0000
0.16 0.0006 0.0073
0.18 0.0072 0.0090
0.20 0.0174 0.0109
0.22 0.0323 0.0130
0.24 0.0560 0.0154
0.26 0.0867 0.0182
0.28 0.1476 0.0238
0.30 0.3842 0.0578
0.32 0.5977 0.0839
0.34 0.7826 0.0994
0.36 0.9653 0.1140
0.38 1.1480 0.1285
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Table 3.3: Tabulated values for ∆CL and ∆CM for SC-1095 airfoil.

α− α0L − αshift ∆CL ∆CM

-0.18 -0.4401 -0.0403
-0.16 -0.2527 -0.0146
-0.14 -0.1358 -0.0019
-0.12 -0.0735 0.0020
-0.10 -0.0383 0.0025
-0.08 -0.0177 0.0029
-0.06 -0.0076 0.0035
-0.04 0.0000 0.0027
0.08 0.0000 -0.0044
0.10 0.0087 -0.0066
0.12 0.0180 -0.0095
0.14 0.0364 -0.0124
0.16 0.0649 -0.0158
0.18 0.1134 -0.0168
0.20 0.2001 -0.0140
0.22 0.3634 -0.0017
0.24 0.5954 0.0217
0.26 0.8101 0.0467
0.28 0.9197 0.0713
0.30 0.9542 0.0979
0.32 1.0076 0.1181
0.34 1.0921 0.1301
0.36 1.2134 0.1322
0.38 1.3485 0.1292
0.40 1.4742 0.1256
0.42 1.5844 0.1244
0.44 1.6876 0.1246
0.46 1.7876 0.1255
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Chapter 4

Determination of Stall Parameters

Due to the highly non-linear nature of dynamic stall, there is currently no physical

model that adequately describes the phenomenon. Reference [30] lists various tech-

niques that have been employed over the years to model dynamic stall. All of the

models are empirical, based on wind-tunnel test data. All of these models share a

dependence on the pitch rate associated with the unsteady motion. For simple har-

monic motion, this implies that stall depends on the reduced frequency of oscillation

(k). One model of this phenomenon is the ONERA model of Refs. [1] [2]. This model

takes the form of a second-order ordinary differential equation with non-constant co-

efficients. The dynamic behavior of the response is governed by the choice of six

model parameters. Reference [2] makes some suggestions regarding the lower and

upper bounds for the parameters. The purpose of this chapter is to outline the proce-

dure used to identify appropriate dynamic stall parameters using large-amplitude test

data. The examples used to illustrate the approach are the identification of stall pa-

rameters for lift on the variable-droop Boeing VR-12 airfoil and of a morphed NACA

0012 airfoil.

Model parameters for the VR-12 are identified to give the best correlation to

experimental data for lift coefficient, as published in Ref. [33]. The data were collected

in the NASA Ames wind tunnel for a modified Boeing VR-12 airfoil undergoing simple

harmonic motion at four different frequencies (k = 0.025, k = 0.050, k = 0.075, and

k = 0.100). The problem is posed as an optimization of six design variables, with side

constraints on each of the variables. The fitness function is a weighted combination of

the error between the experimental data and the mathematical model at each of the

four frequencies. A genetic algorithm is used to find the optimum set of parameters.
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4.1 Characteristics of Dynamic Stall Response

Consider an airfoil undergoing harmonic oscillations of pitch in a free stream, as

shown in Fig. 4.1. As the angle of attack increases during the upstroke, small pockets

of detached flow arise, originating near the leading edge. The vortex disturbance

continues to build until the boundary layer finally detaches from the airfoil. The

disturbance then moves across the airfoil, resulting in a highly unsteady pressure

profile. As the angle of attack is reduced during the down stroke, the flow gradually

reattaches, eventually returning to its predicted value from thin-airfoil theory. The

result is a hysteresis loop in the lift curve, as shown in Fig. 4.2. The solid lines indicate

the portion of the curve when the angle of attack is increasing (the upstroke). The

dashed lines indicate the portion of the curve when the angle of attack is decreasing

(the downstroke).

Some features of the lift curve should be noted. First, for the oscillating airfoil,

the onset of stall is delayed significantly compared to the static curve. However, when

stall finally does occur, the drop in lift is more pronounced and persistent than it is

for the static case. Second, as the frequency of oscillation increases, the amount of

hysteresis increases. For low frequency oscillations (about k = 0.025), the lift curve

has the general shape of the static curve, with a small amount of hysteresis. However

at higher frequency oscillations (about k = 0.10), the lift barely recovers to the value

predicted by theory before beginning another cycle. Thus, in order to correctly model

dynamic stall for various frequencies, the model must include both a time delay and

overshoot that increase with reduced frequency.

4.2 Mathematical Model

Flow over airfoils in dynamic stall is highly non-linear, which has precluded the devel-

opment of a rigorous physical model of the phenomenon. The ONERA dynamic stall

model is based on the observation that non-linear systems behave in an essentially

linear fashion for small perturbations about a mean value. If an airfoil is placed in a

wind tunnel at some mean angle of attack, then oscillated with a small amplitude of

0.5◦ the resulting variation in lift is well described by a second-order transfer function.

66



Strictly speaking, this transfer function is valid only for small perturbations about

that mean angle of attack. However, if the test is repeated over a range of mean

angles, one can construct a global transfer function, whose coefficients are a function

of angle of attack. This is the methodology ONERA adopted to derive mathematical

models for dynamic stall.

During the mid-1980’s, ONERA and NASA performed small-amplitude oscilla-

tion tests on several airfoils, including the OA212, NACA 0012, and others. Reference

[31] details one such study on the Vertol VR-7 airfoil at NASA. Small amplitude tests

were performed at 13 different mean angles of attack and at 11 reduced frequencies.

Transfer functions were found for each angle of attack, and a crude optimization was

used to curve fit the parameters from the transfer functions. This work yielded several

important results. First, it confirmed that the ONERA model is capable of providing

reasonable correlation to experimental data; and this correlation is as good as other

more complicated dynamic stall models. Second, it provided a functional form for

the parameters. All of the parameters seemed to vary as ∆CL
2. Third, Ref. [2] sug-

gests a reasonable range of parameter values that are used as side constraints for the

optimization. It is expensive to use the small-amplitude approach to derive model

parameters for every airfoil. This leads to the motivation of the present work to

identify the stall parameters from large amplitude oscillation data using optimization

methods.

The stall model in dimensional form is defined by Eq. (2.41), reprinted below

for clarity.

b2

uT 2
Γ̈n + η̂

b

uT
Γ̇n + ω̂2 Γn

= −b uT ω̂2

[
∆Cn + ê

d∆Cn
dt

b

uT

]
(4.1)

The parameters ω̂, η̂, and ê are assumed to be of the functional form

ω̂ = ω0 + ω2 (∆CL)2

η̂ = η0 + η2 (∆CL)2 (4.2)

ê = e0 + e2 (∆CL)2

67



In Eq. (4.1), Γn is the loss in generalized circulation due to dynamic stall of the nth

generalized load. For the current illustrative example, we are considering only lift.

The total lift coefficient on the airfoil is given by the sum of the lift coefficient from

thin-airfoil theory and the loss due to dynamic stall, given by Eq. (4.1).

CL = CL(linear) +
ΓL
uT b

(4.3)

where ΓL is generally negative (but not always).

4.3 Stall Parameter Exercise for Variable-Droop

VR-12

Reference [32] provides experimental data collected on a Boeing VR-12 airfoil, which

was modified to have a variable-droop leading edge. In these tests, the forward 25%

of the airfoil remains at zero angle of attack with respect to the free stream (e = 0.5),

while the rear 75% of the airfoil perform pitch oscillations given by:

α = 10◦ + 10◦ sin kτ (4.4)

Wind tunnel data were collected at the following reduced frequencies: k = 0.002,

0.025, 0.050, 0.075, and 0.100. The first case, k = 0.002 is considered quasi-steady;

that is, the frequency of oscillation is so low that it approximates the static lift curve.

The static stall, ∆CL is given by the difference between the static lift curve and

the projected linear lift from thin-airfoil theory. Thus, the ONERA model, given by

Eq. (4.1), utilizes the experimental values of ∆CL with assumed motion of the form

given by Eq. (4.4). The differential equation is solved numerically in Matlab using

the ODE45 solver. The numerical solution is compared to the experimental data for

each of the four reduced frequencies from 0.025 to 0.100. Finally, a fitness function

E is calculated, which is the sum of the error norms at each of the four reduced

frequencies.

To define the fitness function for the optimization, first a measure of error for

each iteration is needed. The following error norm is defined for each variable g at

68



each of the reduced frequencies:

Ek =
1
N

∑N
i=1 |ĝ(α)− g(α)|
gmax − gmin

(4.5)

where g is the experimental data of interest (in this case CL), ĝ is the numerical

solution, and N is the number of points at which the function is evaluated. The error

norm defined by Eq. (4.5) is a measure of relative error that can be used for any

airload of interest. The fitness function E is simply the sum of the error norms at

each reduced frequency.

E = E0.025 + E0.050 + E0.075 + E0.100 (4.6)

In Eq. (4.6), the error norms are evaluated at 0.25◦ intervals from 0◦ to 20◦.

Each evaluation of the fitness function involves time-marching a differential

equation to convergence (for four cases) followed by computation of the error norms.

The average time to complete one evaluation is about 16 sec on a 2.60 GHz PC with

1.5 GB of RAM. In the light of the computation time required, the genetic algorithm

method was selcted, because it does not require gradient or Hessian evaluations. The

problem is written as a formal optimization:

MinimizeE(ω0, ω2, η0, η2, e0, e2) = E0.025 + E0.050 + E0.075 + E0.100 (4.7)

subject to 0.10 ≤ ω0 ≤ 0.40

0.00 ≤ ω2 ≤ 0.50

0.10 ≤ η0 ≤ 0.40

0.00 ≤ η2 ≤ 0.60

−0.20 ≤ e0 ≤ 0.20

−0.20 ≤ e2 ≤ 0.00

The Genetic Algorithm toolbox in Matlab was used with the following parameters:

69



Parameter Value

Population Type Double

Population Size 70

Crossover Fraction 0.8

Creation Function Uniform

Selection Function Stochastic Uniform

Crossover Function Heuristic

Mutation Function Adaptive Feasible

A preliminary estimate of the dynamic stall parameters was based on a simple

line search in Matlab, using the fminunc function. Figure 4.3 shows the fit at each of

the four reduced frequencies using this initial estimate. These parameters result in a

fitness function of 0.759. Figure 4.4 shows the fit at each frequency after running the

genetic algorithm for thirteen generations (a total of 910 iterations). The algorithm

converges to an optimal solution in about nine generations, with a final fitness function

of 0.271. This is a 64% reduction in error from the initial estimate. The model

captures the correct shape and character of the curves for all of the frequencies. The

final parameters from the optimization are given by

ω̂ = 0.226 + 0.318(∆CL)2

η̂ = 0.404 + 0.341(∆CL)2 (4.8)

ê = 0.129− 0.194(∆CL)2

An indicator that the genetic algorithm is working is a rapid change in the

fitness function during the first few generations, followed by a tapering off in subse-

quent generations as the optimum solution is approached asymptotically. Figure 4.5

shows the minimum, maximum, and average fitness function over the first thirteen

generations of the genetic algorithm. As expected, there is a rapid improvement in

fitness over the first five generations, followed by a more gradual linear trend from the

fifth through ninth generations. By the tenth generation, the fitness function value

changes by less than 0.05% per generation.

These results illustrate the procedure and demonstrate typical results that

can be obtained by optimization methods. In the following sections, other results

70



are presented, which are obtained from a procedure similar to that described above.

Depending on the context of the optimization, different objective functions can be

used. In the previous example, stall parameters were optimized for a range of four

different frequencies for a single load (lift). However, one may wish to identify a single

set of stall parameters for both lift and pitching moment simultaneously. In that case,

the objective function would include error norms for both lift and pitching moment.

4.4 NACA 0012 Stall

Although it is not commonly used in modern helicopter rotor blades, the NACA 0012

airfoil is often used as a baseline for evaluating airfoil theories. Many static and

dynamic data are available for this airfoil from a variety of sources. [See Ref. [52]

for a comprehensive evaluation of 0012 wind tunnel test data.] In addition, this is

often the platform used for evaluation of morphing airfoil technologies. Reference

[53] measures dynamic lift and pitching moments for a NACA 0012 airfoil which was

modified to include a 20% chord trailing-edge flap. Thus, the proper characterization

of the dynamic stall parameters for the 0012 airfoil is important in order to correlate

this data.

In a report which describes the phenomenon of dynamic stall, Ref. [30] pub-

lished static and dynamic lift and pitching moment results for several airfoils, includ-

ing the NACA 0012. These data are used to identify stall parameters for the 0012

airfoil. The static lift residual is computed from the static data by Eq. (3.12). The

lift residual is then passed through the dynamic stall filter by a numerical simulation.

The optimal stall parameters are identified through a genetic algorithm optimization

(as noted above). The fitness function is defined as

E = Ek=0.025 + Ek=0.100 (4.9)
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The final set of optimal stall parameters for the NACA 0012 airfoil is given by

ω̂ = 0.27 + 0.13(∆CL)2

η̂ = 0.52 + 0.22(∆CL)2 (4.10)

ê = −0.10(∆CL)2

Figure 4.6 shows a comparison of the numerical results to the published results of

Ref. [30]. This set of stall parameters is used for all of the subsequent dynamic

airload correlations for the NACA 0012 morphing airfoils presented in Chapter 5.

4.5 SC-1095 Stall

In Ref. [54], static and dynamic airload data are presented for seven advanced airfoil

sections typical of modern helicopters. One of the airfoils considered is the SC-1095,

which is used in the UH-60 helicopter. In order to apply the stall database derived

for this airfoil in Chapter 3, an estimate of the dynamic stall parameters is needed.

Using the same method described above for the 0012 airfoil, the following dynamic

stall parameters are determined for the SC-1095 by a genetic algorithm optimization.

ω̂ = 0.26 + 0.51(∆CL)2

η̂ = 0.49 + 0.21(∆CL)2 (4.11)

ê = 0.013(∆CL)2

Correlations of our model with the NASA stall data for the baseline SC-1095 airfoil

are shown in Fig. 4.7.

4.6 Boeing VR-12 Stall

The Boeing VR-12 airfoil is more representative of current helicopter rotor airfoils

than the NACA 0012. For this reason, NASA and the US Army have studied various

morphing airfoil technologies to mitigate the effect of dynamic stall on this airfoil,
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Refs. [32], [33], [48]. The dynamic data of Ref. [32] are used to determine the stall

parameters. As before, a genetic algorithm optimization technique is used to identify

the optimal parameters.

Dynamic data for this airfoil are available for both the baseline VR-12 airfoil

and the Variable Droop Leading Edge (VDLE) configuration, at Mach numbers of

0.2, 0.3, and 0.4 and reduced frequencies of k = 0.05 and k = 0.10. In order to

identify representative dynamic stall parameters for correlating dynamic VR-12 data,

only Mach 0.3 data are used. The objective of the optimization is to find the stall

parameters that minimize the error in lift and pitching moment simulataneously for

both airfoils and both frequencies. Thus, unlike the VR-12 discussed earlier, a total

of eight correlations are used in determining the fitness of each iteration. The fitness

function used in the optimization is given by

E =
[
EL, k=0.05 + EL, k=0.10 + EM, k=0.05 + EM, k=0.10

]
baseline

+
[
EL, k=0.05 + EL, k=0.10 + EM, k=0.05 + EM, k=0.10

]
VDLE

(4.12)

Rather than using the stall parameters identified by the exercise in Section

4.3., which were optimized only for lift on the variable-droop airfoil, for this work we

use data for both lift and pitching moment, for both the baseline and VDLE config-

urations. This is more in keeping with what a typical user would do in the future for

morphing airfoils. If dynamic data are available for the baseline unmorphed geome-

try, the stall parameters are identified from this data and applied to morphing airfoil

data. If both baseline and morphed dynamic data are available, stall parameters are

identified to minimize error for both data sets simultaneously. Also, the assumption

that lift and pitching moment follow the same stall dynamics ensures consistency in

the model. This implies that the stall model can be applied either directly to the

airloads of interest, or to the generalized Glauert loads. Furthermore, if there are

any other airloads of interest, for instance flap hinge moment, these would follow the

same dynamics as well.
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Figure 4.8 shows the results of the optimization for the VR-12 stall parameters.

The final set of optimal stall parameters is given by

ω̂ = 0.237 + 0.330(∆CL)2

η̂ = 0.406 + 0.206(∆CL)2 (4.13)

ê = −0.10(∆CL)2

One can see from the figure that it is a quite good approximation. The parameters

in Eq. (4.13) are very close to the variables found in the excersize of Eq. (4.10).

This shows the robustness of the parameter identification process. This set of stall

parameters is used for all of the subsequent dynamic airload correlations for the VR-12

morphing airfoils presented in Chapter 5.

Figure 4.1: Oscillating airfoil in a free stream
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Chapter 5

Dynamic Airload Correlations

The purpose of this chapter is to verify the accuracy of the airload theory in correlation

of dynamic data. First, we demonstrate that the current theory recovers Theodorsen

theory for harmonic pitch and flap motions. Then, correlations are presented for

experimental data on both a NACA 0012 airfoil with trailing-edge flap deflctions,

and a VR-12 airfoil with leading-edge droop. Finally, we illustrate how the theory

is used to predict airloads for an drooped leading-edge SC-1095 airfoil, with various

deployment schedules. A list of all of the dynamic cases that have been correlated to

date is given in Tab. 5.1. For the stalled cases below, one must evaluate d(∆Cn)/dt

by the chain rule. Appendix D provides a tutorial on how this can be done under the

present assumptions.

5.1 Harmonic Pitch and Flap Simulations

The experimental data correlated in the following sections are 2D wind tunnel data

for airfoils undergoing simple harmonic variation in pitch angle, trailing-edge flap

deflection, and leading-edge droop. Therefore, it is of particular interest to show that

the unified model recovers Theodorsen theory for pitch and flap deflections without

dynamic stall. For simplicity, the two cases will be considered separately.

For a symmetric airfoil undergoing simple harmonic pitching motion about a

point located ab aft of the mid-chord, Ref. [9] shows the lift to be

CL = 2π

{
1

2

∗
α− a

2

∗∗
α + C(k)

[
α +

(
1

2
− a
)
∗
α

]}
(5.1)
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where C(k) is the Theodorsen lift deficiency function. For the unified model, with

h0 = −baα and h1 = bα, the lift is given by

CL = 2π


∗
h0

b
+
h1

b
− λ0

u0

+

∗
h1

b
+

1

2

∗∗
h0

b


= 2π

{
−a

2

∗∗
α − a ∗α +

∗
α− λ0

u0

+ α

}
(5.2)

Balance of Eqs. (5.1) and (5.2) shows that the steady-state induced flow is given by

λ0 =

[
α +

(
1

2
− a
)
∗
α

]
[1− C(k)] (5.3)

To validate the present methodology, the unified model equations are time

marched from zero initial conditions for an input of α = 5◦ sin kτ for reduced fre-

quencies of k = 0.05 and k = 0.1. The left panel of Fig. 5.1 shows the induced flow

in the solid line from the unified model and the Theodorsen result from Eq. (5.3) in

the dotted line. After two cycles the transients in the unified model have died out

and the solution has settled to the particular solution, which is indistinguishable from

the Theodorsen result. The right panel of Fig. 5.1 shows the lift coefficient from the

unified model after three cycles compared to the Theodorsen lift. For this case, the

geometry of the airfoil is represented exactly by the two generalized deformations h0

and h1, and the inflow is approximated by the finite-state induced flow theory with

eight states.

The next case to consider is an airfoil fixed at zero angle of attack, undergoing

simple harmonic deflections of a trailing-edge flap located db aft of the mid-chord.

Reference [9] shows the lift due to a trailing-edge flap to be

CL = −T4

∗
β − T1

∗∗
β + C(k)

[
2T10β + T11

∗
β

]
(5.4)
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where

T1 = −1

3

√
1− d2

(
2 + d2

)
+ d cos−1 d

T4 = − cos−1 d+ d
√

1− d2

T10 =
√

1− d2 + cos−1 d

T11 = (cos−1 d)(1− 2d) +
√

1− d2(2− d)

For the unified model, the deflected flap geometry is represented by the Glauert

expansion, {h} = {T}β, where

{T} =



1
π
[sinϕm − ϕm cosϕm]

1
π
[ϕm − sinϕm cosϕm]

1
π

[
1

n+1
sin[(n+ 1)ϕm] + 1

n−1
sin[(n− 1)ϕm]

]
− 2
n

cosϕm sin(nϕm)
...


The lift coefficient is given by

CL = 2π

{(
1

2
t0 −

1

4
t2

)
∗∗
β + (t0 + t1)

∗
β − λ0 +

∞∑
n=0

ntnβ

}
(5.5)

Equating Eq. (5.4) and Eq. (5.5), the induced flow becomes

λ0 =

(
t0 + t1 +

T4

2π

)
∗
β − C(k)

2π

[
2T10β + T11

∗
β

]
+
∞∑
n=0

ntnβ (5.6)

It should be noted that the
∗∗
β drops out of the λ0 equation because of the cancellation

of terms. Also, unlike the pitching case, the induced flow now involves an infinite sum

over the generalized blade deformations. For the validation study, ten terms of the

geometric expansion are used. The left panel of Fig. 5.2 shows the induced flow in the

solid lines from the numerical results from time marching the unified model equations.

The steady-state Theodorsen result from Eq. (5.6) is shown in the dotted line. The

right panel of the figure shows the lift coefficient after three cycles compared to the
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Theodorsen lift. Figures 5.1 and 5.2 show that the unified airload model recovers

Theodorsen results for harmonic pitch and flap deflections.

5.2 Combined Pitch-Flap Oscillation

The first wind tunnel data to be correlated are from Ref. [53]. A NACA 0012 is

oscillated in pitch about a center of rotation 35% chord from the leading edge at a

reduced frequency of k = 0.021. At the same time, a 20% chord trailing-edge flap

is oscillated at twice the pitch frequency. Lift and pitching moment coefficients are

obtained by integrating pressure transducer readings along the airfoil. Eight different

cases are studied, with different mean angles and different phases lag between pitch

and flap motions.

The equations describing the intended motion of the airfoil are given by

α = α0 + α sin(kτ) (5.7)

β = β0 + β sin(2kτ − φ)

Due to inaccuracies in the mechanism that oscillates the airfoil in the wind tunnel, the

actual airfoil motions were not simple harmonic. The authors of Ref. [53] provided

to us the measured values of α, β, CL, and CM at each time step, so that the actual

values of α and β could be used as the input to the unified model. The motions are

transformed into the generalized coordinate system by expansion of the trailing-edge

flap geometry in a Glauert series [15]. The expansion in terms of β is

h0 =
βb

π
[sinϕm − ϕm cosϕm]

h1 =
βb

π
[ϕm − sinϕm cosϕm] (5.8)

hn =
βb

π

[
1

n+ 1
sin[(n+ 1)ϕm] +

1

n− 1
sin[(n− 1)ϕm]− 2

n
cosϕm sin(nϕm)

]
where ϕm = cos−1(d), the Glauert variable at the flap hinge location. The above

expansion allows for a matrix transformation between the user variables α and β and
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the generalized blade deformations hn as follows:

{hn} = [T ]

{
α

β

}
(5.9)

where [T ] is defined in Appendix A.

The system is simulated in Matlab by a simultaneous solution of Eqs. (2.19),

(2.28), (2.41), and (2.42) via time marching. Time derivatives are estimated with a

central-difference approximation. The static airfoil data of Section 3.2 are used for

the input to the dynamic stall model.

Static correction factors are determined to match the slope of the experimental

static lift and pitching moment curves. Since only four of the five correction factors

are linearly independent, it is convenient to assign fα = 1, as static data are typ-

ically given as a function of α. The experimental partial derivatives of the loads,

(∂CL/∂α)exp. and (∂CL/∂β)exp. are determined by the assumption that the loads are

quasi-static. The data are then fit by a least squares method in Matlab, [i.e., the

effect of induced flow is neglected]. With this approach, the best fit expression for

the experimental lift and pitching moment are:

(CL)exp. = 5.394α + 1.944β − 0.04331 (5.10)

(CM)exp. = 0.1194α− 0.4719β + 0.007395

The lift correction becomes

fL =
(∂CL/∂α)exp.

fα(∂CL/∂α)theor.

=
5.394

2π
= 0.8584 (5.11)

Similarly, the flap effectiveness correction factor is given by

fβ =
(∂CL/∂β)exp.

fL(∂CL/∂β)theor.

=
1.944

0.8584(3.486)
= 0.6497 (5.12)

The pitching moment about the center of rotation is comprised of two components:

the moment about the mid-chord and the moment generated by the lift offset from

the center of rotation, as shown in Fig. 2.6. The corrected location of the center

of rotation acorr. adjusts the effect of lift in the overall pitching moment; that is, it
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controls the slope of the pitching moment curve. The pitching moment correction

factor fM must satisfy two equations simultaneously.

fM =
(∂CM/∂α)exp.

fα(∂CM/∂α)theor.

=
(∂CM/∂β)exp.

fβ(∂CM/∂β)theor.

(5.13)

From the definition of the force coefficients,

(CM)theor. =
1

2ρu2
0b

(L1 − acorr.bL0) (5.14)

Differentiation gives:(
∂CM
∂α

)
theor.

=
1

2ρu2
0b

(
∂L1

∂α
− acorr.b

∂L0

∂α

)
(5.15)(

∂CM
∂β

)
theor.

=
1

2ρu2
0b

(
∂L1

∂β
− acorr.b

∂L0

∂β

)
(5.16)

Equations (5.13), (5.15), and (5.16) can be combined and simplified, giving closed

form expressions for acorr. and fM . The final set of correction factors used for all of

the cases in the correlation is:

fα = 1 fβ = 0.6497

fL = 0.8584 fM = 1.2352 (5.17)

acorr. = −0.4692 [auncorr. = −0.4000]

Figures 5.3-5.10 show correlations for eight different dynamic cases at a nom-

inal reduced frequency of k = 0.02. (Since the motion is not purely harmonic, there

is not an exact reduced frequency.) In each figure, the top panel shows the flap de-

flection β as a function of α. The middle and bottom panels show the dynamic lift

and pitching moment behavior, respectively. The error norm defined in Eq. (4.5) is

inset on each figure. In Figs. 5.3-5.5, the angle of attack varies between −6◦ and

+6◦, with various phase lags from 59◦ to 239◦. In this range, the airload behavior

is linear. Therefore, the stall residuals ∆CL and ∆CM are zero, and there is no loss

in circulation due to dynamic stall. The correlation between theory and experiment

is excellent for all of these cases (less than 5% error), serving to validate the static

correction factors derived above.
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In Figs. 5.6-5.8, the angle of attack varies between −2◦ and 10◦, where the

effect of dynamic stall is moderate. Phase angles (between α and β) of 148◦, 206◦

and 298◦ are considered. The correlation between theory and experiment is still quite

good, with less than 6% error norm E for all cases.

For the final two cases considered, shown in Figs. 5.9-5.10, the angle of attack

varies between 5◦ and 15◦, where the effect of dynamic stall is quite large. Phase

angles of 177◦ and 343◦ are shown. In these figures, the blue dashed line indicates

what the airloads would be if no dynamic stall losses were included. The red line

shows the results of the unified model, including dynamic stall. The model provides

reasonable correlation to the experimental data for both lift and pitching moment,

E < 0.09. From these correlations, we conclude the model captures the essential

physics of the dynamic stall phenomenon.

It should be emphasized that, in Figs. 5.3-5.10, a single set of four linearly

independent correction factors correlate steady, 1/rev, and 2/rev components of lift

and pitching moment for eight different mean angle and phase lag combinations. This

is a total of 2×3×8 = 48 different components correlated. Not only does a single set

of correction factors apply to all data for this airfoil, but a single set of five dynamic

stall parameters applies to either lift or pitching moment. Although the theory allows

distinct parameters for each generalized load, practice has shown that a unified set is

adequate. However, one always has the option of separate parameters, as suggested

by Ref. [1].

5.3 VR-12 Variable Droop

The experimental setup of Refs. [32] and [33] is shown in Fig. 5.11. A VR-12 airfoil

is placed in a horizontal wind tunnel and undergoes oscilliation in pitch angle, α,

about the quarter chord. The airfoil is modified with a hinge at the quarter chord

to allow for variable droop of the leading edge (e = 0.5). Wind tunnel tests with

oscillating angle of attack are given for two different configurations. In the baseline

configuration, the nose droop angle is fixed at 0◦, and the entire airfoil oscillates in
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pitch, where the angle of attack is given by

α = 10◦ + 10◦ sin(kτ) (5.18)

In the VDLE configuration, the leading 25% of the airfoil is fixed at zero incidence

to the oncoming flow, while the remainder of the airfoil undergoes pitch oscillations.

Thus, the nose droop angle is equal to the pitch angle at all times. Note that in this

configuration, the angle of attack is referenced with respect to the trailing 75% of the

airfoil. Since static stall data are available for each of the configurations (Chapter 3),

there is no need to parameterize them versus δ or α. Those static curves can be put

directly through the stall filter.

The motions are transformed into the generalized coordinate system by ex-

pansion of the leading-edge flap geometry in a Glauert series [15]. The expansion in

terms of δ is

h0 =
δb

π
[sinϕm − ϕm cosϕm]

h1 =
δb

π
[ϕm − sinϕm cosϕm] (5.19)

hn =
δb

π

[
1

n+ 1
sin[(n+ 1)ϕm] +

1

n− 1
sin[(n− 1)ϕm]− 2

n
cosϕm sin(nϕm)

]
where ϕm = cos−1(−e), the Glauert variable at the leading-edge flap hinge location.

The above expansion allows for a matrix transformation between the user variables

α and δ and the generalized blade deformations hn as follows:

{hn} = [T ]

{
α

δ

}
(5.20)

where [T ] is defined in Appendix A.

Before correlating the dynamic data, the static correction factors must be

determined. The static data are given as a function of α, so it is convenient to assign

fα = 1. The slope of the linear portion of the lift curve for the baseline VR-12 airfoil

is determined to be ∂CL/∂α = 6.8738. Thus, the lift correction factor is given by

fL =
6.8738

2π
= 1.0940 (5.21)
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The slope of the linear portion of the lift curve for the VDLE airfoil is 6.4767. The

change in slope from the baseline airfoil is due entirely to the effect of the nose droop.

Thus,
∂CL
∂δ

=

[
∂CL
∂α

]
VDLE

−
[
∂CL
∂α

]
baseline

= −0.3791 (5.22)

The nose droop effectiveness is given by

fδ =
(∂CL/∂δ)exp.

fL (∂CL/∂δ)theor.

= 0.9565 (5.23)

The remaining correction factors are determined from the moment data. The slope

of the moment curve for the baseline airfoil is ∂CM/∂α = 0.0607. The slope for

the VDLE airfoil is ∂CM/∂α = −0.2123. Thus, ∂CM/∂δ = -0.2730. The moment

correction factor must satisfy two equations simultaneously.

fM =
0.0607

fα(π/2)(1 + 2a)
=

0.2730

fδ(0.6142 + 0.3623a)
(5.24)

The final set of correction factors used for all of the cases in the correlation is:

fα = 1 fδ = 0.9565

fL = 1.0940 fM = 1.3020 (5.25)

acorr. = −0.4852 [auncorr. = −0.5000]

These were determined at M = 0.3. Due to a small variation in Mach number for the

cases considered, the affect of Mach number on these static corrections is negligible,

and the same correction factors were used for all cases.

Figures 5.12-5.23 show correlations between the experimental results of Ref. [32]

and the unified airloads model, as described above. Figures 5.12 through 5.17 show

results for pitch oscillations at a reduced frequency of k = 0.05 and Mach numbers

ranging from M = 0.2 to M = 0.4 for both the baseline VR-12 airoil and the VDLE

airfoil. The model is consistent with the experimental data in the following ways:

1. The maximum lift coefficient is reduced in the VDLE airoil, because the effective

angle of attack at the leading 25% of the airfoil is effectively reduced.
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2. The extent of the hysteresis in the lift curve is well represented by the dynamic

model.

3. The “negative damping” region of the pitching moment curve is significantly

reduced in the VDLE airoil, which is consistent with experimental observations.

In Ref. [33], it is noted that the lift coefficient has a double peak near its

maximum for the baseline VR-12 case. As the stall vortex convects along the airfoil,

the suction peak decreases rapidly at first, followed by a more gradual decrease as

the airfoil approaches the maximum incidence. It is not possible to capture this level

of detail with the simplified model. However, by minimizing the least-squares error

with a genetic algorithm, the optimization procedure naturally splits the difference

between the two distinct peaks, providing very good correlations.

Figures 5.18 and 5.23 show results for pitch oscillations at a reduced frequency

of k = 0.1 and Mach numbers ranging from M = 0.2 to M = 0.4 for both the baseline

VR-12 and VDLE airfoils. Again, the model agrees favorably with the experimental

results in terms of the maximum CL and the width of the hysteresis. In addition, for

the VDLE airfoil, the negative damping region in the pitching moment curve is gone

completely, which is consistent with the experimental data.

In Ref. [55], a comparison is made to the CFD data of Ref. [56] for the baseline

and VDLE configurations at M = 0.3 and k = 0.1. In that work, the CFD model

must be corrected for wall effects, since there is a constant offset in the data, as well

as a discrepancy in the slope of the lift curve. This illustrates one of the benefits

of the current theory. Static corrections to the theory to correlate experimental test

results, are made in a very strightforward manner. The resulting correlations for

lift, pitching moment, and drag, are qualitatively accurate and implicitly include wall

corrections. Then, to apply to a test section not in a wind tunnel, the wall corrections

can be analytically removed from the static corrections. The level of accuracy is in

keeping with the purpose of the theory: a simplified aerodynamic tool for flight and

simulation and preliminary design.
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5.4 SC-1095 with LE Droop

In this section we demonstrate how the unified theory is applied to the SC-1095 air-

foil with leading-edge droop. Reference [50] uses a comprehensive code to investigate

various dynamic morphing concepts under various flight conditions for a UH-60 he-

licopter. In the high-thrust forward flight condition (C9017), dynamic stall has a

significant impact on overall rotor performance. For this flight condition, the authors

investigate harmonically deployed leading-edge droop to mitigate stall. Rotor per-

formance, indicated by percent change in the effective rotor L/D compared to the

baseline, is shown with 0/rev, 1/rev, 2/rev, 3/rev, and 4/rev delections for various

phase angles in Fig. 25 of Ref. [50]. This figure is reprinted as Fig. 5.24 for comparison.

To illustrate the application of the present theory, we investigate dynamic

droop deployment for a two-dimensional airfoil to mitigate dynamic stall. [It should

be noted that the induced flow for the current study is for a 2D flat wake, whereas the

study in Ref. [50] is for a 3D wake.] The unified airloads model is used to compute

dynamic lift for airfoil motions of the following form:

α = 10◦ + 10◦ sin kτ (5.26)

θLE = θ0 sin(nkτ + φ)

where θ0 is the amplitude of the leading-edge droop input, φ is the phase angle, and n

is the number of times per revolution the deflection is deployed. A reduced frequency

of k = 0.05 is used. Drag is assumed to be quasi-steady. Figure 5.25 shows the airfoil

performance—indicated by the percent change in maximum L/D from the baseline

airfoil—for various deflections. From the static CFD results shown in Fig. 3.9, a

correction factor of fα = 1.044 is applied to α to correct the slope of the lift curve.

All other static correction factors are assumed to be 1. Although these data are for

2D dynamic stall, the trends are similar to the 3D results from Ref. [50]. The two

conditions that provide the most performance improvement are a 2◦ 1/rev droop with

a phase angle of 120◦ and a 3◦ 2/rev droop with a phase angle of 60◦. Figures 5.26-5.28

compare the baseline airfoil to the two alternative dynamically drooped airfoils. It

can be seen that, while the 1/rev droop increases maximum lift (and hence maximum

L/D), it actually increases the hysteresis in the lift curve. Thus, it is not effective in
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mitigating dynamic stall. The 2/rev droop did not significantly increase maximum

lift, but it did reduce the hysteresis. We conclude that a 2/rev dynamic droop can

be utilized to mitigate the effect of 2D dynamic stall.
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Figure 5.1: Comparison with Theodorsen theory for harmonic pitch oscillations.
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Figure 5.2: Comparison with Theodorsen theory for harmonic flap oscillations.
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Figure 5.3: NACA 0012 airfoil with TE flap, no dynamic stall, φ = 59◦.
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Figure 5.4: NACA 0012 airfoil with TE flap, no dynamic stall, φ = 122◦.

93



-8

-4

0

4

8

β
 (°

)

-1

-0.5

0

0.5

1

C L

 

 

E=0.010

Experiment
Theory

-8 -4 0 4 8
-0.1

-0.05

0

0.05

0.1

α (°)

C M

E=0.040

Figure 5.5: NACA 0012 airfoil with TE flap, no dynamic stall, φ = 239◦.
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Figure 5.6: NACA 0012 airfoil with TE flap, moderate stall, φ = 148◦.
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Figure 5.7: NACA 0012 airfoil with TE flap, moderate stall, φ = 206◦.
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Figure 5.8: NACA 0012 airfoil with TE flap, moderate stall, φ = 298◦.
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Figure 5.9: NACA 0012 airfoil with TE flap, heavy stall, φ = 177◦.
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Figure 5.10: NACA 0012 airfoil with TE flap, heavy stall, φ = 343◦.
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Figure 5.11: Experimental setup of VR-12 drooped leading-edge airfoil.
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Figure 5.12: Dynamic airload correlation, VR-12 baseline airfoil, k=0.05, M=0.2
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Figure 5.13: Dynamic airload correlation, VR-12 baseline airfoil, k=0.05, M=0.3
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Figure 5.14: Dynamic airload correlation, VR-12 baseline airfoil, k=0.05, M=0.4
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Figure 5.15: Dynamic airload correlation, VR-12 20◦ variable droop, k=0.05, M=0.2
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Figure 5.16: Dynamic airload correlation, VR-12 20◦ variable droop, k=0.05, M=0.3
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Figure 5.17: Dynamic airload correlation, VR-12 20◦ variable droop, k=0.05, M=0.4
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Figure 5.18: Dynamic airload correlation, VR-12 baseline airfoil, k=0.10, M=0.2
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Figure 5.19: Dynamic airload correlation, VR-12 baseline airfoil, k=0.10, M=0.3
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Figure 5.20: Dynamic airload correlation, VR-12 baseline airfoil, k=0.10, M=0.4
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Figure 5.21: Dynamic airload correlation, VR-12 20◦ variable droop, k=0.10, M=0.2
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Figure 5.22: Dynamic airload correlation, VR-12 20◦ variable droop, k=0.10, M=0.3
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Figure 5.23: Dynamic airload correlation, VR-12 20◦ variable droop, k=0.10, M=0.4
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C9017: LED harmonic deployment (lifting-line) 

As before, first, harmonic variation from 0/rev to 4/rev 
for different phase angles and amplitudes was examined 
using RCAS lifting-line comprehensive analysis with the 
LED airfoil tables and free-wake model. Although this flight 
condition has dynamic stall on the retreating side it was not 
modeled in these calculations (only static stall was 
modeled). For optimal deployments, CFD-CSD simulations 
were performed to cross-validate performance predictions 
which do take into account dynamic stall. (Dynamic stall 
modeling in CFD, in turn, is sensitive to turbulence models 
and numerical parameters related to spatial and temporal 
accuracy.) In Fig. 25 results are shown for each harmonic as 
a function of phase angle for the magnitude at which best 
performance is seen. The following performance 
improvements (rotor L/De) were seen with harmonic 
deployment:  (a) 0/rev (steady) downward droop of 3 deg. 
resulted in a 3.0% improvement and a 2.5% reduction in 
power; (b) 2/rev at 3 deg. amplitude and 0 deg. phase angle 
resulted in a 1.5% improvement in L/De and a 1.3% 
reduction in power. Marginal improvements were seen using 
1/rev, 3/rev, and 4/rev harmonics. Case-(a) was run using 
CFD-CSD and the corresponding performance 
improvements were about 14.4% and 11.5%, respectively. 
The analysis of the CFD-CSD results revealed that a 3 deg. 
downward droop resulted in a significant reduction in 
dynamic stall on the retreating side which led to large 
performance gains. On the other hand, since the dynamic 
stall was ignored in the present lifting-line calculations, the 
predicted gains were relatively smaller. 

 
Fig. 25. Rotor performance variation using harmonic LED for 
the flight condition C9017 computed using lifting-line 
comprehensive analysis 

 

C9017: LED retreating-side-only downward deployment 
(CFD-CSD) 

 
 

A constant downward LED of 10 deg. was applied from 
200 deg. to 380 deg. (20 deg.) azimuth. The LED was 
linearly ramped up to 0 deg. from 20 to 40 deg. and linearly 
ramped down from 180 to 200 deg. From 40 to 180 deg. 
azimuth, LED was not deployed. With this deployment 
strategy CFD-CSD propulsive trim simulation was 

performed.  The sectional pitching moment distribution on 
the rotor disk for the baseline case and the present LED 
strategy is shown in Fig. 26. The retreating side dynamic 
stall areas, shown as blue regions, are largely mitigated 
when LED is deployed. The rotor disk loading (blade 
sectional lift and drag) relative to the baseline is shown Fig. 
27. In the regions of dynamic stall, there is a lift increase and 
at the same time a drag decrease. Also because the droop 
extends upto 40 deg. azimuth, there is some decrease in lift 
and an associated decrease in drag near 30 deg. azimuth, 
which is compensated by the lift increase on the retreating 
side. In this case there are significant pay-offs – the increase 
in the rotor L/De is about 18.2% and the decrease in the rotor 
power is about 14.9%. The lifting-line calculations showed 
the corresponding quantities to be 5.8% and 4.5%, 
respectively. Again, the larger differences in predictions can 
be attributed to the dynamic stall modeling which is not 
accounted for in lifting-line calculations. 
                             Pitching moment 

          Baseline           Retreating-side LED 

 
Fig. 26. Sectional pitching-moment over the rotor disk, M2 CM, 
computed using CFD-CSD simulation for flight C9017. A 
constant nose-down LED of 10 deg. is deployed on the 
retreating side from 200 to 380 deg. (20 deg.), linear ramp-
down from 180 to 200 deg. and a linear ramp-up from 20 to 40 
deg. (Regions in red imply increase over baseline and regions in 
blue imply decrease in over baseline.) 

 
               Lift                                      Drag 

 
Fig. 27. Sectional lift and drag relative to the baseline over the 
rotor disk computed, (CX-CX,baseline)*M2, X=lift/drag,  using 
CFD-CSD simulation for flight C9017. A constant nose-down 
LED of 10 deg. is deployed on the retreating side from 200 to 
380 deg. (20 deg.), linear ramp-down from 180 to 200 deg. and 
a linear ramp-up from 20 to 40 deg. (Regions in red imply 
increase over baseline and regions in blue imply decrease over 
baseline.) 

Figure 5.24: Figure 25 of Ref. [50], reprinted for comparison.
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Figure 5.25: Change in airfoil L/D for various leading-edge deflections.
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Figure 5.26: Lift coefficient for dynamic leading-edge deflection.
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Figure 5.27: Quasi-steady drag coefficient for dynamic leading-edge deflection.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents a unified model for determining the dynamic airloads for mor-

phing airfoils. The model consists of three components: a flexible thin-airfoil theory

for calculating the linear airloads, an induced flow model, and a dynamic stall model.

Each of the components is validated by correlation to classical aerodynamic theories

and published wind tunnel data.

In Chapter 2, the derivation of the unified model is presented. First, the

Peters/Johnson Flexible Airfoil theory is derived from first principles, based on in-

viscid, incompressible, 2D potential flow. Although the incompressibility assumption

is made in the derivation, the Prandtl-Glauert correction can be used for subsonic

Mach numbers. In previous work, numerous validations of the theory have demon-

strated that the theory recovers classical aerodynamic results, such as Theodorsen,

Greenberg and Loewy theories. The theory is couched in terms of generalized airfoil

deformations, which allows for arbitrary morphing of the meanline geometry. The

airload theory is coupled with the Karunamoorthy two-dimensional inflow model. It

is shown that this model provides a very good approximation to the Theodorsen lift

deficiency function when used with eight states. Finally, a dynamic stall model is

proposed, based on the ONERA second-order dynamic filter approach.

In order to implement the dynamic stall model, the static stall residuals must

be known for each airfoil being studied. In Chapter 3, we illustrate an approach of

building these static databases for three different airfoils:
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1. NACA 0012 airfoil with trailing-edge flap

2. Boeing VR-12 airfoil with variable droop leading edge

3. SC-1095 airfoil with LE and TE droop

First, the static stall residuals are computed from available static data (wind tunnel,

CFD, lookup tables, etc.) for various values of the morphing variables. Then, the

residuals are parameterized in terms of the generalized gradients h′n. The results are

synthesized into a static database that can be used for any morphology of the baseline

airfoil.

When ONERA originally developed their dynamic stall model, the stall pa-

rameters ω̂, η̂, and ê were determined by a large number of small-amplitude pitch

oscillation tests conducted at a variety of mean angles of attack. That work validated

their approach and suggested that the functional form of the parameters. In Chapter

4, we show that the dynamic stall parameters can alternatively be determined from

large-amplitude wind tunnel test data, via a genetic optimization algorithm.

In Chapter 5, we present correlations to dynamic morphing airfoil data using

the unified model. First, we show that the model recovers Theodorsen theory for

both harmonic pitch motions and harmonic trailing-edge deflections. Second, eight

dynamic cases are correlated for a NACA 0012 airfoil with trailing-edge flap deflec-

tions. Third, twelve dynamic cases are correlated for a VR-12 airfoil with dynamic

leading-edge droop. Fourth, dynamic stall data for an SC-1095 airfoil are correlated

and applied to morphing of that airfoil. All of the correlations demonstrate that

the theory captures the essential physical behavior of dynamic stall. Although we

have analyzed dynamic stall specifically for a NACA 0012 with a flap, a VR-12 with

variable droop, and an SC-1095 with leading-edge droop, our model applies to any

arbitrary morphing of these airfoils. One needs only be able to find h′0, h′1, and h′2 in

terms of the morphing variables of interest to be able to predict the corresponding

CL and CM . If other loads are needed, such as a flap hinge moment, additional data

would need to be supplied to determine the static corrections and post-stall behavior

for those loads.

The three airfoils studied are typical of thin airfoil sections used on modern

rotorcraft, with thickness ranging from 9.5% to 12%. Despite subtle differences in
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geometry, the resulting constants that define the unified model are strikingly similar

for each of these airfoils. Thus, the theory has been validated for an entire family

of thin airfoils. If one were to analyze a similar airfoil, for which experimental data

were not available, a reasonable approximation of the dynamic behavior can be made

from an average of the coefficients determined in this work.

The current theory has many potential applications in the aerodynamic anal-

ysis of rotorcraft. In order to apply the model, the following data must be supplied

by the user:

1. Static slopes for each desired airload with respect to each morphing variable, in

order to obtain the static correction factors.

2. Stall initiation angle for various combinations of morphing variables. Only

enough data need to be supplied so that the stall initiation angle may be pa-

rameterized in terms of the generalized spatial gradients h′0, h′1, and h′2.

3. Post-stall behavior of each airload of interest, averaged over various morphing

combinations to obtain the stall residuals as a function of α−αss. This assumes

that post-stall behavior is independent of morphing.

4. The dynamic stall parameters ω0, ω2, η0, η2, and e2 for the basic unmorphed air-

foil. These parameters may either be obtained from small-amplitude oscillations

to develop the transfer function, as described in Ref. [31], or by an optimization

procedure applied to large-amplitude data.

6.2 Required Constants

The present approach requires remarkably few experimental constants to implement

the theory. For example, consider a baseline airfoil for which one would want dynamic

stall simulations with CL and CM . (One would assume that either experimental or

CFD data are available—giving these load coefficients as functions of angle of attack.)

To implement the linear airfoil theory, one would match the theoretical lift-curve and

moment slopes CLα and CMα with the data. This requires that two correction factors

be added to the Johnson/Peters theory, fL for the lift slope and acorr. for the moment
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slope. Sometimes, the lift and moment offsets might need to be matched as well. To

accomplish this, a residual h′1 can be added to shift the lift and a residual h′2 can be

added to shift the moment. Thus, at most four constants are needed to match the

static data. To implement the dynamic stall model, only five constants are required

for the baseline airfoil: ω0, ω2, η0, η2, and e2. Thus, a total of nine parameters

completely parameterize the baseline airfoil. Since the present theory utilizes Prandtl-

Glauert Mach number corrections, these same nine parameters apply for all Mach

numbers, all reduced frequencies, and both lift and pitching moment.

Next, consider that NM morphing variables are introduced into the airfoil

with NL required morphing loads. In the linear region, the Johnson/Peters theory

can be matched to the experimental data by addition of one correction factor fM , one

correction factor for each morphing variable fβ, and one correction factor for each

morphing load fn. (It is assumed that static data are available for the change in each

load with respect to at least one morphing variable in order to express the behavior

in terms of the generalized coordinates.) Therefore, 1 + NM + NL correction factors

need be chosen to match the linear experimental data.

The same 5 constants for the baseline dynamic stall are used for the morphed

airfoil as well. Therefore, stall response of all loads of the morphed airfoil (i.e.,

CL, CM , and the Cn), requires the evaluation of a single variable αshift in order to

apply the theory. (Note that α0L is implicitly matched by the static corrections

in the linear region.) This research shows that one can express αshift = C1h
′
1 +

C2h
′
2. Thus, only two additional constants are needed independent of the number of

morphing variables. The total parameters required for NM morphing variables with

NL morphing loads is therefore NM + NL + 3.

For example, with one morphing variable and one morphing load (e.g., a

trailing-edge flap and the moment about the flap hinge) one would require nine

constants for the baseline and five additional constants for the morphed airfoil–for a

total of fourteen constants to analyze dynamic stall. These constants apply to all

Mach numbers, all reduced frequencies, all loads, and all combinations of morphing.
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6.3 Future Work

This work is an important first step in opening up a new method of investigating

dynamic stall for morphing airfoils. There are many directions one could choose to

take from this point. Some possibilities for future work include:

1. Integration of the unified airloads model with the Peters/Garcia-Duffy 3D Dy-

namic Inflow model. The combined model would truly be a global analysis tool,

which could accommodate arbitrarily morphing airfoils in hover, vertical flight,

or forward flight. Each of these cases would need to be validated by comparison

to flight tests and CFD. As an example, flight conditions C8534 and C9017 on

the UH-60A were correlated by CFD in Ref. [50]. First, the flight test data were

correlated to validate the CFD model. Then, various morphing airfoil scenarios

were evaluated with CFD under the same conditions. A similar approach could

be applied to the unified airloads model.

2. There is keen interest in developing active control methodologies for improve-

ments in efficiency, and reduction in vibratory loads. The approach for most of

these investigations is to optimize each parameter independently. For example,

key design parameters for a trailing-edge flap may include chord, span, radial

location, and deployment schedule. Each of these parameters is evaluated inde-

pently, often involving lengthy CFD runs, while the other parameters are fixed.

Due to the computational expense of CFD, it is not feasible to optimize all of

the parameters simultaneously. However, the unified airload model can provide

results in a fraction of the time required for CFD. This makes it possible to use

a genetic algorithm or other optimization approach to simultaneously optimize

all of the parameters. This may result in an improved global optimum.

3. A similar approach could be used to evaluate morhping wind turbine blades

to reduce vibratory loads. This may be particularly useful for turbines that

operate in yawed flow during high-wind conditions.

4. Characterize the static load residuals and dynamic stall parameters for addi-

tional airfoils that are currently used in production rotorcraft and wind turbines.

121



5. Quantify the effect of Mach number on the dynamic stall parameters by ana-

lyzing dynamic data for a variety of Mach numbers on the same airfoil.

6. Comparisons should be made between this approach and CFD computations in

order to obtain the relative realms of applicability of each method. Such a com-

parison effort has begun with our partners at Georgia Institute of Technology.

The results will be published at the 2010 European Rotorcraft Forum [57]. A

sample correlation is shown in Fig. 6.1. For this case the nominal motion of the

airfoil is given by

α = 4.25◦ + 5.75◦ sin kt

β = −0.5◦ + 5.5◦ sin(2kt− 285◦)

However, the actual motions were not simple harmonic due to error in the

experiment. The correlation of the CFD data is dependent on the modeling the

wind tunnel wall, as well as the turbulence model used in the computations.

Further study will provide insight on comparison of the unified airloads model

to CFD data.
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Figure 6.1: Comparison of unified model with CFD for NACA 0012 with TE flap.
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Appendix A

Definition of Matrices and Vectors

This appendix defines the matrices and vectors used in the derivation of the unified

model. Note that M refers to the number of states in the Glauert expansion, resulting

in (M + 1)× (M + 1) matrices and (M + 1)× 1 vectors. N refers to the number of

inflow states, resulting in N ×N matrices and N × 1 vectors.

{1} = {1 0 0 0 · · · }T

{b} = {b1 b2 b3 · · · bN}T as defined by Eq. (2.24)

{c} =
{

2 1 2
3

1
2
· · · 2

N

}T
{d} =

{
1
2

0 0 0 · · ·
}T

{e} =
{

1 1
2

0 0 · · ·
}T

{f} = {0 1 2 · · · M}T

{hn} = {h0 h1 h2 · · · hM}T

{vn} = {v0 v1 0 0 · · · }T

{v̇n + ḧn} =
{
v̇0 + ḧ0 v̇1 + ḧ1 0 0 · · ·

}T
{λ0} = {λ0 0 0 0 · · · }T

{λ1} = {λ0 λ1 0 0 · · · }T

[A] = [D + dbT + cdT + 1
2
cbT ]
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[C] =



f 1 0 0 0 · · ·

−1
2

0 1
2

0 0 · · ·

0 −1
2

0 1
2

0 · · ·

0 0 −1
2

0 1
2

. . .

0 0 0 −1
2

0
. . .

...
...

...
. . . . . . . . .


[D] =



0 −1
2

0 0 · · · 0

1
4

0 −1
4

0 · · · 0

0 1
6

0 −1
6

. . . 0

0 0 1
8

. . . . . . 0
...

...
. . . . . . 0

. . .

0 0 0 0 1
2N

0



[G] =



0 1
2

0 0 0 · · ·

0 0 1
4

0 0 · · ·

0 −1
4

0 1
4

0
. . .

0 0 −1
4

0 1
4

. . .

0 0 0 −1
4

0
. . .

...
...

...
. . . . . . . . .


[H] =



0 0 0 0 0 · · ·

0 1/2 0 0 0 · · ·

0 0 2/2 0 0 · · ·

0 0 0 3/2 0 · · ·

0 0 0 0 4/2 · · ·
...

...
...

...
...

. . .



[K] =



0 f 2 3f 4 · · ·

0 −1
2

0 0 0 · · ·

0 0 −2
2

0 0 · · ·

0 0 0 −3
2

0
. . .

0 0 0 0
. . . . . .

...
...

...
...

. . . −M
2


[K ′] =



f 1
2

0 0 0 · · ·

−1
2

0 1
4

0 0 · · ·

0 −1
4

0 1
4

0 · · ·

0 0 −1
4

0 1
4

. . .

0 0 0 −1
4

0
. . .

...
...

...
. . . . . . . . .



[M ] =



1
2

0 −1
4

0 0 · · ·

0 1
16

0 − 1
16

0 · · ·

−1
4

0 1
6

0
. . . . . .

0 − 1
16

0
. . . 0

. . .

0 0
. . . 0

. . . . . .
...

...
. . . − 1

8M

. . . M
4(M2−1)


[S] =



f 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 0 0 · · ·
...

...
...

...
...

. . .
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[T ] =


−ba (b/π)[sinϕm − ϕm cosϕm]

b (b/π)[ϕm − sinϕm cosϕm]

0 (b/π)
[

1
n+1

sin[(n+ 1)ϕm] + 1
n−1

sin[(n− 1)ϕm]− 2
n

cosϕm sin(nϕm)
]

...
...
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Appendix B

Derivation of Spatial Gradient

Components

NACA four-digit airfoils are given the designation NACA mpxy, with the following

definitions:

m maximum ordinate of mean line, in percent chord

p chordwise position of maximum ordinate, in tenths of a chord

xy maximum thickness of the airfoil, in percent chord

For simplicity, the following substitutions are made:

m = 0.01m, p = 0.1p, q = 2p− 1 (B.1)

The equation of the mean line is given in closed form [58]:

yc
c

=

(m/p2) [2px− x2] 0 ≤ x ≤ p

[m/(1− p)2] [(1− 2p) + 2px− x2] p < x ≤ 1
(B.2)

where x = (1 + x/b)/2. As an example, the mean line for the NACA 2512 airfoil is

shown in Fig.B.1.

In Eq. (B.2), the mean line is defined on the interval x = [0, 1], but for the thin

airfoil theory, the mean line is defined on the interval x = [−b,+b]. The variables are

transformed by Eq. (B.3).

x = b(2x− 1), b = c/2 (B.3)
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Figure B.1: Coordinates of NACA 2512 airfoil

The resulting equation of the mean line in the transformed coordinates becomes:

yc
b

=

 2m
b2(1+q)2

[b2(1 + 2q) + 2bqx− x2] −b ≤ x ≤ qb

2m
b2(1−q)2 [b2(1− 2q) + 2bqx− x2] qb < x ≤ b

(B.4)

Since h ≡ −yc, the spatial gradient is calculated in closed form.

∂h

∂x
=


4m(x−bq)
b(1+q)2

−b ≤ x ≤ qb

4m(x−bq)
b(1−q)2 qb < x ≤ b

(B.5)

With the Glauert change of variable, x = b cosϕ, the gradient becomes:

∂h

∂x
=


4m(cosϕ−q)

(1−q)2 0 ≤ ϕ ≤ ϕq
4m(cosϕ−q)

(1+q)2
ϕq < ϕ ≤ π

(B.6)

In Eq. (B.6) above, ϕq is the value of the Glauert variable evaluated at q. The gradient

is now cast in a form that may be integrated to solve for the Glauert expansion

coefficients. The solution of the first four terms is given below.

h′0 =
1

π

∫ π

0

∂h

∂x
dϕ

h′0 =
4mq

(1− q2)2

[
4

π

(
q sin−1 q +

√
1− q2

)
−
(
1 + q2

)]
(B.7)

h′1 =
2

π

∫ π

0

∂h

∂x
cosϕ dϕ
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h′1 =
4m

(1− q2)2

[(
1 + q2

)
− 4

π

(
q sin−1 q + q2

√
1− q2

)]
(B.8)

h′2 =
2

π

∫ π

0

∂h

∂x
cos 2ϕ dϕ =

32m

3π

q√
1− q2

(B.9)

h′3 =
2

π

∫ π

0

∂h

∂x
cos 3ϕ dϕ =

32m

3π

q2√
1− q2

(B.10)

Useful approximations of the exact solutions can be made using Taylor series

expansions in terms of q. Table B.1 summarizes the exact solutions, as well as first-

order and third-order Taylor series expansions for the first four gradient coefficients.

Note that similar results were given in Reference [59]. The linear approximations here

agree with Ref. [59]; however a sign error in [59] causes the results here to be different

from those shown in Ref. [59].

Table B.1: Spatial gradient components for NACA four-digit airfoils

h′0 = 4qm
(1−q2)2

[
4
π
(
√

1− q2 + q sin−1 q)− (1 + q2)
]

h′0 ≈ 4m
π

[(10− 3π)q3 + (4− π)q] ≈ 4m
π

(4− π)q

h′1 = 4m
(1−q2)2

[
(1 + q2)− 4

π

(
q sin−1 q + q2

√
1− q2

)]
h′1 ≈ 4m(1 + 3π−8

π
q2) ≈ 4m

h′2 = 32m
3π

q√
1−q2
≈ 16m

3π
(q3 + 2q) ≈ 32m

3π
q

h′3 = 32m
3π

q2√
1−q2
≈ 32m

3π
q2 ≈ 0
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Appendix C

Mean Line Expansion for LE and

TE Droop

The purpose of this appendix is to derive a simple closed-form expression for a

parabolic leading-edge or trailing-edge droop, similar to the geometry described in

Ref. [50]. Jain, et al., describe the NURBS control point methodolgy used to define

the geometry of the drooped leading edge. However, since the exact geometry is

not given, a simple approximation is employed to allow for analysis of the drooped

leading-edge airfoil with thin airfoil theory. Only the meanline of the airfoil is needed

for the airloads calculation. The procedure used to derive the simplified expression

is detailed below.

First, the depiction of the airfoil from Fig. 1 of Ref. [50] is digitized, showing

the geometry for a deflection of about 20◦. Figure C.1 shows the digitized data plotted

in the x-y coordinate system for leading-edge droop; and Figure C.2 is for trailing-

edge droop. Second, a parabola is fit to each shape. Since the shapes are defined by

the angles θLE and δTE (which are the droop angles measured from the leading edge

or trailing edge to the initiation point of the droop), the deflections are easily written

in terms of these points and these angles in the coordinate system of Fig. 2.1. For

leading-edge droop,

y = −θLE
b

(x+ eb)2

1− e
− b ≤ x ≤ −eb (C.1)

130



and for trailing-edge droop,

y = −δTE
b

(x− db)2

1− d
db ≤ x ≤ b (C.2)

where it has been assumed that tan θLE and tan δTE equals the angle in radians.

The slope of the mean line follows immediately for 0 ≤ e ≤ 1, and 0 ≤ d ≤ 1:

dy

dx
=

{ [−2θLE(x/b+ e)] /(1− e) −b ≤ x < −be
0 −be ≤ x ≤ bd

[−2δTE(x/b− d)] /(1− d) bd < x ≤ b

(C.3)

With x/b = cosϕ, hn and h′n can be computed as follows.

h0 = − 1

π

∫ π

0

y(ϕ) dϕ (C.4)

hn = − 2

π

∫ π

0

y(ϕ) cos(nϕ) dϕ n ≥ 1

h′0 = − 1

π

∫ π

0

dy

dx
(ϕ) dϕ (C.5)

h′n = − 2

π

∫ π

0

dy

dx
(ϕ) cos(nϕ) dϕ n ≥ 1

The resultant integrals for the generalized deformations are:

h0 =
bδTE

2π(1− d)

[
(1 + 2d2) cos−1 d− 3d

√
1− d2

]
+

bθLE
2π(1− e)

[
(1 + 2e2) cos−1 e− 3e

√
1− e2

]
h1 =

2bδTE
3π(1− d)

[
−3d cos−1 d+ (2 + d2)

√
1− d2

]
+

2bθTE
3π(1− e)

[
3e cos−1 e− (2 + e2)

√
1− e2

]
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h2 =
bδTE

6π(1− d)

[
3 cos−1 d− (5− 2d2)d

√
1− d2

]
(C.6)

+
bθTE

6π(1− e)

[
3 cos−1 e− (5− 2e2)e

√
1− e2

]
hn = Q1

{ [
1− n2 + d2(2 + n2)

]
sin(n cos−1 d)3d

√
1− d2 n cos(n cos−1 d)

}
+Q2

{ [
1− n2 + e2(2 + n2)

]
sin(n cos−1 e)− 3e

√
1− e2 n cos(n cos−1 e)

}
for n ≥ 3, where Q1 and Q2 are given by

Q1 =
4bδTE

nπ(1− d)(n2 − 4)(n2 − 1)

Q2 =
4bθLE(−1)n

nπ(1− d)(n2 − 4)(n2 − 1)

The generalized mean-line gradients are given by

h′0 =
2δTE

π(1− d)

(
−d cos−1 d+

√
1− d2

)
+

2θLE
π(1− e)

(
e cos−1 e−

√
1− e2

)
h′1 =

2δTE
π(1− d)

(
cos−1 d− d

√
1− d2

)
+

2θLE
π(1− e)

(
cos−1 e− e

√
1− e2

)
(C.7)

h′n =
4δTE

nπ(1− d)(n2 − 1)

[
d sin(n cos−1 d)− n

√
1− d2 cos(n cos−1 d)

]

+
4θLE

nπ(1− e)(n2 − 1)

[
e sin(n cos−1 e) + (−1)nn

√
1− e2 cos(n cos−1 e)

]
n ≥ 2
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Baseline airfoil
Drooped LE
Parabolic mean line

Figure C.1: Geometry of drooped leading-edge airfoil

Baseline airfoil
Drooped TE
Parabolic mean line

Figure C.2: Geometry of drooped trailing-edge airfoil
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Appendix D

Chain Rule Application to Stall

Residual Derivatives

The purpose of this appendix is to illustrate the method for computing the total

derivative of the stall residuals when applying the dynamic stall model. The stall

model is given by Eq. (2.41), reprinted here for clarity.

b2

uT 2
Γ̈n + η

b

uT
Γ̇n + ω2 Γn = −b uT ω2

[
∆Cn + e

d∆Cn
dt

b

uT

]
(D.1)

The derivative in the last term of Eq. (D.1), d(∆Cn)/dt, deserves special considera-

tion. It is the total time derivative of the generalized stall residual ∆Cn. In Chapter

3, we show that ∆Cn is a function of α, α0L, and αshift (or alternatively α and z). In

turn, α0L, αshift, and z are functions of the generalized spatial gradients h′n. Thus, it

is a non-trivial exercise to apply the chain rule correctly to determine d(∆Cn)/dt.

If ∆Cn is known in terms of z, we conclude the following:

d(∆Cn)

dt
=
∂(∆Cn)

∂z

dz

dt

=
∂(∆Cn)

∂z

[
∂z

∂α

dα

dt
+

∂z

∂h′0

dh′0
dt

+
∂z

∂h′1

dh′1
dt

+ · · ·
]

(D.2)

This procedure is best illustrated by an example. From Eq. (3.20) for the

NACA 0012 airfoil, the variable z is given by:

z = α− αss = α− 0.293 + 0.870h′0 + 0.099h′1 − 0.490h′2 (D.3)
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The total derivative of z is given by

dz

dt
=
dα

dt
+ 0.870

dh′0
dt

+ 0.099
dh′1
dt
− 0.490

dh′2
dt

(D.4)

Furthermore, from a fit of the average shifted ∆CL curves for the eighteen NACA

airfoils discussed in Section 3.2, an approximate expression for ∆CL in terms of z is

given by Eq. (3.22), repeated below.

∆CL ≈ 0.2689 tan−1(54.54z) + 15.89(z + 0.3192)4 + 0.4070 (D.5)

Eq. (D.5) is only valid for z ≥ −0.3192. It follows that the partial derivative

∂(∆CL)/∂z is given by

∂(∆CL)

∂z
=

14.67

1 + 2975z2
+ 63.56(z + 0.3192)3 (D.6)

The total derivative is given from Eqs. (D.2), (D.4), and (D.6):

d(∆CL)

dt
=

[
14.67

1 + 2975z2
+ 63.56(z + 0.3192)3

]
(
dα

dt
+ 0.870

dh′0
dt

+ 0.099
dh′1
dt
− 0.490

dh′2
dt

)
(D.7)

Eq. (D.7) can be written alternately in terms of a morphing variable, such as the flap

deflection β.

d(∆CL)

dt
=

[
14.67

1 + 2975z2
+ 63.56(z + 0.3192)3

]
[
dα

dt
+

(
0.870

∂h′0
∂β

+ 0.099
∂h′1
∂β
− 0.490

∂h′2
∂β

)
dβ

dt

]
(D.8)
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The partial derivatives ∂h′n/∂β are found from the transformation matrix used to

compute h′n. For an airfoil with a trailing-edge flap, the first three terms are:

∂h′0
∂β

=
1

π
cos−1 d

∂h′1
∂β

=
2

π

√
1− d2 (D.9)

∂h′2
∂β

=
2

π
d
√

1− d2

where db is the location of the flap hinge aft of the mid-chord. For any of the equations

above, finite-difference approximations of the derivatives can be used in place of the

analytical expressions.
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[10] T. von Kármán and J. M. Burgers. General Aerodynamic Theory - Perfect Fluids,
volume II. Julius Springer, Berlin, 1935.

[11] I. E. Garrick. Propulsion of flapping and oscillating airfoil. NACA TR 567, May
1936.

[12] R. Issacs. Airfoil theory for flows of variable velocity. Journal of the Aeronautical
Sciences, 12(1):113–117, 1945.

137



[13] R. Issacs. Airfoil theory for rotary wing aircraft. Journal of the Aeronautical
Sciences, 13(4):218–220, 1946.

[14] J. M. Greenberg. Airfoil in sinusoidal motion in a pulsating stream. NACA TN
No. 1326, June 1947.

[15] D. A. Peters, M. Hsieh, and A. Torrero. A state-space airloads theory for flexible
airfoils. In Proceedings of the American Helicopter Society 62nd Annual Forum,
May 2006.

[16] R. G. Loewy. A two-dimensional approximation to unsteady aerodynamics in
rotary wings. Journal of the Aeronautical Sciences, 24(2):81–92, 1957.

[17] H. Wagner. Uber die entstehung des dynamischen auftriebs von tragflugeln.
ZAMM, Bd. 5, Heft 1, pages 17–35, 1925.

[18] W. P. Jones. Aerodynamic forces on wings in non-uniform motion. British
Aeronautical Research Council, R & M 2117, August 1945.

[19] R. T. Jones. Operational treatment of the nonuniform lift theory to airplane
dynamics. NACA TN 667, pages 347–350, March 1938.

[20] R. T. Jones. The unsteady lift of a wing of finite aspect ratio. NACA Report
681, pages 31–38, June 1939.

[21] J. W. Edwards, J. V. Breakwell, and A. E. Bryson. Active flutter control using
generalized unsteady aerodynamic theory. Journal of Guidance and Control,
1:32–40, January-February 1978.

[22] J. W. Edwards, H. Ashley, and J. V. Breakwell. Unsteady aerodynamic modeling
for arbitrary motions. AIAA Journal, 17(4):365–374, April 1979.
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