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An Electron in a Gravitational Field |
A~ ry

A. The Problem

Suppose that an electron is in a one-dimensional box in which there is a gravitational
field. If z measures the distance from the bottom of the box and p = m 2, this is a system
with Hamiltonian .
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The energy eigenstates of this system are solutions to
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B. The momentum representation

Let us represent these states as a superposition of momentum eigenstates (we'll, as a

superposition of plane waves) g
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This changes the problem from determining ¥(z) to determining the amplitude w(p) of

(2)

the plane waves in the superposition. These are fixed by
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C. An operator that reproduces z

The factor z in (3) can be introduced by differentiating with respect to p!
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Intgegrating by parts on the derivative with respect to p gives
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The term in {---} is just : & (i~ A
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D. Solution for w(p)

If we set the term in {- - -} to zero, we have a simple differential equation for w(p). The

solution is

Ly ©)
with ¢ a constant of integration.
With this choice for w(p), (6) reduces to
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which we'll make zero by choosing a particular contour C.

At large p, this term is dominated by
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which goes to zero as |[p] — oo in the
unshaded sectors of the figure. Thus

Eq(7) will be satisfied on the contour
that follows the dotted line in the fig-

ure.
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Dropping the ¢, this argument leads to
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P(z) = (8)
As the first integral in (8) is the complex conjugate of the second, (8) gives an imaginary

function of z. Adding a phase factor to make 9(2) real, we can ideﬁtify
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due 8 February 2013 Time Evolving States
Problem Set #3
1. Show that, if an electron is started in a single energy eigenstate, then the statistical dis-

tribution on finding the electron in space does not change in time. We call such states sta-

tionary states.

9. Suppose Wp(z) is the (real) ground state of a one-dimensional system and 11 (x) is the

(real) first excited state. Suppose the corresponding energy eigenvalues are Eg and Ej. If
¥(z,0) = —=lo(e) + 1 (=)
H - \/i \] i T},

what is 1(z, t)? Give an expression for |[¥(z, t)|? that involves only real quantities. Show

that the time evolution is periodic in time with period

h 1
T E, - Ey the Einstein frequency’

T

3. As a numerical example, consider the 1o(z), ¥1 (z) energy eigenstates of the double well
problem (Problem Set#1). Make a list of 20 plots showing the evolution of the probability

distribution over one period.

Ist=Table[Plot[f[z, ], {Z, Zmin, Tmaz }, PlotRange —> {0, 0.55}], {t,0,19}} will
generate a list of plots. The option PlotRange > {, } forces Mathematica to use

the same vertical scale in all the plots.

An animated image of the time evolution can be created by displaying these plots sequen-

tially in time.

If you select all the plots (click with the mouse on the bracket at the right hand
side of the window that groups the set of plots) and choose “Animate Selected
Graphics” in the Graph menu, Mathematica cycles through the plots automat-

ically. “Command <” slows down the animation. Clicking anywhere with the

mouse stops the animation.







due 8 February 2013 Time Evolving States

Problem Set #3

. Show that, if an electron is started in a single energy eigenstate, then the statistical dis-
tribution on finding the electron in space does not change in time. We call such states sta-

tionary states.

. Suppose ig(z) is the (real) ground state of a one-dimensional system and 4 () is the

(real) first excited state. Suppose the corresponding energy eigenvalues are Ey and Ej. If
(2,0) —"1 [#o(=) ()]
P(x,0) = T) + P (x)],
+/2 0 !

what is 1(z,t)? Give an expressicn for [(, £){2 that involves only real quantities. Skow
that the time evolution is periodic in time with period

h 1

T = = .
F| — Ey  the Einstein frequency

_ As a numerical example, consider the ¥(z), ¥1(z) energy eigenstates of the double well
problem (Problem Set#1). Make a list of 20 plots showing the evolution of the probability

distribution over one period.

Ist=Table[Plot|f[z, t], {, Zmin, Tmaz}, PlotRange —> {0,0.55}], {t,0,19} will

generate a list of plots.

An animated image of the time evolution can be created by displaying these plots sequen-
tially in time. Mathematice has & command Animate that will prepare the list of plots

and then cycle through, displayinig them sequentially in time:

In{}:= Animate[Plot[f[z, t], {=, Tmin, Tmaz}, PlotRange —> {0,0.55}], {¢,0,19}]
The option PlotRange => {, } forces Aathemadica to use the same vertical scale
in all the plots. The list of plots is prescribed with the standard list generating |

rule, {t,0,19}.

Make an animated image of (the time evolution of) l (e, £)1°.
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