Washington University in St. Louis

Washington University Open Scholarship

Topics in Quantum Mechanics Chemistry

Spring 1-21-2013

Electron in a One-Dimensional Well

Ronald Lovett
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/chem papers
& Part of the Chemistry Commons

Recommended Citation

Lovett, Ronald, "Electron in a One-Dimensional Well" (2013). Topics in Quantum Mechanics. 6.
https://openscholarship.wustl.edu/chem_papers/6

This Classroom Handout is brought to you for free and open access by the Chemistry at Washington University Open Scholarship. It has been accepted
for inclusion in Topics in Quantum Mechanics by an authorized administrator of Washington University Open Scholarship. For more information,

please contact digital@wumail.wustl.edu.


https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fchem_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/chem_papers?utm_source=openscholarship.wustl.edu%2Fchem_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/chem?utm_source=openscholarship.wustl.edu%2Fchem_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/chem_papers?utm_source=openscholarship.wustl.edu%2Fchem_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=openscholarship.wustl.edu%2Fchem_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/chem_papers/6?utm_source=openscholarship.wustl.edu%2Fchem_papers%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

An Electron in a One-Dimensional Well
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Energy Quantization

1. In order to explain the spectrum of blackbody radiation M. Planck (1901) added to
classical physics the rules

the energy of an electromagnetic (EM) field cannot be just any value; it must be an
integral multiple of a fundamental unit.

— the fundamental unit is o< the frequency

AFE = hv.

Hence we speak of the photon = 1 quantum of EM energy. Einstein (1904) showed that
this energy quantization, which Planck had only used in calculating an ensemble average,
could be used at an elementary particle level to explain the photoelectric effect.

A. H. Compton (1923) showed that in x-ray - electron scattering experiments the pho-
ton carried a momentum

hv
c

>

Pphoton =

2. To explain the spectrum of the hydrogen atom, N. Bohr (1913) gave a quantization rule
for electronic motion which identified energy levels in that system.

3. Hence this picture: The allowed energies of the EM field and matter can be shown in a
level diagram and spectroscopy becomes the study of transitions betwen allowed energies.
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: Ener
Note these general features: \ ay
— Every system has a ground state. A
vacuum is the ground state of the EM -
field.
- For matter
— level spacing generally gets -
smaller as energy rises, - u
— there is a continuum limit: above —_—
a threshold energy an electron be-
comes free. I 3T st éf
! ; .""'.'."'1... g g"
- Spectroscopy ~ energy exchange: r Y g' "é ;
EM field + matter. _—

EM Field Matter
Wave Mechanics

The classical EM theory of Maxwell treated light like a wave. Planck and Einstein
added a particle character. L. deBroglie (1923) reversed the argument:

h h
Pphoton =3 — A= = ~ the deBroglie wavelength

associated with a particle of momentum p. Davisson and Germer (1927) and G. P. Thom-
son (1928} showed that a beam of electrons scattered by a thin gold foil showed the sort of
interference rings expected for waves of wavelength A.

P. Debye, on hearing a student seminar on deBroglie’s wave hypothesis, asked “if there
are waves, what is the ‘wave equation’?” E. Schrédinger (1926), in the audience, went off
and constructed one: If

U(z, t) = Ae?mi(F-vt)

then

hZ 82

2
5z V(@) = —2p?—n\ll(a:,t) = [ - V(@)|¥(z, )

follows from deBroglie's hypothesis (h = h/27) and

ih%\ll(a:, t) = hv¥(z,t) = E¥(z,1) (1)
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follows from Einstein’s hypothesis. Eliminating £ gives

#0U@ ) _ 12 0% (z, ¢)

/ 5t - om0z + V(z)¥(z,t).
Note that

— this is a dynamical equation. It tells how ¥ evolves in time.

— it is not obvious what ¥ represents. The simplest rule is

b
fa |¥(z, t)|? dz = Probfa < z < b] at time t. ‘ \

— the “derivation” is heuristic. A fundamental law can’t be “derived.”

What are the allowed energies?

A function of the form
¥(zx,t) = e_iEt/h¢(z)

will be a solution to (1) with £ = E if

ﬁ2
—5t(2) + V(@) = B(a). 2
If we add the boundary conditions
vl =0 3)
we find that there are solutions to (2) and (3) only for some E values, Eg, Ey,.... That

is, F is quantized!
{ Ey ~ energy eigenvalues

¥n(z) ~ energy eigenstates

V(z) characterizes the system. Different V' (z)’s give different sets of eigenval-

ues/eigenstates.
Vix)

The bound states in a finite well A

Consider this potential in one-dimension:

—vV

characterized by two parameters, V, L.

¥
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This is qualitatively like an electron in an atom!

An electron with energy £ > V is unbound. Consider 0 < F < V.

2m(FE -V (z
w'(a) + 2ES TNy gy 2 g
with
<0, <0,
2’F'FL(E“V(‘T))—{>0 0<z<L
2 e L - _— 1
. <0, z>L.
If we set
2mE 2m(V — F)
2 _ . 2 _
k —-—EE—>O, £ ——T>0.
then

¥(z) - Lh@) =0, =<0,

W(@) + K@) =0  0<z<L

P'z) - CPz)=0; z> L.
The general solution to ¥"(z) — £24(z) = 0 is

¥(z) = Ae’® + De™

with A, D arbitrary. The boundary conditions for z < 0 (z > L) require D = 0 (A = 0).
Inside the well the general solution is

¥(z) = 1% + coe " = Bsinkz + C coskz

Thus
Aete, z <0,
¥(z) ={ Bsinkz +Ccoskr; 0<z <L,
De~tz, z> L.

There remain 5 unknowns: The coefficients A, B, C, D and the energy F.
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Although the solution ¥(xz) is prescribed in pieces, the pieces must be connected. ¥(x)
is continuous =

A=C,
BsinkL + CcoskL = De—a’,

and v'(z) is continuous =>

lA=kB,
kBcoskL — kCsinkL = —¢De L,

In matrix form,

1 0 -1 0 A
0 sinkL coskl —e!L||B -0
¢ —k 0 0 c|=
0 kcoskl —ksinkL ¢e~tL | |D

While A = B=C = D =0 (i.e., ¥(z) = 0) is always a solution, a non-trivial solution will
only be present if

1 0 —1 0,
_ 0 sinkL coskl, —e
O=det|, ~_g 0 0
0 kcoskL —ksinkL ¢Ce~tL

= e L2kl cos kL + (£2 — k%) sin kL)

Since k and ¢ vary with E, only certain E values will make this zero. These are the al-
lowed (bound state) energies.

If F is an allowed value, the set of four matching relations for A, B, C, D is reduced to
three linearly independent equations. We can determine A/D, B/D, C/D, but no more.

A complete solution comes from adding a 5th requirement:
o 2
¥(z) is normalized <= / h(z)|*dz = 1.
—00
Explicitly,

. J5
1= f A6 gz + f [Bsin kz + C cos kz)? dz + foo D2e—22 g,
e : A

_ A% D%e2L N (B2 + C?)kL + 2BCsin® kL
- 20 2k
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For each allowed FE this gives a different relation and hence different values for A, B, C, D.
The energy levels with 0 < E' < V are fixed by

2kl cos kL = (k% — £2)sinkL,
hk = 2mkE,

he = \[2m(V — E).

There is no ezplicit formula for the E values which satisfy these equations. We will thus
determine the solutions numerically. Numerical work requires some choice of units. In the
following analysis (this is in the Mathematica file, “Electron in Well.nb”) the bound states
are determined for a well of width 8 and depth 1 in atomic units.

The Mathematica File

The wave function f(z) assumes three different forms in the three domains:

fliz], forz <0
flz) =< f2[z], for0<z<L
f3[z], for<z

Infl]:=
fix_]:=A E"(1x)
f2[x.]:=B Sin[k x] + C Cos|k x]
f3[x_]:=D E" (-1 x)

The boundary conditions require that the following four expressions be zero:

Inf4]:=
ex[1]=f1[0]-f2[0]
ex[2]=f1'[0]-f2'[0]
ex[3]=f2[L]-f3[L]
ex[4]=Ff2[L]-f3'[L]

Outf4]:=
A-C

Outf5]:=
—(Bxk)+ Axl

Outf6]:=
~(D/E™LY + C % Coslk x L] + B * Sin[k * L]

6
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Outf7]:=
(D% 1)/E*L 4 B« k+ Cos[k « L] — C * k * Sin[k L}
A non-null solution for A, B, C, D requires that these equations be linearly dependent.
This occurs when the determinant of
Inf8]:=
m=Table[{D [ex[i] aA] yD [ex[i]’B] D [ex[i] aC] D [ex[i] $D]}s{i1134}];

is zero.

Inf9):=
MatrixForm[m]
Outf9]:=
1 0 -1 0
! —k 0 0
Mm=10  Sinfk« L] Coslk * L] —E~L
0 kxCoslkxL] —(k*Sin[k*L)) E*L
Inf10]:=
Det[m]
Outf10}:=
—2%k+lxCoslk* L] k%+Sin[k+L] 2 Sinfkx L]
El*L + ElxL - Ei+L
Inf11]:=
secularEqn=Simplify[%*E'L]
Outf11]:=

2%k x L% Cos[k * L] + k% x Sinlk x L] — 12 » Sin[k * L]
As a numerical example, let us take

Inf12]:=
numbs={L —> 8,k —> Sqrt[2 e],] = Sqrt[2-2¢]}

Qutf12]:=
L—=> 8,k—=> V2xe,l > /(2—2x¢)

Inf13]:=
secularEqn/.numbs
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Outf18]:=
—2%v2%,/(2 — 2 €) /e Cos[8% /2 x €] — (2—2+€) * Sin[8+ V2 ¥ ] + 2+ e+ Sin[8* /2 x ]

The energy eigenvalues are the values of e which make this expression zero. We can find
these by seting a function equal to this expression and then looking for the zeros of the
function. From a plot we can get a first order idea of where the zeros are. We can then get
an accurate identification by using a ‘root finding’ algorithm.

Inf14]:=
gle]:=-2%2"(1/2)*(2 - 2%e)"(1/2)*e~(1/2)*Cos[8*2" (1/2)*e"(1/2)]-
(2 - 2%e)*Sin[8*2" (1/2)*e"(1/2)] + 2*e*Sin[8*2"(1/2)*e" (1/2)]

Inf15/:=
PlOt[g[e]a{esOal}]

2.
1t /\ /\
0. 0.4 0.6 0. 1

=2

Outf15]:=
- Graphics -

Inf16]:=
el=e/.FindRoot[g[e],{e,.1}]

Outf16):=
0.0555218

Inf17]:=
e2=e/.FindRoot[g[e],{e,.2}]

Outf17]:=
0.220012

Inf18]:=
e3=e/.FindRoot[g[e],{e,.5}]
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Outf18]:=
0.485484

Inf19]:=
ed=e/.FindRoot[g[e],{e,.8}]

Outf19]:=
0.826332

There are just four bound states. We can make an energy level diagram by combining
plots that draw lines at the appropriate energies. The Plot[ ] option,

‘DisplayFunction — Identity’, stops the actual display of the plot. Resetting
‘DisplayFunction — $DisplayFunction’ to its default assignment is required to turn dis-
playing back on.

Inf20]:=
Show[Plot[0,{x,0,2},DisplayFunction —> Identity],
Plot[el,{x,0.5,1.5},DisplayFunction —> Identity],
Plot[e2,{x,0.5,1.5},DisplayFunction —> Identity],
Plot[e3,{x,0.5,1.5},DisplayFunction — Identity],
Plot[e4,{x,0.5,1.5},DisplayFunction — Identity],
AspectRatio —> 2,AxesOrigin —> {0,0},
Ticks = {None,Automatic},DisplayFunction —> $DisplayFunction];

Do ChAe
0. (k. Gt 5
0.4
Outf20}:=
- Graphics -
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We can find numerical values for the expansion coefficients by setting D=1 and then solv-
ing the first three equations in the original set for A, B, and C.

Inf21]:=
v=m.{A,B,C,1}/.numbs

Outf21]:=
{A-C, A¥(2-2%)"(1/2) - 2°(1/2)*B*e"(1/2),
-E"(-8*(2 - 2%€)"(1/2)) + C*Cos[8*2~(1/2)*e"(1/2)] + B*Sin[8*2"(1/2)*e"(1/2)),
(2-2%)"(1/2)/E"(8*(2- 2%¢)"(1/2)) + 2" (1/2)*B*e"(1/2)*Cos[8*2" (1/2)*e"(1/2)] -
2°(1/2)*C*e"(1/2)*Sin[8*%2"(1/2)*e"(1/2)] }

In the following step we take the equations which fix A, B and C for the first eigenvalue,
solve for A, B and C, generate functions that represent the solutions in the three regions,
and (finally) plot the functions out.

Inf22}.=
t=el;
b=3;
vx=N[v/.e = t];
soln=Solve [{vx[[1]]==0,vx[[2]]==0,vx[[3]]==0}{A,B,CH[[1]};
left=f1[x]/.numbs/.e —> t/.soln;
center=f2[x]/.numbs/.e —> t/.soln;
right=f3[x]/.numbs/.e = t/.D —> 1;
Show[Plot[left,{x,-b,0},DisplayFunction —> Identity],
Plot[center,{x,0,L/.numbs},DisplayFunction —> Identity],
Plot[right,{x,L/.numbs,L+b/.numbs},DisplayFunction —> Identity],
DisplayFunction —> $DisplayFunction)]

0.00007
0.00006¢
0.00005¢}
0.00004}
0.00003}
0.00002

0.000

Outf22]:=
- Graphics -

10
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Inf28]:=
t=e2;
b=3;
vx=N[v/.e = t];
soln=Solve[{vx{[1]]==0,vx[[2]]==0,vx[[3]]==0},{A,B,C}][[1]};
left=f1[x]/.numbs/.e => t/.soln;
center=f2[x]/.numbs/.e —> t/.soln;
right=f3[x]/.numbs/.e > t/.D = 1;
Show[Plot[left,{x,-b,0},DisplayFunction —> Identity],
Plot[center,{x,0,L/.numbs},DisplayFunction —> Identity],
Plot[right,{x,L/.numbs,L+b/.numbs},DisplayFunction = Identity],
DisplayFunction —> $DisplayFunction]

0.0001¢
0.00005¢
= 2 6 g 10
-0.00005
-0.0001¢+
Outf23]:=
— Graphics -
Inf24]:=
t=e3;
b=3;

vx=N[v/.e = t];

soln=Solve[{vx[[1]] ==0,vx|[[2]]==0,vx[[3]|]==0},{A,B,C}][[1]];
left=f1[x]/.numbs/.e => t/.soln;

center=f2[x]/.numbs/.e = t/.soln;

right=f3[x]/.numbs/.e > t/.D = 1;
Show|Plot[left,{x,-b,0},DisplayFunction —> Identity],
Plot[center,{x,0,L/.numbs},DisplayFunction —> Identity],
Plot[right,{x,L/.numbs,L+b/.numbs},DisplayFunction —> Identity],

11
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DisplayFunction —> $DisplayFunction]}

0.0004}

0.000Q

=2
-0.0002
-0.0004}
Outf24):=
- Graphics -
Inf25]:=
t=ed;
b=6;

vx=N[v/.e = t];
soln=Solve[{vx[[1]}==0,vx{[2]}==0,vx{[3]}==0},{A,B,CH[[L]];
left=f1[x]/.numbs/.e —> t/.soln;

center=f2[x]/.numbs/.e —> t/.soln;

right=1£3[x]/.numbs/.e > t/.D — 1;
Show|[Plot[left,{x,-b,0},DisplayFunction — Identity],
Plot[center,{x,0,L/.numbs},DisplayFunction — Identity],
Plot[right,{x,L/.numbs,L+-b/.numbs},DisplayFunction —> Identity],
DisplayFunction —> $DisplayFunctionl] o1t

0.005¢}
= 5 10
=0.095¢
Outf25]:=
~ Graphics -
=0.01F

12
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Problem Set #1
1. What is the probability that an electron will be found outside a well?

Consider a well of length L = 5.5 and depth V =1 (in atomic units). This system has
three bound states. Determine the energies of these states. Make an energy level diagram
for these states. Make a single plot that superimposes all three normalized eigenfunctions.
[That is, bring two plots to class to hand in!] -

You can integrate with  In[ ] := Integrate[f[x],{x,-Infinity,0}], for example,
and take a square root with  In[] := Sqrt|.. ]

You will need these energy values and these state functions later. You can save these by
copying the results of the present calculation into a new Mathematica Notebook that con-
tains ezplicit definitions of these quantities:

You can create a function which is equal to

z2 inz <1,
2—(x—-2)?% in1<z<3,
(z — 4)2 in3<z

with three conditional statements:
Flx-/;z <=1):=z"2
Fx./;l1<z<=3]:=2-(z—-2)"2
Flx./;3 < z|:=(z—4)"2

Calculate, for each of these states, the probability that the electron will be found outside
0 < z < 5.5. Write in (by hand) the results on the level diagram!

2. As V is increased, the number of ‘bound’ states increases. At what values of V does the
number of ‘bound’ states change? What is the precise relation between the number of
‘bound’ states and V7

3. As V is increased, the penetration distance outside the well is decreased. The solutions
approach those of a ‘particle in a box'. In the limit that V' — oo, what are the boundary
conditions, the energy eigenstates, and the energy eigenvalues? How does the energy level
diagram compare with that of question 17 (Make a level diagram with two columns!)

et Tramshomadim 1 wiag Comel

Tram CM
Lg ol
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4. Consider the physical problem associated with the double well
(1, forz <0,
0, for0 <z <5.5,
V(z)=41, for5.5<z<86.5,
0, for6.5<z<12,

\1, forz > 12

in atomic units. Make an energy level diagram showing the lowest 6 levels of this system.
Comment on the relation of this level diagram to that corresponding to question 1.

Make a plot of the (normalized, superimposed) two lowest eigenfunctions and a similar
plot of the next two levels. On the basis of these plots suggest an approximate represen-
tation for the states of a double well system. Prepare a plot which allows one to judge the
quality of the approximation.

14
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