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Shining a Hilbertian lamp on the bidisk

John E. McCarthy

Abstract. Four lectures on how different aspects of the function theory of
the bidisk can be illuminated by using Hilbert spaces and operator theory.

1. Lecture 1: Model Theory

The basic idea behind model theory is to associate a Hilbert space construction
with a function, and then use Hilbert space theory to illuminate the function theory.

In one variable, one approach is to study the de Branges-Rovnyak space asso-
ciated with a function φ in the ball of H∞(D). This is the Hilbert space of analytic
functions on the disk D with reproducing kernel

(1.1)
1− φ(λ)φ(ζ)

1− λ̄ζ
.

A nice exposition is in the book [20] by D. Sarason.

Definition 1.2. We will say that k is a kernel on X, or equivalently that k
is positive semi-definite on X, written k ≥ 0, if k is a function from X × X to C

such that, for any finite set of distinct points x1, . . . , xN in X, the matrix [k(xi, xj)]
is positive semi-definite, which means that for any complex numbers c1, . . . , cN we
have

N∑
i,j=1

cic̄jk(xi, xj) ≥ 0.

Notice that saying that (1.1) is a kernel on D is equivalent to saying that φ is
in the (closed) unit ball of H∞(D). Indeed, let H2 be the Hardy space, and

(1.3) kS(ζ, λ) = kSλ (ζ) =
1

1− λ̄ζ

be the Szegő kernel on H2. Let Mφ be the operator of multiplication by φ. It is
straightforward to check that

M∗
φk

S
λ = φ(λ)kSλ .
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50 JOHN E. MCCARTHY

We have

‖φ‖ ≤ 1 ⇔ ‖Mφ‖ ≤ 1

⇔ I −MφM
∗
φ ≥ 0

⇔ 〈(I −MφM
∗
φ)

∑
i

cik
S
λi
,
∑
j

cjk
S
λj
〉 ≥ 0 ∀ ci, λi

⇔
∑
i,j

cic̄j

(
1− φ(λi)φ(λj)

)
〈kSλi

, kSλj
〉 ≥ 0 ∀ ci, λi

⇔
[
1− φ(λi)φ(λj)

1− λ̄iλj

]
≥ 0 ∀ λi. �

Given a kernel k on X, it is an important fact that one can always realize it as
a Grammian, i.e. one can find a Hilbert space H and a map u : X → H so that

k(x, y) = 〈u(x), u(y)〉 := 〈ux, uy〉.

So if (1.1) is positive semidefinite, we can write

(1.4)
1− φ(λ)φ(ζ)

1− λ̄ζ
= 〈uζ , uλ〉H.

Now inside (1.4) lurks an isometry. Indeed, define V : C⊕H → C⊕H by

V :

(
1

ζuζ

)
�→

(
φ(ζ)
uζ

)
.

Then equation (1.4) is equivalent to the assertion that V is an isometry on the
linear span of vectors of the form(

1
ζiuζi

)
ζi ∈ D.

If the codimension of the range is at least as large as the codimension of the domain,
then V can be extended to an isometry on all of C⊕H. If the codimension is smaller,
the same effect can be achieved by adding an infinite dimensional summand to H.
Thus we have essentially proved the following realization formula; see e.g. [9] or
[5] for full details.

Theorem 1.5. The function φ is in the closed unit ball of H∞(D) if and only
if there is a Hilbert space H and an isometry V : C⊕H → C⊕H, such that, writing
V as

(1.6) V =

(C H
C A B
H C D

)
,

one has

(1.7) φ(λ) = A+ λB(I − λD)−1C.

This theory was generalized to the bidisk by Jim Agler [3]. We shall use
superscripts to denote coordinates; so a point λ in D2 will be written λ = (λ1, λ2).
In lieu of studying the positive semi-definite form (1.1), Agler proved:
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SHINING A HILBERTIAN LAMP ON THE BIDISK 51

Theorem 1.8. Let φ : D2 → D be a function. Then φ is analytic iff there are
kernels Γ and Δ on D2 so that

(1.9) 1− φ(μ)φ(λ) = (1− μ̄1λ1)Γ(λ, μ) + (1− μ̄2λ2)Δ(λ, μ).

The realization formula becomes:

Theorem 1.10. The function φ is in the closed unit ball of H∞(D2) if and
only if there are auxiliary Hilbert spaces H1 and H2 and an isometry

V : C⊕H1 ⊕H2 → C⊕H1 ⊕H2

such that, if H := H1 ⊕H2, V is written as

(1.11) V =

(C H
C A B
H C D

)
,

and Eλ = λ1IH1
⊕ λ2IH2

, then

(1.12) φ(λ) = A+BEλ(IH −DEλ)−1C.

1.1. Proofs.

Definition 1.13. A kernel k on D2 is called admissible if

(1.14) (1− ζ1λ̄1) k(ζ, λ) ≥ 0

and

(1.15) (1− ζ2λ̄2) k(ζ, λ) ≥ 0.

If k is an admissible kernel, then the operators T1 and T2 defined by

Tr : kλ �→ λ̄rkλ, r = 1, 2

are a pair of commuting contractions on H(k), the Hilbert function space on the
bidisk for which k is the reproducing kernel. The adjoints T ∗

1 and T ∗
2 are the

operators of multiplication by the coordinate functions, and (1.14) and (1.15) are
just the statements that I −T ∗

1 T1 and I − T ∗
2 T2 are positive — i.e. that T1 and T2

are contractions.

Suppose g is a self-adjoint function on D2 × D2 that has the property that its
Schur product with every admissible kernel is positive semi-definite (i.e.∑

c̄icj g(λi, λj) k(λi, λj) ≥ 0

for every admissible kernel k and every finite set of points {λi} and scalars {ci}).
One way this could happen is if there were a representation

(1.16) g(ζ, λ) = (1− ζ1λ̄1)Γ(ζ, λ) + (1− ζ2λ̄2)Δ(ζ, λ),

for some kernels Γ and Δ. Indeed, by the Schur Product Theorem, the Schur
product of any admissible kernel with the right-hand side of (1.16) is automatically
positive. The following structure theorem says that g having the form of (1.16) is
not only sufficient, but also necessary.
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52 JOHN E. MCCARTHY

Theorem 1.17. Let g : D2 × D2 → C be self-adjoint (i.e. g(λ, ζ) = g(ζ, λ)).
Suppose that

g · k : (ζ, λ) �→ g(ζ, λ)k(ζ, λ)

is positive semi-definite for every admissible kernel k. Then there are positive semi-
definite functions Γ and Δ such that

(1.18) g(ζ, λ) = (1− ζ1λ̄1)Γ(ζ, λ) + (1− ζ2λ̄2)Δ(ζ, λ).

For a proof, see [5]. (The idea of the proof is to argue by contradiction. If g
does not have the desired form, then by the Hahn-Banach theorem one can separate
everything on the right-hand-side of (1.18) from g by a linear functional. One uses
this to produce an admissible kernel whose Schur product with g is not positive).

Proofs of Theorems 1.8 and 1.10.
(Necessity) Suppose φ is in the closed unit ball of H∞(D2), which we shall

write as H∞
1 (D2). For simplicity, we shall assume furthermore that φ is continuous

on the closed bidisk, so it lies in the bidisk algebra A(D2). (This restriction can
be dropped by using a limiting argument, which we shall omit). Let k be any
admissible kernel. The fact that k is admissible means that the operators T1 and
T2, defined by

Tr : kλ �→ λ̄rkλ, r = 1, 2,

are commuting contractions on Hk. We want to use Andô’s inequality [8] to con-
clude that φ(T1, T2) is a contraction. Andô’s inequality, which will be discussed in
detail in Section 3, says that if T1 and T2 are commuting contractions, and φ is in
the bidisk algebra A(D2), the uniform closure of the polynomials in the supremum
norm on the bidisk, then

‖φ(T1, T2)‖ ≤ ‖φ‖D2 .

We must make a technical adjustment: we must work not with φ but with φ˘

(we define φ˘ by φ˘(λ1, λ2) := φ(λ̄1, λ̄2)∗, and so it is also in the closed unit ball of
A(D2)).

Then, by Andô’s inequality, φ˘(T1, T2) is a contraction, so for every finite set of
points {λi} in D

2 and scalars ci, we have

0 ≤
〈
(I − φ˘(T1, T2)φ

˘(T1, T2)
∗)

∑
j

cjkλj
,
∑
i

cikλi

〉
=

∑
i,j

c̄icj(1− φ(λi)φ(λj))〈kλj
, kλi

〉.

Therefore 1− φ(ζ)φ(λ) satisfies the hypotheses in Theorem 1.17, and so there is a
representation

(1.19) 1− φ(ζ)φ(λ) = (1− ζ1λ̄1)Γ(ζ, λ) + (1− ζ2λ̄2)Δ(ζ, λ)

for some kernels Γ and Δ.

These kernels can be represented as

Γ(ζ, λ) = 〈g1(ζ), g1(λ)〉H1

Δ(ζ, λ) = 〈g2(ζ), g2(λ)〉H2

for some functions gr : D2 → Hr and some auxiliary Hilbert spaces Hr.
Using these representations, (1.19) becomes

(1.20) 1− φ(ζ)φ(λ) = (1− ζ1λ̄1)〈g1(ζ), g1(λ)〉H1
+ (1− ζ2λ̄2)〈g2(ζ), g2(λ)〉H2
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SHINING A HILBERTIAN LAMP ON THE BIDISK 53

and so

1 + ζ1λ̄1〈g1(ζ), g1(λ)〉H1
+ ζ2λ̄2〈g2(ζ), g2(λ)〉H2

= φ(ζ)φ(λ) + 〈g1(ζ), g1(λ)〉H1
+ 〈g2(ζ), g2(λ)〉H2

.(1.21)

Let H = H1 ⊕ H2, and let g(λ) = g1(λ) ⊕ g2(λ). Then (1.21) says that if V is
defined by

(1.22) V :

(
1

Eλg(λ)

)
�→

(
φ(λ)
g(λ)

)
,

then V extends linearly to an isometry on the span of these elements, and, adding
an infinite-dimensional summand to H if necessary, can then be extended to an
isometry from C⊕H to C⊕H. Writing V as in (1.11) and solving for φ in (1.22),
we get that

φ(λ) = A+BEλ(IH −DEλ)−1C,

as desired.

(Sufficiency) Suppose φ can be written as in (1.12), which we have shown is
equivalent to (1.9). By expanding (I−DEλ)−1 in a Neumann series, it is clear that
φ can be written as a power series that converges in D

2, so is analytic there.
To prove that ‖φ‖ is bounded by 1, we use the fact that V is an isometry to

get

1− φ(λ)∗φ(λ)

= I −A∗A−A∗BEλ(I −DEλ)−1C − C∗(I − E∗
λD

∗)−1E∗
λB

∗A

− C∗(I − E∗
λD

∗)−1E∗
λB

∗BEλ(I −DEλ)−1C

= C∗C + C∗DEλ(I −DEλ)−1C + C∗(I − E∗
λD

∗)−1E∗
λD

∗C

− C∗(I − E∗
λD

∗)−1E∗
λ(I −D∗D)Eλ(I −DEλ)−1C

= C∗(I − E∗
λD

∗)−1 [(I − E∗
λD

∗)(I −DEλ) + (I − E∗
λD

∗)DEλ
+E∗

λD
∗(I −DEλ)− E∗

λ(I −D∗D)Eλ] (I −DEλ)−1C

= C∗(I − E∗
λD

∗)−1 [I − E∗
λEλ] (I −DEλ)−1C.(1.23)

The last expression (1.23) is positive when λ is in D2, so ‖φ‖ is bounded by 1 in
the bidisk, as desired. �

2. Lecture 2: Interpolation and Interpolating sequences

The Pick problem on the disk is to determine, given N points λ1, . . . , λN in D

and N complex numbers w1, . . . , wN , whether there exists φ ∈ H∞
1 (D) such that

φ(λi) = wi, i = 1, . . . , N.

G. Pick proved [19] that the answer is yes if and only if the N -by-N matrix

(2.1)

(
1− wiw̄j

1− λiλ̄j

)

is positive semi-definite.
Pick’s theorem on the bidisk was proved by J. Agler [2].
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54 JOHN E. MCCARTHY

Theorem 2.2. Given points λ1, . . . , λN in D2 and complex numbers w1, . . . ,
wN , there is a function φ ∈ H∞

1 (D2) that maps each λi to the corresponding wi

if and only if there are positive semi-definite matrices Γ and Δ such that

(2.3) 1− wiw̄j = (1− λ1
i λ̄

1
j )Γij + (1− λ2

i λ̄
2
j)Δij .

Theorem 2.2 can be proved by representing the matrices Γ and Δ as Gram-
mians, as in the transition from (1.19) to (1.20), rearranging the equation as in
(1.21), and then introducing the lurking isometry V as in (1.22). Writing this V as
in (1.6), the function φ from (1.7) can be shown to solve the interpolation problem
(and also to be a rational inner function).

Given a sequence {λi}∞i=1 in the polydisk D
d, we say it is interpolating for

H∞(Dd) if, for any bounded sequence {wi}∞i=1, there is a function φ in H∞(Dd)
satisfying φ(λi) = wi. L. Carleson characterized interpolating sequences on D in
[12].

Before stating his theorem, let us introduce some definitions. Given any kernel
k on D

d, a sequence {λi}∞i=1 has an associated Grammian Gk, where

[Gk]ij =
k(λi, λj)√

k(λi, λi) k(λj , λj)
.

We think of Gk as an infinite matrix, representing an operator on �2 (that is not
necessarily bounded). When k is the Szegő kernel on Dd,

(2.4) kS(ζ, λ) =
1

(1− ζ1λ̄1)(1− ζ2λ̄2) · · · (1− ζdλ̄d)
,

we call the associated Grammian the Szegő Grammian. The Szegő kernel is the
reproducing kernel for the Hardy space H2(Dd).

An analogue on the polydisk of the pseudo-hyperbolic metric is the Gleason
distance, defined by

ρ(ζ, λ) := sup{|φ(ζ)| : ‖φ‖H∞(Dd) ≤ 1, φ(λ) = 0}.

We shall call a sequence {λi}∞i=1 weakly separated if there exists ε > 0 such that,
for all i 
= j, the Gleason distance ρ(λi, λj) ≥ ε. We call the sequence strongly
separated if there exists ε > 0 such that, for all i, there is a function φi in H∞

1 (D)
such that

φi(λj) =

{
ε, j = i
0, j 
= i

In D, a straightforward argument using Blaschke products shows that a sequence
is strongly separated if and only if∏

j �=i

ρ(λi, λj) ≥ ε ∀ i.

We can now state Carleson’s theorem. He proved it using function theoretic
methods, but later H. Shapiro and A. Shields [22] found a Hilbert space approach,
which has proved to be more easily generalized, e.g. to characterizing interpolat-
ing sequences in the multiplier algebra of the Dirichlet space [18]. For a unified
treatment, see the lovely monograph [21] by K. Seip.
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SHINING A HILBERTIAN LAMP ON THE BIDISK 55

Theorem 2.5. On the unit disk, the following are equivalent:
(1) There exists ε > 0 such that∏

j �=i

ρ(λi, λj) ≥ ε ∀ i.

(2) The sequence {λi}∞i=1 is an interpolating sequence for H∞(D).
(3) The sequence {λi}∞i=1 is weakly separated and the associated Szegő Gram-

mian is a bounded operator on �2.

In 1987 B. Berndtsson, S.-Y. Chang and K.-C. Lin proved the following theorem
[10]:

Theorem 2.6. Let d ≥ 2. Consider the three statements
(1) There exists ε > 0 such that∏

j �=i

ρ(λi, λj) ≥ ε ∀i.

(2) The sequence {λi}∞i=1 is an interpolating sequence for H∞(Dd).
(3) The sequence {λi}∞i=1 is weakly separated and the associated Szegő Gram-

mian is a bounded operator on �2.
Then (1) implies (2) and (2) implies (3). Moreover the converses of these

implications are false.

For the following theorem, which was proved in [4], let {ei}∞i=1 be an orthonor-
mal basis for �2. Recall from Definition 1.13 that a kernel k on D2 is admissible if
the function (1− ζrλ̄r)k(ζ, λ) is positive semidefinite for r equal to 1 and 2.

Theorem 2.7. Let {λi}∞i=1 be a sequence in D2. The following are equivalent:
(i) {λi}∞i=1 is an interpolating sequence for H∞(D2).
(ii) The following two conditions hold.

(a) For all admissible kernels k, their normalized Grammians are uniformly
bounded:

Gk ≤ MI

for some positive constant M .
(b) For all admissible kernels k, their normalized Grammians are uniformly

bounded below:
NGk ≥ I

for some positive constant N .
(iii) The sequence {λi}∞i=1 is strongly separated and condition (a) alone holds.
(iv) Condition (b) alone holds.
Moreover, Condition (a) is equivalent to both (a′) and (a′′):

(a′): There exists a constant M and positive semi-definite infinite matrices Γ1 and
Γ2 such that

Mδij − 1 = Γ1
ij(1− λ̄1

iλ
1
j) + Γ2

ij(1− λ̄2
iλ

2
j ).

( a′′): There exists a function Φ in H∞(D2, B(�2,C)) of norm at most
√
M such

that Φ(λi)ei = 1.
Condition (b) is equivalent to both (b′) and (b′′):

(b′): There exists a constant N and positive semi-definite infinite matrices Δ1 and
Δ2 such that

N − δij = Δ1
ij(1− λ̄1

iλ
1
j) + Δ2

ij(1− λ̄2
iλ

2
j).
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56 JOHN E. MCCARTHY

(b′′): There exists a function Ψ in H∞(D2, B(C, �2)) of norm at most
√
N such

that Ψ(λi) = ei.

Neither Theorem 2.6 nor 2.7 are fully satisfactory. For example, the following
is still an unsolved problem:

Question 2.8. If a sequence on D2 is strongly separated, is it an interpolating
sequence?

3. Lecture 3: Distinguished Varieties and Andô’s Inequality

Let E be the exterior of the closed disk, C \ D. We call an algebraic set V a
distinguished variety if

V ⊂ D
2 ∪ T

2 ∪ E
2.

Von Neumann’s inequality [24] says that if T is a contraction (a Hilbert space
operator of norm at most one), then for any polynomial p,

‖p(T )‖ ≤ ‖p‖D.
Andô’s inequality [8] is a two-variable analogue. It says that if T = (T1, T2) is a
pair of commuting contractions, then

(3.1) ‖p(T )‖ ≤ ‖p‖D2 .

Both von Neumann’s and Andô’s inequality extend automatically to functions in
the norm-closure of the polynomials, viz. the disk and bidisk algebras respectively.
Provided one sticks to operators for which the H∞ functional calculus makes sense,
the inequalities also extend to H∞.

In [6] it was shown that if T is a pair of commuting contractive matrices, then
there is a distinguished variety V so that (3.1) can be sharpened to

|p(T )‖ ≤ ‖p‖V ∩D2 .

Distinguished varieties turn out to be intimately connected to function theory
on D2.

3.1. Representing Distinguished Varieties. For positive integers m and
n, let

(3.2) U =

(
A B
C D

)
: C

m ⊕ C
n → C

m ⊕ C
n

be an (m+ n)-by-(m+ n) unitary matrix. Let

(3.3) Ψ(z) = A+ zB(I − zD)−1C

be the m-by-m matrix valued function defined on the unit disk D by the entries
of U . This is called the transfer function of U . Because U∗U = I, a calculation
(essentially the same as (1.23), but with Eλ replaced by λI) yields

(3.4) I −Ψ(z)∗Ψ(z) = (1− |z|2) C∗(I − z̄D∗)−1(I − zD)−1C,

so Ψ(z) is a rational matrix-valued function that is unitary on the unit circle and
contractive on the unit disk. Such functions are called rational matrix inner func-
tions, and it is well-known that all rational matrix inner functions have the form
(3.3) for some unitary matrix decomposed as in (3.2) — see e.g. [5] for a proof.

Let V be the set

(3.5) V = {(z, w) ∈ D
2 : det(Ψ(z)− wI) = 0}.
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SHINING A HILBERTIAN LAMP ON THE BIDISK 57

We shall show that V is a distinguished variety, and that every distinguished variety
arises this way — Theorem 3.12 below.

Lemma 3.6. Let

U ′ =

(
D∗ B∗

C∗ A∗

)
: C

n ⊕ C
m → C

n ⊕ C
m,

let

Ψ′(z) = D∗ + zB∗(I − zA∗)−1C∗,

and let

V ′ = {(z, w) ∈ D
2 : det(Ψ′(w)− zI) = 0}.

Then V = V ′.

Proof. The point (z, w) ∈ D
2 is in V iff there is a non-zero vector v1 in C

m

such that

(3.7)
[
A+ zB(1− zD)−1C

]
v1 = wv1.

Claim: (3.7) holds if and only if there is a non-zero vector v2 in Cn such that

(3.8)

(
A B
C D

) (
v1
z v2

)
=

(
w v1
v2

)
.

Proof of Claim: If (3.8) holds, then solving gives (3.7). Conversely, if (3.7)
holds, define

v2 = (I − zD)−1Cv1.

Then (3.8) holds. Moreover, if v2 were 0, then v1 would be in the kernel of C and be
a w-eigenvector of A. As A∗A+ C∗C = I, this would force |w| = 1, contradicting
the fact that (z, w) ∈ D2. �

Given the claim, the point (z, w) is in V ′ iff there are non-zero vectors v1 and
v2 such that

(3.9)

(
D∗ B∗

C∗ A∗

) (
v2

w v1

)
=

(
z v2
v1

)
.

Interchanging coordinates, (3.9) becomes

(3.10)

(
A∗ C∗

B∗ D∗

) (
w v1
v2

)
=

(
v1
z v2

)
.

Clearly, (3.8) and (3.10) are equivalent. �

Note that if C has a non-trivial kernelN , then (3.4) shows that Ψ(z) is isometric
on N for all z, so by the maximum principle is equal to a constant isometry with
initial space N . If C has a trivial kernel, we say Ψ is pure. Every rational inner
function decomposes into the direct sum of a pure rational inner function and a
unitary matrix — see e.g. [23]. Since A∗A+C∗C = I, we see that C has no kernel
iff ‖A‖ < 1. Since AA∗ + BB∗ = I, this in turn is equivalent to B∗ having no
kernel. Therefore Ψ is pure iff Ψ′ is.

Let V be a distinguished variety. We say a function f is holomorphic on V
if, for every point of V , there is an open ball B in C

2 containing the point, and a
holomorphic function φ of two variables on B, such that φ|B∩V = f |B∩V . We shall
use A(V ) to denote the Banach algebra of functions that are holomorphic on V and
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58 JOHN E. MCCARTHY

continuous on V . This is a uniform algebra on ∂V , i.e. a closed unital subalgebra
of C(∂V ) that separates points. The maximal ideal space of A(V ) is V .

If μ is a finite measure on a distinguished variety V , letH2(μ) denote the closure
in L2(μ) of the polynomials. We say a point λ is a bounded point evaluation for
H2(μ) if evaluation at λ, a priori defined only for a dense set of analytic functions,
extends continuously to the whole Hilbert space. If λ is a bounded point evaluation,
we call the function kλ that has the property that

〈f, kλ〉 = f(λ)

the evaluation functional at λ.

For the proof of the following lemma, see [6].

Lemma 3.11. Let V be a distinguished variety. There is a measure μ on ∂V
such that every point in V is a bounded point evaluation for H2(μ), and such that
the span of the evaluation functionals is dense in H2(μ).

Theorem 3.12. The set V , defined by ( 3.5) for some rational matrix inner
function Ψ, is a distinguished variety. Moreover, every distinguished variety can be
represented in this form.

Proof. Suppose V is given by (3.5), and that (z, w) is in V . Without loss
of generality, we can assume that Ψ is pure. Indeed, any unitary summand of Ψ
would add sheets to the variety det(Ψ(z)−wI) = 0 of the type C×{w0}, for some
unimodular w0. These sheets are all disjoint from the open bidisk D2.

If |z| < 1, equation (3.4) then shows that Ψ(z) is a strict contraction, so all
its eigenvalues must have modulus less than 1, and so |w| < 1 also. To prove that
|w| < 1 implies |z| < 1, just apply the same argument to V ′. Therefore V is a
distinguished variety.

To prove that all distinguished varieties arise in this way, let V be a distin-
guished variety. Let μ be the measure from Lemma 3.11, and let H2(μ) be the
closure of the polynomials in L2(μ). The set of bounded point evaluations for
H2(μ) is precisely V . (It cannot be larger, because V is polynomially convex, and
Lemma 3.11 ensures that it is not smaller).

Let T = (T1, T2) be the pair of operators on H2(μ) given by multiplication by
the coordinate functions. They are pure commuting isometries1 because the span
of the evaluation functionals is dense. The joint eigenfunctions of their adjoints are
the evaluation functionals.

By the Sz.-Nagy-Foiaş model theory [23], T1 can be modelled as Mz, multipli-
cation by the independent variable z on H2 ⊗Cm, a vector-valued Hardy space on
the unit circle. In this model, T2 can be modelled as MΨ, multiplication by Ψ(z)
for some pure rational matrix inner function Ψ. A point (z, w) in D

2 is a bounded
point evaluation for H2(μ) iff (z̄, w̄) is a joint eigenvalue for (T ∗

1 , T
∗
2 ). In terms

of the unitarily equivalent Sz.-Nagy-Foiaş model, this is equivalent to w̄ being an
eigenvalue of Ψ(z)∗.

Therefore

V = {(z, w) ∈ D
2 : det(Ψ(z)− wI) = 0},

as desired. �
1A pure isometry S is one that has no unitary summand; this is the same as requiring that

∩∞
i=1ran(S

i) = {0}.
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SHINING A HILBERTIAN LAMP ON THE BIDISK 59

G. Kneses gives a more constructive proof of Theorem 3.12 in [17].
If Ψ is the transfer function of a unitary U as in (3.2), and Ψ is pure, we shall

say that V is of rank (m,n). This means that generically there are m sheets above
each z, and n sheets above each w.

3.2. A sharpening of Andô’s inequality.

Theorem 3.13. Let T1 and T2 be commuting contractive matrices, neither of
which has eigenvalues of modulus 1. Then there is a distinguished variety V such
that, for any polynomial p in two variables, the inequality

(3.14) ‖p(T1, T2)‖ ≤ ‖p‖V
holds.

Proof. Let the dimension of the space on which the matrices act be N .
(i) First, let us assume that each Tr has N linearly independent unit eigenvec-

tors, {vj}Nj=1. So we have

Trvj = λr
jvj , r = 1, 2 1 ≤ j ≤ N,

for some set of scalars {λr
j}. As each Tr is a contraction, we have I − T ∗

r Tr is
positive semidefinite, so

(3.15) 〈(I − T ∗
r Tr)vj , vi〉 = (1− λr

iλ
r
j)〈vj , vi〉 ≥ 0.

As the matrix in (3.15) is positive semidefinite, it can be represented as the Gram-
mian of vectors ur

j , which can be chosen to lie in a Hilbert space of dimension dr
equal to the defect of Tr (the defect of Tr is the rank of I − T ∗

r Tr). So we have

(1− λ1
iλ

1
j)〈vj , vi〉 = 〈u1

j , u
1
i 〉(3.16)

(1− λ2
iλ

2
j)〈vj , vi〉 = 〈u2

j , u
2
i 〉.(3.17)

Multiplying the first equation by (1−λ2
iλ

2
j ) and the second equation by (1−λ1

iλ
1
j),

we see that they are equal. Therefore

(3.18) (1− λ1
iλ

1
j )〈u2

j , u
2
i 〉 = (1− λ2

iλ
2
j )〈u1

j , u
1
i 〉.

Reordering equation (3.18), we get

(3.19) 〈u1
j , u

1
i 〉 + λ1

iλ
1
j〈u2

j , u
2
i 〉 = 〈u2

j , u
2
i 〉 + λ2

iλ
2
j 〈u1

j , u
1
i 〉.

Equation 3.19 says that there is some unitary matrix

(3.20) U =

(
A B
C D

)
: C

d1 ⊕ C
d2 → C

d1 ⊕ C
d2

such that

(3.21)

(
A B
C D

) (
u1
j

λ1
j u2

j

)
=

(
λ2
ju

1
j

u2
j

)
.

If the linear span of the vectors u1
j ⊕λ1

ju
2
j is not all of Cd1 ⊕Cd2 , then U will not be

unique. In this event, we just choose one such U . Define the d1 × d1 matrix-valued
analytic function Ψ by

(3.22) Ψ(z) = A+ zB(1− zD)−1C.

For any function Θ of two variables, scalar or matrix-valued, define

Θ∪(Z,W ) := [Θ(Z∗,W ∗)]∗ .
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60 JOHN E. MCCARTHY

Let Φ = Ψ∪, so
Φ(z) = A∗ + zC∗(1− zD∗)−1B∗.

Equation 3.21 implies that

(3.23) Ψ(λ1
j)u

1
j =

[
Φ(λ1

j)
]∗

u1
j = λ2

ju
1
j .

Let s be the Szegő kernel in the Hardy space H2 of the unit disk (which we
called kS in (1.3)), so

(3.24) sλ(z) =
1

1− λz
.

Let kj be the vector in H2 ⊗ Cd1 given by

kj := s
λ1
j
⊗ u1

j .

Consider the pair of isometries (Mz,MΦ) onH2⊗C
d1 , whereMz is multiplication by

the coordinate function (times the identity matrix on Cd1) and MΦ is multiplication
by the matrix function Φ. Then

M∗
z : kj �→ λ1

jkj

M∗
Φ : kj �→ λ2

jkj .

Therefore the map that sends each vj to kj gives a unitary equivalence between
(T1, T2) and the pair (M∗

z ,M
∗
Φ) restricted to the span of the vectors {kj}Nj=1. There-

fore the pair (M∗
z ,M

∗
Φ), acting on the full spaceH2⊗Cd1 , is a co-isometric extension

of (T1, T2).
Let p be any polynomial (scalar or matrix valued) in two variables. We have

‖p(T1, T2)‖ = ‖p(M∗
z ,M

∗
Φ)|∨{kj}‖

≤ ‖p(M∗
z ,M

∗
Φ)‖H2⊗Cd1

= ‖p∪(Mz,MΦ)‖H2⊗Cd1

≤ ‖p∪(Mz,MΦ)‖L2⊗Cd1

= ‖p∪‖∂V ∪(3.25)

where V ∪ and V are the sets

V ∪ = {(z, w) ∈ D
2 : det(Φ(z)− wI) = 0}

V = {(z, w) ∈ D
2 : det(Ψ(z)− wI) = 0}.(3.26)

Equality (3.25) follows from the observation that

(3.27) ‖p∪(Mz,MΦ)‖L2⊗Cd1 = sup
θ

‖p∪(eiθI,Φ(eiθ))‖,

where the norm on the right is the operator norm on the d1 × d1 matrices. Equa-
tion (3.4) shows that, except possibly for the finite set σ(D)∩T, the matrix Φ(eiθ) is
unitary, and so the norm of any polynomial applied to Φ(eiθ) is just the maximum
value of the norm of the polynomial on the spectrum of Φ(eiθ). By continuity, we
obtain (3.25). Taking complex conjugates, (3.25) gives

‖p(T1, T2)‖ ≤ ‖p‖V ,
the desired inequality.

By Theorem 3.12, we see that V and V ∪ are distinguished varieties, and by
construction, V contains the points {(λ1

j , λ
2
j) : 1 ≤ j ≤ N}.
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SHINING A HILBERTIAN LAMP ON THE BIDISK 61

(ii) Now, we drop the assumption that T = (T1, T2) be diagonizable. J. Hol-
brook proved that the set of diagonizable commuting matrices is dense in the
set of all commuting matrices [14]. So we can assume that there is a sequence

T (n) = (T
(n)
1 , T

(n)
2 ) of commuting matrices that converges to T in norm and such

that each pair satisfies the hypotheses of (i), i.e. each T (n) is a pair of commut-
ing contractions that have N linearly independent eigenvectors and no unimodular
eigenvalues. Each T (n) has a unitary Un associated to it as in (3.20). By passing to
a subsequence if necessary, we can assume that the defects d1 and d2 are constant,
and that the matrices Un converge to a unitary U . The corresponding functions
Ψn from (3.22) will converge to some function Ψ. Let qn(z, w) = det(Ψn(z)−wI),
and q(z, w) = det(Ψ(z)−wI). Let V be defined by (3.26) for this Ψ, and Vn be the
variety corresponding to Ψn. Notice that the degrees of qn are uniformly bounded.

Claim: V is non-empty.
Indeed, otherwise it would contain no points of the form (0, w) for w ∈ D. That

would mean that σ(A) ⊆ T, and so B and C would be zero. That in turn would
mean that the submatrices An in Un would have all their eigenvalues tending to

T, and hence by (3.21), the eigenvalues of T
(n)
2 would all tend to T. Therefore T2

would have a unimodular eigenvalue, contradicting the hypotheses.
Claim: V is a distinguished variety.
This follows from Theorem 3.12.
Claim: Inequality (3.14) holds.
This follows from continuity. Indeed, fix some polynomial p. For every ε > 0,

for every n ≥ n(ε), we have

‖p(T )‖ ≤ ε+ ‖p(T (n))‖
≤ ε+ ‖p‖Vn

.

We wish to show that

lim
n→∞

‖p‖Vn
≤ ‖p‖V .

Suppose not. Then there is some sequence (zn, wn) in Vn such that

(3.28) |p(zn, wn)| ≥ ‖p‖V + ε

for some ε > 0. Moreover, we can assume that (zn, wn) converges to some point

(z0, w0) in D2. The point (z0, w0) is in the zero set of q, so if it were in D2, then it
would be in V . Otherwise, (z0, w0) must be in T

2. To ensure that (z0, w0) is in V ,
we must rule out the possibility that some sheet of the zero set of q just grazes the
boundary of D2 without ever coming inside.

But this cannot happen. For every z in D, there are d1 roots of det(Ψ(z)−wI) =
0, and all of these occur in D. So as z tends to z0 from inside D, one of the d1
branches of w must tend to w0 from inside the disk too. Therefore (z0, w0) is in
the closure of V , and (3.28) cannot happen. �

Remark 1. Once one knows Andô’s inequality for matrices, then it follows for
all commuting contractions by approximating them by matrices — see [13] for an
explicit construction. Of course, the set V must be replaced by the limit points of
the sets that occur at each stage of the approximation, and in general this may be
the whole bidisk.
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62 JOHN E. MCCARTHY

Remark 2. In the proof, we actually constructed a co-isometric extension of
T that is localized to V , and a unitary dilation of T with spectrum contained in
∂V .

4. Lecture 4: Angular derivatives

The following theorem, called the Julia-Carathéodory theorem, was originally
proved by G. Julia [16] and C. Carathéodory [11].

Theorem 4.1. Let φ : D → D be holomorphic. Let τ be a point on the unit
circle T. The following conditions are equivalent:

(A) there exists a sequence {λn} in D tending to τ such that

1− |φ(λn)|
1− |λn|

is bounded;
(B) for every sequence {λn} tending to τ nontangentially, (4.1) is bounded;
(C) there exist ω ∈ T and η ∈ C such that

(4.2) lim
λ

nt→τ

|φ(λ)− ω − η(λ− τ )|
|λ− τ | = 0;

(D) there exist ω ∈ T and η ∈ C such that φ(λ) → ω and φ′(λ) → η as λ → τ
nontangentially.

In two variables, there are natural analogues of conditions (A) - (D). K. Wlodar-
cczyk [25], F. Jafari [15] and M. Abate [1] obtained generalizations of Theorem 4.1,
showing that (A) implies (B) (this is Theorem 4.7 below) and (B) does not imply
(C). In [7], it was shown that on the bidisk (C) and (D) are equivalent (where
derivatives are replaced by gradients, and in the numerator of (4.2) η becomes a
2-vector whose scalar product is taken with the 2-vector λ− τ ).

4.1. Non-tangential Approach. If {λn} is a sequence in D and τ ∈ T, we
say that λn approaches τ nontangentially if λn tends to τ and there exists a constant
c such that, for all n,

|τ − λn| ≤ c(1− |λn|).
We shall make use of a similar notion for the bidisk: if {λn} is a sequence in D2

and τ ∈ T2, we say that λn approaches τ nontangentially if λn tends to τ and there
exists a constant c such that, for all n,

(4.3) ||τ − λn|| ≤ c(1− ||λn||).

We write λn
nt→ τ . Here and throughout the section || · || on C2 denotes the �∞

norm:

||λ|| = max{|λ1|, |λ2|}.
We say that a set S in D

2 approaches a point τ on the torus non-tangentially if τ
is in the closure of S and there exists a constant c such that, for all λ ∈ S,

||τ − λ|| ≤ c(1− ||λ||).
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SHINING A HILBERTIAN LAMP ON THE BIDISK 63

4.2. Results for functions on D2.

Definition 4.4. Let φ ∈ H∞
1 (D2) and let τ ∈ T2. We say that τ is a B-point

for φ if there exists a sequence {λn} in D
2 such that

(4.5) λn → τ and

(4.6)
1− |φ(λn)|
1− ||λn||

is bounded.

Theorem 4.7. Let φ be in H∞
1 (D2). The following are equivalent:

(A) the point τ in T
2 is a B-point for φ;

(B) for every sequence {λn} in D2 that converges nt to τ the statement (4.6)
holds.

When (A) and (B) are satisfied there exists ω ∈ T such that φ(λ) → ω as

λn
nt→ τ .

There are various ways in which φ can have a form of one-sided differentiability
at a boundary point. One is for the directional derivative of φ at τ in the direction
−τδ,

(4.8) D−τδφ(τ ) = lim
t→0+

φ(τ − tτδ)− φ(τ )

t

to exist whenever δ1 and δ2 are in the right half-plane H (for then τ (1− tδ) ∈ D2

for small t > 0 and the right-hand side of (4.8) makes sense).
Consider the function

(4.9) ψ(λ) =
1
2λ

1 + 1
2λ

2 − λ1λ2

1− 1
2λ

1 − 1
2λ

2
.

The point τ = (1, 1) is a B-point for ψ, and the nontangential limit there is 1. For
every δ ∈ H, the directional derivative D−δψ(1, 1) exists and

(4.10) D−δψ(1, 1) = − 2 δ1δ2

δ1 + δ2
.

Notice that the right-hand side of (4.10) is not linear in δ, but is analytic. For
a function holomorphic at τ the directional derivative is of course linear in the
direction, and so ψ is not regular at (1, 1).

(4.10) is typical of behavior at a B-point. In particular, we have:

Theorem 4.11. Let τ be a B-point of φ ∈ H∞
1 (D2). For any δ ∈ H2 the

directional derivative D−τδφ(τ ) exists and is an analytic function of δ.

We say that φ has a holomorphic differential on S at τ if S ⊂ D2, the closure
of S contains τ and there exist ω, η1, η2 ∈ C such that, for λ ∈ S,

(4.12) φ(λ) = ω + η1(λ1 − τ1) + η2(λ2 − τ2) + e(λ)

where

lim
λ→τ, λ∈S

e(λ)

||λ− τ || = 0.

We say that τ ∈ T2 is a C-point for φ if, for every set S that approaches τ
nontangentially, φ has a holomorphic differential on S and ω in (4.12) is unimodular.
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64 JOHN E. MCCARTHY

It is clear that, when τ is a C-point for φ, the quantities ω, η1, η2 in equation
(4.12) are the same for every nontangential approach region S, and so we may

define the angular gradient ∇φ(τ ) of φ at τ to be the vector
(
η1 η2

)t
.

If τ is a C-point of φ then the directional derivative D−τδφ(τ ) exists for δ ∈ H
and

D−τδφ(τ ) = δ · ∇φ(τ ).

Every C-point is a B-point, and in one variable Theorem 4.1 states that the
two notions are equivalent. However, the function ψ of equation (4.9) shows that,
for functions of two variables, not every B-point is a C-point: the relation (4.12)
fails to hold for φ = ψ and τ = (1, 1). Nonetheless, we still have equivalence of the
two-variable analogues of conditions (C) and (D) from Theorem 4.1:

Theorem 4.13. Let τ ∈ T2 be a C-point for φ ∈ H∞
1 (D2). Then

lim
λ

nt→τ

∇φ(λ) = ∇φ(τ ).

Points at which φ is regular are of course C-points, and the assertion of the
theorem is trivial for such C-points, but there are examples of functions in H∞

1 (D2)
that have singular C-points. One example is the rational inner function

φ(λ) =
−4λ1(λ2)2 + (λ2)2 + 3λ1λ2 − λ1 + λ2

(λ2)2 − λ1λ2 − λ1 − 3λ2 + 4
,

which has a C-point at (1, 1), despite being singular there (φ cannot be extended
continuously to D

2 ∪ {(1, 1)}).
Proofs of all the results in this section can be found in [7]. The proofs rely very

heavily on modelling functions as in (1.20).
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