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Machine Learning and Empirical Asset Pricing

Yingnan, Yi∗

Current Draft: May 6, 2019

Abstract

In this paper, I conduct a comprehensive study of using machine learning tools to fore-
cast the U.S. stock returns. I use three sets of predictors: the past history summarized
by 120 lagged returns, the technical indicators measured by 120 moving average trading
signals, and the 79 firm fundamentals, which helps to understand the weak-form market
efficiency, algorithm trading and fundamental analysis. I find each set independently
has strong predictive power, and buying the top 20% stocks with the greatest predicted
returns and shorting bottom 20% with the lowest earns economically significant profits,
and the profitability is robust to a number of controls. Econometrically, neural network
generally improves forecasting over linear models, but makes little difference with firm
fundamental predictors. Ensemble method tends to perform the best. However, when
combining information from all the predictors, traditional machine learning improves
little the performance due to perhaps not enough time series for too large dimensional-
ity. In contrast, simple forecasting combination and portfolio diversification approach
provide large gains.
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1. Introduction

Machine learning is receiving increasing attention in various areas, i.e., Heaton, Polson,

Witte (2016). Recent studies on U.S. market focus on cross-section predictability of stock

returns. For example, McLean and Pontiff (2015) examine various anomalies, and Green,

Hand, Zhang (2017) examine the predictive power of firm characteristics. The recent study of

Han, He, Rapach, Zhou (2018) use machine learning tools to uncover more stable and greater

predictability than previously found. Instead of cross-section predictability, Gu, Kelly, Xiu

(2018) apply comprehensive set of machine learning tools to study time series predictability.

In this paper, I use a comprehensive set of machine learning techniques to analyze cross-

sectional predictability of U.S. data over 40-year time period from January 1978 to December

2017. I categorize an extended panel of predictors into three subcategories of different eco-

nomic nature and attempt to speak to different questions under machine learning framework.

Specifically, I investigate the portfolio performance using: (1) 120 historical monthly stock

returns, (2) 120 technical moving average trading signals (Neely, Rapach, Tu, Zhou (2014)),

and (3) 79 fundamental firm characteristics. I also compare model performance during sub-

periods, by long- and short-leg portfolios, by size quintiles, and during different investor

sentiment periods and business cycles. Following Gu, Kelly, Xiu (2018), I apply major ma-

chine learning tools available, including ridge, lasso, elastic net, and 5 neural network models

of various architectures. In addition, I apply two commonly used dimensionality-reduction

techniques, namely principal component regression (PCR) and partial least square (PLS).

To predict stock return during month t using a given model, I estimate the model on

data during month t-1 (training sample). I use 5-fold cross validation or a single holdout

validation sample to determine the optimal hyper-parameters or optimal stopping point.1.

The resulting model is used to predict cross-sectional stock return on the data over month

t (testing sample). I independently sort stocks into quintiles based on the predicted return

from each model and equal weight stocks within each quintile. The spread portfolio is

constructed by buying the predicted winner quintile and selling the predicted loser quintile.

In addition to forming portfolios based on individual models, I construct three ensemble

portfolios based on unanimous voting rule. First I split models into two categories: linear and

neural network, where linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic Net

and neural network family includes 5 neural network models with assorted architectures. At

the beginning of each month, each estimated model in a given family casts its votes as to in

which quintile the stocks will fall in the coming month. Only stocks that receive unanimous

votes of top or bottom quintile from all models within a family will be bought or sold. I also

1The validation sample is a 10% holdout sub-sample of the training set.

1



construct a ”total ensemble” portfolio consisting of all 11 models under unanimous voting

rule.

Among single-model-based portfolios, our finding shows that in general neural network

portfolios perform better than linear ones mainly for price-related predictors, i.e., lagged

return and moving average trading signals. For the 120 lagged return setting, the monthly

excess return of spread portfolios based on linear models generally falls around 0.8% while the

return based on neural networks falls between 0.85% and 1.03%. In addition, combination of

linear models (networks) yields monthly return of 1.24% and 1.59%, which are significantly

higher than that of any component model in their respective class and represents a 28%

(1.59/1.24-1) performance gap between the two classes of models. For the moving average

signal setting, the monthly excess return of spread portfolios based on linear models falls

around 0.8% while the return based on neural networks falls around 1.0%, about a quarter

higher. Like in lagged return setting, combination of linear models (networks) yields monthly

return of 1.09% (1.48%), which are approximately 36% (48%) higher than any component

model in their respective class and represents a 0.36% (1.48/1.09-1) gap in relative sense. In

addition, I observe a significant jump in excess return when linear and networks models are

combined. For example, return jumps to 1.74% (from 1.59%) in lagged return setting and

to 1.89% (from 1.48%) in moving average signal setting. Risk-adjustment does not weaken

our finding.

For fundamental firm characteristics, our results show marginal improvement of neural

network models over linear models. Monthly excess return of spread portfolios based on

linear models falls between 1.29% to 1.38% while return based on neural networks falls

between 1.31% and 1.36%, essentially identical to each other. In addition, combination of

linear models yields a monthly return of 1.62% while combination of networks yields a return

of 1.75%, again close to each other. Nonetheless, such combination still brings significant

boost to excess return relative to the return based on individual models. Furthermore, when

linear and network models are combined, return jumps to 1.96%, the highest among all

models. However, I only observe improvement in Sharpe ratio in the moving average trading

signal setting and not in the other two.

Our finding has two implications. First, the success of neural network in our two price-

related settings suggests that the true data generating process underlying the follow-the-

trend strategy has significant non-linear component. For example, momentum strategy ranks

stocks based return history and buy previous winners and sell previous losers. Such strategy

assumes linear influence from past returns and is unnecessarily stringent. Our result suggests

that relaxing such assumptions may improve predictive performance of momentum strategy.

Our finding also suggests that using models with higher capacity and ensemble methods on
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market data may provide additional insights into the weak form of efficient market hypoth-

esis. Furthermore, unlike traditional momentum strategy which mainly rely on time-series

dependence to pick stocks, our design rely on a cross-sectional design and show that the

cross-section of prior returns is also informative.

Second, ensemble method, i.e., unanimous votes, boosts predictive power for both linear

and neural network models. I propose two explanations. First, considerable amount of noise

exists in predictions from a single model2 and therefore consensus across models help correct

mistakes made by any individual model. It is also possible that I can only approximate

part of the true data generating process with any individual model, making it necessary to

combine multiple models to finish the puzzle.3.

Third, I provide evidence that blindly applying neural network models may not be pro-

ductive. The effectiveness of neural network largely depends on the data in question. In

particular, the weak improvement of neural network over linear models on fundamentals

suggests that the information in fundamental data may not be sufficiently complicate to

warrant models of high capacity. In such case, linear models suffice and complicate models

harm predictibility.

I contribute to several streams of literature. First, our paper relates to a growing body

of research on the application of machine learning techniques to financial data. A broad

range of previous studies on machine learning techniques focuses on extracting factors from

a myriad of predictors and correcting the bias in existing methods. Rapach, Strauss, Zhou

(2013) uses Lasso to forecast international equity returns using cross-country lagged returns.

Rapach, Strauss, Tu, Zhou (2018) use a second-stage OLS to correct for the downward bias

in the first-stage Lasso estimation. Rapach, Zhou (2019) use Sparse-PCA to shrink more

weights of principal components to zero to enhance interpretability of principal components

in forecasting stock return. Freyberger, Neuhierl, Weber (2019) and Feng, Giglio, Xiu

(2019) use modified Lasso to select important return predictors from a predictor zoo and to

forecast expected stock returns. Light, Maslov, Rytchkov (2017) propose the PLS approach

for estimating expected returns on individual stocks from cross-sectional firm characteristics.

They start off by modifying the time series PLS adopted by Kelly, Pruitt (2015), and Huang,

Chen, Liu (2015) and significantly improve predictive power of firm characteristics. More

recently, researchers start to introduce more flexible models to tackle the forecasting task

in finance. Butaru, Chen, Clark, Das, Lo (2016) and Sirignano, Sadhwani, Giesecke (2018)

apply regression tree and deep neural network to forecast default probability of consumer

2Even after I average predictions from the same neural network architecture across 100 random weight
initializations.

3An analogy is the approximation of a function by its Taylor expansion and I use different models to
estimate each terms.
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credit card and mortgage loans respectively and show great potential of machine learning

techniques in risk management. Heaton, Polson, Witte (2016) introduce a general frame

work for deep learning in finance and use auto-encoder to reduce the number of stocks used

to replicate NASDAQ Biotechnology Index. Gu, Kelly, Xiu (2018) apply machine learning

methods to predict cross-sectional stock returns using a broad set of firm characteristics

and show great potential of neural network in financial world. I take one step further and

try to measure the informational content of predictors of differential economic nature using

machine learning techniques.

Second, our study contributes to the momentum and algorithmic trading literature. Prior

returns and price/volume-related signals have the potential to generalize to algorithmic or

high frequency trading context due to abundance of data. Plenty studies exist in such area.

Huang, Zhang, Zhou, Zhu (2019) combine price and fundamental momentum and construct

a twin-momentum portfolio which is more profitable than simple summation of the two

momentum portfolios. Another study by Han, Zhou, Zhu (2016) simultaneously consider

information in moving average prices over short-, intermediate-, and long-horizon and also

identify significantly stronger predictive power and lower risk. I extend these research by

applying machine learning tools to an expanded set of momentum and price-related predic-

tors. I create a panel of 120 prior returns and 120 price/volume trading signals and use

machine learning tools to forecast returns on the two datasets independently. Our results

challenge weak form market efficiency and shows great potential for algorithmic and high

frequency trading with machine learning tools. Third, by separating fundamental variables

from others I independently examine machine learning’s applicability to fundamental anal-

ysis. I start from the 94 firm characteristics in Green, Hand, Zhang (2017) and exclude 15

price/volume-related predictors to isolate the predictability of fundamental variables. Our

results show that simple neural network models do not outperform linear models on funda-

mental variables.

The remainder of this paper is organized as follows. Section 2 discusses the design of

our tests. Section 3 explains the specification of the models and discusses our selection of

hyper-parameters. Section 4 discusses data. Section 5 reports results. Section 6 concludes

the paper.

2. Design

In this section I describe the predictors, loss function, data splitting, hyper-parameter

tuning, and portfolio construction which apply to all models4. Details of models will be

4Except for OLS, which needs no parameter tuning or validation.
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presented in section 3.

2.1. Predictors

Our target variable is one-month ahead cross-sectional monthly excess returns. I use

three sets of predictors and compare their predictive performance using linear and neural

network models separately. Our predictors include: (1) 120-month lagged monthly excess

return on security level, (2) 60 stock price and 60 trading volume moving average signals

(Neely, Rapach, Tu, Zhou (2014)), and (3) 79 fundamental firm characteristics. Since lagged

returns are self-explanatory, I explain price/trading volume moving average signals and 79

fundamental firm characteristics in details below.

Following a similar vein in Neely, Rapach, Tu, Zhou (2014), I construct the price and

trading volume moving average signals by comparing short-term moving average of monthly

closing price and trading volume with their respective long-term moving average. Higher

short-term than long-term moving average is interpreted as a buy signal, vice versa for sell

signal. Specifically, I calculate the ratio of the short-term and long-term moving average of

the two variables and interpret a ratio higher than 1 as a buy signal and a ratio less than 1

as a sell signal. To calculate the price signals, I compute the following:

Si,t =
MAs,t
MAl,t

, (1)

where MAj,t = 1
j

∑j−1
i=0 Pt−i for j = s, l, and Pt is month-end closing price. s = 1, 2, 3 and

l = 6, 12, 18, ..., 120 and therefore I have 60 combinations of short- and long-term comparisons

and hence 60 moving average price signals.

For trading volume, I follow Granville (1963) and Neely, Rapach, Tu, Zhou (2014) and

first calculate the ”on-balance” trading volume as follows:

OBVt =
t∑

k=1

V OLkDk, (2)

where V OLk is trading volume during month k and Dk is a binary variable that takes the

value of 1 if Pk > Pk−1 and -1 otherwise. Then the moving average signals are constructed

using OBV and in the same manner as moving average price signals. Specifically, I compute

the following:

Si,t =
MAOBVs,t

MAOBVl,t

, (3)

where MAOBVj,t = 1
j

∑j−1
i=0 OBVt−i for j = s, l. As in moving average price signals, s =
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1, 2, 3 and l = 6, 12, 18, ..., 120 and again I have 60 combinations of short- and long-term

comparisons and hence 60 OBV moving average signals. I bundle the 60 price and 60

trading volume moving average signals and form the second set of predictors.

To obtain the 79 firm fundamental characteristics, I start from the 102 fundamental char-

acteristics in table 1 in Green, Hand, Zhang (2017) and exclude 17 price-, trading volume-,

or return-related variables, which are chmom (change in 6-month momentum), indmom

(industry momentum), maxret (maximum daily return), mom12m (12-month momentum),

mom1m (1-month momentum), mom36m (36-month momentum), mom6m (6-month mo-

mentum), std dolvol (volatility of liquidity (dollar trading volume)), retvol (return volatil-

ity), std turn (volatility of liquidity (share turnover)), baspread (bid-ask spread), chcsho

(change in shares outstanding), pricedelay (price delay), idiovol (idiosyncratic return volatil-

ity), ill (illiquidity), turn (share turnover), and zerotrade (zero trading days). I remove these

variables to minimize the overlap of information content with lagged return or moving av-

erage signals. In addition, I exclude 6 characteristics whose variance inflation factor (VIF)

are greater than 7 (due to multicollinearity concern), including betasq (beta squared), dolvol

(dollar trading volume), lgr (growth in long-term debt), pchquick (% change in quick ratio),

quick (quick ratio), stdacc (accrual volatility) 5. Therefore, I end up with 79 (102 - 17 - 6)

fundamental characteristics.

2.2. Loss Function

I employ mean squared error loss function to measure the fitness of our model on the

training set6. On the training set during month t and of size N, the loss value is computed

in equation 4.

L(θ)t =
1

N

N∑
i=1

(ri,t − r̂i,t)2, (4)

where ri,t is the monthly stock returns for the ıth firm in month t and r̂i,t is the predicted

returns from model.

2.3. Data Splitting

To make sure our estimated model generates out-of-sample prediction of stock return ri,t

during month t, I train our model on data during month t-1, Strain,t−1. Strain,t−1 contains

5Per Green, Hand, Zhang (2017), two price-related variables also have VIF greater than 7. They are
maxret and mom6m and have already been excluded in the first round of screening

6Training set is discussed in 2.3 below
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the actual returns during month t-1 as target variable and its aligned (lagged) predictors.

Then I use the predictors for month t, which are lagged returns relative to month t, to make

predictions. I run a fixed-width rolling window to train our models.

2.4. Hyper-Parameter Tuning

Many machine learning models involve hyper-parameters that need to be provided before

fitting the model. Hyper-parameters are parameters that cannot be estimated directly from

the data, including the penalty parameters in Ridge regression and the number of hidden

layers and nodes in a neural network. Although there is little theoretical guidance as to how

to choose hyper-parameters, the majority of machine learning community endorses the use

of validation sets7.

In this study, I implement either five-fold cross validation or holdout validation to de-

termine the optimal hyper-parameter on the validation set. In K-fold cross validation, the

training set is first randomly divided into K segments. Then a range of hyper-parametric

models are trained on K-1 segments and evaluated on the remaining segment. Each of the

K segments takes turns to be evaluated upon and the average loss value on all K segments

is assigned as the score of this model. The hyper-parameter that generates the lowest score

(loss) are chosen. I apply 5-fold cross validation to PCR, PLS, Lasso, Ridge, and Elastic Net.

For neural network, I use a 10% holdout validation sample to pick optimal hyper-parameter.

2.5. Hedge Portfolios

To construct the hedge portfolio for month t using a specific model, I first train the

model on data over month t-1 and select hyper-parameters via cross validation or holdout

validation. I use the fitted model to predict stock return during month t. Then I sort

the monthly cross-section of stocks into quintiles based on their predicted return and form

equally weighted portfolios for each quintile.8 Finally, I construct the hedge portfolio by

buying the top quintile and selling the bottom quintile. The hedged return is calculated by

subtracting the return of the bottom quintile from that of the top quintile.

2.6. Ensemble Portfolios

I use unanimous voting rule to combine subgroups of models and construct three ensemble

portfolios. After training all models, I separate them into linear models and neural networks

7Validation should be combined with domain knowledge whenever available.
8Stocks whose market capitalization as of the end of month t-1 falls below the monthly NYSE 10%

breakpoint are excluded from model estimation and prediction.
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and construct three ensemble portfolios by combining models within each subgroup and

across the two subgroups. Combination is implemented using unanimous voting rule. For

each month, I allow models in each subgroup to cast votes on the quintile assignment of

stocks for the next month. I then construct ensemble portfolios by buying the unanimously

predicted top quintile and selling the unanimously predicted bottom quintile. The spread of

return between the top and bottom quintile represents the return to the associated ensemble

portfolio. In the rare cases where no unanimous agreement exists during a given month, I

simply stop trading and assume that the return for the corresponding leg(s) is zero. The

three ensemble portfolios are constructed by combining linear models, 5 neural networks,

and all models in our study separately and I name them linear ensemble, network ensemble,

and total ensemble in the analysis below.

3. Models

This sections describes the family of machine learning models used to generate predic-

tions. I provide a brief introduction to each model and its motivation, algorithm, and

parameter tuning, if applicable.

3.1. Ordinary Linear Regression

The most commonly used model in empirical finance is Ordinary Linear Regression. It

serves as a good benchmark for more sophisticated models.

Linear Regression tries to find the β in equation Y = Xβ + ε that minimize mean

squared prediction errors (MSE). It assumes that the linear regression function E(Y |X) is a

reasonable approximation of the underlying relation between the target and predictors. For

linear regression to be valid, ε and Y have to be uncorrelated. As long as this condition holds,

the Gauss-Markov Theorem asserts that the β̂ estimated from Ordinary Least Square has the

smallest variance among all linear unbiased estimates, a.k.a. Best Linear Unbiased Estimator

or BLUE. Although linear regression allows easy interpretation, it imposes linearity on the

underlying relation which limits its predictive power if the true underlying function is other

than linear. In addition, OLS typically incurs high variance in predictions when the number

of predictors increases because it places no control over the norm of parameters. The generic

solution to OLS can be derived through first-order condition on the MSE and its derivation

can be found in a classical textbook.
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3.2. Principal Component Regression and Partial Least Square

As the number of predictors increases, the variance of prediction from linear regression

increases dramatically. Since each estimated parameter contributes randomness into the

prediction, noise accumulates and eventually dominates the true relation between predictors

and the target. One method to counter the problem is to reduce the dimension of predictors

by extracting latent variables embedded in the predictors. The hope is to represent the

information in the original predictors with only a few important hidden components and

reduce the dimension of predictors. Two methods are commonly used for this purpose:

principal component regression and partial least square regression.

3.2.1. Principal Component Regression

Principal component regression (PCR) is merely a regression of the target variable on

the hidden components from principal component analysis (PCA). The first principal com-

ponents are found to be the linear combination of the original predictors that has the highest

variance among all such linear combinations. Subsequently, the ith principal components are

found in the same manner with the additional requirement that they must be orthogonal to

all previously found principal components. Mathematically, the principal components of a

data matrix X are given by the eigenvectors of XTX. This is intuitively appealing because

XTX is the variance-covariance matrix of X and its eigenvectors point to the direction in

which the variables in X vary the most9. In optimization term, the mth component direction

vm solves equation 5.

max
α

V ar(Xα)

subject to ||α|| = 1

αTSvl = 0

l = 1, ...,m− 1

(5)

where S is the covariance matrix of the data.

In each month, I determine the optimal number of principal components retained using

five-fold cross validation. For implementation, I follow the algorithm called ”Non-linear Iter-

ative Partial Least Square” , aka ”NIPALS”, which repeatedly calculates every component,

checks their convergence, and stops until certain low tolerance level is achieved or maximum

9Here X must be demeaned before performing PCR. The eigenvector associated with the largest eigen-
value points to the direction in which the linear combination has the largest variance.
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iteration is reached10. See Algorithm 1 in Appendix for details11.

3.2.2. Partial Least Squares Regression

Like principal component regression (PCR), partial least squares (PLS) also construct

linear combinations of the original predictors to represent the data. However, PLS improves

upon PCR by incorporating the correlation between predictors and the target into the cal-

culation of weights in linear combination. That is, PLS finds directions that have both high

variance among predictors and high correlation with the target, while PCR only focus on ex-

plaining the variance among predictors. In optimization form, the mth PLS component solves

equation 6 whose objective function clearly demonstrates the consideration of correlations

between predictors and the target.

max
α

Corr2(y,Xα)V ar(Xα)

subject to ||α|| = 1

αTSvl = 0

l = 1, ...,m− 1

(6)

where S is the covariance matrix of the data.

As in PCR, I determine the optimal number of principal components retained using

five-fold cross validation. I also follow the NIPALS algorithm as in PCR.

3.3. Penalized Linear Regression

3.3.1. Ridge Regression

Ridge regression shrinks the norm of the coefficient vector by imposing a penalty term on

the loss function. Specifically, in our study the optimization algorithm finds β̂ in equation 7.

β̂Ridge = arg min
β

{ N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

}
, (7)

where β is the vector of regression coefficients, xij is the jth predictor of the ith training

sample, N is training sample size, and λ ≥ 0 is a penalty parameter that controls the amount

of shrinkage. Larger λ imposes more difficulty to the minimization of loss function and thus

shrink the β more strongly toward zero. Using matrix notation, the Ridge regression solutions

are given in equation 8.

10For our study, the tolerance level is 1e-06 and maximum iteration is 500, whichever comes first.
11NIPALS applies to partial least squares as well with only minor modification.
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β̂Ridge = (XTX + λI)−1XTy, (8)

where X is data matrix and y is the target variable. The method of penalizing loss

function by the squared norm of β is called L2 regularization and is also used in neural

network models, which will be discussed in later sections.

An important insight can be gathered by performing singular value decomposition of the

centered data matrix X, X = UDV T , where U spans the columns of X, D is the diagonal

matrix of singular values, and V spans the row space. Plugging X = UDV T into equation 8,

left-multiply by X, and simplify to get equation 9.

Xβ̂Ridge =

p∑
j=1

uj
d2j

d2j + λ
uTj y, (9)

where uj is the jth column of U , λ is the penalty parameter in equation 7, and .j is the

singular value of X.

Equation 7 shows that Ridge regression proceeds in two steps. First, it computes the

coordinates of y relative to the orthogonal basis U . Then it shrinks these coordinates by

multiplying them with
d2j

d2j+λ
. Note that the directions along which the coordinates exhibit

smaller variance receive larger shrinking12. Intuitively, since data does not vary much along

such directions, their effects are more difficult to estimate accurately. As a result, Ridge

regression assigns a lower weights13. The only tuning parameter λ is found by ten-fold

cross-validation.

3.3.2. Lasso Regression

Lasso regression follows a similar spirit as Ridge regression in that Lasso also imposes a

penalty term to the loss function that is a function of the β vector. However, Lasso calculates

the L1 norm while Ridge calculates L2 norm (See equation 10). This modification has two

major implications. First, the absolute value function precludes a close-formed solution as

in Ridge regression. Thus the Lasso estimates have to be solved numerically. Second, Lasso

regression tends to shrink some βi to zero and thus Lasso can be viewed as a variable selection

method.

12Recall that d2j is the eigenvalue of XTX and eigenvector associated with larger d2j points to the direction
in which data varies the most.

13See ”The Elements of Statistical Learning: Data Mining, Inference, and Prediction” Chapter 3 for more
detailed discussions.
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β̂Lasso = arg min
β

{ N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj|
}
, (10)

where all variables are defined similarly as in equation 7 and λ is found by ten-fold cross-

validation.

3.3.3. Elastic Net

Ridge and Lasso regressions can be viewed as two extremes. Ridge regression tends to

retain all variables while Lasso performs variable selection. Zou and Hastie (2005) proposed

a compromise between the two methods, namely Elastic net, which performs some vari-

able selection and in the meanwhile shrinks the coefficients of correlated variables. This is

illustrated in equation 11.

β̂Elastic = arg min
β

{ N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

(αβ2
j + (1− α)|βj|)

}
, (11)

where all variables are defined similarly as in equation 7 and 10 and λ and α are found by

ten-fold cross-validation as well.

3.4. Neural Network

Neural network is by far the most powerful tool in machine learning toolkit. Its de-

velopment was partly motivated by the failure of traditional algorithms to generalize well

to artificial intelligence tasks, i.e., speech and computer vision recognition. As its imple-

mentation becomes more user-friendly, neural network has shown great potential in tackling

problems in finance, i.e., Gu, Kelly, Xiu (2018). In the following subsections, I go through

the building blocks of the neural network and explain our design in details.

3.4.1. Universal Approximation Property

A key property that makes neural network the pivot of machine learning is the universal

approximation property. The universal approximation theorem (Hornik (1989), Cybenko

(1989)) states that a feed-forward network with a linear output layer and at least one hid-

den layer with any squashing activation function (that maps a larger domain into a smaller

range, i.e.,sigmoid function) can approximate any Borel-measurable function from one finite-

dimensional space to another with any desired nonzero amount of error, provided that the

network is given sufficient hidden units. For our mission of predicting stock returns with
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lagged return, moving average price/trading volume signals, or firm fundamentals, I can

safely assume that all of our predictors are bounded during a specific time period and univer-

sal approximation theorem applies. Take lagged return for example, universal approximation

theorem implies that any continuous function f : [−1, 1]n → [−1, 1] may be approximated

by a neural network with large enough capacity, where n is the number of predictors.14. The

other two settings can be similarly argued.

3.4.2. General Architecture of the Network and Information Flow

Although universal approximation theorem guarantees the existence of a large enough

network 15 that approximates any Borel-measurable function with any degree of accuracy,

the number of hidden nodes in the single-layer network may be too large to be estimated

Barron (1993). In practice, the architecture of a network is more often determined by

experimentation. Figure 1 shows a general structure of neural network with five input nodes

(predictors), one hidden layer with three hidden nodes (latent features), and one output

node (predicted stock return) 16.

Fig. 1. General Architecture of a Neural Network

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

14Recall that continuous function on a closed bounded subset of Rn, i.e., compact, is Borel-measurable and
[−1, 1]n and [−1, 1] are obviously finite dimensional ∀n <∞. Thus the conditions of universal approximation
theorem are satisfied.

15In the sense of sufficient number of hidden nodes in a single hidden layer
16Figure 1 and figure 2 are adapted from the open source codes on

https://tex.stackexchange.com/questions/132444/diagram-of-an-artificial-neural-network.
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Zooming in to a specific node in the structure in Figure 1, I obtain a more microscopic

view of the information flow within the structure for a single hidden node. Figure 2 shows

the mechanics and I briefly introduce the process. First, I take a single observation with

five inputs (predictors) and then apply a weighted average on the inputs using weights

w1, w2, w3, w4, w5 (to be estimated from training) to obtain the summation
∑

. Second, add

a bias parameter b to the
∑

. So far the procedure resembles regression analysis. Finally, I

apply an activation function to the resulting value from previous step and pass the output

to following layer, i.e, another hidden layer or output layer. The key point is that all the

weights and biases are parameters I try to estimate and all other parts, i.e., hidden layers

and nodes, activation functions, penalty terms, regularizations (not shown in the graph) are

pre-chosen. I will explain these issues and our choices momentarily. Before that, a more

fundamental task is to initialize weights and biases and then to update them, which leads us

to weight initialization, forward and backward propagation, and stochastic gradient descent.

Fig. 2. Information Flow Through One Hidden Node of a Feed-forward Network
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3.4.3. Weight Initialization

Most optimization algorithms used in training neural networks are iterative in nature

and require initial point to start. Initial point has three vital implications. First, most

optimization algorithm for neural networks are strongly affected by initial points, i.e., it

affects whether iteration converges at all. Second, even if learning does converge, initial

16From now on, I omit bias for brevity.
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point affects the convergence speed and training time. Third, although different initial

points can sometimes converge to points of comparable cost value, these points may have

drastically different generalization power. Although these issues are conceptually important,

practical strategies are mostly heuristic because neural network optimization itself is not

well understood yet.

Glorot, Bengio (2010) shows that for information to flow stably through the network the

variance of the outputs of each layer should equal to the variance of its inputs, which is

impossible unless ninputs = noutputs. As a compromise, I use a popular distribution named

”He normal” (He, Zhang, Ren, Sun (2015)) to initialize the weights. This modified normal

distribution has been shown to work well with Rectifier Linear Unit (ReLU) activation

function and its known variants which I use. Specifically, the initial weights are randomly

sampled from the following normal distribution.

X ∼ N (0,
√

2

√
2

ninputs + noutputs
) (12)

, where ninputs is the number of inputs nodes and noutputs for outputs. Note that this distri-

bution is also intuitively appealing because as the number of inputs and outputs increases,

the initial weights are shrunk to zero to dampen the impact of any individual predictor.

3.4.4. Forward- and Backward-Propagation

After the weights are initialized, I iteratively update them using information from the

calculated cost value. The two processes of propagating information forward through the

neural network and then using calculated errors to make backward adjustments to parameters

are called forward- and backward-propagation respectively. Specifically, given the weights

matrices and bias parameters of the model, forward-propagation processes the data and

calculate the loss value 17. Then backward-propagation will calculate the gradients on the

activation functions in each layer, starting from the output layer and going backwards to

the very first hidden layer. These gradients indicate in which direction the output of each

hidden layer should move to reduce the forecast error. Finally, the gradients on weights and

biases can be found through chain rule of calculus. (see Algorithm 3 in Appendix for more

details)

In practice, the gradients are typically calculated in mini-batches of 32 to 512 randomly

selected training samples at a time 18, i.e., LeCun, Bottou, Muller (2012). In this case,

17The calculated cost value must be added to a regularizer Ω(ω) to obtain the total loss
18A batch size of 1 is totally legitimate. In that case it is a pure stochastic gradient descent algorithm

and it probably takes a long time to train the model
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the gradient from each mini-batch is simply the average gradient of all samples from the

same mini-batch. The batch size is another hyper-parameter I can play with and it also

has significant impact on model performance. While using larger batch size may yield more

accurate estimate of the gradient due to the law of large number, it also requires more

memory on your machine when data is large. On the other hand, for some structure of the

cost function more accurate locally estimated gradient may be undesirable when your model

is following a trajectory to get out of a local minima or saddle point while its gradient is

telling it to move downhill 19. In our study, I balance model performance against training

time and choose the batch size of 32.

3.4.5. Stochastic Gradient Descent

The most commonly used optimization algorithm for neural network is stochastic gradient

decent (SGD). The central equation for iterative updating of weights is shown in equation 13

(see Algorithm 2 in Appendix for more details).

wt ← wt−1 − εt−1ĝt−1, (13)

where wt is the weight matrix after the tth iteration, εt−1 is the learning rate after the (t−1)th

iteration, and ĝt−1 is the estimated gradient from a mini-batch.

Equation 13 shows that SGD relies on the estimated gradient at a sample point20 as

guidance regarding to which direction the weights should move toward. One drawback of

SGD is that convergence may be slow and therefore many modified versions exist to accelerate

training. In our study I employ an adaptive learning rate algorithm called ADAM Kingma,

Ba (2017). See Algorithm 4 in Appendix for details. ADAM can be roughly viewed as a

combination of two adaptive learning rate optimization schemes: (1) momentum, and (2)

re-scaling.

Intuitively, momentum represents accumulation of previous estimates of gradients and it

will be added to the updating term on weights. With momentum the size of updates will

depend on the sum of norms of previous gradient estimates and how aligned their signs are.

For example, if the training process experiences a long sequence of either positive or negative

gradient estimates then the momentum term will accumulate and the size of updates will be

larger over time, shortening the training time. If the signs oscillate and previous gradients

cancel out then momentum will be close to zero and the size of updates would be small,

elongating the training time.

19In this case, an ”inaccurate” estimate of gradient may lead us to the right path. Thanks to an anonymous
discussant on Stackoveflow to point this out.

20Or a mini-batch of training samples.
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3.4.6. Hidden Layers and Activation Function

Now that I are clear on how to initialize weights and biases and how to iteratively update

them, I come back to our design choices, i.e., number of hidden layers and nodes and choice

of activation functions. As demonstrate in Figure 1, hidden layers and nodes act like latent

variables between predictors and target variable and much of the flexibility of neural network

model comes from its layered design and non-linear activation function. Due to the lack of

theoretical guidance, architectures are usually designed by experiments. Following previous

studies, Gu, Kelly, Xiu (2018) and Masters (1993), I explore a series of designs starting

from the shallowest network with a single hidden layer and 32 hidden nodes to a 5-layer

network with [32, 16, 8, 4, 2] hidden nodes respectively. Although these pyramidal designs

seem arbitrary, casual experiments suggest that deviation from them does generate inferior

predictive performance most of the time.

As for activation function, I choose leaky rectified linear unit (Leaky ReLU) function for

hidden layers and linear function for output layer. Leaky ReLU is a variant of the famous

rectifier linear unit (ReLU) activation function used in many recent studies. Comparison of

the two functions are in Figure 3.

Fig. 3. ReLU and Leaky ReLU with varying parameters
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The functional forms of ReLU and Leaky ReLU function are given below.

ReLU(x) =

0, if x ≤ 0.

x, otherwise.

LeakyReLU(x) =

αx, if x ≤ 0.

x, otherwise.

where α is a hyper-parameter that can be tuned 21.

The major difference between ReLU and Leaky ReLU lies on the negative part. One

drawback of the original ReLU function is that if during training a hidden node’s weights

get updated such that the weighted average of its inputs is negative, it will output zeros.

That is, that node is ”dead”. To make things worse, future updates to that node is unlikely

to bring it back to life because the gradient of ReLU function is zero on the negative part

of its domain 22. To alleviate this issue, Leaky ReLU assigns a small positive slope to the

original ReLU on the negative domain and hopes that even if a node dies in one round of

training future updates will not always be zero and thus may bring it back to life.

As for output layer, linear activation function is a common choice for regression. Since

our target variable is stock return which lies in [-1,1], many other functions with a range

between -1 and 1 seem to be legitimate options as well 23. However, such functions typically

saturates for extreme values on their range and thus may cause trouble for optimization

algorithms 24.

3.4.7. Regularizations

With tens of thousands of parameters estimated, over-fitting is a big concern. Conceptu-

ally, over-fitting refers to a situation where the model family not only includes the true data

generating process but also many other generating processes. That is, variance rather than

bias dominates the estimation error (Goodfellow et al (2014)). This issue is especially severe

21Typical choices of α is 0.01. In our study, I use α = 0.1. The choice of α can potentially affect model
performance, a fact I observe from experiments. The consideration is to alleviate the dying node problem
while preserving the non-linearity of the original ReLU function. No hard rules exist here.

22Recall that during backward propagation I use calculus chain rule to calculate the gradients on weights
and biases. If the gradient of activation function on its input weights is zero, the whole gradient becomes
zero and the weights don’t get updated. One direct consequence of dying node is that the neural network
model starts to generate identical predictions, which is just the bias parameter.

23For example, tangent hyperbolic function.
24That is, such activation functions level off for extreme input values and thus their gradients are close

to zero, providing little information for updating weights.
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with neural network because neural network typically has very high capacity25. To address

over-fitting, I employ seven regularization schemes: (1) L1 and L2 parameter norm penalties,

(2) adaptive learning rate shrinkage through stochastic gradient descent, (3) learning rate

shrinkage through learning rate scheduler, (4) batch normalization, (5) random dropout, (6)

early stopping, and (7) ensemble method. The application of regularization is more of an art

than science. Although the seven techniques are very powerful, they impose danger as well.

Too much regularization may impose unnecessary constraints on the optimization algorithm

and prevent it from heading for a lower cost point. L1 and L2 parameter norm penalties are

essentially the same as the ones used in Lasso and Ridge regressions respectively and thus

are spared from further discussion.

I employ two learning rate shrinking methods, one is embedded in the ADAM algorithm as

discussed in 3.4.5 and the other is an explicit scheduler. Although ADAM adaptively shrinks

learning rate there is little guarantee that the learning rate will be sufficiently shrunk before

the early stopping criterion is met. Large learning rate can cause the weights to oscillate back

and forth around a local minima and make it difficult to converge. This issue is especially

severe during later phase of training when fine tuning is needed. By imposing an explicit

learning rate scheduler, I put a shrinking series of upper limits on the learning rates computed

by ADAM at a given step of training and thus make sure that the updating term εt−1ĝt−1

in equation 13 will converge to zero and thus the training will converge26.

Batch normalization (Ioffe, Szegedy (2015)) controls the variability of predictors across

different layers of the network and across different datasets. The outputs of a mini-batch

of data from each layer constitute a ”batch”. The outputs from preceding layers are cross-

sectionally standardized to have zero mean and unity variance before being fed to the next

layer. This is done on training and validation samples similarly and on testing sample but in

a different manner. To make prediction, I treat the entire testing sample as one batch and

feed it to the model in its entirety.27. That is, the mean and variance used in normalization

is calculated using all the data points in a testing sample.

Dropout (Srivastava et al (2014)) randomly ignores a certain percentage of hidden units

during training. All the inputs and outputs connected with the ignored units are omitted

from updates as well. Since I use a minibatch-based learning algorithm, units to be ignored

are chosen at the beginning of each batch operation and they are chosen independently for

25Meaning they include many data generating processes besides the true one, if at all.
26As discussed in Deep Learning Chapter 8 by Ian Goodfellow and Yoshua Bengio, gradient descent often

does not arrive at any critical point, meaning that the norm of the gradient does not converge to zero at all.
As a result, I must shrink learning rate instead to achieve convergence.

27As discussed earlier, during training and validating I feed a mini-batch of 32 data points to the model at
one time. Batch normalization is performed on this mini-batch of 32 examples during training and validating.
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each hidden layer. Conceptually, random dropout is similar to estimating an ensemble of

sub-networks of the master network with shared parameters. Predictions are made from

accumulating votes from all the sub-networks. Like bagging, such ensemble approach has

the advantage of being robust to errors. In addition, since dropout is applied on hidden units

rather than the raw inputs, it can be viewed as an intentional omission of some information

content rather than the original variable from the learning process. This omission forces

the algorithm to complete the task via other useful information in the predictors and to

extract as much information from the predictors as possible. In our study, the probability

of a hidden node being ignores is set at 10%. No dropout is performed on input layer.

Early stopping is a direct control of model performance on the validation set. Typically,

I observe that validation loss first decreases with more updates to the weights and then

increases as over-fitting creeps in. One way to choose the optimal hyper-parameters is to

train the model for a large number of epochs and then go back along the training history to

choose the parameters yielding the lowest validation error. However, such method is time

consuming and it is difficult to determine how long the entire training process needs to be

to include the true optimal model. Instead, early stopping halts the training as soon as the

validation error fails to decrease for a certain number of training rounds. At the end of the

training process, the most recently recorded model, rather than the global optimal model

trained so far, is returned. In our study, I stop the training if the validation error fails to

decrease within 10 epochs. See Algorithm 6 in Appendix for details.

Ensemble learning estimates the same neural network architecture multiple times and

averages their predictions. Since each estimation assumes a random matrix of initial weights,

it incurs independent estimation error, which supposedly will average away with large number

of estimations. For each month, I estimate each neural network 100 times using randomly

initialized weight matrices and take average prediction as our final prediction.

4. Data

Market return is collected from monthly CRSP database. Data starts in January 1978

(1978:01) and ends in December 2017 (2017:12), totalling 40 years (480 months). I include

all domestic common stocks listed on the NYSE, AMEX, and Nasdaq Stock Exchanges and

exclude securities that do not have CRSP share code of 10 or 11. Returns are adjusted by

de-listing returns and and stock prices are adjusted by stock dividends and splits. For the 120

lagged returns setting, I require a firm-month to have non-missing past returns for at least 72

months out of 120 months to be included in our sample. For the 60 price (trading volume)

moving average signal setting, I require 60% of the previous price (trading volume) data
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to be non-missing for each calculation of moving average signals. For the 79 fundamental

characteristics setting, I follow the same sample selection rule as in Green, Hand, Zhang

(2017) and use the SAS code provided on the authors’ website to generate the data. For

each set of predictors, I winsorize monthly data at 1% and 99% and normalize each variable

to have mean 0 and variance 1. After normalization, I fill missing values with zeros. I obtain

the Treasury-bill rate as the proxy for risk-free rate from Fama-French Factor database on

WRDS.

5. Results

5.1. Average Portfolio Return During 1978:01 - 2017:12

Table 1 panel A reports summary statistics of monthly spread portfolio returns using 120

lagged returns as predictors. Portfolios are constructed on predicted returns from 11 models

and their ensembles, including average excess return, t-statistic under zero mean, volatility,

Sharpe ratio, skewness, kurtosis, proportion of positive return, minimum return, and max-

imum drawdown. Over the sample period from 1978:01 to 2017:12, the benchmark OLS

model generates an average return of 0.78% (t=5.13) per month while the best performer,

Partial Least Square generates a 1.06% (t=7.16). t-statistics are calculated using White Het-

eroskedasticity robust standard error. Specifically, I draw the following observations from

panel A.

First, the 11 portfolios yield highly significant returns. In particular, all mean excess

returns are statistically significant at 1% level. The magnitudes of mean excess return

fall between 0.78% (Linear) and 1.74% (Ensemble Total) with network models generally

outperforming linear ones. Volatility is in the ballpark of 3%-4% and Sharpe ratio varies

widely following similar pattern as mean excess returns and volatility. All Skewness and

Kurtosis are positive, suggesting that portfolios tend to experience extremely high return in

some month. Minimum monthly return fluctuates between -0.18 (PCR) and -0.36(Ensemble

Total) and maximum drawdown also varies widely between -0.31 (PCR) and -0.54 (Ensemble

Total). Overall, I conclude that model specifications significantly affect their predictive

performance and the return-risk profile of the portfolios constructed on them.

Second, different families of models exhibit starkly diverging performance while models

within the same family perform similarly. Specifically, linear models (OLS, PCR, PLS, Ridge,

Lasso, Elastic net) produce comparable portfolio performance in all statistics reported. In

particular, the mean excess returns of all four models fall between 0.65% and 0.68% and are
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statistically significant at 1% level28. Volatility, Sharpe ratio, and other statistics are also

similar. Neural network models perform better with all specifications producing a monthly

return of more than 1% and t-statistics greater than 3. Even after accounting for the high

volatility, neural networks still generate the highest Sharpe ratio among all models (between

0.18 and 0.21).

The three ensemble models significantly outperform their respective families. Specifically,

Linear ensemble yields a return of 1.24% which represents a 17% increase to the best single-

model portfolio return of 1.06%. Both Skewness (1.51) and Kurtosis (19.73) are slightly

higher than those of its component models, suggesting that unanimous voting rule increases

the probability of returning extremely positive outcomes. Other statistics show comparable

results. Network ensemble significantly improves upon single network models. It generates

a return of 1.59% while the best-performing network model (NN2L) only generates 1.03%,

a 54% boost of return. As a compensation, network ensemble also exhibits higher variance

(6.34% vs 3.95%) and therefore the ensemble Sharpe ratio decreases from 0.26 to 0.25.

Network ensemble has about average Skewness and Kurtosis around its component models.

Finally, combining both linear and networks further boosts portfolio performance to 1.74%.

However, the Sharpe ratio does not improve and remains at 0.25, suggesting that model

combination brings little benefit to the trade-off between risk and return.

Table 1 panel B and Panel C reports summary statistics of monthly spread portfolio re-

turns using 60 price and 60 trading volume moving average signals and 79 fundamental firm

characteristics, respectively. For moving average signals, the return pattern is similar to the

lagged return setting only with minor differences. Like with lagged returns, networks gen-

erally outperform linear models and ensemble models outperform their component models.

However, one difference is that for moving average signal setting ensemble models slightly

improves Sharpe ratio while this is not the case for lagged returns. On the other hand, when

79 fundamental variables are used for predictors, the excess returns of linear models versus

network models are indistinguishable and ensemble models again fail to improve the Sharpe

ratio beyond their component models.

Observed patterns of the three panels suggest the following conclusions. First, linear

models have limited capacity in approximating the true data generating process of stock

returns when market data are used for predictors. The fact that adding a penalty on mean

squared error loss, as Ridge, Lasso and Elastic net do, does not significantly improve model

performance partially spares high variance from being the culprit for poor performance of

linear models and invites us to explore a broader family of more flexible models. On the

other hand, models with high capacity and strong regularization, i.e., neural networks, take

28Except for Ridge regression, which has t=5.13 and significant at 5% level
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the upper hand over linear models in such setting. However, networks seem to have limited

utility in fundamental-based strategies, as demonstrated in panel C. Second, the superior

performance of ensemble models provides evidence that unanimous voting rule is a booster

of model performance and such performance boosting applies to both market-based data and

firm fundamental characteristics. However, the effectiveness is more salient for lagged return

setting (1.74 / 1.06 = 1.64) and moving average signal setting (1.89 / 1.06 = 1.78) than for

firm fundamentals (1.91 / 1.37 = 1.39), consistent with the narrow spread of return between

linear and network models in firm fundamental setting. Third, neural networks and ensemble

method do not seem to bring significant benefit to Sharpe ratio compared to linear models.

While slightly boosting Sharpe ratio in moving average setting, most networks and ensemble

models in the other two settings either generate similar Sharpe ratio as linear models or

sometimes inferior Sharpe ratios. This raises a potential caveat for using network models

and ensemble methods. However, it is true that such increased volatility may be caused by

upward fluctuation and may not represent a downward risk. Such possibilities are left for

future investigations.

5.2. Average Portfolio Return During Sub-Periods

To explore whether our results are driven by any specific period, I present four ten-year-

spaced sub-periods in Table 2 to Table 4. Table 2 to Table 4 presents results for (1) 120

lagged return, (2) moving average trading signals, and (3) fundamental variable, respectively.

I focus on key observations rather than giving a rundown on each table.

First, consistent with Chordia, Subrahmanyam, Tong (2014) and McLean and Pontiff

(2015), excess returns decay over time. For the first 30 years in our sample (1978:01 -

2007:12), most models generate highly significant excess returns on each of the three decade-

long subperiods regardless of which set of predictors are used. A swerve occurred in 2008

and most excess returns have became insignificant at 10% level since then.

Second, individual network models generally outperform linear models and examination

of the average spread return between linear models and network models does not reveal

clear time trend. In the lagged return setting the average spread returns between linear

and network models respectively are 0.1383 (1978:01 - 1987:12), -0.07 (1988:01 - 1997:12),

0.3417 (1998:01 - 2007:12), and -0.0267 (2008:01 - 2017:12). The corresponding spreads for

moving average signals are 0.0443 (1978:01 - 1987:12), 0.2873 (1988:01 - 1997:12), 0.5157

(1998:01 - 2007:12), and -0.0713 (2008:01 - 2017:12) and for fundamental variables are -

0.0683 (1978:01 - 1987:12), -0.0073 (1988:01 - 1997:12), 0.1297 (1998:01 - 2007:12), and

0.0440 (2008:01 - 2017:12). Therefore, network models outperform linear models by large
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margin in some decades but underperform only slightly in others. Overall, network models

outperform and the relative performance of the two families of models does not appear to

change monotonically over time.

Third, ensemble models generally outperform their component models and network en-

sembles outperform linear ensembles with one exception (2008:01 - 2017:12 lagged return

setting). I examine the time trend of the ratio of network ensemble returns to linear ensem-

ble returns over the four decades for three sets of predictors. For lagged return, the ratios

are 1.45 (1978:01 - 1987:12), 1.08 (1988:01 - 1997:12) , 1.51 (1998:01 - 2007:12),, and 0.80

(2008:01 - 2017:12). So network ensemble outperforms linear ensemble except for the last

decade and no clear time trend emerges since the third decade in our sample exhibits a spike

of outperformance for network ensemble. For moving average signals, the ratios are 1.15

(1978:01 - 1987:12), 1.53 (1988:01 - 1997:12) , 1.45 (1998:01 - 2007:12),, and 1.36 (2008:01 -

2017:12). Network ensembles consistently beat linear ensembles with high margin. Although

the margin has dropped slightly from 0.53 to 0.36, it remains economically significant. For

fundamental firm characteristics, the ratios are 1.08 (1978:01 - 1987:12), 1.09 (1988:01 -

1997:12) , 1.10 (1998:01 - 2007:12),, and 1.00 (2008:01 - 2017:12). Although network en-

sembles still outperform linear ensembles, the margin is much smaller than those for lagged

return or moving average signals, suggesting that model capacity may not be a critical issue

for fundamental variables.

Another observation is that combining linear models with network models significantly

boosts excess returns. I label such model as total ensemble and examine the ratio of its

excess return over that of linear ensemble or network ensembles, whichever is higher. For

lagged return, the ratios are 1.09 (1978:01 - 1987:12), 1.16 (1988:01 - 1997:12), 0.97 (1998:01

- 2007:12), and 1.16 (2008:01 - 2017:12). For moving average signals, the ratios are 1.14

(1978:01 - 1987:12), 1.10 (1988:01 - 1997:12), 1.37 (1998:01 - 2007:12), and 1.46 (2008:01 -

2017:12). For firm characteristics, the ratios are 1.05 (1978:01 - 1987:12), 1.12 (1988:01 -

1997:12), 1.06 (1998:01 - 2007:12), and 1.27 (2008:01 - 2017:12). Therefore, in terms of model

combination, moving average signals seems to reap the largest benefit of model combination

and such benefit has increased over past four decades. Our silver medal goes to fundamental

characteristics which generate consistent but modest benefit. Lastly, lagged return setting

generates positive incremental returns with rare exception, i.e., 1998:01-2007:12.

To visualize the return profiles over time, I report the 12 month-lag moving average

monthly return of the three ensemble models and the cumulative portfolio value of one dol-

lar initial investment in figure 6. Figure 4 through Figure 6 show graphs for the three sets of

predictors respectively. In each figure, Panel (A) presents moving average return and Panel

(B) presents cumulative values for the three sets of predictors with an initial investment
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of $1 in January 1, 1978. Consistent with numerical analysis, network ensembles portfolio

values outgrow linear ensembles regardless of which predictors are used. In addition, the

combination of network and linear models significantly boost model performance especially

when price and trading moving average signals are used for predictors. In terms of recent

performance, I observe that portfolio performance starts to level off for lagged return and

fundamental variables, while remaining strong for moving average trading signals. For fun-

damental variables, the portfolio value shows little sign of growth after 2009, while lagged

return perform relatively better but with large dips in 2014 and 2015. In terms of absolute

portfolio value, moving average trading signals also wins out with an ending portfolio value

of approximately $1750.

5.3. Risk-Adjusted Returns

I adjust the spread portfolio returns by existing risk factor model. By regressing portfolio

return on factor returns in each model, I filter out the excess return explained by these risk

factors and retain the regression intercepts as our estimate of risk-adjusted returns (alpha).

Risk-adjustment is done for spread portfolio, long-leg portfolio, and short-leg portfolio. Table

5 to Table 7 reports tne alphas (%) over the full sample period: 1978:01-2017:12 for the three

sets of predictors respectively.

Table 5 reports the results for lagged return. Raw excess returns are adjusted by

four factor models: CAPM, Fama and French(Fama, French (1993)) three-factor model,

Carhart (Carhart (1997)) four-factor model, and Fama and French (Fama, French (2015))

five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. First,

risk-adjustment does not weaken either statistical or economical significance of our portfolio

alpha. The most surprising result is that our results remain unaffected by Carhart 4 fac-

tors, which includes a momentum factor. This could be because our model includes month

t-1 to month t-120 historical return as predictors while the momentum factor in Carhart

model is based on prior return from month t-2 to month t-12. Second, I further decompose

spread portfolio into long- and short-leg and reports the results in Panel B and Panel C. De-

composition shows stark contrast between long-leg and short-leg portfolio returns. Long-leg

return is almost cut by half while short-leg return is actually enhanced (more negative and

statistically significant) after risk-adjustment. This suggests that our long-leg portfolio does

a mediocre (but still statistically significant) job at identifying winner stocks than common

risk factors 29, while our short-leg portfolio is doing exceptionally better. Third, network

models outperform linear models for both long- and short-leg. Take FF5-adjusted return

29For ensemble portfolios, at least 50% of raw excess return comes from their exposure to FF-5 factors.
For individual models, common risk factors explain 60% to 70% of raw excess returns.
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Fig. 4. Portfolio Returns (%) and Cumulative Portfolio Value 1978:01-2017:12 (Predictors:
Lagged Returns)

120 lagged returns are used for predictors. Panel (A) reports the monthly spread portfolio
return over the time period from 1978:01 to 2017:12. To enhance visualization, I smooth
the monthly return with 12-month moving average values. Panel (B) reports the cumulative
portfolio value over the time period from 1978:01 to 2017:12 after initial investment of one
dollar. At the beginning of each month, I independently sort stocks into quintile portfolios
on predicted returns from each model and construct spread portfolios by buying the best-
predicted portfolio and selling the worst-predicted portfolio. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile agreed-upon unanimously
by all models in the family and selling the unanimous loser quintile. Linear family includes
OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks.
Total ensemble includes both linear and network families, totalling 11 models.
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Fig. 5. Portfolio Returns (%) and Cumulative Portfolio Value 1978:01-2017:12 (Predictors:
Moving Average Signals)

60 price and 60 trading volume moving average signals are used for predictors. Panel (A)
reports the monthly spread portfolio return over the time period from 1978:01 to 2017:12. To
enhance visualization, I smooth the monthly return with 12-month moving average values.
Panel (B) reports the cumulative portfolio value over the time period from 1978:01 to 2017:12
after initial investment of one dollar. At the beginning of each month, I independently sort
stocks into quintiles portfolios on predicted returns from each model and construct spread
portfolios by buying the best-predicted portfolio and selling the worst-predicted portfolio.
For a given family of models, ensemble portfolios are constructed by buying the winner
quintile agreed-upon unanimously by all models in the family and selling the unanimous loser
quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network
family includes 5 neural networks. Total ensemble includes both linear and network families,
totalling 11 models.
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Fig. 6. Portfolio Returns (%) and Cumulative Portfolio Value 1978:01-2017:12 (Predictors:
Firm Characteristics)

79 firm fundamentals are used for predictors. Panel (A) reports the monthly spread portfolio
return over the time period from 1978:01 to 2017:12. To enhance visualization, I smooth
the monthly return with 12-month moving average values. Panel (B) reports the cumulative
portfolio value over the time period from 1978:01 to 2017:12 after initial investment of one
dollar. At the beginning of each month, I independently sort stocks into quintiles portfolios
on predicted returns from each model and construct spread portfolios by buying the best-
predicted portfolio and selling the worst-predicted portfolio. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile agreed-upon unanimously
by all models in the family and selling the unanimous loser quintile. Linear family includes
OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks.
Total ensemble includes both linear and network families, totalling 11 models.

28



for example, for long-leg, network ensemble (linear ensemble) model generates a return of

0.73% (0.54%); for short-leg, network ensemble (linear ensemble) model generates a return

of -0.90% (-0.63%).

Table 6 reports the result for price and trading volume moving average signals. Results in

table 6 resemble those in table 5 except for two points. First, individual models appear to be

more sensitive to risk-adjustment than in lagged return setting. Statistical significance are

dampened for all individual models except for NN1L and NN2L and economic significance

is also reduced by a greater margin than in lagged return setting. On the other hand, the

ensemble models are more robust to risk-adjustment than individual models and their risk-

adjusted returns are only slightly reduced. Second, the source of increased sensitivity comes

from the short-leg. Comparing table 6 panel (C) with the same panel in table 5 shows that

the short-leg of moving average signals only marginally outperforms (if at all) common risk

factors and statistical significance is poor. As a result, the risk-adjusted spread returns in

the moving average signal setting and the lagged return setting are pulled closer than their

respective raw returns.

Table 7 reports the result for fundamental firm characteristics. The results appear one-

sided. The majority of risk-adjusted return for the fundamental portfolios come from their

long-leg and the short-leg contributes only a small portion. For example, the risk-adjusted

returns of neural networks long-leg portfolios are approximately 1%, while the corresponding

short-leg returns are only -0.4%. In addition, all of the long-leg portfolio returns remain

significant at 1% level, while none of the short-leg portfolio returns are significant at 1%

level.

Overall, I find that the long-leg for fundamental characteristics performs the best among

all long-leg portfolios and is least affected by risk-adjustment and the short-leg for lagged

return performs the best among all short-leg portfolios. I also find that the lagged return

setting relies on long- and short-leg portfolios somewhat symmetrically for excess return while

the other two settings rely more heavily on their long-leg rather than short-leg for excess

return. This phenomenon is especially salient for fundamental variable setting, which relies

on its long-leg for both economic and statistical significance, and less so for moving average

signal setting, whose short-leg contributes a decent portion of economic significance. Finally,

I find that most ensemble portfolios survive risk-adjustment even when their component

models do not. This reinforces our point that ensemble method helps decouple the correlation

of individual models with common risk factors and improves predictive power beyond those

risk factors.

Table 8 reports the exposure to common risk factors of ensemble portfolios. Consistent

with our finding in table 5 panel (A), ensemble portfolios for lagged return mostly have in-
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significant exposure to common risk factors, with occasional marginally significant exposure

to the investment factor (CMA). For moving average signals, I find consistent significant

exposure to the investment factor and insignificant exposure to all other factors. For fun-

damental variables, market factor has significant negative coefficients and investment factor

has significant positive coefficients. Overall, I find that fundamental ensembles could serve

as a hedge portfolio for market risk while the two market-data based ensembles are quite

neural to market risk.

5.4. Spanning Tests

Significant risk-adjusted return shows that the spread portfolios cannot be spanned by

linear combinations of existing risk factor models. This section tests whether spread port-

folios lie in the mean-variance frontier of risk factors. This idea was originally proposed

by Huberman, Kandel (1987) and was further improved by Kan, Zhou (2012). I follow

Kan, Zhou (2012) and provide six test statistics. They are Wald test under conditional

homoskedasticity, Wald test under independent and identically distributed (IID) elliptical

distribution, Wald test under conditional heteroskedasticity, Bekerart-Urias spanning test

with errors-in-variable (EIV) adjustment, Bekerart-Urias spanning test without EIV adjust-

ment, and DeSantis spanning test. p-values are found under asymptotic χ2 distribution with

2 degrees of freedom and are in the parentheses.

Table 9 presents the results of ensemble portfolios for brevity. In A1 - A3, B1 - B3, and

C1 - C3, I report test statistics for the three sets of predictors. The magnitude of statistics

dwindles as more risk factors are added to the test, although all statistics are significant at

1% level. Our results show that ensemble portfolios not only yield the highest risk-adjusted

returns as shown in previous tables but also add value to a well-diversified portfolio.

5.5. Regression Analysis of Predictive Power

To examine the predictive power of individual models, I estimate a series of monthly

regressions of actual stock return on predicted stock return for each model and report the

summary statistic of the time series of coefficients. The three panels in table 10 presents sum-

mary for lagged return, moving average trading signals, and firm characteristics respectively.

From left to right, I report the monthly median of beta coefficients, the average t-statistics,

standard deviation of betas, the minimum and maximum of betas, the proportion of positive

betas, the proportion of significant betas at 1%, 5%, and 10% level conditional on their

positivity, and finally the adjusted R-square.

First, I observe a clear increasing pattern of median beta coefficient as I migrate from top
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to bottom within each panel, suggesting that an increasing correlation of actual and predicted

returns. In all three panels, OLS performs the worst, consistent with our presumption that

OLS fails in modeling complex data processes. Specifically, median beta increases from

0.07 (OLS) to 0.61 (NN5L), almost nine-fold increase for the lagged return setting. Similar

pattern emerges for moving average trading signal setting and firm characteristic setting,

i.e., from 0.02 (OLS) to 0.36 (NN5L) and from 0.10 (OLS) to 0.73 (NN5L) respectively.

Second, among linear models, PCR, PLS, Lasso, and ENet are close in terms of median

beta and other statistics. PCR and PLS tend to outperform in the lagged return setting;

PCR, PLS, Lasso, and ENet tend to perform similarly in moving average signal setting; Lasso

and ENet tend to outperform in firm fundamental setting. Overall, these four models tend to

be close in performance and no dominant choice exists. Among neural network models, the

median beta increases monotonically from 1-hidden layer to 5-hidden layers, suggesting that

more complex network model improves the correlation between actual and predicted returns.

Table 10 provides different insights compared to previous tables, i.e., table 1. For example,

in table 1 I observe a inverted U-Shaped portfolio return for neural network models in the

three panels, but the regression analysis shows a monotonically growing predictive power

from NN1L to NN5L.

5.6. Pair-Wise Model Comparison

I further conduct a pair-wise Diebold-Mariano (Diebold, Mariano (2015)) test to compare

each pair of models in their out-of-sample predictive accuracy. DM test compares the pre-

diction error on a stock-level and assumes that the resulting statistic follows an asymptotic

normal distribution. Table 11 reports the DM statistics with *, **, *** indicating 1%, 5%,

10% statistical significance.

A positive DM statistic suggests that the column model is superior to the row model,

i.e., smaller average squared prediction error. In general, neural network models outperform

other models as demonstrated by the significant DM statistics under most network models. In

addition, performance increases monotonically with the number of hidden layers in network

models, confirming our finding in table 10. Overall, our findings in table 10 and table 11

show that network models generate smaller predictive error and larger correlation between

actual and predicted returns.

5.7. Size Effects

Smaller firms tend to have more mispricing and higher return. In this section, I check

how much of our portfolio returns come from small firms. Specifically, before sorting stocks
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into quintiles I remove stocks in the bottom p% of market value at the end of the previous

month. I pick p% to be 20%, 40%, 60%, and 80%. Table 12, table 13, and table 14 report

risk-adjusted returns for our three sets of predictors respectively. In following analysis, I

mainly focus on raw and risk-adjusted returns of individual models.

First, among the three sets of predictors moving average trading signals are most sensi-

tive to size effect and fundamental characteristics are least sensitive. Specifically, in table 13

(moving average signals) from panel (A) to panel (D), raw and adjusted return of most port-

folios decline in magnitude and become insignificant or only marginally significant at 10%.

Only NN1L remains significant at 5% with adjusted return of 0.58. In contrast, although

in table 14 (firm characteristics) the raw and adjusted return also decline in magnitude as

small companies are weeded out, they remain economically more significant than those in

table 13 panel (D) and more importantly t-statistic of all portfolios remains significant at

5%. The lagged return setting lies between the other two settings. In table 12 panel (D),

although the magnitude of portfolio return for lagged return is comparable to those in table

13 panel (D), the t-statistics are highly significant at 1% or 5% level.

Second, the pattern I observe in table 1 remains unchanged. In particular, the gap

of return between linear and network models is most significant for moving average signal

setting and this holds for every panel in table 13. Thus this gap is not caused by any specific

size quintile of the sample. On the other hand, the gap of return for fundamental variables

is quite small. It is true that the highest return typically comes from a network model, but

the overall performance of linear models is quite close to that of network models. In fact,

such gap of return is hardly recognizable in many panels in table 14. Unlike before, the

lagged return setting shows a somewhat inverted U-Shaped performance gap between linear

and network models. I notice that linear and network portfolio returns are closer in panel

(A) and (D) than in panel (B) and (C) in table 12, suggesting that the out-performance of

network models that I observe in table 1 panel (A) likely comes from middle-sized companies.

Third, to further quantify the out-performance of network models over linear models, I

calculate the ratio of adjusted network ensemble return over linear ensemble return. In the

same order as presented in table 12 through table 14, the ratios are 1.40 (20% excluded), 1.56

(40% excluded), 1.79 (60% excluded), and 1.31 (80% excluded) for lagged return, 1.48 (20%

excluded), 1.61 (40% excluded), 1.67 (60% excluded). and 1.48 (80% excluded) for moving

average signals, and 1.14 (20% excluded), 1.17 (40% excluded), 1.06 (60% excluded), and 1.04

(80% excluded) for firm fundamentals. The corresponding ratios for the complete sample

are 1.39, 1.45, and 1.11 for the three sets of predictors. Consistent with our previous finding,

both lagged return and moving average signal exhibit inverted U-Shaped performance gap

between network and linear models and fundamental portfolios are relatively insensitive to
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model choices. Overall, our finding suggests that model choices, i.e., linear versus neural

network, matter more for middle-sized companies than small or large companies.

5.8. Impact of Investor Sentiment

Stambaugh et al (2012) shows that portfolio profitability is related to investor sentiment.

In this section, I examine how much of our result is driven by investor sentiment. Following

Huang, Zhang, Zhou, Zhu (2019), I proxy overall investor sentiment with Baker, Wurgler

(2006) sentiment index and label a month as high sentiment if the Baker-Wurgler index over

the previous month is above the median of the entire sample period (1978:01 - 2015:09)

and low sentiment otherwise30. I calculate risk-adjusted return on high- and low-sentiment

periods separately and report the results in table 15 through table 17.

First, for lagged return setting the out-performance of network models over linear models

is more salient during low investor sentiment period than during high investor sentiment pe-

riod. In particular, linear models (network models) generate risk-adjusted return of approx-

imately 0.61% - 1.04% (0.70% - 1.01%) during high investor sentiment period, while during

low investor sentiment period linear models (network models) generate approximately 0.73%

- 0.98% (0.87% - 1.02%). During high investor sentiment period, linear ensemble generates

1.19% and network ensemble generates 1.53% while during low investor sentiment period,

linear ensemble generates 1.17% and network ensemble generates 1.74%.

Second, for moving average trading signal setting the out-performance of network models

over linear models is also more salient during low investor sentiment period than during high

investor sentiment period. Risk-adjusted return becomes insignificant during high investor

sentiment period. Although the return of network ensemble (0.71%) is still larger than

that of linear ensemble (0.38%), neither of them are significant. On the other hand, during

low investor sentiment period risk-adjusted returns of all models remain significant at 1%

and network models significantly outperform linear models. In particular, three out of five

network models generate more than 1.1% monthly return while most linear models generate a

return less than 1%. Ensemble portfolios show similar pattern. Network ensemble generates

a monthly return of 1.76% and linear ensemble generates a return of 1.38%. Overall, for

moving average signal setting portfolio return concentrate on low sentiment period and

network models outperform linear models only during low investor sentiment period.

Finally, fundamental portfolio return in table 17 does not appear to be affected by investor

sentiment. During both periods, raw and risk-adjusted returns are significant at 1% for all

models and the magnitudes of return are also close with those during low sentiment period

30Baker-Wurgler investor sentiment ends in 2015:09.
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slight higher. The relative performance between linear and network models remain insensitive

to investor sentiment either. Overall, table 17 is consistent with our previous finding that

network models do not work better on fundamental variables than linear models.

5.9. Impact of Business Cycle

In this section, I explore the impact of business cycle on the performance of our models.

Specifically, I examine hedge portfolio return during expansion and recession periods. Our

sample months are labeled expansion or recession based on the business cycle definition on

National Bureau of of Economic Research (NBER) website.

Both lagged return setting and moving average trading signal setting exhibit similar

pattern. For lagged return setting, I find that common risk factors explain more of portfolio

return during expansion than during recession periods. During expansion periods most of

the portfolio return increases after being adjusted by Fama-French five factors, while during

recession periods portfolio return typically declines after being risk-adjusted. In addition, I

observe that neural network outperforms linear models by a larger margin during expansion

periods than during recession periods. This is evidenced by the large (small) spread between

linear and network ensemble returns during expansion (recession) periods. During expansion

periods, linear ensemble yields a risk-adjusted return of 1.16% and network ensemble yields

1.75%, a spread of 0.59%. During recession periods, linear ensemble yields a risk-adjusted

return of 1.94% and network ensemble yields 1.90%, a trivial spread. Similarly, for moving

average trading signal setting, I again find that common risk factors explain more of portfolio

return during expansion than during recession periods. During expansion periods most of

the portfolio return increases after being adjusted by Fama-French five factors, while during

recession periods portfolio return typically declines after being risk-adjusted. In addition,

I observe that neural network again outperforms linear models by a larger margin during

expansion periods than during recession periods. This is evidenced by the large (small)

spread between linear and network ensemble returns during expansion (recession) periods.

During expansion periods, linear ensemble yields a risk-adjusted return of 1.00% and network

ensemble yields 1.44%, a spread of 0.44%. During recession periods, linear ensemble yields

a risk-adjusted return of 1.09% and network ensemble yields 1.42%, neither of which is

statistical significant. Overall, our evidence show that market-data based portfolios: (1)

typically do a better job at exploiting mispricing during expansion periods than during

recession periods, and (2) neural network outperforms linear models when mispricing is

more prevalent, i.e., during expansion periods.

For firm fundamentals, I also find that portfolios raw return is more sensitive to risk-
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adjustment during recession than expansion. For example, return typically increases after

risk-adjustment during expansion, while decreases and becomes insignificant during reces-

sion. In addition, I find some evidence of out-performance of neural network over linear

models during expansion periods where linear ensemble returns 1.71% and network ensem-

ble returns 1.93, a spread of 0.22%. Compared to the spread of 0.59% (lagged return) and

0.44% (moving average trading signal), the spread for firm fundamentals is almost cut by

more than 50%. Furthermore, I observe that neural network under-performs linear models

by 0.07% during recession periods which represents a non-trivial offset to the already-small

out-performance during expansion periods. Summarizing the findings for the three settings,

I conclude that in general: (1). neural network does better job at capturing mispricing in the

market and this causes its out-performance during expansion periods when mispricing is be-

lieved to be more prevalent, (2). point (1) holds for all three sets of predictors but to different

extents. From strongest to weakest, the ranking is lagged return >moving average signals

>and firm fundamentals, (3). point (1) reverses slightly for lagged return (-0.04%) and firm

fundamental (-0.07%) settings. While negligible for lagged return setting, such reverse wipes

out 33% of the out-performance for firm fundamentals during expansion, narrowing the gap

between neural network and linear models over the entire sample.

5.10. Combination of Predictors

I explore four combinations of the three sets of predictors. They are: (1) lagged return and

moving average signals, (2) lagged return and firm characteristics, (3) moving average trading

signals and firm characteristics, and (4) all three sets of predictors. Summary statistics are

reported in Table 21 Panel (A) through (D).

First, I combine 120 lagged return with the 120 moving average signals and re-estimate

the model. Summary statistics are reported in table 21 panel (A). Overall, combining the

two sets of market data does not significantly improve spread return. Comparing with the

results in table 1 panel (A) and panel (B), I fail to observe big improvement except for

a few nuances. This suggests that 120 lagged returns and moving average trading signals

may be capturing similar information in return or price momentum and the incremental

information content barely offset the increased variance from their combination. Second,

large improvement of portfolio return comes from the combination of fundamental variables

with either lagged returns or moving average signals. I report such results in panel (B)

and panel (C). Excess return of total ensemble portfolio jumps to 2.03% (2.19%) when

firm fundamentals are combined with lagged returns (moving average signals). In addition,

performance of linear and network models converges as fundamental variables are added to

35



the predictors. Gu, Kelly, Xiu (2018) shows that neural network models significantly improve

upon linear models. However, their data only includes a handful of momentum variables.

Our finding suggests that such improvement likely comes from market data and not so much

from fundamental variables.

I also combine predictors using an alternative method adopted in Han, He, Rapach,

Zhou (2018). Specifically, I report the global minimum-variance portfolio, i.e., Basak, Jagan-

nathan, Ma (2009), constructed from the three spread portfolios each of which is estimated

using one of the three sets of predictors. First I calculate the spread portfolio return using

each set of predictors independently for each model. Then I calculate the global minimum-

variance portfolio weights for month t using spread portfolio return up until month t and

use the weights to combine the three portfolios. Results are reported in table 22. I draw

XXX conclusions. First, generally mean excess return and volatility are lower than those

in table 21, consistent with the notion that expected return and volatility are positively

correlated along the efficient frontier. Second, in terms of Sharpe ratio I do not observe sig-

nificant improvement with only a few exceptions, i.e., PLS using prior return and technical

predictors. Our results provide preliminary evidence that combining information of different

sources generates limited gain.

6. Conclusion

In this paper, I conduct a comprehensive study of using machine learning tools to forecast

the U.S. stock returns. I use three sets of predictors: the past history summarized by 120

lagged returns, the technical indicators measured by 120 moving average trading signals,

and the 79 firm fundamentals, which helps to understand the weak-form market efficiency,

algorithm trading and fundamental analysis. I find each set independently has strong predic-

tive power, and buying the top 20% stocks with the greatest predicted returns and shorting

bottom 20% with the lowest earns economically significant profits, and the profitability is ro-

bust to a number of controls. Econometrically, neural network generally improves forecasting

over linear models, but makes little difference with firm fundamental predictors. Ensemble

method tends to perform the best. However, when combining information from all the pre-

dictors, traditional machine learning improves little the performance due to perhaps not

enough time series for too large dimensionality. In contrast, simple forecasting combination

and portfolio diversification approach provide large gains.
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Table 1: Summary Statistics of 40-Year Full Sample Period 1978:01 - 2017:12

This table reports summary statistics of spread portfolio returns for the full sample period 1978:01
- 2017:12, including average return (in % per month), t-statistics, volatility (standard deviation),
monthly Sharpe ratio, skewness, kurtosis, proportion of positive returns, minimum monthly return,
and maximum drawdown. In Panel A, predictors are previous 120 months lagged stock returns; in
Panel B predictors are 60 moving average price signals and 60 moving trading volume signals; in
Panel C predictors are 79 firm characteristics from Green, Hand, Zhang (2017), excluding price,
returns, and trading volume-related variables. t-stat is calculated under the null hypothesis that
excess return equals zero using White Heteroskedasticity robust standard error. At the beginning
of each month,

Panel A: 120 months lagged returns 1978:01 - 2017:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.78 5.13*** 2.96 0.26 0.79 18.34 0.64 -0.19 -0.36
PCR 0.81 6.14*** 3.11 0.26 0.83 14.09 0.63 -0.18 -0.31
PLS 1.06 7.16*** 3.37 0.31 1.27 15.40 0.66 -0.20 -0.32
Ridge 0.78 5.13*** 2.96 0.26 0.79 18.34 0.64 -0.19 -0.36
Lasso 0.82 5.34*** 3.04 0.27 0.63 17.14 0.64 -0.20 -0.37
ENet 0.82 5.34*** 3.04 0.27 0.63 17.14 0.64 -0.20 -0.37
NN1L 0.91 5.73*** 3.29 0.28 0.43 11.64 0.66 -0.18 -0.40
NN2L 1.03 6.06*** 3.95 0.26 0.91 13.60 0.66 -0.23 -0.39
NN3L 1.00 5.79*** 4.25 0.24 0.86 14.85 0.67 -0.25 -0.44
NN4L 0.92 4.91*** 4.37 0.21 1.24 18.84 0.62 -0.28 -0.46
NN5L 0.85 5.21*** 4.12 0.21 1.36 19.76 0.62 -0.25 -0.44
Ens Linear 1.24 6.02*** 4.35 0.29 1.51 19.73 0.65 -0.24 -0.41
Ens Net 1.59 5.68*** 6.34 0.25 1.10 13.43 0.64 -0.34 -0.52
Ens Total 1.74 5.58*** 7.00 0.25 1.38 14.60 0.61 -0.36 -0.54

Panel B: 60 moving average price and 60 trading volume signals 1978:01 - 2017:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.68 4.19*** 4.26 0.16 -0.07 14.40 0.61 -0.27 -0.45
PCR 0.77 3.68*** 5.40 0.14 0.34 12.22 0.59 -0.32 -0.50
PLS 0.75 3.47*** 5.47 0.14 0.46 11.13 0.58 -0.30 -0.51
Ridge 0.68 4.19*** 4.26 0.16 -0.07 14.37 0.61 -0.27 -0.45
Lasso 0.87 4.09*** 5.46 0.16 -0.05 12.51 0.61 -0.32 -0.57
ENet 0.87 4.10*** 5.46 0.16 -0.04 12.45 0.61 -0.32 -0.57
NN1L 1.04 4.89*** 5.52 0.19 0.09 12.24 0.63 -0.33 -0.53
NN2L 1.06 4.54*** 5.97 0.18 0.16 12.85 0.61 -0.38 -0.57
NN3L 0.99 4.15*** 6.02 0.16 0.44 13.44 0.59 -0.37 -0.58
NN4L 0.89 3.77*** 5.88 0.15 0.58 13.22 0.59 -0.36 -0.55
NN5L 0.84 3.76*** 5.86 0.14 0.41 13.72 0.57 -0.37 -0.57
Ens Linear 1.09 4.23*** 6.34 0.17 0.48 10.99 0.61 -0.36 -0.58
Ens Net 1.48 5.21*** 7.21 0.21 0.60 11.28 0.62 -0.41 -0.59
Ens Total 1.89 5.90*** 8.02 0.24 0.76 10.15 0.63 -0.43 -0.58
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Table 1: Summary Statistics of 40-Year Full Sample Period 1978:01 - 2017:12
(Cont’d)

I independently sort stocks into quintile portfolios on predicted return from each model and dataset
and construct spread portfolios by buying the best-predicted quintile and selling the worst-predicted
quintile. For a given family of models, ensemble portfolios are constructed by buying the unani-
mous winner quintile by all models in the family and selling the unanimous loser quintile. Linear
family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural
networks. Total ensemble includes both linear and network families, totalling 11 models. NYSE
10% market value breakpoint is applied and stocks are equal-weighted within quintile. *,**,***
represent statistical significance at 1%, 5%, and 10% levels.

Panel C: 79 fundamental Firm Characteristics 1978:01 - 2017:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 1.30 4.92*** 6.10 0.21 0.85 11.20 0.63 -0.29 -0.51
PCR 1.37 5.18*** 6.15 0.22 0.74 10.14 0.64 -0.28 -0.49
PLS 1.33 5.02*** 6.31 0.21 0.78 9.74 0.63 -0.29 -0.50
Ridge 1.29 4.91*** 6.10 0.21 0.85 11.18 0.63 -0.29 -0.51
Lasso 1.38 4.95*** 6.35 0.22 0.77 9.94 0.62 -0.29 -0.52
ENet 1.38 4.95*** 6.35 0.22 0.77 9.94 0.62 -0.29 -0.52
NN1L 1.34 4.87*** 6.34 0.21 0.81 11.03 0.62 -0.30 -0.50
NN2L 1.36 4.82*** 6.56 0.21 0.75 11.09 0.61 -0.31 -0.52
NN3L 1.34 4.79*** 6.65 0.20 0.79 11.40 0.62 -0.32 -0.55
NN4L 1.31 4.67*** 6.53 0.20 0.82 11.38 0.62 -0.31 -0.55
NN5L 1.31 4.74*** 6.38 0.20 0.87 11.88 0.62 -0.29 -0.53
Ens Linear 1.62 5.41*** 6.94 0.23 0.67 7.75 0.63 -0.30 -0.54
Ens Net 1.75 5.22*** 7.98 0.22 0.58 7.37 0.63 -0.32 -0.59
Ens Total 1.96 5.67*** 8.35 0.23 0.55 6.76 0.64 -0.33 -0.61
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Table 2: Summary Statistics during 10-Year Sub-Periods (Predictors: 120-month
lagged return)

This table reports summary statistics of excess returns of spread portfolios whose construction
uses 120-month lagged return as predictors. Statistics are presented for 4 10-year subperiods
separately and they include average return (in % per month), t-statistics, volatility (standard
deviation), monthly Sharpe ratio, skewness, kurtosis, proportion of positive returns, minimum
monthly return, and maximum drawdown. t-stat is calculated under the null hypothesis that
excess return equals zero using White Heteroskedasticity robust standard error. At the beginning
of each month, I independently sort stocks into quintile portfolios on predicted returns from each
model and construct spread portfolios by

Panel A: 120 months lagged return 1978:01 - 1987:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 1.09 5.57*** 2.26 0.48 0.05 0.44 0.68 -0.05 -0.05
PCR 0.92 4.36*** 2.47 0.37 0.06 0.38 0.66 -0.05 -0.10
PLS 1.21 6.55*** 2.85 0.43 -0.09 1.04 0.71 -0.07 -0.07
Ridge 1.09 5.57*** 2.26 0.48 0.05 0.44 0.68 -0.05 -0.05
Lasso 1.06 5.36*** 2.37 0.45 -0.15 0.48 0.68 -0.06 -0.06
ENet 1.06 5.36*** 2.37 0.45 -0.15 0.48 0.68 -0.06 -0.06
NN1L 1.27 6.38*** 2.50 0.51 -0.37 1.14 0.72 -0.07 -0.07
NN2L 1.35 6.50*** 2.95 0.46 -0.37 1.25 0.73 -0.08 -0.08
NN3L 1.25 5.98*** 3.15 0.40 -0.49 2.17 0.72 -0.11 -0.11
NN4L 1.18 5.29*** 3.09 0.38 0.03 1.23 0.68 -0.09 -0.09
NN5L 1.00 5.38*** 2.70 0.37 -0.15 0.85 0.64 -0.07 -0.07
Ens Linear 1.53 5.46*** 3.40 0.45 -0.13 0.14 0.72 -0.08 -0.09
Ens Net 2.22 7.74*** 4.42 0.50 -0.19 -0.21 0.72 -0.11 -0.11
Ens Total 2.42 8.54*** 4.94 0.49 0.07 0.55 0.68 -0.11 -0.14

Panel B: 120 months lagged return 1988:01 - 1997:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.97 5.84*** 1.56 0.62 0.50 0.75 0.72 -0.02 -0.03
PCR 1.00 5.57*** 1.92 0.52 0.30 0.74 0.71 -0.05 -0.06
PLS 1.26 5.90*** 1.97 0.64 0.22 0.48 0.78 -0.05 -0.05
Ridge 0.97 5.84*** 1.56 0.62 0.50 0.75 0.72 -0.02 -0.03
Lasso 1.08 5.49*** 1.67 0.65 0.64 0.89 0.76 -0.02 -0.04
ENet 1.08 5.49*** 1.67 0.65 0.64 0.89 0.76 -0.02 -0.04
NN1L 1.07 5.53*** 1.95 0.55 0.78 1.30 0.72 -0.04 -0.05
NN2L 1.17 5.11*** 2.37 0.49 0.84 2.20 0.71 -0.06 -0.06
NN3L 1.01 4.60*** 2.50 0.40 0.21 2.43 0.69 -0.08 -0.08
NN4L 0.91 4.90*** 2.50 0.37 0.13 2.74 0.66 -0.08 -0.09
NN5L 0.79 3.58*** 2.30 0.34 0.19 2.41 0.66 -0.08 -0.11
Ens Linear 1.52 6.46*** 2.34 0.65 0.06 0.08 0.73 -0.05 -0.06
Ens Net 1.64 3.28*** 4.64 0.35 -0.65 1.77 0.67 -0.18 -0.27
Ens Total 1.91 3.68*** 5.49 0.35 -0.79 1.46 0.68 -0.17 -0.24
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Table 2: Summary Statistics during 10-Year Sub-Periods (Predictors: 120-month
lagged return) (Cont’d)

buying the best-predicted quintile and selling the worst-predicted quintile. For a given family of
models, ensemble portfolios are constructed by buying the unanimou winner quintile by all models in
the family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge,
Lasso, and Elastic net. Network family includes five neural networks. Total ensemble includes both
linear and network families, totalling 11 models. NYSE 10% market value breakpoint is applied
and stocks are equal-weighted within quintile. * ,** ,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel C: 120 months lagged return 1998:01 - 2007:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.57 1.62 3.78 0.15 -1.37 7.58 0.59 -0.19 -0.36
PCR 1.00 2.91*** 4.62 0.22 0.56 9.73 0.61 -0.18 -0.31
PLS 1.23 3.37*** 4.60 0.27 0.88 12.10 0.62 -0.20 -0.32
Ridge 0.57 1.62 3.78 0.15 -1.37 7.58 0.59 -0.19 -0.36
Lasso 0.68 1.86* 3.89 0.17 -1.34 7.82 0.59 -0.20 -0.37
ENet 0.68 1.86* 3.89 0.17 -1.34 7.82 0.59 -0.20 -0.37
NN1L 0.79 2.12** 4.51 0.17 -0.70 5.13 0.62 -0.18 -0.40
NN2L 1.27 3.08*** 5.98 0.21 0.40 7.37 0.65 -0.23 -0.39
NN3L 1.21 2.66** 6.69 0.18 0.59 7.62 0.67 -0.25 -0.44
NN4L 1.20 2.41** 7.01 0.17 0.85 9.41 0.62 -0.28 -0.46
NN5L 1.18 2.67** 6.80 0.17 0.94 8.79 0.63 -0.25 -0.44
Ens Linear 1.36 2.90*** 5.97 0.23 0.41 10.15 0.62 -0.24 -0.41
Ens Net 2.06 2.95*** 9.04 0.23 0.90 9.38 0.64 -0.34 -0.52
Ens Total 1.99 2.53** 9.58 0.21 1.20 11.44 0.61 -0.36 -0.54

Panel D: 120 months lagged return 2008:01 - 2017:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.49 1.22 3.63 0.13 3.53 23.89 0.56 -0.08 -0.23
PCR 0.33 1.25 2.74 0.12 1.85 8.92 0.53 -0.06 -0.10
PLS 0.51 1.55 3.48 0.15 2.75 17.18 0.54 -0.08 -0.17
Ridge 0.49 1.22 3.63 0.13 3.53 23.89 0.56 -0.08 -0.23
Lasso 0.46 1.18 3.65 0.13 3.37 23.45 0.52 -0.09 -0.22
ENet 0.46 1.18 3.65 0.13 3.37 23.45 0.52 -0.09 -0.22
NN1L 0.50 1.24 3.59 0.14 3.04 19.60 0.57 -0.09 -0.19
NN2L 0.32 0.88 3.47 0.09 3.09 19.90 0.54 -0.09 -0.22
NN3L 0.53 1.39 3.37 0.16 2.16 13.23 0.58 -0.09 -0.12
NN4L 0.38 0.91 3.39 0.11 2.49 14.79 0.52 -0.09 -0.19
NN5L 0.42 1.28 3.01 0.14 1.95 11.71 0.54 -0.08 -0.15
Ens Linear 0.56 1.04 4.77 0.12 4.08 31.15 0.53 -0.09 -0.29
Ens Net 0.45 0.84 6.11 0.07 2.34 15.32 0.54 -0.14 -0.26
Ens Total 0.65 1.00 7.01 0.09 2.96 18.13 0.45 -0.13 -0.31
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Table 3: Summary Statistics during Sub-Periods (Predictors: 60 price and 60
trading volume MAs signals)

This table reports summary statistics of excess returns of spread portfolios whose construction
uses 60 price and 60 trading volume MAs signals as predictors. Statistics are presented for 4 10-
year subperiods separately and they include average return (in % per month), t-statistics, volatility
(standard deviation), monthly Sharpe ratio, skewness, kurtosis, proportion of positive returns, min-
imum monthly return, and maximum drawdown. t-stat is calculated under the null hypothesis that
excess return equals zero using White Heteroskedasticity robust standard error. At the beginning
of each month, I independently sort stocks into quintile portfolios on predicted returns from each
model and construct spread portfolios by

Panel A: 60 moving average price and 60 trading volume signals 1978:01 - 1987:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.99 3.46*** 2.84 0.35 -0.28 2.78 0.68 -0.10 -0.12
PCR 0.90 2.53** 3.72 0.24 -0.10 1.57 0.58 -0.13 -0.22
PLS 0.98 2.68** 3.80 0.26 -0.10 1.49 0.63 -0.13 -0.21
Ridge 1.00 3.50*** 2.85 0.35 -0.26 2.90 0.68 -0.10 -0.12
Lasso 1.13 3.22*** 3.77 0.30 -0.14 2.06 0.64 -0.13 -0.20
ENet 1.13 3.23*** 3.77 0.30 -0.14 2.06 0.64 -0.13 -0.20
NN1L 1.19 3.97*** 3.61 0.33 -0.08 2.34 0.65 -0.12 -0.12
NN2L 1.17 3.74*** 3.86 0.30 -0.00 2.33 0.64 -0.13 -0.13
NN3L 1.07 3.60*** 3.89 0.27 0.02 2.58 0.61 -0.14 -0.14
NN4L 0.93 2.90*** 3.74 0.25 0.17 2.62 0.61 -0.13 -0.13
NN5L 0.97 3.41*** 3.73 0.26 0.17 2.81 0.62 -0.13 -0.13
Ens Linear 1.28 3.01*** 4.32 0.30 -0.36 1.49 0.64 -0.15 -0.23
Ens Net 1.47 3.87*** 4.73 0.31 -0.20 1.71 0.63 -0.17 -0.17
Ens Total 1.68 4.17*** 5.25 0.32 -0.31 1.15 0.66 -0.18 -0.18

Panel B: 60 moving average price and 60 trading volume signals 1988:01 - 1997:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.42 3.00*** 1.53 0.28 -0.05 -0.05 0.58 -0.04 -0.07
PCR 0.58 2.24** 2.48 0.23 -0.16 0.03 0.60 -0.07 -0.15
PLS 0.50 2.19** 2.39 0.21 -0.28 0.56 0.58 -0.07 -0.15
Ridge 0.42 2.99*** 1.54 0.27 -0.05 -0.07 0.58 -0.04 -0.07
Lasso 0.62 2.64** 2.36 0.26 -0.40 0.73 0.62 -0.08 -0.13
ENet 0.62 2.62** 2.37 0.26 -0.41 0.71 0.62 -0.08 -0.13
NN1L 0.91 4.95*** 2.51 0.36 0.14 0.90 0.65 -0.07 -0.10
NN2L 0.96 4.60*** 2.73 0.35 0.04 1.22 0.65 -0.09 -0.12
NN3L 0.80 3.67*** 2.78 0.29 0.18 0.71 0.61 -0.08 -0.12
NN4L 0.77 3.40*** 2.63 0.29 0.06 1.14 0.63 -0.08 -0.12
NN5L 0.63 2.92*** 2.56 0.25 -0.10 1.33 0.58 -0.09 -0.14
Ens Linear 0.83 2.87*** 2.86 0.29 -0.21 0.11 0.63 -0.08 -0.13
Ens Net 1.27 3.76*** 3.78 0.34 0.32 1.22 0.63 -0.11 -0.16
Ens Total 1.40 3.33*** 4.02 0.35 -0.13 0.36 0.64 -0.11 -0.21
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Table 3: Summary Statistics during Sub-Periods (Predictors: 60 price and 60
trading volume MAs signals) - Cont’d

buying the best-predicted portfolio and selling the worst-predicted portfolio. For a given family
of models, ensemble portfolios are constructed by buying the unanimou winner quintile by all
models in the family and selling the unanimous loser quintile. Linear family includes OLS, PCR,
PLS, Ridge, Lasso, and Elastic net. Network family includes five neural networks. Total ensemble
includes both linear and network families, totalling 11 models. NYSE 10% market value breakpoint
is applied and stocks are equal-weighted within quintile. * ,** ,*** represent statistical significance
at 1%, 5%, and 10% levels.

Panel C: 60 moving average price and 60 trading volume signals 1998:01 - 2007:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.77 2.09** 6.63 0.12 -0.83 5.19 0.62 -0.27 -0.45
PCR 0.93 1.87* 8.13 0.11 -0.53 4.28 0.60 -0.32 -0.50
PLS 0.87 1.62 8.37 0.10 -0.26 3.76 0.56 -0.30 -0.51
Ridge 0.77 2.09** 6.63 0.12 -0.83 5.18 0.62 -0.27 -0.45
Lasso 1.02 1.91* 8.39 0.12 -0.80 4.73 0.57 -0.32 -0.57
ENet 1.03 1.92* 8.38 0.12 -0.79 4.70 0.57 -0.32 -0.57
NN1L 1.34 2.30** 8.73 0.15 -0.56 4.41 0.64 -0.33 -0.53
NN2L 1.43 2.31** 9.48 0.15 -0.45 4.97 0.61 -0.38 -0.57
NN3L 1.56 2.39** 9.61 0.16 -0.20 5.35 0.62 -0.37 -0.58
NN4L 1.34 2.07** 9.37 0.14 -0.08 5.03 0.60 -0.36 -0.55
NN5L 1.40 2.18** 9.39 0.15 -0.26 5.26 0.60 -0.37 -0.57
Ens Linear 1.34 2.08** 9.49 0.14 -0.29 3.96 0.59 -0.36 -0.58
Ens Net 1.94 2.46** 11.07 0.18 0.05 5.04 0.62 -0.41 -0.59
Ens Total 2.66 3.16*** 11.96 0.22 0.23 5.17 0.63 -0.43 -0.58

Panel D: 60 moving average price and 60 trading volume signals 2008:01 - 2017:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.55 1.33 4.29 0.13 2.74 19.81 0.57 -0.13 -0.20
PCR 0.65 1.25 5.58 0.12 2.80 18.91 0.57 -0.15 -0.22
PLS 0.65 1.25 5.48 0.12 2.69 17.44 0.54 -0.14 -0.22
Ridge 0.55 1.31 4.29 0.13 2.74 19.86 0.57 -0.13 -0.19
Lasso 0.70 1.36 5.45 0.13 2.63 17.92 0.60 -0.13 -0.22
ENet 0.70 1.37 5.45 0.13 2.63 17.92 0.60 -0.13 -0.22
NN1L 0.73 1.42 5.20 0.14 2.75 18.43 0.57 -0.12 -0.18
NN2L 0.66 1.16 5.58 0.12 2.60 16.88 0.55 -0.14 -0.23
NN3L 0.54 0.97 5.50 0.10 2.67 16.87 0.53 -0.12 -0.25
NN4L 0.51 0.94 5.49 0.09 2.69 16.84 0.52 -0.11 -0.26
NN5L 0.37 0.79 5.40 0.07 2.76 17.78 0.49 -0.11 -0.26
Ens Linear 0.92 1.46 6.68 0.14 2.43 15.20 0.56 -0.16 -0.31
Ens Net 1.25 1.98* 7.05 0.18 2.09 11.86 0.57 -0.14 -0.23
Ens Total 1.82 2.52** 8.44 0.22 1.65 7.41 0.58 -0.16 -0.28
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Table 4: Summary Statistics during 10-Year Sub-Periods (Predictors: 79 funda-
mental Firm Characteristics)

This table reports summary statistics of excess returns of spread portfolios whose construction uses
79 fundamental firm characteristics as predictors. Statistics are presented for 4 10-year subperiods
separately and they include average return (in % per month), t-statistics, volatility (standard
deviation), monthly Sharpe ratio, skewness, kurtosis, proportion of positive returns, minimum
monthly return, and maximum drawdown. t-stat is calculated under the null hypothesis that
excess return equals zero using White Heteroskedasticity robust standard error. At the beginning
of each month, I independently sort stocks into quintile portfolios on predicted returns from each
model and construct spread portfolios by

Panel A: 79 fundamental Firm Characteristics 1978:01 - 1987:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 1.20 5.26*** 3.96 0.30 -0.31 0.94 0.65 -0.11 -0.15
PCR 1.26 5.41*** 4.26 0.30 -0.14 0.93 0.62 -0.11 -0.16
PLS 1.26 5.11*** 4.33 0.29 -0.27 0.96 0.62 -0.13 -0.15
Ridge 1.19 5.15*** 3.98 0.30 -0.31 0.96 0.64 -0.11 -0.15
Lasso 1.38 5.79*** 4.35 0.32 -0.27 0.92 0.65 -0.12 -0.16
ENet 1.38 5.79*** 4.35 0.32 -0.27 0.92 0.65 -0.12 -0.16
NN1L 1.27 5.19*** 4.37 0.29 -0.34 1.16 0.62 -0.13 -0.17
NN2L 1.24 4.76*** 4.59 0.27 -0.26 0.98 0.62 -0.13 -0.18
NN3L 1.25 4.71*** 4.57 0.27 -0.20 1.01 0.62 -0.13 -0.16
NN4L 1.19 4.63*** 4.56 0.26 -0.21 0.81 0.62 -0.13 -0.16
NN5L 1.17 4.64*** 4.35 0.27 -0.22 0.93 0.59 -0.12 -0.15
Ens Linear 1.53 5.77*** 5.03 0.30 -0.12 0.82 0.62 -0.14 -0.21
Ens Net 1.62 4.64*** 6.13 0.26 -0.14 0.73 0.64 -0.17 -0.20
Ens Total 1.82 4.74*** 6.55 0.28 -0.16 0.60 0.65 -0.18 -0.24

Panel B: 79 fundamental Firm Characteristics 1988:01 - 1997:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 1.56 5.10*** 3.33 0.47 0.07 0.63 0.68 -0.08 -0.10
PCR 1.62 4.78*** 3.66 0.44 -0.13 1.01 0.70 -0.10 -0.12
PLS 1.42 3.63*** 4.01 0.35 -0.17 0.96 0.65 -0.11 -0.14
Ridge 1.56 5.10*** 3.33 0.47 0.07 0.63 0.68 -0.08 -0.10
Lasso 1.60 5.01*** 3.63 0.44 -0.02 0.66 0.68 -0.09 -0.11
ENet 1.60 5.01*** 3.63 0.44 -0.02 0.66 0.68 -0.09 -0.11
NN1L 1.61 4.87*** 3.67 0.44 -0.09 0.76 0.70 -0.10 -0.12
NN2L 1.60 4.64*** 3.87 0.41 -0.09 0.89 0.68 -0.10 -0.14
NN3L 1.51 4.39*** 3.97 0.38 -0.09 0.87 0.69 -0.10 -0.15
NN4L 1.43 3.92*** 3.89 0.37 -0.12 0.84 0.69 -0.10 -0.14
NN5L 1.54 4.79*** 3.74 0.41 -0.09 1.22 0.70 -0.10 -0.14
Ens Linear 1.85 4.10*** 4.48 0.41 -0.13 0.36 0.65 -0.12 -0.15
Ens Net 2.03 4.54*** 5.22 0.39 -0.17 0.22 0.68 -0.14 -0.22
Ens Total 2.17 4.33*** 5.56 0.39 -0.16 0.15 0.68 -0.15 -0.24
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Table 4: Summary Statistics during 10-Year Sub-Periods (Predictors: 79 funda-
mental Firm Characteristics) - Cont’d

buying the best-predicted portfolio and selling the worst-predicted portfolio. For a given family
of models, ensemble portfolios are constructed by buying the unanimou winner quintile by all
models in the family and selling the unanimous loser quintile. Linear family includes OLS, PCR,
PLS, Ridge, Lasso, and Elastic net. Network family includes five neural networks. Total ensemble
includes both linear and network families, totalling 11 models. NYSE 10% market value breakpoint
is applied and stocks are equal-weighted within quintile. * ,** ,*** represent statistical significance
at 1%, 5%, and 10% levels.

Panel C: 79 fundamental Firm Characteristics 1998:01 - 2007:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 1.88 2.37** 9.93 0.19 0.51 4.52 0.64 -0.29 -0.51
PCR 1.95 2.47** 9.86 0.20 0.50 4.48 0.66 -0.28 -0.49
PLS 1.92 2.53** 9.97 0.19 0.51 4.44 0.67 -0.29 -0.50
Ridge 1.89 2.38** 9.93 0.19 0.51 4.52 0.64 -0.29 -0.51
Lasso 2.01 2.41** 10.19 0.20 0.46 4.19 0.62 -0.29 -0.52
ENet 2.01 2.41** 10.19 0.20 0.46 4.19 0.62 -0.29 -0.52
NN1L 1.98 2.43** 10.16 0.19 0.57 5.00 0.62 -0.30 -0.50
NN2L 2.01 2.39** 10.53 0.19 0.55 5.12 0.60 -0.31 -0.52
NN3L 2.05 2.43** 10.74 0.19 0.55 5.12 0.62 -0.32 -0.55
NN4L 2.05 2.48** 10.63 0.19 0.56 4.89 0.62 -0.31 -0.55
NN5L 1.97 2.33** 10.49 0.19 0.60 4.89 0.63 -0.29 -0.53
Ens Linear 2.20 2.56** 10.59 0.21 0.45 3.86 0.66 -0.30 -0.54
Ens Net 2.54 2.69** 11.78 0.22 0.53 4.72 0.65 -0.32 -0.59
Ens Total 2.68 2.71** 12.12 0.22 0.52 4.58 0.67 -0.33 -0.61

Panel D: 79 fundamental Firm Characteristics 2008:01 - 2017:12

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.55 1.15 4.85 0.11 1.58 8.11 0.56 -0.13 -0.20
PCR 0.63 1.38 4.74 0.13 1.11 4.93 0.56 -0.12 -0.18
PLS 0.73 1.45 5.03 0.14 1.51 7.45 0.57 -0.12 -0.22
Ridge 0.55 1.13 4.85 0.11 1.59 8.11 0.55 -0.13 -0.20
Lasso 0.52 1.02 5.00 0.10 1.54 7.40 0.52 -0.13 -0.26
ENet 0.52 1.02 5.00 0.10 1.54 7.40 0.52 -0.13 -0.26
NN1L 0.50 1.01 4.96 0.10 1.06 4.82 0.52 -0.13 -0.27
NN2L 0.58 1.17 5.02 0.12 0.72 2.99 0.55 -0.13 -0.26
NN3L 0.57 1.17 4.99 0.11 0.87 3.37 0.54 -0.12 -0.28
NN4L 0.56 1.15 4.63 0.12 0.85 2.90 0.56 -0.11 -0.26
NN5L 0.54 1.23 4.44 0.12 0.83 3.01 0.55 -0.11 -0.24
Ens Linear 0.88 1.61 5.94 0.15 1.32 6.83 0.58 -0.15 -0.24
Ens Net 0.82 1.32 7.17 0.11 0.55 2.82 0.57 -0.20 -0.38
Ens Total 1.18 1.96* 7.66 0.15 0.60 3.03 0.57 -0.21 -0.27
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Table 5: Risk-Adjusted Returns (%) (Predictors: 120-month lagged return)

Panel A reports risk-adjusted returns of the 14 spread portfolios by CAPM, Fama and French (FF3,
1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5,
2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. Panel
B and panel C report the risk-adjusted long- and short-leg portfolio returns by the same factor
models. At the beginning of each month, I independently sort stocks into quintile portfolios on
predicted returns from each model and construct spread portfolios by buying the best-predicted
portfolio and selling the worst-predicted portfolio. For a given family of models, ensemble portfolios
are constructed by buying the winner quintile agreed-upon unanimously by all models in the family
and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso,
and Elastic net. Network family includes all six neural networks. Total ensemble includes both
linear and network families, totalling 12 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel A: Spread Portfolio (Predictors: 120-month lagged return)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.78 0.78 0.75 0.76 0.69

(5.13***) (5.49***) (5.24***) (4.15***) (4.53***)
PCR 0.81 0.84 0.82 0.78 0.80

(6.14***) (6.30***) (6.06***) (5.12***) (4.75***)
PLS 1.06 1.08 1.03 1.01 1.01

(7.16***) (7.26***) (6.93***) (5.95***) (5.60***)
Ridge 0.78 0.78 0.75 0.76 0.69

(5.13***) (5.49***) (5.24***) (4.15***) (4.53***)
Lasso 0.82 0.82 0.78 0.79 0.71

(5.34***) (5.68***) (5.44***) (4.25***) (4.67***)
ENet 0.82 0.82 0.78 0.79 0.71

(5.34***) (5.68***) (5.44***) (4.25***) (4.67***)
NN1L 0.91 0.94 0.91 0.92 0.87

(5.73***) (6.38***) (6.09***) (4.87***) (5.35***)
NN2L 1.03 1.08 1.05 1.04 0.97

(6.06***) (6.62***) (6.25***) (5.62***) (4.90***)
NN3L 1.00 1.06 1.04 1.00 0.98

(5.79***) (6.47***) (6.10***) (5.05***) (4.49***)
NN4L 0.92 0.99 0.96 0.93 0.90

(4.91***) (5.58***) (5.13***) (4.29***) (3.68***)
NN5L 0.85 0.92 0.89 0.86 0.83

(5.21***) (5.79***) (5.43***) (4.52***) (3.90***)
Ens linear 1.24 1.26 1.21 1.21 1.17

(6.02***) (6.33***) (6.02***) (4.82***) (4.91***)
Ens Net 1.59 1.69 1.65 1.64 1.63

(5.68***) (6.23***) (5.67***) (5.19***) (4.53***)
Ens total 1.74 1.83 1.75 1.75 1.73

(5.58***) (5.95***) (5.48***) (4.91***) (4.42***)
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Table 5: Risk-Adjusted Returns (%) (Predictors: 120-month lagged return) -
Cont’d

Panel A reports risk-adjusted returns of the 15 spread portfolios by CAPM, Fama and French (FF3,
1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5,
2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. Panel
B and panel C report the risk-adjusted long- and short-leg portfolio returns by the same factor
models. At the beginning of each month, I independently sort stocks into quintile portfolios on
predicted returns from each model and construct spread portfolios by buying the best-predicted
portfolio and selling the worst-predicted portfolio. For a given family of models, ensemble portfolios
are constructed by buying the winner quintile agreed-upon unanimously by all models in the family
and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso,
and Elastic net. Network family includes all six neural networks. Total ensemble includes both
linear and network families, totalling 12 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel B: Long-Leg (Predictors: 120-month lagged return)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.25 0.47 0.32 0.43 0.32

(5.05***) (3.25***) (3.78***) (3.79***) (4.01***)
PCR 1.26 0.49 0.35 0.43 0.39

(5.12***) (3.34***) (4.37***) (4.43***) (4.73***)
PLS 1.41 0.64 0.47 0.57 0.51

(5.61***) (3.98***) (5.14***) (5.10***) (5.45***)
Ridge 1.25 0.47 0.32 0.43 0.32

(5.05***) (3.25***) (3.78***) (3.79***) (4.01***)
Lasso 1.28 0.50 0.34 0.45 0.34

(5.16***) (3.34***) (3.96***) (3.94***) (4.24***)
ENet 1.28 0.50 0.34 0.45 0.34

(5.16***) (3.34***) (3.96***) (3.94***) (4.24***)
NN1L 1.32 0.56 0.41 0.51 0.42

(5.38***) (3.93***) (4.76***) (4.55***) (5.04***)
NN2L 1.35 0.61 0.45 0.56 0.46

(5.49***) (3.76***) (4.66***) (4.75***) (4.87***)
NN3L 1.36 0.63 0.48 0.56 0.50

(5.53***) (3.98***) (4.91***) (4.58***) (4.72***)
NN4L 1.29 0.57 0.42 0.51 0.43

(5.28***) (3.66***) (4.25***) (3.99***) (4.00***)
NN5L 1.25 0.53 0.38 0.46 0.40

(5.13***) (3.36***) (4.01***) (3.96***) (3.98***)
Ens linear 1.47 0.66 0.49 0.61 0.54

(5.31***) (3.64***) (4.18***) (4.01***) (4.50***)
Ens Net 1.58 0.83 0.66 0.78 0.73

(5.40***) (3.96***) (4.24***) (4.15***) (4.33***)
Ens total 1.72 0.92 0.74 0.87 0.83

(5.35***) (3.91***) (4.13***) (3.97***) (4.17***)
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Table 5: Risk-Adjusted Returns (%) (Predictors: 120-month lagged return) -
Cont’d

Panel A reports risk-adjusted returns of the 15 spread portfolios by CAPM, Fama and French (FF3,
1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5,
2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. Panel
B and panel C report the risk-adjusted long- and short-leg portfolio returns by the same factor
models. At the beginning of each month, I independently sort stocks into quintile portfolios on
predicted returns from each model and construct spread portfolios by buying the best-predicted
portfolio and selling the worst-predicted portfolio. For a given family of models, ensemble portfolios
are constructed by buying the winner quintile agreed-upon unanimously by all models in the family
and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso,
and Elastic net. Network family includes all six neural networks. Total ensemble includes both
linear and network families, totalling 12 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel C: Short-Leg (Predictors: 120-month lagged return)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.47 -0.31 -0.43 -0.33 -0.37

(1.89*) (-2.15**) (-4.52***) (-3.22***) (-3.39***)
PCR 0.45 -0.34 -0.48 -0.36 -0.41

(1.83*) (-2.65**) (-5.45***) (-4.29***) (-3.53***)
PLS 0.35 -0.44 -0.56 -0.44 -0.50

(1.39) (-3.38***) (-6.20***) (-5.03***) (-4.26***)
Ridge 0.47 -0.31 -0.43 -0.33 -0.37

(1.89*) (-2.15**) (-4.52***) (-3.22***) (-3.39***)
Lasso 0.46 -0.32 -0.44 -0.34 -0.37

(1.85*) (-2.22**) (-4.70***) (-3.27***) (-3.43***)
ENet 0.46 -0.32 -0.44 -0.34 -0.37

(1.85*) (-2.22**) (-4.70***) (-3.27***) (-3.43***)
NN1L 0.42 -0.38 -0.50 -0.41 -0.45

(1.64) (-2.74**) (-5.37***) (-4.04***) (-4.04***)
NN2L 0.33 -0.48 -0.59 -0.49 -0.51

(1.29) (-3.67***) (-6.03***) (-5.15***) (-3.87***)
NN3L 0.36 -0.43 -0.55 -0.44 -0.48

(1.53) (-3.21***) (-5.42***) (-4.18***) (-3.42***)
NN4L 0.37 -0.42 -0.54 -0.43 -0.47

(1.52) (-3.08***) (-4.79***) (-3.81***) (-3.03***)
NN5L 0.41 -0.39 -0.51 -0.40 -0.43

(1.70*) (-3.04***) (-5.36***) (-4.03***) (-3.23***)
Ens linear 0.22 -0.60 -0.72 -0.60 -0.63

(0.82) (-3.74***) (-5.94***) (-4.66***) (-4.05***)
Ens Net -0.01 -0.87 -0.99 -0.86 -0.90

(-0.05) (-4.40***) (-5.53***) (-4.96***) (-3.92***)
Ens total -0.02 -0.90 -1.01 -0.88 -0.90

(-0.08) (-3.94***) (-4.81***) (-4.32***) (-3.58***)
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Table 6: Risk-Adjusted Returns (%) (Predictors: 60 price and 60 trading volume
MA signals)

Panel A reports risk-adjusted returns of the 14 spread portfolios by CAPM, Fama and French (FF3,
1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5,
2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. At the
beginning of each month, I independently sort stocks into quintile portfolios on predicted returns
from each model and construct spread portfolios by buying the best-predicted portfolio and selling
the worst-predicted portfolio. For a given family of models, ensemble portfolios are constructed by
buying the winner quintile agreed-upon unanimously by all models in the family and selling the
unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net.
Network family includes 5 neural networks of assorted structures. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel A: Spread Portfolio (Predictors: 60 price and 60 trading volume MA signals)

Model Name Mean CAPM FF3 Carhart4 F F5
OLS 0.68 0.74 0.69 0.65 0.52

(4.19***) (5.08***) (4.64***) (2.82***) (2.51**)
PCR 0.77 0.82 0.79 0.72 0.59

(3.68***) (4.37***) (4.05***) (2.46**) (2.26**)
PLS 0.75 0.82 0.79 0.70 0.60

(3.47***) (4.14***) (3.88***) (2.41**) (2.23**)
Ridge 0.68 0.74 0.69 0.65 0.52

(4.19***) (5.08***) (4.63***) (2.82***) (2.50**)
Lasso 0.87 0.92 0.90 0.83 0.69

(4.09***) (4.92***) (4.47***) (2.85***) (2.58**)
ENet 0.87 0.92 0.90 0.84 0.70

(4.10***) (4.94***) (4.49***) (2.85***) (2.59**)
NN1L 1.04 1.12 1.08 1.04 0.89

(4.89***) (5.92***) (5.33***) (3.55***) (3.25***)
NN2L 1.06 1.15 1.12 1.05 0.92

(4.54***) (5.45***) (5.06***) (3.29***) (3.00***)
NN3L 0.99 1.08 1.06 0.98 0.87

(4.15***) (4.92***) (4.63***) (3.06***) (2.73**)
NN4L 0.89 0.97 0.94 0.86 0.74

(3.77***) (4.38***) (4.17***) (2.75**) (2.43**)
NN5L 0.84 0.93 0.91 0.84 0.72

(3.76***) (4.52***) (4.19***) (2.78**) (2.36**)
Ens linear 1.09 1.16 1.15 1.04 0.93

(4.23***) (4.89***) (4.71***) (2.99***) (2.94***)
Ens Net 1.48 1.58 1.57 1.47 1.35

(5.21***) (6.02***) (5.74***) (3.90***) (3.63***)
Ens total 1.89 1.97 1.97 1.86 1.81

(5.90***) (6.58***) (6.38***) (4.54***) (4.36***)
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Table 6: Risk-Adjusted Returns (%) (Predictors: 60 price and 60 trading volume
MA signals) - Cont’d

Panel B reports risk-adjusted returns of the 14 long-leg portfolios by CAPM, Fama and French
(FF3, 1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French
(FF5, 2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses.
At the beginning of each month, I independently sort stocks into quintile portfolios on predicted
returns from each model and construct long-leg portfolios by buying the best-predicted portfolio.
For a given family of models, ensemble portfolios are constructed by buying the winner quintile
agreed-upon unanimously by all models in the family. Linear family includes OLS, PCR, PLS,
Ridge, Lasso, and Elastic net. Network family includes 5 neural networks of assorted structures.
Total ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel B: Long-Leg (Predictors: 60 price and 60 trading volume MA signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.06 0.22 0.14 0.24 0.25

(3.58***) (1.31) (1.55) (1.92*) (2.53**)
PCR 1.16 0.33 0.25 0.35 0.33

(3.93***) (1.87*) (2.31**) (2.21**) (2.80**)
PLS 1.14 0.32 0.23 0.33 0.33

(3.90***) (1.76*) (2.15**) (2.13**) (2.66**)
Ridge 1.06 0.22 0.14 0.24 0.25

(3.59***) (1.32) (1.59) (1.95*) (2.55**)
Lasso 1.19 0.36 0.28 0.39 0.38

(3.99***) (2.03**) (2.56**) (2.48**) (3.10***)
ENet 1.19 0.36 0.28 0.39 0.38

(4.00***) (2.04**) (2.57**) (2.48**) (3.11***)
NN1L 1.30 0.49 0.39 0.53 0.47

(4.46***) (2.75**) (3.34***) (3.26***) (3.80***)
NN2L 1.32 0.53 0.43 0.56 0.51

(4.53***) (2.88***) (3.49***) (3.22***) (3.74***)
NN3L 1.29 0.50 0.40 0.51 0.47

(4.40***) (2.61**) (3.13***) (3.02***) (3.31***)
NN4L 1.25 0.45 0.36 0.47 0.42

(4.30***) (2.44**) (2.90***) (2.83***) (3.10***)
NN5L 1.22 0.42 0.33 0.43 0.40

(4.22***) (2.40**) (2.75**) (2.75**) (2.93***)
Ens linear 1.35 0.50 0.43 0.53 0.54

(4.12***) (2.37**) (2.98***) (2.70**) (3.30***)
Ens Net 1.51 0.69 0.60 0.72 0.68

(4.74***) (3.27***) (3.70***) (3.50***) (3.80***)
Ens total 1.69 0.85 0.76 0.89 0.91

(4.84***) (3.48***) (3.92***) (3.75***) (4.27***)

49



Table 6: Risk-Adjusted Returns (%) (Predictors: 60 price and 60 trading volume
MA signals) - Cont’d

Panel C reports risk-adjusted returns of the 14 short-leg portfolios by CAPM, Fama and French
(FF3, 1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French
(FF5, 2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. At
the beginning of each month, I independently sort stocks into quintile portfolios on predicted returns
from each model and construct short-leg portfolios by selling the poorestly-predicted portfolio.
For a given family of models, ensemble portfolios are constructed by buying the winner quintile
agreed-upon unanimously by all models in the family. Linear family includes OLS, PCR, PLS,
Ridge, Lasso, and Elastic net. Network family includes 5 neural networks of assorted structures.
Total ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel C: Short-Leg (Predictors: 60 price and 60 trading volume MA signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.37 -0.52 -0.56 -0.41 -0.27

(1.34) (-4.18***) (-6.22***) (-3.21***) (-2.00*)
PCR 0.39 -0.49 -0.54 -0.37 -0.26

(1.40) (-3.89***) (-4.99***) (-2.46**) (-1.54)
PLS 0.39 -0.50 -0.56 -0.37 -0.27

(1.37) (-3.86***) (-4.78***) (-2.43**) (-1.60)
Ridge 0.38 -0.52 -0.55 -0.41 -0.27

(1.35) (-4.16***) (-6.16***) (-3.18***) (-1.98*)
Lasso 0.32 -0.56 -0.62 -0.45 -0.32

(1.15) (-4.20***) (-5.35***) (-2.88***) (-1.84*)
ENet 0.32 -0.57 -0.62 -0.45 -0.32

(1.15) (-4.22***) (-5.37***) (-2.89***) (-1.85*)
NN1L 0.26 -0.62 -0.69 -0.51 -0.42

(0.94) (-5.09***) (-6.37***) (-3.40***) (-2.31**)
NN2L 0.27 -0.62 -0.69 -0.49 -0.41

(0.96) (-4.90***) (-5.84***) (-3.01***) (-2.08**)
NN3L 0.29 -0.59 -0.66 -0.46 -0.40

(1.06) (-4.57***) (-5.49***) (-2.77**) (-1.95*)
NN4L 0.36 -0.51 -0.58 -0.39 -0.32

(1.30) (-4.05***) (-4.93***) (-2.41**) (-1.64)
NN5L 0.37 -0.51 -0.58 -0.40 -0.32

(1.34) (-4.00***) (-4.98***) (-2.48**) (-1.66)
Ens linear 0.26 -0.66 -0.72 -0.51 -0.39

(0.87) (-4.48***) (-5.49***) (-2.92***) (-2.12**)
Ens Net 0.03 -0.89 -0.97 -0.75 -0.67

(0.11) (-5.97***) (-6.85***) (-3.80***) (-2.93***)
Ens total -0.20 -1.13 -1.22 -0.97 -0.89

(-0.65) (-6.67***) (-7.81***) (-4.71***) (-3.69***)
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Table 7: Risk-Adjusted Returns (%) (Predictors: 79 fundamental firm charac-
teristics)

Panel A reports risk-adjusted returns of the 14 spread portfolios by CAPM, Fama and French (FF3,
1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5,
2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. At the
beginning of each month, I independently sort stocks into quintile portfolios on predicted returns
from each model and construct spread portfolios by buying the best-predicted portfolio and selling
the worst-predicted portfolio. For a given family of models, ensemble portfolios are constructed by
buying the winner quintile agreed-upon unanimously by all models in the family and selling the
unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net.
Network family includes 5 neural networks of assorted structures. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel A: Spread Portfolio (Predictors: 79 fundamental firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.30 1.46 1.44 1.33 1.32

(4.92***) (5.58***) (5.20***) (4.39***) (3.76***)
PCR 1.37 1.53 1.51 1.39 1.41

(5.18***) (5.87***) (5.42***) (4.66***) (4.01***)
PLS 1.33 1.49 1.47 1.36 1.37

(5.02***) (5.74***) (5.34***) (4.37***) (3.89***)
Ridge 1.29 1.45 1.44 1.33 1.32

(4.91***) (5.58***) (5.19***) (4.39***) (3.75***)
Lasso 1.38 1.55 1.53 1.42 1.42

(4.95***) (5.70***) (5.29***) (4.51***) (3.87***)
ENet 1.38 1.55 1.53 1.42 1.42

(4.95***) (5.70***) (5.29***) (4.51***) (3.87***)
NN1L 1.34 1.52 1.51 1.36 1.39

(4.87***) (5.59***) (5.21***) (4.32***) (3.76***)
NN2L 1.36 1.54 1.53 1.38 1.43

(4.82***) (5.51***) (5.14***) (4.30***) (3.77***)
NN3L 1.34 1.53 1.53 1.40 1.44

(4.79***) (5.54***) (5.16***) (4.44***) (3.79***)
NN4L 1.31 1.49 1.48 1.36 1.39

(4.67***) (5.42***) (5.00***) (4.29***) (3.68***)
NN5L 1.31 1.47 1.48 1.35 1.38

(4.74***) (5.39***) (5.02***) (4.36***) (3.68***)
Ens linear 1.62 1.79 1.77 1.65 1.67

(5.41***) (6.14***) (5.70***) (4.74***) (4.25***)
Ens Net 1.75 1.97 1.96 1.78 1.87

(5.22***) (5.96***) (5.50***) (4.66***) (4.21***)
Ens total 1.96 2.17 2.17 2.00 2.07
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Table 7: Risk-Adjusted Returns (%) (Predictors: 79 fundamental firm charac-
teristics) - Cont’d

Panel B reports risk-adjusted returns of the 14 long-leg portfolios by CAPM, Fama and French
(FF3, 1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French
(FF5, 2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses.
At the beginning of each month, I independently sort stocks into quintile portfolios on predicted
returns from each model and construct long-leg portfolios by buying the best-predicted portfolio.
For a given family of models, ensemble portfolios are constructed by buying the winner quintile
agreed-upon unanimously by all models in the family. Linear family includes OLS, PCR, PLS,
Ridge, Lasso, and Elastic net. Network family includes 5 neural networks of assorted structures.
Total ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel B: Long-Leg (Predictors: 79 fundamental firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.71 0.96 0.87 0.93 0.96

(5.85***) (4.74***) (5.22***) (5.33***) (5.15***)
PCR 1.74 1.00 0.91 0.96 1.01

(5.90***) (4.92***) (5.27***) (5.46***) (5.30***)
PLS 1.72 0.98 0.88 0.95 0.99

(5.86***) (4.72***) (5.17***) (5.23***) (5.24***)
Ridge 1.71 0.96 0.87 0.94 0.96

(5.87***) (4.76***) (5.24***) (5.35***) (5.18***)
Lasso 1.73 1.00 0.90 0.97 1.00

(5.88***) (4.77***) (5.20***) (5.30***) (5.14***)
ENet 1.73 1.00 0.91 0.97 1.00

(5.88***) (4.77***) (5.20***) (5.31***) (5.14***)
NN1L 1.72 0.98 0.89 0.93 0.99

(5.82***) (4.68***) (5.09***) (5.13***) (5.01***)
NN2L 1.72 0.99 0.91 0.95 1.01

(5.84***) (4.71***) (5.00***) (5.11***) (4.97***)
NN3L 1.70 0.98 0.90 0.95 1.01

(5.79***) (4.65***) (4.95***) (5.13***) (4.93***)
NN4L 1.70 0.97 0.89 0.95 1.00

(5.76***) (4.68***) (5.03***) (5.26***) (5.06***)
NN5L 1.69 0.95 0.87 0.92 0.98

(5.67***) (4.55***) (4.87***) (5.10***) (4.94***)
Ens linear 1.80 1.05 0.96 1.03 1.08

(5.75***) (4.64***) (4.83***) (4.83***) (4.87***)
Ens Net 1.82 1.08 1.00 1.03 1.12

(5.43***) (4.28***) (4.41***) (4.39***) (4.46***)
Ens total 1.89 1.14 1.06 1.10 1.18

(5.43***) (4.32***) (4.40***) (4.38***) (4.38***)
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Table 7: Risk-Adjusted Returns (%) (Predictors: 79 fundamental firm charac-
teristics) - Cont’d

Panel C reports risk-adjusted returns of the 14 short-leg portfolios by CAPM, Fama and
French (FF3, 1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and
Fama and French (FF5, 2015) five-factor model. Newey-West t-statistics with 12 lags are
reported in parentheses. At the beginning of each month, I independently sort stocks into
quintile portfolios on predicted returns from each model and construct short-leg portfolios by
selling the poorestly-predicted portfolio. For a given family of models, ensemble portfolios
are constructed by buying the winner quintile agreed-upon unanimously by all models in
the family. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network
family includes 5 neural networks of assorted structures. Total ensemble includes both linear
and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel C: Short-Leg (Predictors: 79 fundamental firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.41 -0.49 -0.57 -0.40 -0.36

(1.43) (-3.41***) (-4.18***) (-2.54**) (-1.85*)
PCR 0.37 -0.53 -0.60 -0.43 -0.40

(1.31) (-3.72***) (-4.51***) (-2.85***) (-2.10**)
PLS 0.39 -0.51 -0.58 -0.41 -0.37

(1.36) (-3.67***) (-4.40***) (-2.57**) (-1.95*)
Ridge 0.42 -0.49 -0.57 -0.39 -0.36

(1.44) (-3.38***) (-4.14***) (-2.51**) (-1.84*)
Lasso 0.36 -0.55 -0.63 -0.45 -0.42

(1.23) (-3.77***) (-4.41***) (-2.82***) (-2.07**)
ENet 0.36 -0.55 -0.63 -0.45 -0.42

(1.23) (-3.77***) (-4.41***) (-2.82***) (-2.07**)
NN1L 0.38 -0.54 -0.62 -0.42 -0.41

(1.30) (-3.61***) (-4.33***) (-2.60**) (-2.00*)
NN2L 0.37 -0.54 -0.63 -0.43 -0.42

(1.27) (-3.53***) (-4.30***) (-2.59**) (-2.02**)
NN3L 0.36 -0.55 -0.63 -0.46 -0.43

(1.25) (-3.66***) (-4.43***) (-2.81***) (-2.09**)
NN4L 0.39 -0.52 -0.59 -0.42 -0.39

(1.36) (-3.46***) (-4.04***) (-2.50**) (-1.85*)
NN5L 0.38 -0.53 -0.61 -0.43 -0.40

(1.32) (-3.48***) (-4.23***) (-2.71**) (-1.95*)
Ens linear 0.18 -0.74 -0.81 -0.62 -0.59

(0.62) (-4.91***) (-5.72***) (-3.74***) (-2.91***)
Ens Net 0.06 -0.89 -0.96 -0.75 -0.75

(0.21) (-5.12***) (-5.81***) (-3.97***) (-3.20***)
Ens total -0.07 -1.03 -1.10 -0.89 -0.89

(-0.23) (-5.79***) (-6.64***) (-4.68***) (-3.74***)
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Table 8: Risk-Adjusted Spread Portfolio Returns of Ensemble Models (Full Fs-
timateion)

This table reports the complete risk-adjusted estimate of ensemble models for all three sets of predictors.
Panel A through panel C report estimates for lagged return, moving average trading signals, and firm
fundamentals respectively. Raw excess returns are adjusted by CAPM, Fama and French (FF3, 1993) three-
factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5, 2015) five-factor
model. Newey-West t-statistics with 12 lags are reported in parentheses. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile agreed unanimously by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and
Elastic net. Network family includes all 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel A1: Linear ensemble w/ 120 lagged returns

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.26 1.21 1.21 1.17

(6.33***) (6.02***) (4.82***) (4.91***)
MKT -0.02 -0.03 -0.03 0.00

(-0.32) (-0.33) (-0.38) (0.04)
SMB 0.14 0.14 0.11

(0.73) (0.73) (0.88)
HML 0.10 0.10 -0.11

(0.69) (0.78) (-0.61)
MOM 0.00

(0.02)
RMW -0.10

(-0.45)
CMA 0.44

(1.94*)
R2(%) 0.05 1.12 1.12 3.66

Panel A2: Network ensemble w/ 120 lagged returns

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.69 1.65 1.64 1.63

(6.23***) (5.67***) (5.19***) (4.53***)
MKT -0.15 -0.16 -0.16 -0.14

(-1.54) (-1.43) (-1.64) (-1.21)
SMB 0.19 0.19 0.12

(0.74) (0.75) (0.86)
HML 0.10 0.10 -0.13

(0.53) (0.63) (-0.59)
MOM 0.00

(0.01)
RMW -0.20

(-0.65)
CMA 0.51

(1.65*)
R2(%) 1.08 1.86 1.86 3.84
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Table 8: Risk-Adjusted Spread Portfolio Returns of Ensemble Models (Full Fs-
timateion) - Cont’d

This table reports the complete risk-adjusted estimate of ensemble models for all three sets of predictors.
Panel A through panel C report estimates for lagged return, moving average trading signals, and firm
fundamentals respectively. Raw excess returns are adjusted by CAPM, Fama and French (FF3, 1993) three-
factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5, 2015) five-factor
model. Newey-West t-statistics with 12 lags are reported in parentheses. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile agreed unanimously by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and
Elastic net. Network family includes all 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel A3: Total Ensemble w/ 120 lagged returns

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.83 1.75 1.75 1.73

(5.95***) (5.48***) (4.91***) (4.42***)
MKT -0.12 -0.13 -0.13 -0.10

(-1.13) (-1.03) (-1.16) (-0.81)
SMB 0.23 0.23 0.17

(0.8) (0.8) (0.96)
HML 0.15 0.16 -0.09

(0.81) (0.95) (-0.37)
MOM 0.00

(0.01)
RMW -0.20

(-0.6)
CMA 0.53

(1.53)
R2(%) 0.60 1.68 1.68 3.39

Panel B1: Linear ensemble w/ 60 price and 60 trading volume MA signals

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.16 1.15 1.04 0.93

(4.89***) (4.71***) (2.99***) (2.94***)
MKT -0.10 -0.11 -0.08 -0.02

(-0.99) (-1.01) (-0.92) (-0.14)
SMB 0.06 0.05 0.06

(0.3) (0.26) (0.41)
HML 0.02 0.07 -0.38

(0.12) (0.4) (-1.64)
MOM 0.12

(0.52)
RMW 0.03

(0.12)
CMA 0.91

(2.72***)
R2(%) 0.49 0.58 1.26 4.57
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Table 8: Risk-Adjusted Spread Portfolio Returns of Ensemble Models (Full Fs-
timateion) - Cont’d

This table reports the complete risk-adjusted estimate of ensemble models for all three sets of predictors.
Panel A through panel B report estimates for lagged return, moving average trading signals, and firm
fundamentals respectively. Raw excess returns are adjusted by CAPM, Fama and French (FF3, 1993) three-
factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5, 2015) five-factor
model. Newey-West t-statistics with 12 lags are reported in parentheses. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile agreed unanimously by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and
Elastic net. Network family includes all 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B2: Network ensemble w/ 60 price and 60 trading volume MA signals

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.58 1.57 1.47 1.35

(6.02***) (5.74***) (3.9***) (3.63***)
MKT -0.15 -0.16 -0.13 -0.05

(-1.36) (-1.34) (-1.29) (-0.43)
SMB 0.07 0.05 0.01

(0.23) (0.2) (0.08)
HML 0.03 0.07 -0.46

(0.12) (0.36) (-1.87*)
MOM 0.12

(0.47)
RMW -0.07

(-0.19)
CMA 1.12

(2.8***)
R2(%) 0.84 0.91 1.41 5.72

Panel B3: Total ensemble w/ 60 price and 60 trading volume MA signals

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.97 1.97 1.86 1.81

(6.58***) (6.38***) (4.54***) (4.36***)
MKT -0.13 -0.15 -0.12 -0.06

(-1.1) (-1.2) (-1.09) (-0.49)
SMB 0.12 0.11 0.06

(0.4) (0.37) (0.31)
HML -0.02 0.04 -0.47

(-0.07) (0.17) (-1.69*)
MOM 0.14

(0.51)
RMW -0.14

(-0.36)
CMA 1.03

(2.25**)
R2(%) 0.48 0.69 1.22 4.23
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Table 8: Risk-Adjusted Spread Portfolio Returns of Ensemble Models (Full Fs-
timateion) - Cont’d

This table reports the complete risk-adjusted estimate of ensemble models for all three sets of predictors.
Panel A through panel B report estimates for lagged return, moving average trading signals, and firm
fundamentals respectively. Raw excess returns are adjusted by CAPM, Fama and French (FF3, 1993) three-
factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French (FF5, 2015) five-factor
model. Newey-West t-statistics with 12 lags are reported in parentheses. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile agreed unanimously by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and
Elastic net. Network family includes all 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel C1: Linear ensemble w/ 79 firm characteristics

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.79 1.77 1.65 1.67

(6.14***) (5.7***) (4.74***) (4.25***)
MKT -0.26 -0.27 -0.24 -0.20

(-2.68***) (-2.47**) (-2.4**) (-1.94*)
SMB 0.09 0.08 0.00

(0.33) (0.3) (0.01)
HML 0.03 0.09 -0.34

(0.15) (0.54) (-1.43)
MOM 0.15

(0.72)
RMW -0.19

(-0.55)
CMA 0.86

(2.41**)
R2(%) 2.72 2.86 3.68 6.37

Panel C2: Neural networks w/ 79 firm characteristics

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 1.97 1.96 1.78 1.87

(5.96***) (5.5***) (4.66***) (4.21***)
MKT -0.32 -0.34 -0.30 -0.26

(-3.12***) (-2.74***) (-2.62***) (-2.22**)
SMB 0.10 0.08 -0.03

(0.3) (0.26) (-0.17)
HML 0.00 0.08 -0.41

(0.01) (0.48) (-1.49)
MOM 0.21

(0.97)
RMW -0.27

(-0.71)
CMA 0.97

(2.48**)
R2(%) 3.12 3.25 4.50 6.87
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Table 8: Risk-Adjusted Spread Portfolio Returns of Ensemble Models (Full Fs-
timateion) - Cont’d

This table reports the complete risk-adjusted estimate of ensemble models of network family (panel A)
and combined linear and network family (panel B). Raw excess returns are adjusted by CAPM, Fama and
French (FF3, 1993) three-factor model, Carhart (Carhart, 1997) four-factor model, and Fama and French
(FF5, 2015) five-factor model. Newey-West t-statistics with 12 lags are reported in parentheses. For a given
family of models, ensemble portfolios are constructed by buying the winner quintile agreed-upon unanimously
by all models in the family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS,
Ridge, Lasso, and Elastic net. Network family includes all 5 neural networks. Total ensemble includes both
linear and network families, totalling 12 models. *,**,*** represent statistical significance at 1%, 5%, and
10% levels.

Panel C3: Total ensemble w/ 79 firm characteristics

Factor CAPM FF3 Carhart4 FF5
Alpha(%) 2.17 2.17 2.00 2.07

(6.38***) (5.89***) (5.05***) (4.5***)
MKT -0.32 -0.33 -0.29 -0.26

(-2.97***) (-2.62***) (-2.51**) (-2.11**)
SMB 0.10 0.08 -0.02

(0.3) (0.26) (-0.11)
HML 0.00 0.08 -0.41

(0.01) (0.47) (-1.43)
MOM 0.21

(0.91)
RMW -0.26

(-0.65)
CMA 0.97

(2.4**)
R2(%) 2.81 2.93 4.03 6.19
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Table 9: Mean-Variance Spanning Test

This table explore whether ensemble portfolios can be spanned by the factors in CAPM,
Fama and French (FF3, 1993) three-factor model, Carhart (Carhart, 1997) four-factor model,
and Fama and French (FF5, 2015) five-factor model, respectively. Panel A1 through C3
present results for the combinations of three types of ensembles portfolios and three types
of predictors. W is the Wald test under conditional homoskedasticity (continued next page)

Panel A1: Linear ensemble w/ 120 lagged returns

W We Wa J1 J2 J3
CAPM 525.94*** 71.53*** 365.65*** 21.25*** 21.2*** 86.98***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 66.89*** 34.09*** 61.6*** 18.52*** 19.54*** 21.07***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 53.29*** 28.41*** 34.75*** 22.4*** 23.87*** 25.42***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 35.07*** 25.5*** 27.19*** 17.71*** 18.88*** 18.6***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Panel A2: Network ensemble w/ 120 lagged returns

W We Wa J1 J2 J3
CAPM 321.47*** 65.05*** 231.29*** 27.35*** 27.27*** 65.95***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 48.14*** 30.42*** 49.18*** 20.07*** 21.13*** 21.75***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 39.75*** 25.45*** 30.2*** 19.71*** 21.1*** 22.17***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 31.27*** 24.27*** 22.64*** 17.99*** 19.34*** 18.88***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Panel A3: Total ensemble w/ 120 lagged returns

W We Wa J1 J2 J3
CAPM 254.14*** 49.68*** 206.88*** 26.35*** 26.31*** 51.78***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 37.91*** 26.88*** 42.52*** 20.37*** 21.6*** 21.09***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 32.55*** 23.58*** 26.86*** 20.66*** 22.21*** 22.09***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 27.64*** 23.32*** 21.95*** 19.31*** 20.77*** 19.81***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
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Table 9: Mean-Variance Spanning Test - Cont’d

We is the Wald test under IID elliptical, Wa is the Wald test under conditional heteroskedas-
ticity, J1 is the Bekerart-Urias test with the errors-in-variable adjustment, J2 is the Bekerart-
Urias test without the errors-in-variable adjustment, J3 is the DeSantis test. P-values are
reported in paranthesis. For a given family of models, ensemble portfolios are constructed
by buying the winner quintile agreed-upon unanimously by all models (continued next page)

Panel B1: Linear ensemble w/ 60 price and 60 trading volume MA signals

W We Wa J1 J2 J3
CAPM 285.92*** 68.06*** 145.54*** 25.82*** 25.68*** 71.48***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 41.64*** 19.32*** 29.84*** 12.67*** 12.77*** 14.49***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 23.41*** 11.87*** 9.99*** 8.9** 9.25*** 10.67***

(0.0) (0.0) (0.01) (0.01) (0.01) (0.0)
FF5 9.92*** 8.32** 8.32** 7.09** 7.31** 7.18**

(0.01) (0.02) (0.02) (0.03) (0.03) (0.03)

Panel B2: Network ensemble w/ 60 price and 60 trading volume MA signals

W We Wa J1 J2 J3
CAPM 246.66*** 57.74*** 147.94*** 26.64*** 26.56*** 59.98***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 42.54*** 23.9*** 36.74*** 15.62*** 15.99*** 17.22***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 26.88*** 16.5*** 13.89*** 11.22*** 11.82*** 13.01***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 16.03*** 14.29*** 13.14*** 11.12*** 11.7*** 11.26***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Panel B3: Total ensemble w/ 60 price and 60 trading volume MA signals

W We Wa J1 J2 J3
CAPM 196.41*** 52.8*** 130.71*** 28.85*** 28.95*** 53.18***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 42.32*** 27.87*** 42.81*** 19.22*** 20.01*** 20.51***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 28.58*** 20.81*** 17.56*** 14.89*** 15.97*** 16.51***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 22.86*** 20.5*** 18.93*** 15.86*** 17.02*** 16.13***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
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Table 9: Mean-Variance Spanning Test - Cont’d

in the family and selling the unanimous loser quintile. Linear family includes OLS, PCR,
PLS, Ridge, Lasso, and Elastic net. Network family includes all 5 neural networks. Total
ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel C1: Linear ensemble w/ 79 firm characteristics

W We Wa J1 J2 J3
CAPM 326.25*** 116.33*** 169.49*** 33.39*** 33.7*** 96.47***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 56.92*** 35.43*** 47.92*** 22.95*** 23.89*** 26.32***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 35.48*** 23.24*** 21.8*** 17.81*** 19.09*** 21.13***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 28.37*** 22.4*** 20.72*** 17.37*** 18.68*** 18.51***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Panel C2: Network ensemble w/ 79 firm characteristics

W We Wa J1 J2 J3
CAPM 273.35*** 99.31*** 147.58*** 32.08*** 32.43*** 80.1***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 51.2*** 32.66*** 43.2*** 22.32*** 23.22*** 25.18***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 29.79*** 20.44*** 20.33*** 16.3*** 17.37*** 18.57***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 27.31*** 21.27*** 19.09*** 16.57*** 17.81*** 17.8***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Panel C3: Total ensemble w/ 79 firm characteristics

W We Wa J1 J2 J3
CAPM 251.77*** 97.43*** 140.23*** 33.47*** 33.96*** 77.37***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3 51.38*** 34.77*** 44.68*** 23.57*** 24.76*** 26.36***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF3M 31.75*** 23.16*** 22.35*** 18.2*** 19.6*** 20.54***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
FF5 29.38*** 24.11*** 21.79*** 18.5*** 20.07*** 19.62***

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
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Table 10: Regression Analysis of Actual Return on Predicted Return

This table reports summary statistics from monthly regression of actual return on predicted return under each
model. Statistics include average beta coefficients, t-statistic of the time-series of betas, standard deviation
incorporating a Newey-West correction with 12 lags, minimum and maximum, proportion of positive betas,
proportion of significant betas conditional on positivity at 1%, 5%, and 10% levels, and adjusted R-square.
For each model, I estimate monthly cross-sectional regressions (480 regressions in total) and calculate the
relevant statistics. Panel A reports results where 120 lagged returns are used as predictors, Panel B reports
results for 60 price and 60 trading volume MA signals, and Panel C reports results for 79 firm characteristics.

Panel A Predictors:120 lagged returns

Mean(β̂) t-stat Std. Min Max Pos. Sig1%. Sig5%. Sig10%. AdjR2

OLS 0.07 6.90 0.22 -0.95 1.23 0.64 0.44 0.56 0.62 0.01
PCR 0.17 7.15 0.51 -1.46 2.54 0.63 0.46 0.56 0.62 0.01
PLS 0.19 8.24 0.51 -1.40 3.59 0.66 0.49 0.59 0.66 0.01
Ridge 0.07 6.90 0.22 -0.95 1.23 0.64 0.44 0.56 0.62 0.01
Lasso 0.10 7.35 0.29 -1.27 1.53 0.65 0.43 0.56 0.61 0.01
ENet 0.10 7.35 0.29 -1.27 1.53 0.65 0.43 0.56 0.61 0.01
NN1L 0.12 7.41 0.35 -1.41 1.44 0.66 0.46 0.58 0.64 0.01
NN2L 0.27 7.07 0.85 -2.86 4.40 0.64 0.45 0.59 0.65 0.01
NN3L 0.46 6.99 1.44 -5.43 6.90 0.66 0.43 0.58 0.65 0.01
NN4L 0.59 5.91 2.18 -7.81 10.82 0.62 0.48 0.56 0.66 0.01
NN5L 0.72 5.80 2.72 -9.05 15.29 0.62 0.42 0.55 0.61 0.01

Panel B Predictors: 60 price and 60 trading volume MA signals

Mean(β̂) t-stat Std. Min Max Pos. Sig1%. Sig5%. Sig10%. AdjR2

OLS 0.03 3.33 0.20 -1.15 1.15 0.59 0.29 0.41 0.50 0.01
PCR 0.31 1.93 3.53 -5.71 73.10 0.59 0.59 0.70 0.74 0.01
PLS 0.11 2.96 0.82 -4.28 4.55 0.57 0.60 0.70 0.76 0.02
Ridge 0.03 3.37 0.20 -1.15 1.15 0.59 0.30 0.42 0.51 0.01
Lasso 0.15 4.75 0.69 -2.14 2.84 0.61 0.58 0.66 0.72 0.02
ENet 0.15 4.76 0.69 -2.15 2.84 0.61 0.58 0.67 0.72 0.02
NN1L 0.15 5.62 0.57 -2.43 2.73 0.61 0.61 0.68 0.74 0.02
NN2L 0.20 5.36 0.81 -3.01 4.30 0.59 0.65 0.73 0.76 0.02
NN3L 0.26 4.86 1.17 -4.30 7.07 0.60 0.63 0.71 0.74 0.02
NN4L 0.36 4.48 1.78 -5.50 11.61 0.58 0.60 0.70 0.75 0.02
NN5L 0.48 3.95 2.67 -8.06 21.45 0.56 0.59 0.67 0.71 0.02

Panel C Predictors: 79 firm characteristics

Mean(β̂) t-stat Std. Min Max Pos. Sig1%. Sig5%. Sig10%. AdjR2

OLS 0.11 6.18 0.38 -1.23 1.93 0.63 0.64 0.74 0.77 0.02
PCR 0.18 5.86 0.66 -1.63 9.04 0.62 0.70 0.78 0.81 0.02
PLS 0.14 5.92 0.51 -1.49 2.22 0.62 0.67 0.78 0.81 0.02
Ridge 0.12 6.62 0.39 -1.23 1.93 0.64 0.65 0.75 0.80 0.02
Lasso 0.15 6.73 0.50 -1.36 2.08 0.64 0.68 0.78 0.80 0.02
ENet 0.15 6.73 0.50 -1.36 2.08 0.64 0.68 0.78 0.80 0.02
NN1L 0.16 6.50 0.54 -1.72 2.06 0.64 0.68 0.76 0.79 0.02
NN2L 0.23 6.08 0.82 -2.50 3.31 0.62 0.71 0.77 0.81 0.03
NN3L 0.34 5.67 1.31 -4.43 4.57 0.62 0.70 0.77 0.82 0.03
NN4L 0.58 5.82 2.18 -8.33 9.54 0.63 0.65 0.73 0.76 0.03
NN5L 0.77 5.72 2.97 -10.50 12.37 0.62 0.65 0.75 0.78 0.02
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Table 12: Size Effect (Predictors: 120 lagged returns)

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 120 lagged returns. Panel A to
panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the smallest stocks (in terms of
market value at the end of previous month) within each month removed. Newey-West t-statistics
with 12 lags are reported in parentheses. At the beginning of each month, I independently sort
stocks into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models, ensemble
portfolios are constructed by buying the winner quintile unanimously agreed by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge,
Lasso, and Elastic net. Network family includes 5 neural networks. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel A: Bottom 20% Excluded (Predictors: 120 lagged returns)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.71 0.71 0.68 0.68 0.61

(4.70***) (4.94***) (4.74***) (3.98***) (4.11***)
PCR 0.70 0.73 0.72 0.67 0.70

(5.55***) (5.68***) (5.43***) (4.84***) (4.41***)
PLS 0.94 0.95 0.91 0.88 0.89

(6.46***) (6.49***) (6.25***) (5.46***) (5.23***)
Ridge 0.71 0.71 0.68 0.68 0.61

(4.70***) (4.94***) (4.74***) (3.98***) (4.11***)
Lasso 0.73 0.73 0.69 0.70 0.62

(4.78***) (5.01***) (4.83***) (4.04***) (4.17***)
ENet 0.73 0.73 0.69 0.70 0.62

(4.78***) (5.01***) (4.83***) (4.04***) (4.17***)
NN1L 0.82 0.85 0.82 0.83 0.78

(5.23***) (5.71***) (5.50***) (4.63***) (5.02***)
NN2L 0.89 0.95 0.91 0.90 0.84

(5.59***) (6.05***) (5.69***) (5.30***) (4.65***)
NN3L 0.86 0.91 0.89 0.85 0.84

(5.09***) (5.63***) (5.30***) (4.63***) (4.00***)
NN4L 0.78 0.85 0.83 0.79 0.77

(4.43***) (5.18***) (4.70***) (4.01***) (3.34***)
NN5L 0.75 0.82 0.80 0.77 0.75

(5.11***) (5.88***) (5.47***) (4.69***) (3.87***)
Ens linear 1.10 1.11 1.07 1.05 1.01

(5.42***) (5.50***) (5.21***) (4.49***) (4.28***)
Ens Net 1.37 1.47 1.43 1.42 1.41

(5.07***) (5.70***) (5.19***) (4.75***) (4.21***)
Ens total 1.33 1.39 1.34 1.34 1.30

(4.28***) (4.56***) (4.21***) (3.80***) (3.43***)
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Table 12: Size Effect (Predictors: 120 lagged returns) - Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 120 lagged returns. Panel A to
panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the smallest stocks (in terms of
market value at the end of previous month) within each month removed. Newey-West t-statistics
with 12 lags are reported in parentheses. At the beginning of each month, I independently sort
stocks into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models, ensemble
portfolios are constructed by buying the winner quintile unanimously agreed by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge,
Lasso, and Elastic net. Network family includes 5 neural networks. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel B: Bottom 40% Excluded (Predictors: 120 lagged returns)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.64 0.63 0.60 0.59 0.53

(4.28***) (4.39***) (4.23***) (3.50***) (3.63***)
PCR 0.64 0.66 0.65 0.59 0.64

(5.33***) (5.47***) (5.36***) (4.69***) (4.49***)
PLS 0.87 0.87 0.84 0.79 0.82

(6.21***) (6.06***) (5.97***) (5.24***) (5.28***)
Ridge 0.64 0.63 0.60 0.59 0.53

(4.28***) (4.39***) (4.23***) (3.50***) (3.63***)
Lasso 0.67 0.67 0.63 0.63 0.56

(4.41***) (4.50***) (4.40***) (3.64***) (3.91***)
ENet 0.67 0.67 0.63 0.63 0.56

(4.41***) (4.50***) (4.40***) (3.64***) (3.91***)
NN1L 0.74 0.75 0.73 0.72 0.69

(4.94***) (5.21***) (5.11***) (4.24***) (4.78***)
NN2L 0.78 0.81 0.79 0.76 0.73

(5.14***) (5.45***) (5.20***) (4.74***) (4.34***)
NN3L 0.77 0.81 0.80 0.75 0.75

(4.67***) (5.17***) (4.97***) (4.21***) (3.85***)
NN4L 0.68 0.74 0.73 0.67 0.68

(4.03***) (4.74***) (4.40***) (3.66***) (3.16***)
NN5L 0.67 0.73 0.72 0.67 0.67

(4.78***) (5.39***) (5.14***) (4.33***) (3.74***)
Ens linear 0.95 0.96 0.93 0.88 0.86

(5.24***) (5.21***) (4.99***) (4.23***) (4.22***)
Ens Net 1.28 1.36 1.33 1.29 1.34

(4.82***) (5.34***) (4.97***) (4.48***) (4.31***)
Ens total 1.12 1.17 1.13 1.09 1.10

(3.74***) (4.00***) (3.65***) (3.27***) (3.14***)
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Table 12: Size Effect (Predictors: 120 lagged returns) - Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 120 lagged returns. Panel A to
panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the smallest stocks (in terms of
market value at the end of previous month) within each month removed. Newey-West t-statistics
with 12 lags are reported in parentheses. At the beginning of each month, I independently sort
stocks into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models, ensemble
portfolios are constructed by buying the winner quintile unanimously agreed by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge,
Lasso, and Elastic net. Network family includes 5 neural networks. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel C: Bottom 60% Excluded (Predictors: 120 lagged returns)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.53 0.52 0.48 0.47 0.44

(3.50***) (3.56***) (3.31***) (2.94***) (2.97***)
PCR 0.51 0.52 0.51 0.42 0.49

(3.97***) (4.08***) (3.97***) (3.31***) (3.41***)
PLS 0.73 0.74 0.70 0.64 0.70

(5.43***) (5.29***) (5.07***) (4.48***) (4.65***)
Ridge 0.53 0.52 0.48 0.47 0.44

(3.50***) (3.56***) (3.31***) (2.94***) (2.97***)
Lasso 0.56 0.55 0.51 0.49 0.45

(3.72***) (3.73***) (3.50***) (3.08***) (3.08***)
ENet 0.56 0.55 0.51 0.49 0.45

(3.72***) (3.73***) (3.50***) (3.08***) (3.08***)
NN1L 0.60 0.60 0.57 0.56 0.54

(4.16***) (4.32***) (4.08***) (3.60***) (3.82***)
NN2L 0.68 0.70 0.69 0.63 0.63

(4.76***) (5.02***) (4.79***) (4.41***) (4.11***)
NN3L 0.63 0.66 0.66 0.57 0.62

(3.99***) (4.37***) (4.10***) (3.67***) (3.30***)
NN4L 0.59 0.64 0.64 0.56 0.60

(3.81***) (4.56***) (4.16***) (3.50***) (2.99***)
NN5L 0.57 0.64 0.63 0.56 0.60

(4.60***) (5.32***) (5.01***) (4.36***) (3.75***)
Ens linear 0.86 0.85 0.82 0.75 0.76

(4.54***) (4.46***) (4.18***) (3.82***) (3.75***)
Ens Net 1.27 1.33 1.33 1.25 1.36

(4.71***) (5.11***) (4.78***) (4.43***) (4.27***)
Ens total 1.26 1.31 1.30 1.19 1.25

(4.47***) (4.65***) (4.30***) (3.89***) (3.63***)
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Table 12: Size Effect (Predictors: 120 lagged returns) - Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 120 lagged returns. Panel A to
panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the smallest stocks (in terms of
market value at the end of previous month) within each month removed. Newey-West t-statistics
with 12 lags are reported in parentheses. At the beginning of each month, I independently sort
stocks into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models, ensemble
portfolios are constructed by buying the winner quintile unanimously agreed by all models in the
family and selling the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge,
Lasso, and Elastic net. Network family includes 5 neural networks. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance at 1%,
5%, and 10% levels.

Panel D: Bottom 80% Excluded (Predictors: 120 lagged returns)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.47 0.45 0.41 0.38 0.37

(2.52**) (2.47**) (2.28**) (2.03**) (2.13**)
PCR 0.39 0.38 0.36 0.26 0.31

(3.06***) (3.05***) (2.91***) (2.05**) (2.22**)
PLS 0.65 0.63 0.59 0.50 0.58

(4.48***) (4.32***) (4.14***) (3.36***) (4.00***)
Ridge 0.47 0.45 0.41 0.38 0.37

(2.52**) (2.47**) (2.28**) (2.03**) (2.13**)
Lasso 0.46 0.43 0.40 0.37 0.35

(2.63**) (2.52**) (2.33**) (2.16**) (2.19**)
ENet 0.46 0.43 0.40 0.37 0.35

(2.63**) (2.52**) (2.33**) (2.16**) (2.19**)
NN1L 0.45 0.43 0.39 0.36 0.37

(2.66**) (2.64**) (2.50**) (2.22**) (2.45**)
NN2L 0.58 0.59 0.57 0.49 0.53

(3.84***) (3.99***) (3.86***) (3.63***) (3.62***)
NN3L 0.52 0.51 0.51 0.42 0.50

(3.29***) (3.44***) (3.30***) (2.80**) (2.75**)
NN4L 0.50 0.53 0.52 0.44 0.49

(3.18***) (3.78***) (3.38***) (2.80**) (2.41**)
NN5L 0.44 0.47 0.46 0.39 0.44

(3.39***) (3.79***) (3.55***) (3.14***) (2.74**)
Ens linear 0.80 0.76 0.71 0.67 0.67

(3.87***) (3.76***) (3.52***) (3.36***) (3.31***)
Ens Net 0.93 0.89 0.86 0.79 0.88

(3.02***) (3.04***) (2.79**) (2.47**) (2.62**)
Ens total 0.90 0.84 0.81 0.70 0.70

(2.55**) (2.42**) (2.25**) (1.81*) (1.82*)
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Table 13: Size Effect (Predictors: 60 price and 60 trading volume MA signals)

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 60 price and 60 trading volume
MA signals. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the
smallest stocks within each month removed. Newey-West t-statistics with 12 lags are reported in
parentheses. At the beginning of each month, I independently sort stocks into quintile portfolios
on predicted returns from each model and construct spread portfolios by buying the top quintile
and selling the bottom quintile. For a given family of models, ensemble portfolios are constructed
by buying the winner quintile unanimously agreed by all models in the family and selling the
unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net.
Network family includes 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel A: Bottom 20% Excluded (Predictors: MA Signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.60 0.65 0.61 0.56 0.43

(3.82***) (4.81***) (4.36***) (2.61**) (2.25**)
PCR 0.68 0.74 0.71 0.64 0.51

(3.53***) (4.25***) (3.89***) (2.35**) (2.08**)
PLS 0.68 0.75 0.72 0.63 0.54

(3.30***) (3.98***) (3.73***) (2.31**) (2.12**)
Ridge 0.60 0.65 0.61 0.57 0.44

(3.82***) (4.82***) (4.37***) (2.62**) (2.26**)
Lasso 0.76 0.82 0.79 0.74 0.60

(3.76***) (4.63***) (4.20***) (2.68**) (2.34**)
ENet 0.76 0.82 0.79 0.74 0.60

(3.75***) (4.62***) (4.19***) (2.67**) (2.33**)
NN1L 0.95 1.03 0.99 0.95 0.80

(4.72***) (5.75***) (5.12***) (3.44***) (3.05***)
NN2L 0.95 1.05 1.01 0.94 0.81

(4.34***) (5.26***) (4.79***) (3.16***) (2.78**)
NN3L 0.89 0.98 0.96 0.88 0.76

(3.94***) (4.69***) (4.37***) (2.93***) (2.50**)
NN4L 0.80 0.88 0.85 0.77 0.65

(3.63***) (4.21***) (3.97***) (2.63**) (2.22**)
NN5L 0.75 0.84 0.82 0.75 0.62

(3.56***) (4.30***) (3.95***) (2.64**) (2.12**)
Ens linear 0.95 1.03 1.01 0.91 0.81

(3.94***) (4.64***) (4.42***) (2.84***) (2.72**)
Ens Net 1.34 1.44 1.42 1.31 1.20

(5.09***) (5.86***) (5.49***) (3.80***) (3.34***)
Ens total 1.67 1.74 1.72 1.60 1.57

(5.24***) (5.74***) (5.46***) (4.14***) (3.75***)
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Table 13: Size Effect (Predictors: 60 price and 60 trading volume MA signals) -
Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 60 price and 60 trading volume
MA signals. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the
smallest stocks within each month removed. Newey-West t-statistics with 12 lags are reported in
parentheses. At the beginning of each month, I independently sort stocks into quintile portfolios
on predicted returns from each model and construct spread portfolios by buying the top quintile
and selling the bottom quintile. For a given family of models, ensemble portfolios are constructed
by buying the winner quintile unanimously agreed by all models in the family and selling the
unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net.
Network family includes 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B: Bottom 40% Excluded (Predictors: MA Signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.56 0.61 0.58 0.51 0.41

(3.62***) (4.50***) (4.12***) (2.52**) (2.16**)
PCR 0.60 0.65 0.63 0.54 0.44

(3.11***) (3.73***) (3.38***) (2.03**) (1.77*)
PLS 0.56 0.63 0.61 0.50 0.44

(2.79**) (3.36***) (3.13***) (1.88*) (1.73*)
Ridge 0.56 0.62 0.59 0.52 0.42

(3.65***) (4.55***) (4.16***) (2.55**) (2.19**)
Lasso 0.64 0.70 0.68 0.61 0.49

(3.18***) (3.92***) (3.56***) (2.26**) (1.94*)
ENet 0.64 0.70 0.68 0.60 0.49

(3.18***) (3.92***) (3.56***) (2.26**) (1.93*)
NN1L 0.84 0.92 0.89 0.83 0.70

(4.29***) (5.22***) (4.64***) (3.11***) (2.69**)
NN2L 0.80 0.90 0.88 0.78 0.67

(3.80***) (4.58***) (4.16***) (2.72**) (2.28**)
NN3L 0.75 0.84 0.83 0.73 0.64

(3.45***) (4.16***) (3.87***) (2.52**) (2.09**)
NN4L 0.66 0.75 0.73 0.63 0.54

(3.21***) (3.80***) (3.55***) (2.30**) (1.88*)
NN5L 0.66 0.75 0.73 0.64 0.53

(3.31***) (4.02***) (3.72***) (2.43**) (1.86*)
Ens linear 0.83 0.91 0.89 0.76 0.70

(3.56***) (4.26***) (4.02***) (2.61**) (2.41**)
Ens Net 1.27 1.38 1.37 1.23 1.13

(4.97***) (5.75***) (5.36***) (3.61***) (3.16***)
Ens total 1.42 1.52 1.49 1.32 1.33

(4.25***) (4.74***) (4.50***) (3.43***) (3.08***)
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Table 13: Size Effect (Predictors: 60 price and 60 trading volume MA signals) -
Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 60 price and 60 trading volume
MA signals. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the
smallest stocks within each month removed. Newey-West t-statistics with 12 lags are reported in
parentheses. At the beginning of each month, I independently sort stocks into quintile portfolios
on predicted returns from each model and construct spread portfolios by buying the top quintile
and selling the bottom quintile. For a given family of models, ensemble portfolios are constructed
by buying the winner quintile unanimously agreed by all models in the family and selling the
unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net.
Network family includes 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel C: Bottom 60% Excluded (Predictors: MA Signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.49 0.54 0.51 0.44 0.33

(3.06***) (3.74***) (3.47***) (2.20**) (1.75*)
PCR 0.49 0.54 0.52 0.40 0.34

(2.51**) (3.06***) (2.76**) (1.58) (1.36)
PLS 0.45 0.50 0.49 0.36 0.32

(2.22**) (2.67**) (2.50**) (1.40) (1.29)
Ridge 0.49 0.54 0.52 0.44 0.34

(3.06***) (3.76***) (3.49***) (2.22**) (1.77*)
Lasso 0.52 0.58 0.57 0.46 0.38

(2.54**) (3.15***) (2.89***) (1.80*) (1.48)
ENet 0.52 0.58 0.57 0.46 0.38

(2.54**) (3.16***) (2.90***) (1.80*) (1.49)
NN1L 0.70 0.78 0.76 0.66 0.58

(3.83***) (4.78***) (4.21***) (2.71**) (2.31**)
NN2L 0.67 0.77 0.75 0.63 0.56

(3.31***) (4.09***) (3.71***) (2.36**) (1.97*)
NN3L 0.61 0.70 0.69 0.55 0.51

(2.93***) (3.61***) (3.37***) (2.08**) (1.70*)
NN4L 0.53 0.61 0.60 0.45 0.42

(2.67**) (3.17***) (2.97***) (1.76*) (1.47)
NN5L 0.54 0.64 0.63 0.51 0.43

(2.91***) (3.70***) (3.37***) (2.06**) (1.55)
Ens linear 0.69 0.77 0.75 0.61 0.54

(2.86***) (3.43***) (3.23***) (2.10**) (1.86*)
Ens Net 1.02 1.14 1.13 0.93 0.90

(4.24***) (4.95***) (4.64***) (2.87***) (2.54**)
Ens total 1.07 1.16 1.16 0.94 0.97

(3.40***) (3.77***) (3.78***) (2.57**) (2.38**)
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Table 13: Size Effect (Predictors: 60 price and 60 trading volume MA signals) -
Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain percentile
of the smallest stocks in each month removed. Predictors used are 60 price and 60 trading volume
MA signals. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80% of the
smallest stocks within each month removed. Newey-West t-statistics with 12 lags are reported in
parentheses. At the beginning of each month, I independently sort stocks into quintile portfolios
on predicted returns from each model and construct spread portfolios by buying the top quintile
and selling the bottom quintile. For a given family of models, ensemble portfolios are constructed
by buying the winner quintile unanimously agreed by all models in the family and selling the
unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net.
Network family includes 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel D: Bottom 80% Excluded (Predictors: MA Signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.47 0.51 0.50 0.38 0.35

(2.75**) (3.12***) (2.97***) (1.83*) (1.70*)
PCR 0.43 0.47 0.46 0.32 0.29

(2.24**) (2.62**) (2.40**) (1.33) (1.19)
PLS 0.37 0.42 0.41 0.25 0.26

(1.85*) (2.20**) (2.04**) (1.02) (1.03)
Ridge 0.47 0.51 0.49 0.37 0.34

(2.73**) (3.10***) (2.96***) (1.81*) (1.68*)
Lasso 0.48 0.53 0.52 0.38 0.35

(2.33**) (2.77**) (2.56**) (1.52) (1.37)
ENet 0.47 0.52 0.52 0.38 0.35

(2.31**) (2.75**) (2.54**) (1.51) (1.36)
NN1L 0.69 0.77 0.75 0.61 0.58

(3.87***) (4.61***) (4.10***) (2.68**) (2.36**)
NN2L 0.60 0.67 0.66 0.51 0.50

(2.93***) (3.47***) (3.21***) (2.07**) (1.77*)
NN3L 0.54 0.61 0.60 0.43 0.45

(2.65**) (3.16***) (2.92***) (1.75*) (1.50)
NN4L 0.52 0.58 0.56 0.38 0.41

(2.59**) (2.89***) (2.72**) (1.56) (1.40)
NN5L 0.48 0.55 0.53 0.37 0.35

(2.55**) (3.02***) (2.69**) (1.64) (1.24)
Ens linear 0.55 0.61 0.59 0.42 0.42

(2.14**) (2.48**) (2.35**) (1.47) (1.37)
Ens Net 0.75 0.82 0.83 0.57 0.62

(2.83***) (3.10***) (3.04***) (1.81*) (1.71*)
Ens total 0.87 0.91 0.89 0.64 0.75

(2.45**) (2.57**) (2.55**) (1.65) (1.74*)
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Table 14: Size Effect (Predictors: 79 firm characteristics)

This table reports the alphas of the spread portfolios constructed on a sample with certain
percentile of the smallest stocks in each month removed. Predictors used are 79 firm char-
acteristics. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80%
of the smallest stocks within each month removed. Newey-West t-statistics with 12 lags
are reported in parentheses. At the beginning of each month, I independently sort stocks
into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile unanimously agreed by all
models in the family and selling the unanimous loser quintile. Linear family includes OLS,
PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks. Total
ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel A: Bottom 20% Excluded (Predictors: 79 firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.14 1.30 1.29 1.18 1.20

(4.50***) (5.21***) (4.82***) (4.22***) (3.49***)
PCR 1.17 1.34 1.33 1.21 1.25

(4.69***) (5.42***) (4.96***) (4.40***) (3.65***)
PLS 1.14 1.30 1.29 1.18 1.21

(4.56***) (5.31***) (4.91***) (4.17***) (3.57***)
Ridge 1.14 1.30 1.29 1.18 1.20

(4.51***) (5.22***) (4.82***) (4.23***) (3.49***)
Lasso 1.19 1.37 1.36 1.25 1.26

(4.54***) (5.32***) (4.90***) (4.30***) (3.56***)
ENet 1.19 1.37 1.36 1.25 1.26

(4.54***) (5.32***) (4.90***) (4.30***) (3.56***)
NN1L 1.17 1.35 1.35 1.21 1.26

(4.45***) (5.21***) (4.82***) (4.12***) (3.50***)
NN2L 1.16 1.34 1.34 1.20 1.25

(4.32***) (5.04***) (4.68***) (4.02***) (3.42***)
NN3L 1.13 1.32 1.33 1.20 1.25

(4.24***) (5.02***) (4.65***) (4.08***) (3.38***)
NN4L 1.11 1.30 1.29 1.19 1.22

(4.26***) (5.07***) (4.67***) (4.10***) (3.39***)
NN5L 1.11 1.28 1.29 1.16 1.21

(4.33***) (5.04***) (4.67***) (4.17***) (3.38***)
Ens linear 1.43 1.60 1.60 1.48 1.52

(5.02***) (5.74***) (5.31***) (4.61***) (3.97***)
Ens Net 1.49 1.70 1.70 1.53 1.63

(4.66***) (5.41***) (4.99***) (4.36***) (3.81***)
Ens total 1.71 1.92 1.92 1.75 1.86

(5.15***) (5.85***) (5.39***) (4.82***) (4.13***)
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Table 14: Size Effect (Predictors: 79 firm characteristics) - Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain
percentile of the smallest stocks in each month removed. Predictors used are 79 firm char-
acteristics. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80%
of the smallest stocks within each month removed. Newey-West t-statistics with 12 lags
are reported in parentheses. At the beginning of each month, I independently sort stocks
into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile unanimously agreed by all
models in the family and selling the unanimous loser quintile. Linear family includes OLS,
PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks. Total
ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel B: Bottom 40% Excluded (Predictors: 79 firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.95 1.12 1.12 1.00 1.03

(4.09***) (4.86***) (4.50***) (3.95***) (3.19***)
PCR 0.96 1.13 1.13 1.00 1.04

(4.22***) (5.06***) (4.66***) (4.08***) (3.34***)
PLS 0.94 1.09 1.09 0.97 1.00

(4.05***) (4.87***) (4.52***) (3.77***) (3.19***)
Ridge 0.95 1.12 1.12 1.00 1.03

(4.07***) (4.86***) (4.50***) (3.96***) (3.20***)
Lasso 0.98 1.16 1.15 1.04 1.05

(4.06***) (4.92***) (4.52***) (3.95***) (3.17***)
ENet 0.98 1.16 1.15 1.04 1.05

(4.06***) (4.92***) (4.52***) (3.95***) (3.17***)
NN1L 0.97 1.14 1.15 1.01 1.06

(3.95***) (4.75***) (4.41***) (3.73***) (3.13***)
NN2L 0.95 1.13 1.15 0.99 1.06

(3.76***) (4.55***) (4.26***) (3.62***) (3.06***)
NN3L 0.93 1.11 1.13 0.99 1.04

(3.70***) (4.53***) (4.23***) (3.66***) (3.00***)
NN4L 0.90 1.08 1.10 0.97 1.02

(3.79***) (4.65***) (4.29***) (3.78***) (3.03***)
NN5L 0.90 1.07 1.09 0.95 1.01

(3.81***) (4.58***) (4.26***) (3.79***) (3.00***)
Ens linear 1.19 1.36 1.37 1.23 1.27

(4.43***) (5.23***) (4.87***) (4.23***) (3.55***)
Ens Net 1.24 1.46 1.47 1.28 1.40

(4.14***) (4.97***) (4.59***) (4.05***) (3.46***)
Ens total 1.44 1.66 1.67 1.47 1.58

(4.66***) (5.43***) (5.01***) (4.53***) (3.76***)
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Table 14: Size Effect (Predictors: 79 firm characteristics) - Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain
percentile of the smallest stocks in each month removed. Predictors used are 79 firm char-
acteristics. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80%
of the smallest stocks within each month removed. Newey-West t-statistics with 12 lags
are reported in parentheses. At the beginning of each month, I independently sort stocks
into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile unanimously agreed by all
models in the family and selling the unanimous loser quintile. Linear family includes OLS,
PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks. Total
ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel C: Bottom 60% Excluded (Predictors: 79 firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.78 0.93 0.95 0.83 0.86

(3.89***) (4.76***) (4.50***) (3.82***) (3.09***)
PCR 0.79 0.94 0.95 0.82 0.85

(4.07***) (4.97***) (4.65***) (3.92***) (3.20***)
PLS 0.76 0.91 0.93 0.80 0.83

(3.64***) (4.51***) (4.30***) (3.49***) (2.96***)
Ridge 0.78 0.93 0.95 0.83 0.86

(3.89***) (4.77***) (4.50***) (3.84***) (3.10***)
Lasso 0.83 0.99 1.00 0.88 0.89

(4.01***) (4.96***) (4.59***) (3.90***) (3.13***)
ENet 0.83 0.99 1.00 0.88 0.89

(4.01***) (4.96***) (4.59***) (3.89***) (3.13***)
NN1L 0.82 0.98 1.00 0.85 0.91

(3.76***) (4.63***) (4.36***) (3.64***) (3.04***)
NN2L 0.78 0.95 0.97 0.81 0.88

(3.45***) (4.29***) (4.08***) (3.35***) (2.82***)
NN3L 0.81 0.98 1.00 0.86 0.92

(3.56***) (4.43***) (4.20***) (3.53***) (2.93***)
NN4L 0.72 0.88 0.90 0.77 0.83

(3.38***) (4.31***) (4.00***) (3.42***) (2.70**)
NN5L 0.79 0.94 0.98 0.83 0.89

(3.67***) (4.45***) (4.24***) (3.71***) (2.92***)
Ens linear 1.02 1.20 1.23 1.08 1.10

(4.32***) (5.19***) (4.99***) (4.19***) (3.56***)
Ens Net 1.04 1.26 1.28 1.08 1.20

(3.73***) (4.55***) (4.36***) (3.68***) (3.33***)
Ens total 1.17 1.40 1.44 1.23 1.33

(4.10***) (4.90***) (4.73***) (4.09***) (3.54***)
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Table 14: Size Effect (Predictors: 79 firm characteristics) - Cont’d

This table reports the alphas of the spread portfolios constructed on a sample with certain
percentile of the smallest stocks in each month removed. Predictors used are 79 firm char-
acteristics. Panel A to panel D are based on sub-samples with 20%, 40%, 60%, and 80%
of the smallest stocks within each month removed. Newey-West t-statistics with 12 lags
are reported in parentheses. At the beginning of each month, I independently sort stocks
into quintile portfolios on predicted returns from each model and construct spread portfolios
by buying the top quintile and selling the bottom quintile. For a given family of models,
ensemble portfolios are constructed by buying the winner quintile unanimously agreed by all
models in the family and selling the unanimous loser quintile. Linear family includes OLS,
PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks. Total
ensemble includes both linear and network families, totalling 11 models. *,**,*** represent
statistical significance at 1%, 5%, and 10% levels.

Panel D: Bottom 80% Excluded (Predictors: 79 firm characteristics)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.69 0.82 0.83 0.70 0.74

(3.46***) (4.22***) (3.94***) (3.37***) (2.72**)
PCR 0.65 0.77 0.78 0.63 0.66

(3.52***) (4.25***) (3.99***) (3.34***) (2.68**)
PLS 0.62 0.74 0.76 0.62 0.64

(3.17***) (3.94***) (3.77***) (3.01***) (2.50**)
Ridge 0.70 0.82 0.84 0.70 0.74

(3.49***) (4.26***) (3.97***) (3.41***) (2.75**)
Lasso 0.75 0.90 0.91 0.76 0.79

(3.67***) (4.55***) (4.26***) (3.64***) (2.90***)
ENet 0.75 0.90 0.91 0.76 0.79

(3.67***) (4.55***) (4.26***) (3.64***) (2.90***)
NN1L 0.72 0.86 0.87 0.71 0.78

(3.49***) (4.26***) (4.01***) (3.37***) (2.82***)
NN2L 0.70 0.84 0.87 0.69 0.76

(3.23***) (4.05***) (3.90***) (3.19***) (2.65**)
NN3L 0.68 0.83 0.86 0.69 0.78

(3.11***) (3.93***) (3.79***) (3.23***) (2.60**)
NN4L 0.59 0.73 0.76 0.61 0.67

(2.82***) (3.59***) (3.45***) (2.93***) (2.34**)
NN5L 0.63 0.75 0.78 0.62 0.69

(3.09***) (3.73***) (3.61***) (3.09***) (2.42**)
Ens linear 0.86 1.01 1.03 0.86 0.91

(3.81***) (4.58***) (4.39***) (3.73***) (3.16***)
Ens Net 0.88 1.06 1.10 0.86 1.03

(3.18***) (3.95***) (3.86***) (3.29***) (2.95***)
Ens total 0.90 1.07 1.12 0.86 1.03

(3.07***) (3.77***) (3.67***) (3.17***) (2.78**)
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Table 15: Risk-Adjusted Spread Portfolio Returns over High and Low Investor
Sentiment Periods (Predictors: 120 Lagged Return)

This table reports risk-adjusted spread portfolio returns for high versus low investment sen-
timent periods where 120 lagged returns are used for predictors. Panel A and B report
high and low investor sentiment respectively. A given month is labeled high sentiment if
the Baker-Wurgler sentiment index in the previous month is above the median value of
the sample period (1978:01 - 2015:09) and is labeled low sentiment otherwise. Newey-West
t-statistics with 12 lags are reported in parentheses. At the beginning of each month, I

Panel A: High Sentiment Period (Predictors: 120 Lagged Return)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.70 0.74 0.72 0.59 0.61

(3.82***) (4.17***) (3.49***) (3.49***) (2.81***)
PCR 0.78 0.83 0.78 0.66 0.74

(4.87***) (4.99***) (3.33***) (3.31***) (2.80**)
PLS 1.08 1.14 1.08 0.92 1.04

(5.72***) (6.10***) (4.53***) (4.84***) (3.90***)
Ridge 0.70 0.74 0.72 0.59 0.61

(3.82***) (4.17***) (3.49***) (3.49***) (2.81***)
Lasso 0.72 0.76 0.71 0.58 0.60

(3.91***) (4.27***) (3.46***) (3.46***) (2.74**)
ENet 0.72 0.76 0.71 0.58 0.60

(3.91***) (4.27***) (3.46***) (3.46***) (2.74**)
NN1L 0.85 0.92 0.89 0.78 0.83

(4.39***) (4.85***) (3.96***) (4.17***) (3.41***)
NN2L 1.04 1.13 1.09 0.97 1.01

(4.94***) (5.24***) (4.01***) (4.20***) (3.38***)
NN3L 0.89 0.99 0.95 0.81 0.91

(3.96***) (4.03***) (3.00***) (3.00***) (2.59**)
NN4L 0.81 0.91 0.83 0.69 0.79

(3.28***) (3.34***) (2.26**) (2.13**) (1.91*)
NN5L 0.74 0.83 0.77 0.63 0.70

(3.27***) (3.44***) (2.39**) (2.27**) (1.90*)
Ens linear 1.23 1.29 1.24 1.06 1.19

(5.37***) (5.54***) (3.85***) (3.90***) (3.30***)
Ens Net 1.41 1.56 1.54 1.37 1.53

(3.66***) (3.83***) (2.91***) (2.90***) (2.60**)
Ens total 1.59 1.73 1.68 1.48 1.67

(3.51***) (3.65***) (2.70**) (2.64**) (2.46**)
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Table 15: Risk-Adjusted Spread Portfolio Returns over High and Low Investor
Sentiment Periods (Predictors: 120 Lagged Return) (Cont’d)

independently sort stocks into quintiles on predicted returns from each model and construct
spread portfolios by buying the winner quintile and selling the loser quintile. For a given
family of models, ensemble portfolios are constructed by buying the winner quintile agreed-
upon unanimously by all models in the family and selling the unanimous loser quintile.
Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family
includes all 5 neural networks. Total ensemble includes both linear and network families,
totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B: Low Sentiment Period (Predictors: 120 Lagged Return)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.84 0.72 0.73 0.83 0.73

(3.32***) (2.94***) (2.83***) (2.92***) (2.86***)
PCR 0.90 0.83 0.83 0.87 0.85

(4.38***) (4.27***) (4.11***) (3.93***) (4.05***)
PLS 1.07 0.95 0.96 1.05 0.98

(4.66***) (4.27***) (4.11***) (3.99***) (3.94***)
Ridge 0.84 0.72 0.73 0.83 0.73

(3.32***) (2.94***) (2.83***) (2.92***) (2.86***)
Lasso 0.92 0.79 0.80 0.89 0.79

(3.59***) (3.15***) (3.04***) (3.09***) (3.06***)
ENet 0.92 0.79 0.80 0.89 0.79

(3.59***) (3.15***) (3.04***) (3.09***) (3.06***)
NN1L 0.98 0.87 0.86 0.96 0.87

(3.65***) (3.34***) (3.23***) (3.29***) (3.37***)
NN2L 1.11 0.97 0.95 1.04 0.96

(4.15***) (3.86***) (3.71***) (3.71***) (3.71***)
NN3L 1.16 1.02 0.98 1.04 0.99

(4.40***) (4.15***) (4.09***) (3.78***) (3.96***)
NN4L 1.14 1.03 0.99 1.06 1.02

(4.06***) (3.91***) (3.85***) (3.65***) (3.78***)
NN5L 1.03 0.93 0.90 0.97 0.92

(4.30***) (4.11***) (4.06***) (3.98***) (4.07***)
Ens linear 1.32 1.18 1.19 1.32 1.17

(3.77***) (3.53***) (3.40***) (3.34***) (3.31***)
Ens Net 1.90 1.70 1.69 1.80 1.74

(4.45***) (4.29***) (4.23***) (4.17***) (4.17***)
Ens total 2.02 1.80 1.80 1.94 1.83

(4.23***) (4.01***) (3.90***) (3.84***) (3.83***)
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Table 16: Risk-Adjusted Spread Portfolio Returns over High and Low Investor
Sentiment Periods (Predictors: MA Signals)

This table reports risk-adjusted spread portfolio returns for high versus low investment sen-
timent periods where 60 price and 60 trading volume MA signals are used for predictors.
Panel A and B report high and low investor sentiment respectively. A given month is labeled
high sentiment if the Baker-Wurgler sentiment index in the previous month is above the me-
dian value of the sample period (1978:01 - 2015:09) and is labeled low sentiment otherwise.
Newey-West t-statistics with 12 lags are reported in parentheses. At the beginning of each

Panel A: High Sentiment Period (Predictors: MA signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.42 0.51 0.36 0.15 0.14

(1.92*) (2.29**) (1.26) (0.59) (0.38)
PCR 0.41 0.51 0.37 0.09 0.13

(1.59) (1.89*) (1.00) (0.28) (0.29)
PLS 0.41 0.51 0.39 0.10 0.19

(1.57) (1.85*) (1.03) (0.33) (0.41)
Ridge 0.42 0.51 0.36 0.15 0.14

(1.92*) (2.29**) (1.26) (0.59) (0.39)
Lasso 0.47 0.57 0.44 0.17 0.20

(1.70*) (1.98*) (1.11) (0.50) (0.40)
ENet 0.48 0.57 0.44 0.17 0.20

(1.70*) (1.98*) (1.11) (0.50) (0.41)
NN1L 0.73 0.85 0.66 0.42 0.45

(3.00***) (3.31***) (1.87*) (1.33) (1.03)
NN2L 0.76 0.88 0.71 0.43 0.51

(2.90***) (3.13***) (1.83*) (1.22) (1.03)
NN3L 0.73 0.85 0.70 0.40 0.49

(2.68**) (2.92***) (1.75*) (1.14) (0.97)
NN4L 0.63 0.73 0.57 0.29 0.36

(2.35**) (2.57**) (1.46) (0.83) (0.74)
NN5L 0.60 0.72 0.57 0.28 0.35

(2.23**) (2.51**) (1.45) (0.80) (0.72)
Ens linear 0.61 0.71 0.61 0.28 0.38

(1.95*) (2.18**) (1.44) (0.77) (0.71)
Ens Net 0.98 1.12 0.91 0.56 0.71

(2.86***) (3.03***) (1.87*) (1.34) (1.18)
Ens total 1.27 1.39 1.24 0.85 1.10

(3.26***) (3.38***) (2.33**) (1.83*) (1.68*)
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Table 16: Risk-Adjusted Spread Portfolio Returns over High and Low Investor
Sentiment Periods (Predictors: MA Signals) (Cont’d)

month, I independently sort stocks into quintiles on predicted returns from each model and
construct spread portfolios by buying the winner quintile and selling the loser quintile. For
a given family of models, ensemble portfolios are constructed by buying the winner quintile
agreed-upon unanimously by all models in the family and selling the unanimous loser quintile.
Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family
includes all 5 neural networks. Total ensemble includes both linear and network families,
totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B: Low Sentiment Period (Predictors: MA signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.01 0.90 0.86 0.96 0.81

(4.14***) (4.19***) (4.10***) (3.67***) (3.79***)
PCR 1.19 1.04 0.98 1.08 0.92

(3.69***) (3.67***) (3.64***) (3.11***) (3.37***)
PLS 1.14 1.02 0.97 1.05 0.89

(3.35***) (3.34***) (3.32***) (2.83***) (2.88***)
Ridge 1.02 0.90 0.86 0.96 0.82

(4.15***) (4.20***) (4.11***) (3.66***) (3.78***)
Lasso 1.33 1.18 1.13 1.24 1.08

(4.11***) (4.15***) (4.10***) (3.62***) (3.77***)
ENet 1.33 1.18 1.13 1.24 1.08

(4.12***) (4.17***) (4.12***) (3.63***) (3.78***)
NN1L 1.45 1.31 1.25 1.38 1.21

(4.39***) (4.57***) (4.61***) (4.18***) (4.22***)
NN2L 1.44 1.33 1.25 1.36 1.20

(3.91***) (3.90***) (4.03***) (3.61***) (3.68***)
NN3L 1.35 1.24 1.16 1.28 1.12

(3.62***) (3.59***) (3.66***) (3.32***) (3.34***)
NN4L 1.23 1.11 1.03 1.13 0.97

(3.32***) (3.24***) (3.31***) (2.99***) (2.97***)
NN5L 1.16 1.05 0.97 1.08 0.94

(3.41***) (3.47***) (3.55***) (3.23***) (3.11***)
Ens linear 1.67 1.53 1.46 1.56 1.38

(4.05***) (4.07***) (4.15***) (3.56***) (3.66***)
Ens Net 2.04 1.90 1.80 1.93 1.76

(4.84***) (4.88***) (4.99***) (4.37***) (4.69***)
Ens total 2.65 2.53 2.40 2.54 2.40

(5.62***) (5.65***) (5.79***) (5.19***) (5.45***)
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Table 17: Risk-Adjusted Spread Portfolio Returns over High and Low Investor
Sentiment Periods (Predictors: 79 firm characteristics)

This table reports risk-adjusted spread portfolio returns for high versus low investment sen-
timent periods where 86 firm fundamental variables are used for predictors. Panel A and B
report high and low investor sentiment respectively. A given month is labeled high sentiment
if the Baker-Wurgler sentiment index in the previous month is above the median value of
the sample period (1978:01 - 2015:09) and is labeled low sentiment otherwise. Newey-West
t-statistics with 12 lags are reported in parentheses. At the beginning of each month, I

Panel A: High Sentiment Period (Predictors: 79 Firm Fundamentals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.36 1.50 1.35 1.10 1.27

(4.43***) (4.38***) (3.23***) (2.95***) (2.62**)
PCR 1.43 1.58 1.41 1.16 1.35

(4.47***) (4.41***) (3.28***) (3.00***) (2.78**)
PLS 1.31 1.46 1.28 1.02 1.24

(4.13***) (4.22***) (3.06***) (2.71**) (2.52**)
Ridge 1.36 1.50 1.35 1.10 1.27

(4.42***) (4.37***) (3.23***) (2.95***) (2.63**)
Lasso 1.45 1.61 1.46 1.20 1.38

(4.52***) (4.47***) (3.34***) (3.08***) (2.76**)
ENet 1.45 1.61 1.46 1.20 1.38

(4.52***) (4.47***) (3.34***) (3.08***) (2.76**)
NN1L 1.43 1.58 1.41 1.13 1.36

(4.37***) (4.32***) (3.12***) (2.83***) (2.63**)
NN2L 1.37 1.52 1.38 1.10 1.33

(4.03***) (3.94***) (2.89***) (2.57**) (2.49**)
NN3L 1.35 1.51 1.38 1.13 1.35

(3.89***) (3.90***) (2.90***) (2.65**) (2.55**)
NN4L 1.34 1.51 1.38 1.14 1.34

(3.83***) (3.86***) (2.90***) (2.66**) (2.58**)
NN5L 1.28 1.43 1.32 1.08 1.28

(3.75***) (3.71***) (2.84***) (2.57**) (2.49**)
Ens linear 1.59 1.75 1.56 1.28 1.52

(4.54***) (4.49***) (3.37***) (3.09***) (2.84***)
Ens Net 1.69 1.87 1.70 1.38 1.74

(4.11***) (4.03***) (3.09***) (2.84***) (2.86***)
Ens total 1.89 2.07 1.88 1.56 1.92

(4.43***) (4.32***) (3.32***) (3.08***) (3.05***)
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Table 17: Risk-Adjusted Spread Portfolio Returns over High and Low Investor
Sentiment Periods (Predictors: 79 firm characteristics) (Cont’d)

independently sort stocks into quintiles on predicted returns from each model and construct
spread portfolios by buying the winner quintile and selling the loser quintile. For a given
family of models, ensemble portfolios are constructed by buying the winner quintile agreed-
upon unanimously by all models in the family and selling the unanimous loser quintile.
Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family
includes all 5 neural networks. Total ensemble includes both linear and network families,
totalling 11 models. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B: Low Sentiment Period (Predictors: 79 Firm Fundamentals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.42 1.40 1.31 1.36 1.33

(3.90***) (3.80***) (4.03***) (3.72***) (3.88***)
PCR 1.46 1.45 1.36 1.40 1.40

(4.09***) (4.13***) (4.36***) (3.95***) (4.15***)
PLS 1.50 1.48 1.38 1.43 1.40

(4.09***) (4.02***) (4.21***) (3.79***) (3.98***)
Ridge 1.41 1.40 1.31 1.36 1.33

(3.86***) (3.80***) (4.02***) (3.71***) (3.87***)
Lasso 1.49 1.49 1.39 1.45 1.41

(3.84***) (3.89***) (4.11***) (3.80***) (3.85***)
ENet 1.49 1.49 1.39 1.45 1.41

(3.84***) (3.89***) (4.11***) (3.80***) (3.85***)
NN1L 1.43 1.44 1.33 1.36 1.35

(3.85***) (3.79***) (3.99***) (3.56***) (3.79***)
NN2L 1.51 1.53 1.42 1.44 1.45

(3.91***) (3.89***) (4.12***) (3.66***) (3.90***)
NN3L 1.49 1.51 1.41 1.43 1.45

(3.96***) (3.92***) (4.17***) (3.74***) (3.90***)
NN4L 1.43 1.41 1.31 1.35 1.37

(3.79***) (3.67***) (3.90***) (3.53***) (3.69***)
NN5L 1.48 1.46 1.37 1.39 1.41

(4.02***) (3.84***) (4.14***) (3.73***) (3.84***)
Ens linear 1.84 1.83 1.73 1.79 1.75

(4.38***) (4.36***) (4.58***) (4.09***) (4.33***)
Ens Net 1.97 2.01 1.90 1.91 1.88

(4.11***) (4.05***) (4.19***) (3.72***) (3.88***)
Ens total 2.16 2.20 2.08 2.10 2.06

(4.42***) (4.40***) (4.57***) (4.04***) (4.23***)
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Table 18: Risk-Adjusted Spread Portfolio Returns over Expansion and Recession
Periods (Predictors: 120 Lagged Return)

This table reports risk-adjusted spread portfolio returns (alpha in %) for expansion and
recession periods where 120 lagged return are used for predictors. A given month is la-
beled expansion or recession based on the business cycle definition on National Bureau of
of Economic Research (NBER) website. Newey-West t-statistics with 12 lags are reported
in parentheses. At the beginning of each month, I independently sort stocks into quintile
portfolios on predicted return from each model and construct spread portfolios by buying

Panel A: Expansion Period (Predictors: 120 Lagged Return)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.65 0.68 0.69 0.62 0.66

(4.46***) (4.72***) (4.68***) (4.32***) (4.23***)
PCR 0.75 0.81 0.83 0.75 0.82

(5.41***) (5.54***) (5.37***) (5.17***) (4.71***)
PLS 0.97 1.03 1.05 0.96 1.04

(6.42***) (6.64***) (6.40***) (6.37***) (5.64***)
Ridge 0.65 0.68 0.69 0.62 0.66

(4.46***) (4.72***) (4.68***) (4.32***) (4.23***)
Lasso 0.69 0.72 0.72 0.65 0.69

(4.68***) (4.95***) (4.95***) (4.47***) (4.47***)
ENet 0.69 0.72 0.72 0.65 0.69

(4.68***) (4.95***) (4.95***) (4.47***) (4.47***)
NN1L 0.76 0.83 0.84 0.79 0.82

(5.15***) (5.79***) (5.52***) (5.28***) (5.08***)
NN2L 0.90 1.00 1.02 0.97 0.97

(5.22***) (5.83***) (5.33***) (5.50***) (4.67***)
NN3L 0.89 0.99 1.03 0.97 1.00

(5.23***) (6.00***) (5.41***) (5.35***) (4.48***)
NN4L 0.80 0.92 0.94 0.86 0.90

(4.30***) (4.93***) (4.30***) (4.33***) (3.49***)
NN5L 0.74 0.84 0.86 0.80 0.82

(4.61***) (5.22***) (4.71***) (4.52***) (3.79***)
Ens linear 1.11 1.17 1.19 1.07 1.16

(5.45***) (5.59***) (5.27***) (5.09***) (4.60***)
Ens Net 1.50 1.70 1.74 1.64 1.75

(5.20***) (6.04***) (5.47***) (5.52***) (4.79***)
Ens total 1.63 1.81 1.83 1.69 1.83

(5.02***) (5.55***) (5.10***) (5.12***) (4.52***)
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Table 18: Risk-Adjusted Spread Portfolio Returns over Expansion and Recession
Periods (Predictors: 120 Lagged Return) (Cont’d)

the best-predicted quintile and selling the worst-predicted quintile. For a given family of
models, ensemble portfolios are constructed by buying the winner quintile agreed-upon unan-
imously by all models in the family and selling the unanimous loser quintile. Linear family
includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes all 5 neu-
ral networks. Total ensemble includes both linear and network families, totalling 11 models.
*,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B: Recession Period (Predictors: 120 lagged returns)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.75 1.82 1.83 1.79 1.36

(2.77**) (2.81***) (2.86***) (3.53***) (2.26**)
PCR 1.24 1.27 1.36 1.35 1.09

(2.31**) (2.42**) (2.73**) (2.94***) (2.36**)
PLS 1.71 1.77 1.82 1.80 1.43

(2.75**) (3.00***) (3.18***) (3.56***) (2.66**)
Ridge 1.75 1.82 1.83 1.79 1.36

(2.77**) (2.81***) (2.86***) (3.53***) (2.26**)
Lasso 1.79 1.86 1.90 1.86 1.38

(2.83***) (2.93***) (3.09***) (3.67***) (2.36**)
ENet 1.79 1.86 1.90 1.86 1.38

(2.83***) (2.93***) (3.09***) (3.67***) (2.36**)
NN1L 2.02 2.06 2.10 2.07 1.66

(2.94***) (2.94***) (3.05***) (3.63***) (2.52**)
NN2L 2.01 2.04 2.13 2.12 1.64

(3.31***) (3.32***) (3.42***) (3.90***) (2.70**)
NN3L 1.84 1.85 1.92 1.92 1.48

(2.82***) (2.75**) (2.69**) (2.85***) (2.03**)
NN4L 1.78 1.78 1.85 1.84 1.54

(2.62**) (2.49**) (2.48**) (2.84***) (2.02**)
NN5L 1.69 1.70 1.79 1.78 1.45

(2.85***) (2.74**) (2.81***) (3.05***) (2.28**)
Ens linear 2.26 2.34 2.35 2.30 1.94

(2.69**) (2.77**) (2.95***) (3.67***) (2.86***)
Ens Net 2.32 2.40 2.42 2.39 1.90

(2.00*) (2.08**) (2.12**) (2.29**) (1.96*)
Ens total 2.59 2.69 2.73 2.67 2.20

(2.18**) (2.28**) (2.33**) (2.65**) (2.21**)
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Table 19: Risk-Adjusted Spread Portfolio Returns over Expansion and Recession
Periods (Predictors: MA Signals)

This table reports risk-adjusted spread portfolio returns (alpha in %) for expansion and
recession periods where 60 price and 60 trading volume moving average signals are used for
predictors. A given month is labeled expansion or recession based on the business cycle
definition on National Bureau of of Economic Research (NBER) website. Newey-West t-
statistics with 12 lags are reported in parentheses. At the beginning of each month, I
independently sort stocks into quintile portfolios on predicted return from each model and

Panel A: Expansion Period (Predictors: MA Signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 0.57 0.66 0.66 0.55 0.55

(3.88***) (4.62***) (4.10***) (3.01***) (2.61**)
PCR 0.66 0.76 0.79 0.62 0.67

(3.36***) (3.87***) (3.58***) (2.60**) (2.47**)
PLS 0.65 0.76 0.80 0.62 0.69

(3.12***) (3.66***) (3.46***) (2.50**) (2.44**)
Ridge 0.58 0.66 0.66 0.55 0.55

(3.88***) (4.64***) (4.10***) (3.03***) (2.62**)
Lasso 0.77 0.87 0.90 0.76 0.78

(3.84***) (4.55***) (4.11***) (3.08***) (2.82***)
ENet 0.77 0.87 0.90 0.76 0.79

(3.85***) (4.57***) (4.13***) (3.09***) (2.84***)
NN1L 0.93 1.06 1.07 0.96 0.96

(4.56***) (5.49***) (4.70***) (3.71***) (3.40***)
NN2L 0.94 1.08 1.11 0.95 0.99

(4.15***) (4.99***) (4.40***) (3.36***) (3.11***)
NN3L 0.88 1.01 1.06 0.90 0.95

(3.73***) (4.45***) (4.05***) (3.11***) (2.89***)
NN4L 0.78 0.90 0.94 0.77 0.82

(3.33***) (3.85***) (3.59***) (2.69**) (2.57**)
NN5L 0.77 0.91 0.95 0.80 0.85

(3.40***) (4.18***) (3.83***) (2.84***) (2.68**)
Ens linear 0.94 1.05 1.12 0.92 1.00

(3.82***) (4.35***) (4.11***) (3.06***) (3.00***)
Ens Net 1.34 1.49 1.55 1.36 1.44

(4.77***) (5.47***) (5.03***) (4.05***) (3.74***)
Ens total 1.72 1.85 1.94 1.74 1.90

(5.32***) (5.93***) (5.52***) (4.66***) (4.43***)
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Table 19: Risk-Adjusted Spread Portfolio Returns over Expansion and Recession
Periods (Predictors: MA Signals) (Cont’d)

construct spread portfolios by buying the best-predicted quintile and selling the worst-
predicted quintile. For a given family of models, ensemble portfolios are constructed by
buying the winner quintile agreed-upon unanimously by all models in the family and selling
the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and
Elastic net. Network family includes all 5 neural networks. Total ensemble includes both
linear and network families, totalling 11 models. *,**,*** represent statistical significance
at 1%, 5%, and 10% levels.

Panel B: Recession Period (Predictors: MA Signals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.51 1.53 1.54 1.53 0.85

(2.27**) (2.09**) (2.24**) (2.72**) (1.25)
PCR 1.57 1.59 1.53 1.51 0.60

(1.72*) (1.57) (1.59) (1.89*) (0.63)
PLS 1.54 1.56 1.49 1.48 0.56

(1.79*) (1.64) (1.63) (1.88*) (0.64)
Ridge 1.50 1.52 1.53 1.51 0.84

(2.24**) (2.06**) (2.21**) (2.69**) (1.22)
Lasso 1.59 1.61 1.59 1.57 0.67

(1.88*) (1.72*) (1.80*) (2.17**) (0.78)
ENet 1.59 1.61 1.58 1.56 0.67

(1.87*) (1.71*) (1.79*) (2.15**) (0.77)
NN1L 1.85 1.86 1.87 1.85 1.00

(2.39**) (2.20**) (2.21**) (2.72**) (1.19)
NN2L 1.96 1.95 1.89 1.88 0.98

(2.38**) (2.24**) (2.19**) (2.67**) (1.19)
NN3L 1.85 1.83 1.81 1.79 0.84

(2.27**) (2.14**) (2.01**) (2.39**) (0.98)
NN4L 1.69 1.68 1.62 1.60 0.69

(2.17**) (2.04**) (1.92*) (2.31**) (0.88)
NN5L 1.43 1.43 1.39 1.37 0.47

(1.96*) (1.80*) (1.74*) (2.13**) (0.62)
Ens linear 2.22 2.24 2.16 2.15 1.09

(2.33**) (2.14**) (2.19**) (2.56**) (1.16)
Ens Net 2.57 2.55 2.46 2.44 1.42

(2.59**) (2.45**) (2.31**) (2.69**) (1.44)
Ens total 3.17 3.19 3.05 3.04 1.84

(3.13***) (3.00***) (2.88***) (3.20***) (1.86*)

86



Table 20: Risk-Adjusted Spread Portfolio Returns over Expansion and Recession
Periods (Predictors: 79 firm characteristics)

This table reports risk-adjusted spread portfolio returns (alpha in %) for expansion and
recession periods where 79 firm characteristics are used for predictors. A given month is
labeled expansion or recession based on the business cycle definition on National Bureau of
of Economic Research (NBER) website. Newey-West t-statistics with 12 lags are reported
in parentheses. At the beginning of each month, I independently sort stocks into quintile
portfolios on predicted return from each model and construct spread portfolios by buying

Panel A: Expansion Period (Predictors: 79 firm fundamentals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 1.16 1.35 1.40 1.24 1.33

(4.22***) (4.81***) (4.32***) (4.19***) (3.60***)
PCR 1.26 1.46 1.50 1.35 1.46

(4.56***) (5.23***) (4.60***) (4.59***) (3.92***)
PLS 1.18 1.37 1.41 1.25 1.37

(4.33***) (4.96***) (4.39***) (4.19***) (3.71***)
Ridge 1.15 1.34 1.39 1.23 1.33

(4.20***) (4.80***) (4.30***) (4.18***) (3.59***)
Lasso 1.23 1.44 1.50 1.34 1.43

(4.23***) (4.91***) (4.38***) (4.29***) (3.71***)
ENet 1.23 1.44 1.50 1.34 1.43

(4.23***) (4.91***) (4.38***) (4.29***) (3.71***)
NN1L 1.22 1.43 1.49 1.29 1.43

(4.23***) (4.90***) (4.40***) (4.29***) (3.67***)
NN2L 1.26 1.46 1.53 1.34 1.47

(4.22***) (4.87***) (4.35***) (4.27***) (3.66***)
NN3L 1.25 1.46 1.53 1.36 1.48

(4.21***) (4.91***) (4.36***) (4.36***) (3.70***)
NN4L 1.20 1.42 1.46 1.33 1.43

(4.12***) (4.88***) (4.25***) (4.21***) (3.62***)
NN5L 1.20 1.39 1.45 1.30 1.41

(4.14***) (4.73***) (4.16***) (4.15***) (3.57***)
Ens linear 1.47 1.68 1.75 1.56 1.70

(4.77***) (5.47***) (4.88***) (4.72***) (4.16***)
Ens Net 1.62 1.86 1.93 1.72 1.92

(4.61***) (5.38***) (4.72***) (4.66***) (4.11***)
Ens total 1.81 2.06 2.14 1.92 2.11

(4.99***) (5.75***) (5.06***) (5.00***) (4.38***)
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Table 20: Risk-Adjusted Spread Portfolio Returns over Expansion and Recession
Periods (Predictors: 79 firm characteristics) (Cont’d)

the best-predicted quintile and selling the worst-predicted quintile. For a given family of
models, ensemble portfolios are constructed by buying the winner quintile agreed-upon unan-
imously by all models in the family and selling the unanimous loser quintile. Linear family
includes OLS, PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes all 5 neu-
ral networks. Total ensemble includes both linear and network families, totalling 11 models.
*,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel B: Recession Period (Predictors: 79 firm fundamentals)

Model Name Mean CAPM FF3 Carhart4 FF5
OLS 2.35 2.23 2.31 2.31 1.59

(2.81**) (2.57**) (2.39**) (2.55**) (1.84*)
PCR 2.16 2.04 2.14 2.15 1.47

(2.71**) (2.45**) (2.31**) (2.39**) (1.70*)
PLS 2.47 2.35 2.41 2.41 1.68

(3.03***) (2.78**) (2.57**) (2.71**) (1.91*)
Ridge 2.36 2.24 2.33 2.32 1.61

(2.84***) (2.60**) (2.42**) (2.58**) (1.87*)
Lasso 2.46 2.33 2.41 2.42 1.68

(2.98***) (2.71**) (2.52**) (2.66**) (1.90*)
ENet 2.46 2.34 2.42 2.42 1.68

(2.98***) (2.71**) (2.52**) (2.66**) (1.91*)
NN1L 2.21 2.07 2.16 2.17 1.47

(2.55**) (2.32**) (2.19**) (2.26**) (1.60)
NN2L 2.11 1.96 2.03 2.05 1.43

(2.41**) (2.22**) (2.05**) (2.07**) (1.52)
NN3L 2.08 1.92 2.01 2.02 1.39

(2.51**) (2.28**) (2.15**) (2.19**) (1.57)
NN4L 2.11 1.97 2.07 2.09 1.45

(2.59**) (2.37**) (2.22**) (2.21**) (1.59)
NN5L 2.08 1.93 2.05 2.07 1.40

(2.86***) (2.64**) (2.45**) (2.43**) (1.71*)
Ens linear 2.72 2.60 2.66 2.65 1.91

(2.79**) (2.56**) (2.35**) (2.50**) (1.89*)
Ens Net 2.79 2.61 2.71 2.73 1.92

(2.66**) (2.48**) (2.32**) (2.35**) (1.84*)
Ens total 3.11 2.95 3.05 3.07 2.22

(2.83***) (2.63**) (2.43**) (2.48**) (2.02**)
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Table 21: Summary Statistics of Combination of Predictors - Conventional Fore-
casts (1978:01 - 2017:12)

This table presents summary statistics of spread portfolio return where the three sets of predictors
are combined in different ways. Summary statistics include average return (in % per month),
t-statistics, volatility (standard deviation), monthly Sharpe ratio, skewness, kurtosis, proportion
of positive returns, minimum monthly return, and maximum drawdown. In Panel A, predictors
include 120 monthly lagged stock returns plus 120 moving average trading signals; in Panel B
predictors include 120 monthly lagged stock returns plus 79 firm fundamentals; in Panel C predictors
include 120 moving average trading signals plus 86 firm fundamentals; in panel D predictors include
120 monthly lagged stock returns, 120 moving average trading signals, and 86 firm fundamentals.

Panel A: Lagged Return and Moving Average Trading Signals

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.54 4.13*** 2.53 0.21 -0.40 5.76 0.63 -0.14 -0.38
PCR 0.88 5.31*** 4.04 0.22 0.90 16.04 0.60 -0.22 -0.43
PLS 0.98 5.07*** 4.23 0.23 1.21 16.56 0.62 -0.22 -0.41
Ridge 0.61 4.77*** 2.43 0.25 0.02 4.79 0.64 -0.12 -0.37
Lasso 0.84 5.40*** 3.16 0.27 0.59 15.78 0.64 -0.19 -0.40
ENet 0.84 5.40*** 3.16 0.27 0.58 15.80 0.64 -0.19 -0.40
NN1L 0.90 5.70*** 3.27 0.27 0.86 17.58 0.67 -0.19 -0.39
NN2L 1.11 5.56*** 4.56 0.24 1.02 12.12 0.64 -0.23 -0.42
NN3L 1.03 4.87*** 5.03 0.20 1.27 13.23 0.60 -0.26 -0.45
NN4L 1.07 4.97*** 5.16 0.21 1.51 13.62 0.62 -0.24 -0.43
NN5L 0.96 4.64*** 4.94 0.19 1.08 10.95 0.60 -0.24 -0.43
Ens Linear 1.36 5.02*** 5.65 0.24 2.06 21.46 0.64 -0.27 -0.53
Ens Net 1.66 5.93*** 6.61 0.25 1.27 12.62 0.64 -0.30 -0.50
Ens Total 1.78 4.83*** 7.99 0.22 1.17 11.91 0.60 -0.36 -0.57

Panel B: Lagged Return and Firm Characteristics

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.94 5.33*** 3.87 0.24 0.39 8.93 0.65 -0.20 -0.40
PCR 1.26 5.89*** 4.99 0.25 1.65 16.54 0.65 -0.23 -0.38
PLS 1.30 5.85*** 5.37 0.24 1.69 15.29 0.65 -0.22 -0.39
Ridge 0.94 5.35*** 3.87 0.24 0.39 8.89 0.65 -0.20 -0.40
Lasso 1.09 5.78*** 4.20 0.26 0.56 10.49 0.66 -0.23 -0.41
ENet 1.09 5.78*** 4.20 0.26 0.56 10.49 0.66 -0.23 -0.41
NN1L 1.04 5.92*** 3.85 0.27 0.26 11.10 0.68 -0.21 -0.41
NN2L 1.23 5.57*** 5.10 0.24 0.82 10.67 0.64 -0.26 -0.45
NN3L 1.24 5.19*** 5.57 0.22 0.97 11.08 0.64 -0.28 -0.51
NN4L 1.14 4.72*** 5.69 0.20 1.13 12.80 0.63 -0.29 -0.50
NN5L 1.06 4.71*** 5.48 0.19 1.11 13.54 0.61 -0.29 -0.52
Ens Linear 1.72 6.00*** 6.56 0.26 1.93 18.24 0.66 -0.28 -0.46
Ens Net 1.95 5.81*** 7.62 0.26 0.86 9.92 0.65 -0.35 -0.59
Ens Total 2.03 5.68*** 8.18 0.25 1.03 10.28 0.64 -0.37 -0.61
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Table 21: Summary Statistics of Combination of Predictors - Conventional Fore-
casts (1988:01 - 2017:12) - Cont’d

At the beginning of each month, I independently sort stocks into quintile portfolios on predicted
return from each model and dataset and construct spread portfolios by buying the best-predicted
quintile and selling the worst-predicted quintile. For a given family of models, ensemble portfolios
are constructed by buying the unanimous winner quintile by all models in the family and selling
the unanimous loser quintile. Linear family includes OLS, PCR, PLS, Ridge, Lasso, and Elastic
net. Network family includes 5 neural networks. Total ensemble includes both linear and network
families, totalling 11 models. NYSE 10% market value breakpoint is applied and stocks are equal-
weighted within quintile. *,**,*** represent statistical significance at 1%, 5%, and 10% levels.

Panel C: Moving Average Trading Signals and Firm Characteristics

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 1.27 5.84*** 5.21 0.24 0.80 11.59 0.64 -0.24 -0.38
PCR 1.36 5.01*** 6.42 0.21 0.74 9.39 0.62 -0.30 -0.50
PLS 1.43 5.13*** 6.51 0.22 0.87 9.62 0.62 -0.30 -0.45
Ridge 1.28 5.84*** 5.22 0.24 0.80 11.52 0.64 -0.24 -0.38
Lasso 1.49 5.58*** 6.35 0.24 0.69 9.79 0.65 -0.30 -0.49
ENet 1.50 5.58*** 6.35 0.24 0.69 9.79 0.65 -0.30 -0.49
NN1L 1.40 5.11*** 6.37 0.22 0.89 11.85 0.64 -0.31 -0.47
NN2L 1.36 4.71*** 6.75 0.20 0.81 10.90 0.63 -0.32 -0.55
NN3L 1.42 4.72*** 6.96 0.20 0.86 11.65 0.61 -0.36 -0.57
NN4L 1.34 4.46*** 6.93 0.19 1.00 12.13 0.61 -0.36 -0.58
NN5L 1.28 4.41*** 6.80 0.19 0.80 10.41 0.61 -0.35 -0.56
Ens Linear 1.87 5.56*** 7.68 0.24 0.89 9.03 0.64 -0.32 -0.53
Ens Net 1.82 5.05*** 8.24 0.22 0.75 9.79 0.62 -0.42 -0.65
Ens Total 2.19 5.44*** 8.96 0.24 0.79 8.58 0.63 -0.39 -0.64

Panel D: Lagged Return, MA Trading Signals, and Firm Characteristics

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.72 5.43*** 3.27 0.22 -0.10 11.34 0.63 -0.22 -0.39
PCR 1.25 5.77*** 4.99 0.25 0.92 10.90 0.64 -0.23 -0.41
PLS 1.23 5.17*** 5.31 0.23 1.12 11.28 0.62 -0.25 -0.41
Ridge 0.80 5.51*** 3.29 0.24 0.20 11.86 0.66 -0.21 -0.39
Lasso 1.09 5.67*** 4.20 0.26 0.43 9.86 0.66 -0.23 -0.41
ENet 1.09 5.67*** 4.20 0.26 0.43 9.86 0.66 -0.23 -0.41
NN1L 1.04 5.58*** 4.05 0.26 0.38 9.97 0.66 -0.23 -0.39
NN2L 1.25 5.43*** 5.21 0.24 0.86 10.93 0.65 -0.27 -0.45
NN3L 1.22 5.01*** 5.74 0.21 1.27 13.12 0.62 -0.28 -0.46
NN4L 1.12 4.61*** 5.80 0.19 1.44 14.09 0.60 -0.28 -0.49
NN5L 1.12 4.61*** 5.71 0.20 1.18 12.76 0.63 -0.28 -0.50
Ens Linear 1.73 5.15*** 6.98 0.25 2.03 19.08 0.62 -0.31 -0.51
Ens Net 1.92 5.58*** 7.40 0.26 1.10 11.32 0.63 -0.36 -0.58
Ens Total 2.20 5.19*** 8.58 0.26 1.35 13.79 0.63 -0.40 -0.65
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Table 22: Summary Statistics of Spread Portfolio - P-Lasso Forecasts (1988:01 -
2017:12)

This table presents portfolio performance statistics for P-Lasso allocation whose weights are linear
combination of spread portfolio weights computed from models using 120 month lagged return,
120 moving average signals, and 79 fundamentals as predictors independently. I use the global
minimum variance portfolio weights computed from data through month t-1 to determine the
linear combination for month t. For each month, companies that appear in at least one of the
three samples are considered. Weights for companies that does not appear in all three samples for
a given month are filled with zeros. Summary statistics include average return (in % per month),
t-statistics, volatility (standard deviation), monthly Sharpe ratio, skewness, kurtosis, proportion
of positive returns, minimum monthly return, and maximum drawdown. In Panel A, predictors
include 120 monthly lagged stock returns plus 120 moving average trading signals; in Panel B
predictors include 120 monthly lagged stock returns plus 79 firm fundamentals; in Panel C

Panel A: Lagged Return and Moving Average Trading Signals

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.74 5.01*** 3.00 0.25 0.67 19.31 0.65 -0.20 -0.37
PCR 0.78 5.87*** 3.10 0.25 0.65 14.82 0.63 -0.19 -0.31
PLS 1.00 6.69*** 3.36 0.30 1.11 15.77 0.66 -0.20 -0.32
Ridge 0.74 5.01*** 3.00 0.25 0.66 19.31 0.65 -0.20 -0.37
Lasso 0.81 5.23*** 3.02 0.27 0.55 15.40 0.65 -0.19 -0.37
ENet 0.81 5.23*** 3.02 0.27 0.55 15.40 0.65 -0.19 -0.37
NN1L 0.89 5.52*** 3.21 0.28 0.36 9.77 0.65 -0.18 -0.41
NN2L 1.01 5.87*** 3.83 0.27 0.86 13.23 0.65 -0.21 -0.39
NN3L 0.99 5.82*** 4.05 0.24 0.92 16.83 0.66 -0.24 -0.44
NN4L 0.87 4.63*** 4.33 0.20 1.10 19.93 0.63 -0.28 -0.46
NN5L 0.85 5.21*** 4.04 0.21 1.28 21.34 0.62 -0.26 -0.45
Ens Linear 1.17 5.65*** 4.39 0.27 1.36 19.72 0.66 -0.24 -0.42
Ens Net 1.50 5.55*** 6.35 0.24 1.02 14.12 0.65 -0.35 -0.50
Ens Total 1.73 5.79*** 6.92 0.25 1.36 15.88 0.62 -0.35 -0.49

Panel B: Lagged Return and Firm Characteristics

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.82 5.20*** 3.01 0.27 0.82 17.56 0.65 -0.19 -0.36
PCR 0.77 5.54*** 3.06 0.25 0.91 12.42 0.62 -0.18 -0.30
PLS 1.02 6.54*** 3.29 0.31 1.30 14.23 0.66 -0.19 -0.32
Ridge 0.82 5.20*** 3.01 0.27 0.82 17.56 0.65 -0.19 -0.36
Lasso 0.84 5.28*** 3.07 0.27 0.67 16.48 0.64 -0.19 -0.38
ENet 0.84 5.28*** 3.07 0.27 0.67 16.48 0.64 -0.19 -0.38
NN1L 0.90 5.26*** 3.26 0.27 0.50 10.92 0.64 -0.18 -0.42
NN2L 0.96 5.38*** 3.77 0.26 0.91 10.85 0.62 -0.20 -0.39
NN3L 0.87 4.90*** 3.82 0.23 0.64 11.31 0.62 -0.21 -0.47
NN4L 0.76 3.81*** 4.03 0.19 1.23 17.69 0.56 -0.26 -0.46
NN5L 0.73 4.63*** 3.78 0.19 1.27 19.53 0.60 -0.23 -0.43
Ens Linear 1.28 5.85*** 4.37 0.29 1.61 20.51 0.66 -0.24 -0.41
Ens Net 1.64 5.52*** 6.44 0.25 1.23 13.72 0.63 -0.34 -0.52
Ens Total 1.85 5.78*** 7.01 0.26 1.44 14.46 0.63 -0.35 -0.53
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Table 22: Summary Statistics of Spread Portfolio - P-Lasso Forecasts (1979:01 -
2017:12) - Cont’d

predictors include 120 moving average trading signals plus 86 firm fundamentals; in panel D pre-
dictors include 120 monthly lagged stock returns, 120 moving average trading signals, and 86 firm
fundamentals. At the beginning of each month, I calculate the variance and covariance from previ-
ous spread portfolio returns and use them to calculate global minimum variance portfolio weights.
For ensemble portfolios, I first construct the unanimously agreed top and bottom quintile for each
set of predictors independently. Then I calculate the average weights of the two quintiles across
three sets of predictors in the same manner as for individual models. Linear family includes OLS,
PCR, PLS, Ridge, Lasso, and Elastic net. Network family includes 5 neural networks. Total en-
semble includes both linear and network families, totalling 11 models. NYSE 10% market value
breakpoint is applied and stocks are equal-weighted within quintile. *,**,*** represent statistical
significance at 1%, 5%, and 10% levels.

Panel C: Moving Average Trading Signals and Firm Characteristics

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.65 3.77*** 4.18 0.15 0.02 14.96 0.60 -0.26 -0.46
PCR 0.88 4.10*** 5.46 0.16 0.42 13.04 0.62 -0.32 -0.51
PLS 0.84 3.71*** 5.53 0.15 0.54 11.71 0.58 -0.30 -0.51
Ridge 0.64 3.76*** 4.18 0.15 0.01 14.93 0.61 -0.26 -0.46
Lasso 0.95 4.34*** 5.55 0.17 0.01 13.02 0.62 -0.33 -0.58
ENet 0.96 4.36*** 5.54 0.17 0.03 12.97 0.62 -0.33 -0.57
NN1L 1.04 4.62*** 5.61 0.19 0.14 13.87 0.63 -0.34 -0.54
NN2L 1.05 4.37*** 6.07 0.17 0.07 14.34 0.61 -0.41 -0.59
NN3L 1.00 4.04*** 6.11 0.16 0.41 14.70 0.60 -0.40 -0.59
NN4L 0.90 3.69*** 5.96 0.15 0.58 14.18 0.59 -0.37 -0.56
NN5L 0.88 3.78*** 5.94 0.15 0.32 15.05 0.59 -0.39 -0.59
Ens Linear 1.20 4.60*** 6.34 0.19 0.48 11.21 0.62 -0.36 -0.57
Ens Net 1.50 5.14*** 7.25 0.21 0.61 11.49 0.61 -0.41 -0.60
Ens Total 1.91 6.06*** 7.87 0.24 0.70 10.47 0.65 -0.42 -0.59

Panel D: Lagged Return, MA Trading Signals, and Firm Characteristics

Model Name Mean t-stat Vol Sharpe Skew Kurt Pr(R>0) Min MDD
OLS 0.71 4.68*** 3.00 0.24 0.73 20.67 0.65 -0.20 -0.38
PCR 0.72 5.23*** 3.09 0.23 0.63 11.97 0.61 -0.19 -0.32
PLS 0.93 6.10*** 3.35 0.28 1.15 13.98 0.65 -0.20 -0.34
Ridge 0.71 4.68*** 3.00 0.24 0.72 20.65 0.65 -0.20 -0.38
Lasso 0.82 5.23*** 3.04 0.27 0.52 15.30 0.65 -0.20 -0.38
ENet 0.82 5.23*** 3.04 0.27 0.52 15.29 0.65 -0.20 -0.38
NN1L 0.86 5.10*** 3.26 0.26 0.29 11.19 0.65 -0.18 -0.43
NN2L 0.95 5.27*** 3.81 0.25 0.77 11.87 0.63 -0.22 -0.40
NN3L 0.86 4.83*** 3.84 0.22 0.54 11.89 0.61 -0.22 -0.47
NN4L 0.72 3.61*** 4.07 0.18 1.12 17.91 0.56 -0.27 -0.45
NN5L 0.69 4.29*** 3.84 0.18 0.88 18.24 0.59 -0.26 -0.45
Ens Linear 1.18 5.55*** 4.43 0.27 1.44 20.42 0.66 -0.25 -0.43
Ens Net 1.51 5.45*** 6.39 0.24 1.09 14.64 0.63 -0.36 -0.50
Ens Total 1.78 5.85*** 6.97 0.26 1.39 15.92 0.62 -0.35 -0.49
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Appendices

Algorithm 1 NIPALS for Principal Component Analysis

Require: De-meaned data matrix X, convergence threshold δ

1: Select the ith column vector of X, u = xi

2: while d > δ do

3: Project the matrix X onto u and calculate loading v =
XTu

uTu
4: Normalize the loading vector v to norm one, p = v/|v|
5: Copy vector uold = u

6: Project matrix X onto p to find corresponding new score vector u =
Xp

pTp
7: Measure the convergence d = uold − u
8: end while

9: Orthogonalize X with respect to the component X = X − upT

Algorithm 2 Stochastic Gradient Descent (SGD) with momentum

Require: Learning rate ε, momentum parameter α

Require: Initial parameter θ, initial velocity v

1: while stopping criterion not met do

2: Sample a mini-batch of m examples from the training set {x(1), ...,x(m)}
3: with corresponding targets y(i)

4: Compute gradient estimate: g← 1

m
5θ

∑
i L(f(x(i); θ), y(i)).

5: Compute velocity update: v ← αv − εg
6: Apply update: θ ← θ + v

7: End while

8: end while
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Algorithm 3 Backward computation for the deep neural network of the forward algorithm,

which uses, in addition to the input x, a target y. This computation yields the gradient on

the activation a(k) for each layer k, starting from the output layer and going backwards to

the first hidden layer. From these gradients, which can be interpreted as an indication of

how each layer’s output should change to reduce error, one can obtain the gradient on the

parameters of each layer. The gradients on weights and biases can be immediately used as

part of a stochastic gradient update (performing the update right after the gradients have

been computed) or used with other gradient-based optimization methods

1: After the forward computation, compute the gradient on the output layer:

2: g←5ŷJ = 5ŷL(ŷ,y)

3: for k = l, l − 1..., 1 do

4: Convert the gradient on the layer’s output into a gradient into the pre-nonlinearity

activation (element-wise multiplication if f is element-wise):

5: g←5α(k)J = g � f ′(α(k))

6: Compute gradients on weights and biases (including the regularization terms, where

needed):

7: 5b(k)J = g + λ5b(k) Ω(θ)

8: 5W(k)J = gh(k−1)T +λ5W(k) Ω(θ) Propagate the gradients w.r.t. the next lower-level

hidden layer’s activations:

9: g←5h(k−1)J = WkTg

10: end for
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Algorithm 4 The Adam algorithm

Require: Step size ε (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0,1). (Suggested

defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization (Suggested default:10−8)

Require: Initial parameters θ

1: Initialize 1st and 2nd moment variables s = 0, r = 0

2: Initialize time step t=0

3: while stopping criterion not met do

4: Sample a mini-batch of m examples from the training set {x(1), ...,x(m)}
5: with corresponding targets y(i)

6: Compute gradient estimate: g← 1

m
∇θ

∑
i L(f(x(i); θ), y(i)).

7: t← t+ 1

8: Update biased first moment estimate: s← ρ1s+ (1− ρ1)g
9: Update biased second moment estimate: r ← ρ2r + (1− ρ2)g � g

10: Correct bias in first moment: ŝ← s

1− ρt1
11: Correct bias in second moment: r̂ ← r

1− ρt2
12: Compute update: δθ = −ε ŝ√

r̂ + δ
(operations applied element-wise)

13: Apply update: θ ← θ + δθ

14: End while

15: end while
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Algorithm 5 Forward propagation through a typical deep neural network and the compu-

tation of the cost function. The loss L(ŷ, y) depends on the output ŷ. To obtain the total

cost J , the loss may be added to a regularizer Ω(θ), where θ contains all the parameters. For

simplicity, this algorithm uses only a single input example x. Practical applications should

use a minibatch, i.e., of 32 examples as in our study.

Require: Network depth l

Require: W(i), i ∈ {1, ..., l}, the weight matrices of the model

Require: b(i), i ∈ {1, ..., l}, the bias parameters of the model

Require: x, the input to process

Require: y, the target output

1: h(0) = x

2: for k = 1, ..., l do

3: a(k) = b(k) + W(k)h(k−1)

4: h(k) = f(a(k))

5: end for

6: ŷ = h(l)

7: J = L(ŷ, y) + λΩ(θ)

Algorithm 6 The early stopping meta-algorithm for determining the best amount of time

to train. This meta-algorithm is a general strategy that works well with a variety of training

algorithms and ways of quantifying error on the validation set.

Require: Let n be the number of steps between evaluations

Require: Let p be the ”patience,” the number of times to observe worsening validation set

error before giving up

Require: Let θ0 be the initial parameters

1: θ ← θ0; i← 0; j ← 0; v ←∞; θ∗ ← θ; i∗ ← i

2: while j ¡ p do

3: Update θ by running the training algorithm for n steps.

4: i← i+ n

5: v′ ← V alidationSetError(θ)

6: if v′ < v then

7: j ← 0; θ∗ ← θ; i∗ ← i; v ← v′

8: elsej ← j + 1

9:

10: Best parameters are θ∗, best number of training steps is i∗
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