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ABSTRACT OF THE DISSERTATION

Studies toward the Total Synthesis of

Lomaiviticins A and B and Englerin A

by

Srinivas Achanta

Doctor of Philosophy in Chemistry

Washington University in St. Louis, 2009

Professor Vladimir B. Birman, Chairperson

Part |: Studies toward the central core of lomaiviticins A and B

Lomaiviticins A and B are novel C,-symmetric dimeric molecules with profound
cytotoxic activity. The most challenging feature of these molecules is the densely
functionalized central core. Despite the effort by several research groups, the total
synthesis of lomaiviticins has not been reported so far. We envisioned the synthesis of the
lomaiviticin core by an unprecedented Diels-Alder dimerization of ortho-quinols and
masked ortho-benzoquinones, followed by the fragmentation of the extra carbon-carbon
bond. This chapter describes the stereoselective elaboration of the ortho-quinol and
masked ortho-benzoquinone dimers to the fragmentation precursors and the unsuccessful

attempts to effect the scission of the extra bond.

Xi



Part Il: Studies toward the total synthesis of englerin A

Englerin A is a new guaiane sesquiterpene isolated recently in 2008. It has been shown to
be a selective renal cancer inhibitor. We envisioned the synthesis of englerin A via a
novel strategy featuring Wagner-Meerwein rearrangement followed by intramolecular
cation trapping. This chapter describes the stereoselective synthesis of the key cis-decalin
intermediate from (-)-carvone and the unsuccessful attempts to realize the skeletal

rearrangement.
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Chapter 1: Studies toward the synthesis of lomaiviticins A and B

1.1  Background
1.1.1 Isolation and biological activity

In 2001, He and co-workers reported the isolation and characterization of two
new dimeric compounds Lomaivitcins A and B from a strain of actinomycetes,
Micromonospora lomaivitiensis, which was isolated from the inner core of a host
ascidian.' These two novel compounds bear structural similarities to the much simpler
monomeric diazobenzofluorene antibiotics kinamycins, with the former incorporating a
higher level of complexity by dimerization of the common tetracyclic ring system.”
Although the absolute stereochemistry was not rigorously established, extensive NMR,

IR and MS analysis has led to the formulation of the structures shown in Scheme 1-1.

Scheme 1-1. Lomaiviticins A and B and Kinamycins A-D

NMe, NMe;

Me,N Me,N

1.1 Lomaiviticin A 1.2 Lomaiviticin B



kinamycin R! R? R3 R

A (1.3 Ac Ac Ac H

B (1.4) H Ac H H

C (1.5) Ac H Ac Ac
1.3-1.6: Kinamycins A-D

D (1.6) Ac H Ac H

In addition to the structural complexity, lomaiviticins A and B were shown to be
highly active DNA-damaging agents by Biochemical Induction Assay (BIA), both with a
minimum induction concentration < 0.1 ng/spot." Specifically, lomaiviticin A displayed
extremely potent cytotoxicity against a broad range of cancer cell lines in vitro, with ICs
values ranging from 98 to 0.01 ng/mL™"." In contrast to the known DNA-damaging
anticancer drugs, adriamycin and mitomicin C, these two new compounds exhibited a
unique cytotoxicity profile in the 24-cancer cell line panel suggesting a different
mechanism of interaction with DNA molecules.’ Furthermore, lomaiviticins A and B
displayed powerful antibiotic activity against the pathogenic Gram-positive bacteria,
Staphylococcus aureus and Enterococcus faecium (MIC’s, 6-25 ng/spot) in a plate
assay.' The bioactivity of both lomaiviticins and kinamycins is presumably due to the
diazobenzofluorene moiety. However, lomaiviticins are several orders of magnitude more

potent.

1.1.2 Biosynthesis of kinamycins and lomaiviticins
Based on their common structural characteristics, lomaiviticins and kinamycins

are likely to share a biosynthetic ancestry. The kinamycin antibiotics were first isolated



from Streptomyces murayamaensis.” Originally characterized by Omura and coworkers,
kinamycins were initially misassigned as N-cyanobenzo[b]carbazoles. Using
spectroscopic techniques these structures were later revised by Gould to be 5-diazo
benzo[b]fluorenes.® A putative biosynthetic pathway to kinamycins proposed by Gould is

depicted in Scheme 1-2.2

Scheme 1-2. Biosynthesis of kinamycins

COSEnz
o Me
0O O O
o) . ©°
PN . 0
SCoA
O O O
1.7 1.8 Dehydrorabelomycin
OHO Me OH OH OH O
- OOO )
LT o
COzH
on o O OH OH
1.9 1.10 1.11 Kinaflurorenone
OH O NH, OH O N,
Me Me
OOO UO —
—>
—_—
1.12 Stealthin C 1.13 Prekinamycin



biosynthesis of these dimeric diazobenzofluorene glycosides lomaiviticins A and B can
be envisioned to arise from an oxidative dearomatization of the diazobenzo[b]fluorene
precursor 1.15 to give the epoxide 1.16 as shown in Scheme 1-3. Reductive epoxide
opening followed the oxidative coupling of the resulting enolate 1.18 produces

lomaiviticinone 1.19. Glycosylation of the lomaiviticinone 1.19 affords lomaiviticins A

1.14 Ketoanhydrokinamycin

Given the structural similarity of the lomaiviticins A and B to kinamycins, the

and B.

1.3-1.6 Kinamycins
R, R2 R3 R*=AcorH

Scheme 1-3. Proposed biosynthesis of lomaiviticins A and B
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glycosylation

—_—

— > Lomaiviticins
A and B

1.19 Lomaiviticinone

1.1.3 Mode of action of benzo[b]fluorene antibiotics

Although much is known about the biosynthesis of the kinamycins, given the
rarity of the diazo function in naturally occurring compounds, it is not surprising that
little information exists concerning the chemical basis for their biological activity. The
unique biological activity of kinamycins and lomaiviticins has rekindled interest and
several hypotheses have been proposed regarding their mechanism of action.”® To date,
three hypotheses have been proposed to explain the mode of action of these compounds.
Arya and Jebaratnam were the first to submit a defined proposal working with model
compound diazofluroene 1.20.** They observed that 1.20 nicks plasmid DNA upon
exposure to the oxidant Cu(OAc), and suggested that upon exposure to endogenous
oxidants, kinamycins may lead to a reactive radical intermediate 1.21 (Scheme 1-4) that

could damage DNA via known oxygen-mediated pathways.’

Scheme 1-4. Hypothesis by Arya and Jebaratnam

N2
Cu(OAc), DNA
0.0 _ _— DNA scission
N> [0,]
1.20 1.21



On the other hand, Dmitrienko and co-workers argued for the nucleophilic attack
on the terminal nitrogen of the diazonium group 1.22 as an obligatory step for the radical
formation via loss of N; to produce a DNA-damaging radical 1.24, and that the mode of
action may not involve the use of an oxidizing agent under physiological conditions.®

Dmitrienko’s hypothesis is depicted in Scheme 1-5.

Scheme 1-5. Hypothesis by Dmitrienko

Me Me
g i
=T T —
N .=~ DNA
SCISSsIon

An important finding by He et. al. on the structure and biological activity of
lomaiviticin A attributed its profound cytotoxicity to double stranded DNA cleavage
under reducing conditions.! Although the two proposals discussed above were based on
the activation of diazo group, neither study included the diazoparaquinone moiety
commonly present in kinamycins and lomaiviticins to explain these observations under
reductive conditions. Hence, alternative mechanism of action incorporating the reductive
activation on the diazoparaquinone needed to be considered. A proposal by Feldman®*¢
taking these observations in to account is shown in Scheme 1-6. One electron reduction
of the generic diazoparaquinone 1.25 following protonation produces the reactive
semiquinone 1.26, also represented by the resonance form 1.27. This radical then by the

loss of N, generates the vinyl radical 1.28 which abstracts a hydrogen from DNA leading

to the strand cleavage."



Scheme 1-6. Hypothesis by Feldman
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1.1.4 Previous synthetic approaches to lomaiviticins

The unique C,-symmetrical architecture coupled with remarkable biological
activity makes lomaiviticins an attractive target for chemical synthesis. During the last
few years, several groups have initiated programs toward the total synthesis of these
molecules. Despite this significant synthetic interest, total synthesis of lomaiviticins has
not been achieved so far. From a strategic standpoint, the total synthesis of
lomaiviticinone (lomaiviticin aglycon) requires two major issues to be addressed: the
assembly of the tetracyclic diazobenzofluorene ring system and the more challenging
stereocontrolled construction of the hindered central carbon-carbon bond. The synthesis
of the tetracyclic ring system was accomplished by several research groups including
ours.'! Stereoselective construction of the central core of the lomaiviticins (Scheme 1-7),

pertinent to the discussion in this section has been achieved by Nicolaou,'> Shair" and



Sulikowski.'* Apart from these studies, the synthesis of the fully glycosylated monomeric

cyclohexenone core of lomaiviticin A has been accomplished by Herzon’s group. '’

Scheme 1-7. Central core of lomaiviticins A and B

OH
- Et
(@]
OH

HO ¢

Et =

OH
1.30 1.31
Lomaiviticin B Lomaiviticin A

1.1.4.1 Nicolaou’s approach to the central core of lomaiviticins

The Nicolaou group was the first to report their synthetic efforts to the
construction of the central core of lomaiviticin. Their retrosynthetic analysis is depicted
in Scheme 1-8. The stereochemistry on the hindered central carbon-carbon bond was
envisioned to arise from a double Michael addition on 1.36, to give a C,-symmetric
compound 1.35. This conformationally locked tricyclic compound then forms a scaffold
to introduce the remaining two stereocenters by a stereoselective double nucleophilic
addition on the bis-ketone. Finally, the tethering group was then elaborated into the

sensitive 1,4 dicarbonyl moiety.



Scheme 1-8. Nicolaou’s retrosynthetic analysis

p—
1.32 1.33 1.34
HO EtH |_r|o‘\\Et * H H o (@] (@)
0 = — @_@
H Xz
H* A H H
1.35 1.35 1.36

The use of sulfide as the tethering group illustrated in Scheme 1-9 was
investigated first. This was introduced via a double Michael addition on to the dimeric
ketone 1.36. A single C>-symmetric compound was obtained as expected. Stereoselective
addition of the ethyl groups was achieved with ethyl cerium reagent. Protection of the
tertiary alcohols as bis-TBS ethers and oxidation with H,O, gave sulfoxide 1.37.
Unfortunately, attempted iterative Pummerer rearrangement on the sulfoxide 1.37 with
trifluoroacetic anhydride and pyridine did not produce 1.38. Instead, vinylogous sulfide

1.39 was obtained in 54% yield presumably via the vinyl sulfide 1.40.



Scheme 1-9. Nicolaou’s first generation approach

1. NaSH, NaHCO,
2. EtMgBr/CeCly

3. TBSOTf
4. H,0,

1.36

TBSO,

OTBS
EL oTBS (CF5CO)20, Et/,,
H * pyridine o
v

®_

S =

T H

0] OTBS
©
137 1.38

(CF3C0),0, pyridine, DCM
Pummerer rearrangement

Faced with this roadblock, dimethyl malonate anion as the tethering group was

investigated next, as shown in Scheme 1-10. It should be noted that this double Michael

addition did not produce a C:-symmetric adduct. Compound 1.41 was obtained with the

correct relative stereochemistry o to the ketone groups. Unfortunately, due to the

unsymmetrical nature of the Michael adduct, addition of excess ethyl cerium reagent

gave a mixture of diastereomers with the required diastereomer 1.42, in 57% yield. After

a series of steps, the diol 1.42 was eventually converted in to the triol 1.44.

10



Scheme 1-10. Nicolaou’s second generation approach

2 Q' CHy(COzMe), EtMgBIr/CeCly
AT _
MeONa, MeOH then H;0" 57%
85 % MeO,C CO,Me
1.36 1.41 1.42
1. BOMCI, HB L Ezlv%%
2. LAH, THF, BOMO, Et BOMQ

2. Pb(OAc),

(89 % for two steps)

HH

3. PPhg, I, 98% 3. KHMDS,
4. (0-NO, Ph)SeCN, NaBH, P(OEY)3, O,
5. mMCPBA 4. LAH, 93%
(88% for 2 steps) 70 % over 4 steps
1.43 1.44

At this point, routes to lomaiviticins A and B diverged. Complete cleavage of the
triol 1.44 to furnish central core of lomaiviticin A 1.46 could not be achieved by
treatment with excess Pb(OAc)4 or NalOy in one step. This transformation was eventually

achieved in four steps as shown in Scheme 1-11.

Scheme 1-11. Nicolaou’s synthesis of the central core of lomaiviticin A

BOMO

~Et 1.pp(0Ac),, BOMO, Ft BO

~Et TPAP, NMO

90% E——
_ = 55%
- 2. LiBH, o
OHC_)HOH 3. Pb(OAc), OH
(66% for 3 steps)
1.44 1.45
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On the other hand, hydrogenation of 1.44 gave 1.45. Treatment with Pb(OAc)
followed by the hydrolysis of the intermediate formate ester using methanolic ammonia
as shown in Scheme 1-12, produced the dimeric hydroxyl model compound 1.32 present

in the central core of lomaiviticin B.

Scheme 1-12. Nicolaou’s synthesis of the core structure of lomaiviticin B

BoMO, Ft BOMQ E¢ Ho, Ft . \HQ Et 1.Pb(OAc)
., HH ., HH 4
: H,, Pd/C . 2. NHg3, MeOH
- 5 .
-7z Quant 7 (40% for 2 steps
OHC—)HOH OHC—)HOH
1.44 1.45

1.1.4.2 Shair’s approach to the central core of lomaiviticins

In contrast to the linear approach by Nicolaou, Shair proposed a convergent
approach to these C,-symmetric molecules. Inspired by the biosynthesis of lomaiviticins,
a late stage stereoselective oxidative enolate coupling was envisioned to construct the
hindered central carbon-carbon bond. This stereoselective oxidative dimerization was
achieved by tethering the C3 tertiary alcohol to C6 to give 7-oxanorbornanone 1.48
(Scheme 1-13). This also prevented the B-elimination of the C3 hydroxyl, due to the
orthogonal orientation of the enolate m system and the antibonding c* orbital of the

bridging C-O bond. Shair’s retrosynthetic analysis is shown in Scheme 1-13.

12



Scheme 1-13. Shair’s retrosynthetic analysis

Et

147 5RH5R OR OR

The synthesis began with the Michael addition of the lithium enolate of furanone
1.50 to the oxazolidinone acrylate 1.49 in 88% yield to furnish 1.51 as a 1:1 mixture of
diastereomers. Mg'"-catalyzed anti-selective aldol reaction following the protocol by
Evans with B-thiophenylacrolein and protected acetoxyfuran gave 1.52 in 77% yield.
Scheme 1-14 shows Shair’s synthesis of lomaiviticin A core structure. In a sequence of
steps consisting of TBS protection, acetoxyfuran hydrolysis followed by oxidation with
mCPBA, sulfone 1.53 was obtained. Intramolecular Diels-Alder cycloaddition smoothly
led to the endo product as a 3:1 mixture of separable diastereomers. After a series of steps
consisting of deprotection, hydrolysis and decarboxylation bicyclic compound 1.48, was
obtained in 45% yield. The pivotal oxidative dimerization was achieved stereoselectively
using [CpaFe]PF¢ at -20 °C, where a C,-symmetric compound 1.55 was obtained as a
single diastereomer. Desilylation followed by oxidation with Dess-Martin periodinane

gave the cyclic hydrate 1.56. Conversion of this cyclic hydrate to the lomaiviticin A core
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system 1.57 was achieved by treatment with excess K,CO3/MeOH. However, all attempts

to generate lomaiviticin B core system 1.58, by the acid catalyzed dehydration only led to

decomposition.

Scheme 1-14. Shair’s synthesis of central core of lomaiviticin A
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L 0 90% Hl

Bn

1.50 @) 71% over 2 steps
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1.1.4.3 Sulikowski’s approach to dideoxy core of lomaiviticin A/B

Recently, Sulikowski reported the synthesis of dideoxy core of lomaiviticins A
and B 1.59. The retrosynthetic analysis is shown in Scheme 1-15. Stereoselective
construction of the four contiguous stereocenters in 1.59 were envisioned to arise via a
tandem reaction consisting of double Michael addition on 1.61, from the convex face of

the molecule, followed by the stereoselective protonation of the enolates.

Scheme 1-15. Sulikowski’s retrosynthetic analysis
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The synthesis began from cyclohexenone 1.62, which was prepared from (-)-
quinic acid following a known procedure. Scheme 1-16 depicts the forward synthesis. a-
iodination followed by Ni(0)-catalyzed homocoupling provided bisenone 1.61 in 64%

yield. An allyl group was envisaged as a latent source of ethyl group, which was
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introduced by the stereoselective conjugate addition of allyltributylstannane promoted by

TBSOTT. The conjugate addition proceeded as expected from the convex face of the

molecule away from the acetonide moiety. The bis-silylenol ether adduct 1.63, was

obtained in 97% yield. Transformation of the allyl group into an ethyl moiety was

achieved in six steps. Stereoselective protonation and o,B-unsaturation was achieved in a

single step by using TBAF, in 55% yield over 2 steps, thus furnishing the dideoxy core of

lomaiviticin 1.59.

Scheme 1-16. Sulikowski’s synthesis of central core of dideoxy lomaiviticin
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In comparing the three strategies, Nicolaou’s approach involved the use of a

tether which served two purposes. Not only does it function as a latent source for the

installation of the sensitive 1,4 dicarbonyls, but also formed a rigid tricyclic system to
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stereoselectively introduce four of the six stereocenters present in the central core.
Starting from the known bisenone 1.36, the synthesis of lomaiviticin A and B core
structures were achieved in 15 and 14 steps respectively. Unfortunately, nearly 12 of
these 15 steps were targeted to elaborate the tether into a 1,4 dicarbonyl system. Shair’s
group, on the other hand, inspired by the biosynthesis of lomaiviticins, developed a more
convergent approach to the central core of lomaiviticins. Using the rigid
oxanorbornanone bicyclic system 1.48, the hindered central carbon-carbon bond of
lomaiviticin A was synthesized by the stereoselective oxidative coupling of the
corresponding enolate. Starting from the known oxazolidinone 1.49, the synthesis
lomaiviticin A core structure, was achieved in 12 steps. Finally, Sulikowski’s approach to
the dideoxy lomaiviticine core structure relied on the stereoselective protonation of the
bisenolates, which in turn was obtained by the stereoselective conjugate addition on
bisenone 1.61. It should be mentioned that at this point Sulikowski’s approach does not
address the total synthesis of lomaiviticins but provides a synthetic route to simplified

analogues to evaluate their potential biological activity.

1.1.5 Summary

The unique molecular architecture and impressive biological activity of
lomaiviticins A and B made it an attractive target to synthesis. Numerous reports of
methodologies targeting the core of lomaiviticins have appeared and several hypotheses
have been put forward to explain their mechanism of action. Despite this effort, total

synthesis of these molecules has not yet been achieved.
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1.2 Results and Discussion

1.2.1 Our approach to lomaiviticin core structure

ortho-Quinols and masked ortho-benzoquinones (Scheme 1-17) are potential
useful building blocks for the enantioselective synthesis of natural products.' They are
attractive starting points from which numerous total syntheses begin. They are usually
generated by oxidation of phenols by a variety of methods and reagents like Pb(OAc)s,

NalOy, lodine(III) reagents, anodic oxidation, etc.

Scheme 1-17. ortho-Quinols and masked ortho-benzoquinones

OH 0o OH 0o
OMe Me R H
, OMe - . R
1.65 1.66 1.67 1.68
masked ortho-
ortho-benzoquinones Quinol

To a large extent, the stability and mode of reactivity of these intermediates
depends on the type of substitution on the ring.” The chemistry of ortho-quinols 1.68 and
masked ortho-benzoquinones 1.66 (Scheme 1-17) is dominated by their propensity
toward self dimerization via the intermolecular Diels-Alder reaction. Pioneering studies
by Adler showed that this dimerization proceeds with remarkable regio- and

31 The stereochemical aspect of the self dimerization of ortho-quinols

stereoselectivity.
is discussed first. Theoretically, 16 diastereomers could be generated during the

dimerization of racemic ortho-quinols; nevertheless, only one is typically observed,
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suggesting the dimerization of the opposite enantiomers is not favorable. In this case, the
diene and the dienophile approach via their oxygenated faces as shown in Scheme 1-18.
Although the exact reason is not clearly understood, a C>-symmetric transition state has
been invoked by Quideau to explain this facial selectivity.'? It is pertinent to mention
here that the dimerization of ortho-quinols is usually considered a nuisance and most
efforts were directed so far to harness the reactivity of these compounds toward

intermolecular Diels-Alder reaction with external dienes and dienophiles.'**

Scheme 1-18. Self dimerization of ortho-quinols
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In contemplating a novel synthetic strategy toward lomaiviticins, we realized that
the central core of lomaiviticin is embedded in these dimeric structures as shown in
Scheme 1-19. Remarkably, 4 of the 6 stereocenters are set correctly in the Diels-Alder
step, and the remaining two can be easily set by the stereoselective reduction of the
carbonyls, capitalizing the facial bias provided by the rigidity of the tricyclic system.
Fragmentation of the C4-C6 ~ bond in 1.72 would generate the central core of

lomaiviticin.
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Scheme 1-19. Central core of lomaiviticins embedded in ortho-quinol dimers
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Central Core of Lomaiviticins

The chemistry of masked ortho-benzoquinones 1.74 is similar to that of ortho-
quinols 1.69. The self dimerization of masked ortho-benzoquinones is also known to
proceed regio- and stereoselectively via the intermolecular Diels-Alder reaction, shown
in Scheme 1-20. It should be noted in this case, dimer 1.77 contains 2 of the 6

stereocenters present in the central core of lomaiviticins.
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Scheme 1-20. Self dimerization of masked ortho-benzoquinones
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1.2.2 Proposed fragmentation strategies

Unraveling these Diels-Alder dimers into the densely functionalized central core
of lomaiviticins required us to consider several fragmentation strategies. The general idea
envisaged for the scission the extra carbon-carbon bond is illustrated in Scheme 1-21.
Both anionic and free radical pathways could potentially be suitable for the scission of
the extra bond. It should be mentioned here that this fragmentation could in principle be
induced from either end of the tricyclic system depending on the groups X and Y.
Examination of 3D models indicated that X-C5, C4-C6" and C5’-Y bonds involved in this

process are nearly antiperiplanar to one another.

Scheme 1-21. Proposed anionic and free radical fragmentation strategies

lonic mode of fragmentation
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Free radical mode of fragmentation
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1.2.3 lonic mode of fragmentation

The ionic mode of fragmentation with X = SnMe; and Y = I was explored first.
The readily accessible ortho-quinol dimer 1.83 was chosen for this model study. This was
obtained by the oxidation of 2,4-dimethyl phenol using sodium periodate following the
protocol by Adler.” The synthesis began with the introduction of Me;Sn- moiety by
Michael addition following the protocol by Still as depicted in Scheme 1-22. With
access to 1.84, we focused our attention on the formation of the cyclic ether with the
hydroxyl on C2 by a S5-exo-trig cyclization onto the tri-substituted double bond.
Unfortunately, all attempts to render this cyclization using NBS, NIS, Br,, I, mCPBA
only led to decomposition of 1.84. "H NMR data suggested that Me;Sn- moiety competes
with the olefin for the electrophile leading to a complex mixture of products presumably
via 1.87. Attempts to use the tetra-ol 1.85 obtained by the NaBH,4 reduction of 1.84 also
failed, as the decomposition of this compound could not be avoided. It was decided at
this point that the installation of Me;Sn- moiety should be deferred and electrophilic
cyclization should be investigated first. Unfortunately, all attempts to effect iodo
cyclization on Diels-Alder dimer 1.83 also failed to generate 1.86 and only the starting
material was recovered. We attributed this to the poor solubility of 1.83 in common

organic solvents.
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Scheme 1-22. Attempted synthesis of 1.92
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However, when 1.88 was subjected to iodo cyclization 1.89 was isolated in 75%
yield as shown in Scheme 1-23. 1.88 was obtained by chemoselective reduction of the
conjugated double bond.’ Having now established a viable route to 1.89, o,B-unsaturation
was introduced in a two step sequence. First, TMS enol ether 1.90 was prepared
following the procedure reported by Corey.”* Saegusa oxidation with Pd(OAc),
successfully regenerated the o.B-unsaturation.”> The tertiary alcohol on C2° remained
protected as TMS ether giving 1.91 in 75% yield. To our dismay, addition of Me;SnLi
did not produce 1.92. Instead, 1.91 underwent opening of the tetrahydrofuran ring via

1.93 producing 1.83 in 30% yield along with 40% recovery of the starting material.

25



Scheme 1-23. Attempted ionic fragmentation on 1.92
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In the end, it was clear that the Me;Sn- moiety needed to be replaced by a more
robust group. Literature search showed PhSe- moiety as a promising candidate. Miyashita
and Yoshikoshi showed that PhSeH generated in situ by the reduction of (PhSe), with
NaBHj, followed by the addition of acetic acid, adds to a variety of unsaturated enones in
excellent yields.”® This opened the door to free radical pathway proposed in the previous

section, shown in Scheme 1-21.
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1.2.4 Free radical mode of fragmentation

At first we attempted Michael addition of PhSeH on 1.83. Unfortunately, only
starting material was recovered. We attributed this to the poor solubility of the dimer and
protected it as the diacetate 1.94 with HCIO4 and Ac,O. Michael addition proceeded
smoothly to give 1.95 in 90% yield. Global reduction with DIBAL-H in THF gave tetra-
ol 1.96. It should be mentioned that 1.96 contains all the six stereocenters present in the
central core of lomaivicitin. Our fears regarding the stability of PhSe- moiety during the
iodo cyclization, were soon dispelled when 1.97 was obtained in 58% yield (66% yield
BRSM) as shown in Scheme 1-24. More importantly, chemoselective cyclization of the
hydroxyl at C2 in preference to the hydroxyl at C1, occurred as planned to generate the 5-

membered cyclic ether 1.97.

Scheme 1-24. Synthesis of fragmentation precursor 1.97
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The structure of the tetra-ol 1.96 is confirmed from its experimentally observed
NOE interactions shown in Scheme 1-25. A strong NOE between H;; and Me,¢ suggested
they are on the same side. A strong NOE was observed between H; and Me 4, H; and Ho,
H; and Me,s, and H; and Hj, indicating they are on the same side of the molecule. On the
other hand, H; had a weak NOE interaction with H», indicating they are away from each
other. Hy, on the other hand, showed a strong NOE with H; indicating they are on the
same face of the molecule. To summarize, Michael addition of the PhSe- moiety and the
global reduction with DIBAL-H proceeded from the convex face of the molecule as

expected.

Scheme 1-25. Diagnostic NOE interactions in tetra-ol 1.96

1.96

With access to the key precursor 1.97, free radical conditions for the scission of
the C4-C6" bond were explored as shown in Scheme 1-26. Under these conditions a
single compound, tentatively assigned “A”, was isolated in 46% yield. Compound A

showed a molecular ion peak m/z 280.17 which is consistent with the desired structure
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1.98 or 1.99. However, 'H NMR for the compound A (Scheme 1-27) showed only two
vinyl hydrogen peaks between 5-6 ppm. If the fragmentation occurred as planned, the
product would have the structure 1.98 with three peaks (H;, H, and Hj3) in the vinylic

region (5-6 ppm) in the 'H NMR. Clearly, this possibility was immediately ruled out.

Scheme 1-26. Results from free radical mode of fragmentation
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At first, we tried to reconcile our spectroscopic data with structure 1.99, which
could conceivably arise from 1.98. However, the *C NMR spectrum of A (Scheme 1-28)
did not agree with this structural assignment. For example, one would predict that °C

NMR of 1.99 should contain six peaks connected to oxygen in the region 60 to 80 ppm.
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Unfortunately, compound A showed only five peaks in that region. In the end, it was
clear that neither 1.98 nor 1.99 fit the description for A. After considering several other
structures that did not show promise, it occurred to us that the structural assignment so far
has been on the premise that the fragmentation took place and the possibility that the

reaction is proceeding via a different pathway should also be considered.

Scheme 1-27. *H NMR for compound A
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Scheme 1-28. **C NMR for compound A
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Our proposal was borne from the fact that the difference in mass between 1.97
and compound A is 280.86 which corresponds to a loss of PhSel. We realized that the
secondary radical 1.100 generated during the propagation step, might undergo a 1,5
hydrogen abstraction to generate 1.101. This would be followed by expulsion of the

PhSe- moiety to form 1.102 as shown in Scheme 1-29. Predicted 'H and *C NMR for

compound 1.102 seemed to fit the data for compound A.
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Scheme 1-29. Mechanistic proposal for the formation of compound A
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The proposed structure for compound A was confirmed by its independent
synthesis from 1.97 in two steps shown in Scheme 1-30. H,O, oxidation of 1.97 followed
by reduction with BusSnH and AIBN gave 1.102 in 96% yield over two steps. Compound

A and 1.102 have identical 'H and *C NMR finally putting this structural ambiguity to

rest.

Scheme 1-30. Synthesis of the proposed structure for compound A
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1.2.5 Reductive mode of fragmentation

The reductive mode of fragmentation with Y = SO,Ar shown in Scheme 1-31
was investigated next. It should be mentioned that this mode of fragmentation is a
vinylogous analog of the anionic fragmentation pathway (Scheme 1-21) proposed earlier.
Fragmentation can be initiated by chemoselective reduction of the allyl sulfone, which
can be achieved with variety of reagents eg., Sml,, LDDB, Li in naphthalene etc. The in
situ generated allyl anion 1.107 during this process was expected to fragment via the
expulsion of sulfinate, as shown in Scheme 1-31. The expulsion of the weaker sulfinate
base (ArSO,) when compared to the allyl anion 1.107 was expected to provide the

driving force for this reaction.

Scheme 1-31. Reductive mode of fragmentation
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For the sake of experimental convenience, in this case, we decided to use masked

ortho-benzoquinone Diels-Alder dimers instead of ortho-quinol dimers. The synthesis
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began by preparing sulfone 1.108 from commercially available vanillyl alcohol and
sodium para-toluenesulfinate as shown in Scheme 1-32. Oxidation of 1.108 with
iodobenzene-diacetate generated masked ortho-benzoquinone 1.109 which dimerized
spontaneously to give Diels-Alder dimer 1.110 in quantitative yield.28 Luche reduction

followed by hydrolysis of the ketal under mild conditions gave 1.111.

Scheme 1-32. Attempted addition of ethyl groups to 1.112
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Initial attempts to add the ethyl groups using EtLi or EtMgBr to 1.112 led to the
decomposition of the starting material. Suprisingly, ethyl cerium reagent® gave rise to
1.114 in 30% yield. The structure of 1.114 was confirmed by its independent synthesis
from vanillyl alcohol. We presume that the formation of 1.114 is due to a facile retro

Diels-Alder via the formation of ene-diol 1.113 shown in Scheme 1-33.
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Scheme 1-33. Retro Diels-Alder reaction decomposition pathway
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The nucleophilic addition was eventually achieved by adopting a three step
sequence as shown in Scheme 1-34. Transient protection of the hydroxyl groups as MIP
ethers 1.115, was achieved with 2-methoxy propene and PPTS. This was followed by the
addition of EtzCeCl29 to give the diol 1.116. Further, treatment of crude 3.34 with excess
2-methoxy propene and PPTS afforded the bis acetonide 1.117 in 54% yield over three
steps. Our rationale for the stereoselectivity during the nucleophilic addition to the
carbonyls was based on the rigidity of the bicyclic system which has a convex and
convcave face. As anticipated, the nucleophilic attack on both of the carbonyls occurred

from the convex faces in 1.115 setting the remaining two stereocenters in the central core

of lomaiviticins.
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Scheme 1-34. Successful synthesis of the reductive fragmentation precursor 1.117
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With sufficient quantities of 1.117 in hand, we investigated its reduction with
Sml, in THF. Only the starting materials were recovered in this case. The reduction of
the allyl sulfone moiety proceeded uneventfully upon the addition of three equivalents of
degassed HMPA to which Sml, in THF was added.”® To our surprise, the allyl anion
1.118 generated did not fragment the C4-C6” bond to give 1.120, instead an inseparable
mixture of regioisomers 1.119 were obtained in 68% yield (Scheme 1-35). To eliminate
the possibility of quenching the allyl anion 1.118 generated during this process by 1.117,
the order of addition was changed. Accordingly, to a degassed solution of HMPA, Sml,
in THF was added. To this, a solution of 1.117 in THF was added slowly over 30
minutes. Unfortunately, this did not change the outcome of the reaction and 1.119 was

obtained in 70% yield but 1.120 was never observed. Changing the reductant to
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Li/naphthalene® also did not change the course of this reaction and the allyl anion 1.118
proved reluctant to fragment C4-C6” bond. In this case, 1.119 was obtained in slightly

lower yields (54%).

Scheme 1-35. Failure of the reductive mode of fragmentation

Me O
Me Et Smlz
N —_—
Ts

or
0 Ts LI/

1.117

1.120

1.2.6 Summary

ortho-Quinols and masked ortho-benzoquinone dimers were recognized as
suitable starting materials for the construction of the central core of lomaiviticins. We
realized that the central core of lomaiviticins was embedded in the ortho-quinol and
ortho-benzoquinone dimers requiring the scission of an extra carbon-carbon bond to be
unraveled. Realization of this strategy required us to investigate several modes of

fragmentation for the scission of this extra bond. However, all attempts directed to
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unravel these dimers into the lomaiviticin core were unsuccessful. The methodology

developed for elaborating ortho-quinol and ortho-quinone monoketal dimers into the

central core of lomaiviticins in this project will be useful for further studies in this

direction.
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Chapter 2:  Studies toward the synthesis of englerin A

2.1. Background
2.1.1. Isolation and biological activity

In 2008 Beutler and co-workers reported the isolation and characterization of two
new guaiane sequiterpenes, englerins A 2.1 and B 2.2 shown in Scheme 2-1, from the
extracts of the stem bark of Phyllanthus engleri in Tanzania.' Englerin A demonstrated
excellent selectivity for the renal cancer cell line panel, with 5 of 8 renal lines having
Glsp values under 20 nM, while for most other cell lines the Gls, values ranged from 10-
20 uM.' Although detailed studies regarding the biological acitivity have not been
disclosed, the low activity and selectivity of the structural analogue Englerin B, suggested
that the substitution at the C-9 position may be important for the observed potency and
selectivity. It is also noteworthy that other known glycolic acid containing natural
products pleuromutilin,® saframycin R, and an ecdysteroid from a Carribean sponge* did
not show any selectivity to the renal cancer cell lines, suggesting that glycolate

substitution alone cannot account for the renal selectivity.’

Scheme 2-1. Englerins A and B

2.1 Englerin A; R =COCH,0OH
2.2 EnglerinB; R=H

2.3 Englerin B acetate; R = Ac
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2.1.2. Biosynthesis of sesquiterpenes

Terpenoids are structurally diverse large family of natural compounds derived
from isoprene (Cs) units typically joined in a head to tail fashion. These are further
classified based on the number of isoprene units into hemiterpenes (Cs), monoterpenes
(C10), sesquiterpenes (Cis), diterpenes (Cyg), sesterterpenes (Css), triterpenes (Csp) and
tetraterpenes (Cag9). About 25% of all known terpenoids belong to the group of
sesquiterpenes.® Encompassing a wide range of nearly 200 distinct skeletal types,’
sesquiterpenes have rekindled the interest of several research groups all around the world.
Over the years a number of reviews, book chapters have appeared in the literature
regarding their biogenesis8 and isolation’ and it is impossible to assimilate all of it in a
single chapter. For this reason, attention in this chapter will focus on the biosynthesis of a
specific class of sesquiterpenes, containing the 5,7-hydroazulene ring framework, namely
guaianes 2.4. Other sesquiterpenes belonging to this group are pseudoguaianes 2.5,
lactaranes 2.6, carotanes 2.7, aromandranes 2.8, bourbanes 2.9, and the B- and y-

patchoulanes 2.10 and 2.11 shown in Scheme 2-2.

Scheme 2-2.  Common hydroazulene sesquiterpene frameworks

R Py

2
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The biosynthesis of guaiane sesquiterpenes (Scheme 2-3) is well known to arise
from E,E-farnesyl pyrophosphate (FPP) 2.20, which is in equilibrium with the E,Z-
farnesyl pyrophosphate 2.23, via the corresponding allylic carbocations 2.21 and 2.22."°
Farnesyl pyrophosphate has in turn shown to arise from dimethylallyl diphosphate
(DMAPP) 2.19, an intermediate product of both the mevalonic acid (MVA) or 2-C-

methyl-p-erythritol-4-phosphate (methyl erythritol phosphate; MEP) pathways.''

Scheme 2-3. Biosynthesis of farnesyl pyrophosphate
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Enzyme-mediated solvolysis of the pyrophosphate group in 2.20, then generates
the germacryl carbocation 2.25,'> presumably by the assistance of the terminal double
bond via the formation of the non-classical carbocation 2.24."* Germacryl carbocation
2.25 is believed to be the biosynthetic precursor for the guaiane and eudesmane classes of
sesquiterpenes.’® Anti-Markovnikov addition of a proton at the more substituted end of a
double bond in 2.26 forms the guaiyl cation 2.27 precursor to the guaiane sesquiterpenes.
On the other hand, eudesmane class of sesquiterpenes are formed via the eudesmyl

carbocation 2.29 as shown in Scheme 2-4.%¢

Scheme 2-4. Biosynthesis of guaiane and eudesmane sesquiterpenes

A
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2.1.3. Synthesis of hydroazulene sesquiterpenes

Hydroazulene skeleton (bicyclo[5.3.0]decane) is a common structural motif in
hundreds of sesquiterpenes exemplified by its founding members guaianes and
pseudoguaianes, whose skeletons differ only in the placement of the single methyl
group.'* These families of sesquiterpenes have garnered considerable attention from the
synthetic community once it was recognized that many hydroazulenes possess cytotoxic
activities."> " Over the years, several creative approaches have been put forward toward
the synthesis of the hydroazulene motif incorporated in these sesquiterpenes. It is beyond
the scope of a single chapter to cover this formidable volume of accomplishments.'®
Hence, this chapter will focus on the synthetic approach that is pertinent for this thesis,
which is the solvolytic Wagner-Meerwein rearrangement of the hydronapthalene
precursors 2.30. The conceptually similar pinacol rearrangement of hydronaphthalenes

2.33 is also shown in Scheme 2-5.'%

Scheme 2-5. Hydroazulene synthesis via rearrangement of hydronaphthalenes

Solvolytic Wagner Meerwein Rearrangement

OTs
C Me
H
2.30
Pinacol Rearrangement
oTs COTS
e tBuONa O‘@
—_— —_—
tBuOH
H H
2.33 2.34
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2.1.4. Solvolytic Wagner-Meerwein rearrangement of hydronaphthalenes
2.1.4.1. Studies by Heathcock

In 1968, Heathcock and Ratcliff published their approach to hydroazulenes based
on the discovery that both the frans- and cis-9-methyldecalin-1-toluene-p-sulfonates 2.36
and 2.40, shown in Scheme 2-6, undergo solvolytic rearrangement to the hydroazulenes
2.39 and 2.43."! An antiperiplanar relationship between the tosyloxy leaving group and
the migrating carbon-carbon bond is a necessary requirement for this rearrangement. This
requirement is met in the rigid trans-fused system 2.37, but in the flexible cis-fused
system, which can exist in two conformers 2.41 and 2.44, the anticoplanarity can be
achieved by only one conformer 2.44. Hence, only solvolysis of the conformer 2.44 will
result in the hydroazulene framework, while the other conformer 2.41 will give rise to the
elimination products 2.43. In this case, ionization and carbon-carbon bond migration
cannot occur synchronously, because of the gauche orientation of the leaving group and

the migrating carbon-carbon bond.

Scheme 2-6. Heathcock’s hypothesis
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Heathcock’s group was the first to investigate this methodology to construct the
hydroazulene sesquiterpenes. During the course of their studies shown in Scheme 2-7, it
was shown that the frans-fused keto tosylate 2.47, obtained from the corresponding
alcohol, upon refluxing in acetic acid with two equivalents of potassium acetate produced
a mixture of products from which the hydroazulene 2.49 was isolated in 78% yield. This
was accompanied by two other products 2.50 and 2.51 in 5% and 10% respective yields.
Surprisingly, under similar solvolytic conditions, the trans-deoxyketone 2.48, always
gave a higher yield of the rearranged hydroazulene 2.49. In either case, the methyl

migrated products were not detected.
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Scheme 2-7. Heathcock’s solvolysis results of trans-hydronaphthalene tosylates
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In contrast to the trans-series, a different result was obtained when the cis-fused
tosylates 2.52 and 2.53 were subjected to similar solvolysis conditions. The cis-keto
tosylate 2.52 gave an inseparable mixture of nonrearragened double bond regioisomers
2.55 in a total of 87% yield. Only 9% of the rearranged hydroazulene 2.54 was obtained.
On the other hand, the cis-deoxy tosylate 2.53 gave more of the rearranged olefin
compounds 2.50 and 2.54 in a total of 54% yield, accompanied by 39% of the

nonrearranged products 2.55, illustrated in Scheme 2-8.

Scheme 2-8. Heathcock’s solvolysis of the cis-hydronaphthalene tosylates
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Comparing these two studies, three interesting trends can be immediately
discerned. First, the rearranged hydroazulene compounds are obtained in lower yield
during the solvolysis of cis-series when compared to the trans-series. This was expected,
given the conformational flexibility inherent in the cis-fused system when compared to
the rigidity of the trans-fusion, as discussed earlier. Second, a more interesting result is
that both the trans- and cis-deoxy-tosylates 2.48 and 2.53, underwent solvolysis to give a
higher ratio of the rearranged to the nonrearranged products when compared to the keto
tosylates 2.47 and 2.52. Third, this effect was more profound in the cis- series than the
trans-series. Clearly, the distal carbonyl group exerts a marked decelerating effect on the
reaction. Heathcock et. al., explained this by invoking field effect due to the carbonyl
group.”’ For example, during the solvolysis of the rans-keto tosylate 2.47 depicted in
Scheme 2-9, it is reasonable to assume that rearrangement would be disfavored as a result
of an increased electrostatic repulsion between the newly formed tertiary carbocation

2.58 and the carbonyl group, than the intimate ion pair 2.57 from which it formed.

Scheme 2-9. Field effects during the solvolysis of trans-keto tosylate

@ — —
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e Me /
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2.47 2.56 2.57

In the case of the cis-keto tosylate 2.52, this effect is more pronounced as the
developing charge is closer to the positive end of the carbonyl dipole (due to the convex

nature of the conformation) in 2.63 (Scheme 2-10) when compared to 2.57. The
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decreased electrostatic repulsion during the formation of 2.61 explains the higher ratio of
the elimination products when compared to the rearranged products. Clearly, solvolysis
of the analogous cis-deoxytosylate 2.53, lacking the keto group does not suffer from such
electrostatic repulsion. Hence, a higher ratio of the rearranged products to the elimination

products was obtained.

Scheme 2-10. Field effects during the solvolysis of cis-keto tosylate
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2.1.4.2. Application to the synthesis of bulnesol

Heathcock successfully applied this methodology to the total synthesis of bulnesol
and related natural products (Scheme 2-11).?' Starting from the known Wieland-Miescher
ketone 2.65, the trans-decalin tosylate 2.66 was prepared in a series of straightforward
steps. The tosylate 2.66, was then transformed into bulnesol 2.67 in 87% yield, by
heating 2.66 in buffered acetic acid. Apart from bulnesol, three other natural products, a-
Bulnesene 2.68, B-bulnesene 2.69 and guaiol 2.70 were also obtained in this reaction in

2%, 2% and 5% yields.
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Scheme 2-11. Heathcock’s synthesis of Bulnesol
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2.1.4.3. Studies by Yoshikoshi

Soon after the pioneering studies by Heathcock, Yoshikoshi’s group investigated
the solvolytic rearrangement of the analogous 1/-tosyloxy-4a,8af-dimethyl- frans- and
cis- decalin derivatives 2.71 and 2.74.* The presence of an additional methyl group on
the a-face at C4 on 2.74, was envisioned to favor the formation of the rearranged
hydroazulene products 2.78, when compared to the parent unsubstituted compound 2.53.
This was expected, because the transition state leading to the elimination products 2.76,
will now be higher in energy due to an unfavorable 1,3 diaxial interaction between the

axial methyl at C4 and the methylene on C¢ as shown in Scheme 2-12.
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Scheme 2-12. Yoshikoshi’s hypothesis
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The solvolytic rearrangement of the frans- and the cis- tosylates 2.79 and 2.81
were investigated by heating them in buffered acetic acid. The results from these studies
are shown in Scheme 2-13. The frans-keto tosylate 2.79 gave the rearranged product 2.80
in 85% yield, a result comparable to the one obtained by Heathcock during the solvolysis
of 2.47 (Scheme 2-7). This was expected, as the trans-fused system is already rigid and
the additional methyl group at C4 does not affect the conformational equilibrium. The
solvolysis of the cis-keto tosylate 2.81 on the other hand, showed a marked increase in
the ratio of rearranged product to the elimination products, due to the difference in the
energies of the transition states leading to them. The rearranged product 2.82 was now

obtained in 38% yield when compared to the elimination product 2.83, isolated in 46%
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yield. To conclude, Yoshikoshi’s results showed that by judicious choice of groups on the
cis-fused hydronaphthalene skeleton, one can alter the energy of the transition states and

favor the hydroazulene formation.

Scheme 2-13. Yoshikoshi’s solvolytic rearrangement results
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2.1.4.4. Application to the synthesis of bulnesol and kessane

In contrast to Heathcock’s synthesis of bulnesol which relied on the rigidity of the
trans-decalin type system to effect the solvolytic rearrangement, Yoshikoshi’s approach
utilized the cis-fused system.” Yoshikoshi’s synthesis of bulnesol is shown in Scheme 2-
14. The synthesis commenced with the known acetoxy-ketone 2.84 obtained in two steps
from Wieland-Miescher ketone 2.65. This was transformed into the ester 2.85, in a series
of steps, which was eventually transformed into bulnesol 2.86, via its solvolytic
rearrangement. However, the yield of rearrangement product 2.86 was not mentioned and

Yoshikoshi’s discussion suggested that a mixture of products was obtained. Finally, an
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elegant application of this methodology to the synthesis of kessane 2.89 by Yoshikoshi,
relevant to our approach to englerin A, will be discussed.” Adapting a similar strategy,
starting with the B-epimer 2.87, kessane 2.89 was prepared by an intramolecular trapping

of the intermediate carbocation by the tertiary alcohol on the side chain.

Scheme 2-14. Yoshikoshi’s synthesis of bulnesol and kessane
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2.1.5. Summary

A novel guaiane sesquiterpene englerin A, containing trans-hydroazulene
skeleton was isolated in 2008. Preliminary analysis showed that, englerin A exhibited
1000-fold selectivity against 6 of the 8 renal cancer cell lines. Although the exact
mechanism of action is not clear at this time, future studies hopefully will be aimed at
understanding the site selectivity. Solvolytic Wagner-Meerwein rearrangement of

hydronaphthalene tosylates to hydroazulenes has found widespread use in sesquiterpenes
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synthesis. Its application to the total synthesis of hydroazulene natural products was

discussed.

2.1.6.

1.

9.

References

Ratnayake, R.; Covell, D.; Ransom, T.T.; Gustafson, K. R.; Beutler, J. A. Org.
Lett. 2008, 11, 57-60.

Knauseder, F.; Brandl, E. J. Antibiot. 1976, 29, 125.

Saito, N.; Kameyama, N.; Kubo, A. Tetrahedron 2000, 56, 9937.

Costantino, V.; Dell’Aversano, C.; Fattorsusso, E.; Mangno, A. Steroids 2000,
65, 138.

http://dtp.nci.nih.gov/dtpstandard/cancerscreeningdata/index.jsp.

Nuhn, P. Naturstoffchemie, 2. Auflage; S. Hirzel: Stuttgart, 1990, pg 481.
Croteau, R.; Johnson, M. A. In: Biosynthesis and Biodegradation of Wood
Compounds; Academic Press: New York, 1985; pp 379-439.

(a) Gonzalez, A. G.; Galindo, A.; Mansilla, H.; Palenzuela, J. A. Tetrahedron
Letters 1983, 24, 969-72. (b) Cordell, G. A. Chem. Rev. 1976, 76, 425-60. (¢)
Dewik, P. M.; Medicinal Natural Products: A Biosynthetic Approach. 3™ edition;
John Wiley & Sons; New York, 2009; pp 127-186.

Fraga, B. M. Nat. Prod. Rep. 2008, 25, 1180-1209; previous issues listed there in.

10. Cane, D. E. In: Biosynthesis of Isoprenoid Compounds (Porter, J. W.; Spurgeon,

S. L. eds.) Vol. 1; John wiley & Sons; New York, 1981; p 283.

11. Rodriguez-Concepcion. M.; Boronat. A.; Plant Physiol 130, 1079-1089.

55


http://dtp.nci,nih.gov/dtpstandard/cancerscreeningdata/index.jsp

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Torsell, K. B. G.; Natural Product Chemistry; John Wiley & Sons; Chichester,
1983; p 188.

(a) Hendrickson, J. B.; Tetrahedron 1959, 7, 82. (b) Parker, W.; Roberts, J. S.;
Ramage, R. Quart. Rev. 1967, 21, 311.

(a) Gandurin, A., Berichte, 1909, 41, 4359-4363; (b) Semmler, F. W., Mayer, W.
E., Berichte 1912, 45, 3384-3394.

(a) Heathcock, C. H., in The Total Synthesis of Natural Products, ApSimon, J.,
Ed., wiley: New York, 1973, Vol. 2, pp. 197-558; (b) Heathcock, C. H., Graham,
S. L., Pirrung, M. C., Plavac, F., White, C. T., in The Total Synhtesis of Natural
Products, ApSimon, J., Ed., Wiley: New York, 1983, Vol. 5; (c¢) Pirrung, M. C.,
Morehead, A. T., Jr., Young, B. C., in The Total Synthesis of Natural Products,
Goldsmith, D., Ed., Wiley: New York, 2000, Vol. 11.

Terpenes and Steroids, Specialist Periodical Reports, The Chemical
Society/Royal Society of Chemistry: London, 1970-1983, Vols.1-12.

Ho, T.-S., Carbocycle Construction in Terpene Synthesis. VCH: NY, 1988.
Hudlicky, T., Reed, J. W. in The way of Synthesis. Wiley-VCH: Weinheim, 2007.
Heathcock, C. H., Ratcliffe, R; Chem. Commun. 1968, 994.

Heathcock, C. H., Ratcliffe, R. J., Van, J. J. Org. Chem. 1972, 37, 1796.
Heathcock, C. H., Ratcliffe, R. J. Am. Chem. Soc. 1971, 93, 1746.

Kato, M., Kosugi, H., Yoshikoshi, A., J. Chem. Soc., Chem. Commun. 1970, 185-
186.

Kato, M., Kosugi, H., Yoshikoshi, A., J. Chem. Soc., Chem. Commun. 1970, 934.

56



2.2.  Results and Discussion
2.2.1. Our approach to Englerin A

Inspired by Heathcock’s and Yoshikoshi’s results, we envisioned a similar
strategy to construct the trans-hydroazulene framework in englerin A. Our retrosynthetic
analysis is outlined in Scheme 2-15. From the outset, englerin A was thought to arise
from the alkene 2.91, by a series of steps involving stereoseletive epoxidation to form the
epoxide 2.90, followed by transannular epoxide opening and cinnamate formation. At the
time of writing this thesis, total synthesis of englerin A was accomplished by
Christmann’s group' and a similar end game was utilized. The alkene 2.91, was in turn
envisioned to arise from the tosylate 2.92, via a hitherto unexplored tandem reaction
comprising of solvolytic Wagner-Meerwein rearrangement followed by an intramolecular
trapping of the in sifu generated carbocation by the neighboring ester. The stereochemical
aspects of this novel tandem reaction will be discussed in due course. Stereoselective
construction of the cis-hydronaphthalene 2.93, was realized to come from the diol 2.94.
The three stereocenters in the diol 2.94 would be set stereoselectively starting with (+)-

carvone, a widely used chiral starting material.”

Scheme 2-15. Retrosynthetic analysis of englerin A
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The stereochemical aspects of the key tandem reaction are shown in Scheme 2-16.
Analogous to the solvolytic studies by Yoshikoshi, we expect the solvolysis of the cis-
hydronaphthalene tosylate 2.92 to proceed via the more reactive conformer 2.96, in
which all the substituents are equatorial. The alternate transition state via the conformer
2.95 would be disfavored because of its higher energy. Migration of the antiperiplanar
carbon-carbon bond would form the tertiary carbocation 2.97, which we hope will be
trapped by the neighboring ester to form 2.98. Hydrolysis then furnishes trans-
hydroazulene 2.91 framework of englerin A. Noteworthy is the fact that the
stereochemistry of the tertiary alcohol in 2.91 is set by the chirality of the neighboring

ester during the course of this reaction.

Scheme 2-16. Proposed construction of the hydroazulene framework in englerin A
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The synthesis of kessane by Yoshikoshi (Scheme 2-14) served as a close
precedent for the viability of this methodology. It is pertinent to mention here that the

latter part of the hypothesis was inspired by the Woodward-Prevost reaction® depicted in

Scheme 2-17.

Scheme 2-17. Resemblance to Woodward-Prevost reaction

Woodward-Prevost Reaction
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The proposal for the stereoselective construction of the cis-decalin system also

deserves a comment. As discussed earlier, we envisioned its synthesis from (+)-carvone,
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by two related routes, namely, metal-catalyzed carbocyclization and the 6-exo-trig
carbocyclization via the free radical or anionic pathways. The stereochemical aspects of
the cyclozirconation to construct the cis-hydronaphthalene system will be discussed first.
A great deal of effort has been put into understanding the mechanism of the
cyclozirconation reaction by several research groups.! The general scheme for
cyclozirconation is depicted in Scheme 2-18. Carbocylization is usually effected by
treating the corresponding dienes with Cp,ZrCl, in presence of Bu;Mg in THF at 0 °C.
This reaction proceeds via the in situ generated zirconocene, which coordinates to the
olefins 2.109. Formation of the metallocycle 2.110 and ensuing acidic quench generates
the product 2.111 (Eq. 1). The use of conjugated dienes 2.112 is also tolerated and the

cyclozirconation produces the corresponding alkene 2.115 shown in (Eq. 2).
Scheme 2-18. General scheme for cyclozirconation of olefins
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Application of this reaction to the synthesis of natural products pertinent to this

project is shown in Scheme 2-19. Blechert and co-workers utilized cyclozirconation as
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the key step in the construction of (+)-trans-195A.° Interestingly, advanced intermediate

2.116 produced the trans-hydronaphthalene 2.118 instead of cis-hydronaphthalene.

Scheme 2-19. Application of cyclozirconation to the synthesis of (+)-trans-195A
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We envisioned a similar type of construction for the cis-hydronaphthalene diol
2.93 in the synthesis of englerin A. Scheme 2-20, depicts its construction using
cyclozirconation. In comparing our hypothesis with Blechert’s studies, we believe that in
our case, by constraining the diol as a cyclic acetal 2.119, the formation of the tetracyclic
[6.6.6.5] system with the cis junction between B, C and D rings 2.123, should be favored
over the alternate frans-tetracyclic compound 2.120, as a result of higher torsional and
ring strain associated with the latter. Acidic quench of the metallacycle 2.124 would then
furnish the tricylic compound 2.103 with the methyl group on C4 on the a-face of the

molecule.
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Scheme 2-20. Proposed carbocyclization via cyclozirconation
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The stereochemical aspects of the analogous 6-exo-trig carbocyclization via free
radical pathway will be discussed next. In this case as well, we believe by constraining
the diol as an acetal 2.125 (Scheme 2-21), formation of cis-hydronaphthalene would be
preferred over the frans. This is also reflected by the difference in energy of the transition
states. The transition state arising from the more reactive conformer 2.126 in which the
methyl group would assume the pseudo-equatorial position is expected to be lower in
energy compared to the alternate transition state leading to 2.129, which is plagued by the
1,3 diaxial interaction between the two methyl groups. With all these regio- and
stereochemical issues in mind, we embarked on developing a concise route to the

synthesis of the appropriate precursors from carvone.
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Scheme 2-21. Proposed 6-exo-trig carbocyclization via free radical pathway
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In 2008, Curtis Seizert, then an undergraduate student, initiated studies toward the

synthesis of englerin A. His plan was to use the cyclozirconation approach to construct

the cis-hydronaphthalene system as discussed above. As the absolute stereochemistry of

englerin A is not known, the less expensive R-(-)-carvone was chosen for our model

studies. The synthesis commenced with the tandem Michael-aldol sequence on R-(-)-

carvone initiated by the in situ generated phenyl selenide. Scheme 2-22, outlines the

synthetic route. Developed by Livinghouse,® this methodology has not been explored to

its fullest potential in the context of total synthesis of natural products. On the other hand,

the analogous phenylsulfide Michael-Aldol sequence has been utilized by Floreancig”

and Baran’® in the total synthesis of natural products. Proceeding with the synthesis, the
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sensitive B-hydroxy group in the aldol adduct 2.130, was protected as the MOM ether®
2.131, which was followed by the oxidation of the selenide with H,O, to generate the f3,y-
unsaturated compound 2.132. NaBH, reduction gave the secondary alcohol 2.133, in 90%
yield over three steps from the aldol adduct 2.130. The reader is referred to section
2.2.3.1 for the discussion of the stereochemical aspects of the above reaction sequence.
The monoprotected diol 2.133, was then transformed into a series of compounds, on
which the cyclozirconation was tested. Treating 2.133 with TMSOTTf afforded cyclic
acetal 2.134 in 62% yield.” At this juncture, the proposed scheme called for moving the
external double bond into conjugation. Based on literature precedents, base-catalyzed

. .. 10
reaction was deemed most promising.

Scheme 2-22. Synthesis of the monoprotected diol-triene
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Although the use of ~BuOK in DMSO resulted in the formation of 2.135, the
reaction was irreproducible. The conjugated diene 2.135 was eventually obtained by
using Bu'ONa in DMSO. Proceeding with the synthesis, the pivotal cyclozirconation was
then studied on all four model compounds. Unfortunately, all our attempts to
cyclozirconate these substrates under variety of conditions, did not produce the cyclized
products, instead, only decomposition was observed. Attempts to heat the reaction
mixture in hopes of cyclozirconation only led to decomposition. Scheme 2-23, depicts the

results of the cyclozirconation studies and the various conditions investigated.

Scheme 2-23. Failure of the cyclozirconation route
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followed by reflux
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With the failure of the cyclozirconation route, we sought to find alternate ways to

construct the cis-hydronaphthalene system. At this point, Curtis put his studies on hold
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and I took over the project and began investigating alternate ways to prepare the
advanced intermediate 2.125 (Scheme 2-21) in order to investigate carbocyclization via

free radical and anionic pathways.

2.2.3. My study
2.2.3.1. Synthesis of the carbocyclization precursor

The synthesis began with the preparation of the aldehyde building block 2.142
required for the aldol reaction. This was accomplished in three straightforward steps as
shown in Scheme 2-24. Reduction of the commercially available ketone 2.139 was
achieved with NaBH; to give alcohol 2.140 in 98% yield. After considerable
experimentation, pivalolyl protection showed promise and accordingly pivalate 2.141

was prepared. Ozonolysis furnished aldehyde 2.142 in 90% yield, over two steps.

Scheme 2-24. Preparation of the side chain aldehyde
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With access to aldehyde 2.142, we next focused our attention on the
stereoselective aldol reaction as shown in Scheme 2-25. This was achieved in one step,

following the in-house protocol developed by Curtis, for the cyclozirconation route.
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Michael addition of in situ generated dibutylaluminum phenylselenide to R-(-)-carvone,
produced the aluminum enolate 2.144, which was subsequently treated with the aldehyde
2.142 to afford the aldol adduct 2.146 in 53% yield. In this tandem one-pot reaction three
contiguous stereocenters were put in place with complete stereocontrol. The
stereochemistry during the Michael addition can be explained by an axial attack of the in
situ generated phenylselenide as shown in 2.143 followed by the stereoselective aldol
reaction proceeding via Zimmerman-Traxler transition state 2.146. We found -78 °C to
be the optimal temperature for this reaction and higher temperatures led to lower
diastereoselectivity and other side products. In any event, even though this reaction was
low yielding, we were able to scale it up and multigram quantities of the aldol adduct

2.146 were prepared.

Scheme 2-25. Highly stereoselective tandem Michael-aldol reaction on (-)-carvone
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The sensitive B-hydroxy aldehyde 2.146 was protected as the acetate 2.147, to
eliminate the possibility of retroaldol reaction, by treating it with acetic anhydride and
pyridine as illustrated in Scheme 2-26. B,y-unsaturation in 2.147 was then achieved in one

step by the in situ syn elimination of the selenoxide generated by the H,O, oxidation.

Scheme 2-26. Synthesis of the PMP-acetal 2.151
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Global reduction with LAH furnished the triol 2.149 in 75% yield. The
stereoselectivity observed during the LAH reduction can be explained via an axial attack
of the hydride. The conjugated triol 2.150 was obtained in 66% yield by using t-BuONa
in DMSO. Chemoselective protection of the 1,3-diol was achieved using PPTS and para-
methoxybenzaldehyde dimethylacetal to give 2.151. Due to the thermodynamic nature of
this reaction, 2.151 was obtained as the only compound, presumably with both the para-
methoxyphenyl group and the side chain containing the alcohol in the equatorial position,

as depicted in 2.152.

Scheme 2-27. Unanticipated problems during the preparation of the iodide 2.153
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Conversion of the secondary alcohol 2.151 to the iodide 2.153 was attempted
next. Unfortunately, treating 2.151 with PPh; and I, gave 2.153 in a moderate yield,

accompanied by the tetrahydrofuran compound 2.154 as an inseparable mixture of
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diastereomers. These results are shown in Scheme 2-27. The structure of the latter
compound was confirmed by an independent synthesis from the triol 2.150. In order to
eliminate the formation of this side product 2.154, we decided to use a more robust
protecting group. The use of benzaldehyde dimethylacetal instead of the para-
methoxybenzaldehyde acetal solved this problem. Scheme 2-28, depicts these efforts. In
this case as well, the reaction furnished only one compound 2.155, presumably with the
phenyl group and the side chain in the equatorial position. Smooth conversion to the
iodide 2.156 ensued, using the previously explored conditions. The more robust
benzaldehyde acetal protecting group, as expected, did not produce any of the undesired

tetrahydrofuran side products.

Scheme 2-28. Successful preparation of the iodide 2.156
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2.2.3.2. Carbocyclization under anionic conditions

Having successfully established a viable synthetic route to the cyclization
precursor, we then turned our attention to the key cyclization reaction to generate the cis-
hydronaphthalene system. To achieve this task, two modes of cyclization were
considered, namely anionic and free-radical cyclization. First, anionic mode of

cyclization was investigated. In contrast to the wealth of information available on the 5-
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exo-trig anionic carbocyclization to generate functionalized cyclopentanes,' '™ little is
known about the analogous 6-exo-trig cyclization, which is not particularly surprising, in
light of the slow cyclization rates to form six membered rings. However, it is not entirely

unprecedented. Detailed studies by Bailey'®'’

showed that these types of cyclization are
under equilibrium and often sluggish, but can be promoted by addition of Lewis bases
like TMEDA. Although there have been several reports speculating on the true
mechanism operating under these conditions, the possibility of a free-radical mechanism
was ruled out by Bailey et. al., when 2.157 did not cyclize under these conditions.
However, the unsubstituted alkene 2.158 cyclized in an excellent 89% yield. If the radical

mechanism were indeed operative, then one would expect the former substrate to undergo

carbocyclization faster due to the formation of the more stable tertiary radical.

Scheme 2-29. Carbocyclization under anionic conditions
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In our case, we hypothesized that, the formation of the more stable allyl anion
2.160 from the initially generated secondary carbanion 2.159 (Scheme 2-30), might
provide the driving force for the formation of the decalin system. With this in mind, we
began exploring the anionic carbocyclization using the conditions reported by Bailey'’

with the PMP-protected acetal-iodide 2.153.
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Scheme 2-30. Proposed carbocyclization under anionic conditions

Me

Accordingly, when 2.153 was subjected to halogen-metal exchange with 7-BuLi at
-78 °C in hexanes followed by addition of TMEDA, as shown in Scheme 2-31, a mixture
of compounds 2.162 and 2.163 were detected in the crude "H NMR. Unfortunately, the
cyclized product 2.161 was never observed. Bailey also observed formation such side
products via Wurtz-type coupling, reduction and elimination, during their studies with
secondary iodides.'” Changing the order of addition of reagents did not alter the outcome

of the reaction and products 2.162 and 2.163 via the elimination and reduction prevailed.
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Scheme 2-31. Failure of the anionic carbocyclization
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2.2.3.3. Carbocyclization under free-radical conditions

With the failure of the carbocyclization under anionic conditions, we began to
investigate the free-radical mode of cyclization. Due to the instability of the PMP
protected acetal-iodide 2.153 to silica, benzaldehyde protected acetal-iodide 2.156 was
chosen for subsequent studies. Submission of 2.156 to the standard free-radical
conditions using Bu;SnH and AIBN in benzene, effected a smooth cyclization to the
hydronaphthalene products 2.164 as a mixture of diastereomers along with the reduction
product 2.165. The results from this free-radical carbocyclization are shown in Scheme 2-
32. However, we were now faced with a new problem separating these compounds.
Fortunately, upon hydrolysis with TsOH the cyclized product was isolated as a 3.5:1
inseparable mixture of diastereomers 2.166 in 54% yield over two steps, along with the
reduction product 2.167 in 5% yield. It is noteworthy to mention here that this reaction

was surprisingly regiospecific and the regioisomeric alkene 2.168 was never isolated.
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Scheme 2-32. Attempted 6-exo-trig free radical carbocylization results
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Luckily, the major diastereomer 2.166a was partially separable and it formed the
basis for further studies toward the synthesis of the rearrangement precursor. As
discussed in the previous section, the stereochemistry of the ring junction and the newly
formed stereogenic center are critical for the solvolytic Wagner-Meerwein
rearrangement, for the stereoselective construction of the frans-hydroazulene skeleton of
Englerin A. Thus, we embarked on the structural elucidation of the major diastereomer
using NOE studies. Diagnostic NOE interactions for the major diastereomer are shown in

Scheme 2-33.
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Scheme 2-33. Diagnostic NOE interactions in the major diastereomer

should not ---=-"0
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A strong NOE interaction observed between Me;, and H,o suggested cis-fusion
between the rings. We next attempted to reconcile the experimentally observed NOE with
the expected diastereomer which would presumably exist in the conformation 2.169
where all the substituents are equatorial. Most of the observed diagnostic NOE
interactions for the major diastereomer 2.166a matched those predicted for 2.169, except
for the interaction between Me;, and Has. Due to the anti orientation between Me;, and Hy
NOE should not be observed. However, the other diastereomer which would presumably
exist in the conformation 2.170, accounted for all of the above observed NOE
interactions. In this case, due to the gauche orientation of Me;, and Ha, a strong NOE was
expected between them. This conclusion seemed rather surprising given that the
transition state leading to the formation of 2.170 would be plagued by 1,3-diaxial
interactions of Me;; and Mej, (See Scheme 2-21). Attempts to corroborate this structural
assignment based on the predicted multiplicity of H; were unsuccessful due to the
overlap of signals from H,. After much deliberation, we decided to continue with the
synthesis as planned hoping that we would be able to solve this structural ambiguity at a

later stage. Moreover, in the event that the structural assignment proved correct, the
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chemistry developed in the course of this study would potentially be useful for the minor

diastereomer as well.

2.2.3.4. Synthesis of the solvolytic precursor of the major diastereomer

Accordingly, chemoselective mono-protection of the major diastereomeric diol
2.166a, as the para-methoxybenzoate 2.171 was investigated. After considerable
experimentation, it was found that the treatment of 2.166a with two equivalents of
BuLi/THF at -78 °C, followed by the addition of para-methoxybenzoyl chloride
produced a mixture of compounds, from which the mono-protected para-
methoxybenzoate 2.171 was isolated in 44% yield (Scheme 2-34). In addition to 2.171,
bis-para-methoxybenzoate 2.173, and the mono para-methoxybenzoate 2.172 were
obtained in 33% and 5% yields respectively, along with the unreacted diol 2.166a in 13%
yield. The structure of the mono para-methoxybenzoate 2.171 was established
unambiguously from its single crystal X-ray structure (Scheme 2-35). The ORTEP
diagram of 2.171, showed that the molecule has a cis-fusion as expected from the NOE

studies, but more importantly, the methyl group Mey, is on the a face of the molecule.

Scheme 2-34. Chemoselective mono-protection of the major diastereomer
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In light of these results, two things needed to be addressed. First, the free-radical
cyclization clearly favored the formation of the diastereomer in which the methyl group
Me,, is on the a-face of the molecule. Although an exact rationale cannot be provided at
this moment, we speculate that the transition state leading to the other diastereomer
2.174, suffers from the allylic strain arising due to the steric interactions between the
methyl group Me;; and the Ho, as shown in Scheme 2-36. The alternate transition state, in
which the methyl group is pointed away from Hy 2.177, does not suffer from this steric
interaction and can account for the surprising diastereoselectivity observed during the
cyclization. To the best of our knowledge, this is the first example of a 6-exo-trig free

radical cyclization initiated from a secondary radical.

Scheme 2-35. X-ray crystal structure of the mono para-methoxybenzoate 2.171
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Scheme 2-36. Hypothetical transition state for the unexpected selectivity
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Secondly, the chemoselectivity during the mono-protection of the diol 2.166a,
with para-methoxybenzoyl chloride also deserves a comment. We observed that this
surprising selectivity eroded, on treating 2.171, with KHMDS at -78 °C, suggesting that it
is kinetic rather than thermodynamic in origin. In any event, having come thus far in the
project, and fully aware that the stereochemistry of the methyl group Me,; on the major
diastereomer, is not what we needed, we decided to continue as planned and investigate
the solvolytic rearrangement of the major diastereomer. To this end, the synthesis of the
tosylate 2.178 was accomplished, using KHMDS and TsCl in 75% yield, as shown in
Scheme 2-37. It should be mentioned that, to prevent the equilibration of the para-

methoxybenzoate 2.171, deprotonation was conducted in presence of excess TsCl. With
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the key precursor 2.178 at hand, solvolytic rearrangement of the tosylate was then

investigated under several sets of conditions.

Scheme 2-37. Tosylation of the para-methoxybenzoate of the major diastereomer

1. KHMDS

_ =

2. TsCl 75%

2.171

2.2.3.5. Solvolytic studies on the major diastereomer

Our first attempt in this connection, utilized 2,2,2-trifluoroethanol as the solvent
owing to its non-nucleophilicity and high dielectric constant. Heating 2.178 in
trifluoroethanol afforded an inseparable mixture of regioisomers 2.179 and 2.180,
differing in the position of the double bond as shown in Scheme 2-38. Similar products
were also observed by Heathcock and Yoshikoshi (discussed in section 2.1.4), during the
solvolytic studies. Next, the solvolysis in AcOH with varying amounts of AcOK was
attempted to understand the effect of the solvent on the rearrangement. However, under
these conditions, a mixture of compounds was obtained, from which a new compound
2.181 was isolated, arising presumably by the displacement of the axial tosylate by the
para-methoxybenzoate via 2.183. A plausible mechanism for the formation of these
products is shown in Scheme 2-39. In all the cases investigated, the rearranged product

was never observed.
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Scheme 2-38. Solvolytic rearrangement of the tosylate of the major diastereomer
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These results are not surprising in light of Heathcock and Yoshikoshi’s results,
because of the gauche relationship between the migrating carbon-carbon bond and the
leaving group in the more reactive conformer 2.183. Noteworthy is the observation that
longer reaction times led to decomposition of the starting material. We surmise that the
decomposition might be due to the competing solvolysis of the axial para-
methoxybenzoate, as the amount of para-methoxybenzoic acid isolated increased upon
continued heating in all cases. Although this study with the major diastereomer 2.166a,
did not lead to the skeletal rearrangement, we gained a great deal of information and

experience regarding the solvolytic rearrangement.
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Scheme 2-39. Proposed mechanism of formation of 2.152
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2.2.3.6. Synthesis of the solvolytic precursor of the minor diastereomer

At this juncture, isolation of the minor diastereomer in order to investigate its
transformation into the trans-hydroazulene skeleton of englerin A was our next objective.
Initial efforts in this regard explored the feasibility of mono-protection of the mixture of
diastereomeric diols 2.166a/b as the para-methoxybenzoates. When this mixture of diols
was subjected to the same monoprotection conditions explored before, four compounds
were isolated. Scheme 2-40 illustrates the results from this experiment. Fortunately, the
chemoselectivity observed during the monoprotection of the major diastereomer
prevailed in this case as well, and an inseparable mixture enriched with mono para-
methoxybenzoate of the minor diastereomer 2.187, contaminated with trace amounts of
impurities was obtained. The latter products were identified as bis-para-
methoxybenzoates 2.173 and 2.189, mono para-methoxybenzoates 2.172 and 2.188. The
chemoselectivity observed during the course of this monoprotection of the diol is
remarkable, as both the major and minor diastereomer underwent benzoylation on the

same hydroxyl group, despite the similar steric environment.

Scheme 2-40. Chemoselective mono protection of the mixture of diastereomeric diols

Ri~ R,
PHae2" g ue?
e 1.2 eqBuli S
Me 2. O>\ <:> Me -
OMe Y
H a H =
Me Me Me Me
2.166 a/b 2171 R;=PMBz,R,=H 2.187 R,=PMBz,R,=H
2172 R;=H,R,=PMBz 2.188 R;=H,R,=PMBz
2.173 R;= R,=PMBz 2.189 R;= R,=PMBz

82



Unfortunately, when 2.187 was subjected to tosylation only the starting material
was recovered. We suspect that this could probably due to the difference in sterics
between an axial and equatorial hydroxyl group. Mesylation on the other hand (Scheme
2-41) proceeded uneventfully with MsCl and Et;N'® at 0 °C to give pure 2.190 in 35%

yield.

Scheme 2-41. Mesylation of the para-methoxybenzoate of the minor diastereomer

PMBz« MBz <
o eQH PMBz

MsCl
Me
W Et3N, 35%
Me Me
2.187 2.190

Extensive NMR analysis confirmed the structure of this compound. The key NOE
interactions are shown in Scheme 2-42. Strong NOE between Me,, and Hg and Me;, and
Hj, indicate they are on the same side. Weak NOE between Me;, and Hy suggest they are
on the opposite side. A strong NOE was also observed between H;y and Me;;, H;o and H;

indicating the structural assignment so far for the minor diastereomer to be correct.

Scheme 2-42. Key NOE interactions in the minor diastereomer mesylate 2.190

PMBzO 12 OMs
Me=
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2.2.3.7. Solvolytic studies on the minor diastereomer

With access to the mesylate 2.190, we then eagerly proceeded to explore the
solvolysis of this substrate. Our enthusiasm was short lived, as heating 2.190 in AcOH
for 36 hours gave alkene 2.1940 in 75% yield along with 5% of the unreacted starting
material. Unfortunately, using milder solvolytic conditions (3M LiClO4/THF) also
furnished 2.194, albeit in lower yield (50%). Under no circumstances was the rearranged
product produced. It should be mentioned that in contrast to the short reaction times (1-3
hours) required for the solvolysis of 2.178 (Scheme 2-38), solvolysis of the mesylate
2.165 required 36 hrs. This could be due to the significant difference in the rates of
solvolysis of axial vs equatorial mesylates or tosylates. The results from these solvolytic

studies are shown in Scheme 2-43.

Scheme 2-43. Solvolysis of the tosylate of the minor diastereomer

PMBZ. AcOH H OMs

(or) PMBzO Me . H

3M LiCIO,/THF OMs PMBzO
~| H H -Me
50-75% Me H

M Me
€ Me
L Me H _
2.190 2.192 2.191

2.193 2.194
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This result came as a surprise to us, as in related studies by Yoshikoshi (Scheme
2-13) with 2.81, the rearranged hydroazulene product was isolated, albeit in a low yield
(38%). Comparing our results with Yoshikoshi’s, we suspect that this could be due to the
presence of the negative inductive effect of the para-methoxybenzoate at Ces. We
presume that it retards the skeletal rearrangement, by disfavoring the formation of the
carbocation on the vicinal carbon. Heathcock et. al. encountered a similar situation during
the solvolytic studies of 2.52 (Section 2.1.4.1), and invoked field effects due to the distal
carbonyl group, which explained the higher ratio of the elimination products to the
rearranged products. Unfortunately, further studies to understand the effect of the para-
methoxybenzoate on this skeletal rearrangement would require the synthesis of deoxy-
para-methoxybenzoate of 2.199, access to which is not straightforward from the present
route. Although a slight variation of the current scheme might lead to the synthesis of this
compound, the low yield of the minor diastereomer coupled with problems with its
separation from the major diastereomer, necessitates an alternate route toward the
9

construction of this material. Scheme 2-44 depicts an alternate route for its synthesis.'

Future studies along this line will address this issue.

Scheme 2-44. Proposed scheme to prepare deoxy-para-methoxybenzoate

O OAc OAc
Me Me: Me:
< - T S
- - -—— -————
: : —— - [
o EtO EtO
Wieland-Miescher 2.195 2.196 NMe;
ketone
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Me Me Me:
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T : T Me
o} o q i
Me Me Me Me
2.197 2.198 2.199

2.2.4. Summary

In summary, we have investigated a synthetic route to the antitumor natural
product Englerin A based on the proposed cationotropic shift/stereoselective cation
trapping tandem. Several key features from this study should be highlighted. The key
eudesmane intermediate en route to the guaiane skeleton was synthesized in seven steps
starting from the commercially available (-)-carvone. Its construction was achieved using
an unprecedented 6-exo-trig cyclization of a secondary radical producing, unfortunately,
the undesired diastereomer as the major compound. Contrary to our expectations, the key
solvolytic Wagner-Meerwein rearrangement of the cis-hydronaphthalene precursor to the
hydroazulene skeleton did not take place. However, the concept of solvolytic Wagner-
Meerwein rearrangement followed by intramolecular trapping of the in sifu generated

carbocation deserves further study in the context of other targets.
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Chapter 3: Experimental

General: All reagents were purchased and used as received from commercial sources,
unless otherwise specified. EM Science 60 F Silica Gel plates were used for monitoring
the reactions by thin layer chromatography (TLC) and ICN Ecochrom silica gel silica gel
(32-63 um) was used to conduct flash chromatography. Reactions requiring anhydrous
conditions were performed in vacuum heat-dried glassware under argon atmosphere. All
anhydrous solvents were distilled just before use. Anhydrous tetrahydrofuran was
obtained by distillation from sodium and benzophenone. Anhydrous dichloromethane
was obtained by distillation after drying with CaH,. '"H NMR spectra were recorded
using a Varian Unity Plus-300 NMR Spectrometer at 300 MHz, a Varian Unity Inova-
500 NMR Spectrometer at 500 MHz or a Varian Unity Inova-600 NMR Spectrometer at
600 MHz. “C NMR spectra were recorded using a Varian Unity Plus-300 NMR
Spectrometer at 75 MHz, a Varian Unity Inova-500 NMR Spectrometer at 125 MHz or a
Varian Unity Inova-600 NMR Spectrometer at 150 MHz. The chemical shifts were
reported as 6 values (ppm) relative to TMS. Infrared spectra were recorded on a Perkin-
Elmer Spectrophotometer Bx using think film technique and NaCl plates. High-resolution
mass spectral analyses were performed on a Kratos MS-50TA spectrometer using
Finnigan LCQ-Classic Ion-Trap mass spectrometer using electrospray ionization method
(ESI). Melting points were measured on a Thomas-Hoover capillary melting point

apparatus and were uncorrected.
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3.1 Supporting information for lomaiviticins A and B

3.1.1. Oxidation of 2,4-dimethyl phenol:

@)
OH 0 M
Me M Me- HG ©
NalO, € D
+ Me +
H,O
Me MeOH O
@]
2,4-dimethyIphenol 2,4-Dimethyl-para o-quinol/o-quinone 83
-benzoquinol Diels Alder dimer 1.

These compounds were prepared following the protocol by Adler' and is
reproduced here with the spectral data for the reader’s convenience. To a stirred solution
of 2,4-dimethyl-phenol (19.8 mL, 0.164 mol) in H,O (3.5 L) was added aqueous solution
of sodium meta-periodate (70 g, 0.327 mol). After stirring for 5 minutes, ethylene glycol
(18 mL, 0.322 mol) was added in order to reduce the excess periodate. A light-brown
amorphous precipitate (0.8 g) was removed by filtration and the orange-red solution was
repeatedly extracted with dichloromethane. The combined organic extracts were dried
over Na,SO,4 and concentrated under vacuum to leave a reddish-brown, partly crystalline

product from which three compounds were isolated.

2,4-Dimethyl-para-benzoquinol 3.1

The crude reaction product was treated with ether, in which a minor part of the product
dissolved. Concentration of the red ether extract gave a light-red crystalline solid, which
was recrystallised several times from benzene-hexane to afford 3.1 as colorless needles

and flat prisms, 10.61 g (47% yield).
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'H NMR (300 MHz, CDCL3) & 6.76-6.81 (dd, ] = 9.9 Hz, ] = 3 Hz, 1H), 6.58-6.60 (m, J =
1.5 Hz, 1H), 5.95-5.99 (d, J = 9.9 Hz, 1H), 1.78 (d, J = 1.5 Hz, 3H), 1.38 (s, 3H); ©*C

NMR (75 MHz, CDCl;) 6 186.59, 152.72, 148.43, 133.28, 126.68, 67.38, 26.94, 15.60.

Diels-Alder dimer 3.2

When the yellow alkaline extract obtained from the crude periodate oxidation product
was poured into excess acetic acid, a colorless substance precipitated. Slow neutralization
of the alkaline solution with acetic acid, however, produced a yellow crystalline product,
which after recrystallization from ethyl acetate gave 3.2 as colorless needles, 3.2 g (15%
yield)

'H NMR (300 MHz, CD;0D) & 6.99 (d, J = 1.2 Hz, 1H), 5.78-5.75 (dt, J = 6.3 Hz, ] =
1.8 Hz, 1H), 4.05 (d, J = 1.8 Hz, 1H), 3.10-3.08 (d, J = 6 Hz,1H), 1.83 (s, 3H), 1.39 (s,
3H), 1.36 (s, 3H); *C NMR (75 MHz, CD;OD) & 210.43, 185.38, 155.25, 147.60,
145.24, 137.71, 134.30, 121.24, 72.11, 59.21, 56.08, 55.44, 50.00, 45.41, 30.59, 25.39,

21.35, 15.88.

ortho-quinol dimer 1.83

The residue obtained from the ether extraction of the crude product was treated with 0.5N
aqueous NaOH (10 mL per 1 g of solids). The nearly white insoluble residue was filtered
off and washed with water. Recrystallization from benzene gave 1.83 as colorless prisms
1.77 g (16% yield)

'H NMR (500 MHz, DMSO) & 6.27-6.25(d, J = 10 Hz, 1H), 5.91-5.89 (d, J] = 10 Hz,

1H), 5.542 (br, 1H), 5.40-5.39 (dd, J = 3 Hz, 1H), 5.0 (br, 1H), 2.92 (s, 1H), 2.73-2.70 (d,
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J= 6.5 Hz, 1H), 2.69-2.69 (d, J = 1.5 Hz, 1H), 1.64 (s, 3H), 1.29 (s, 3H), 1.29 (s, 3H),
1.01 (s, 3H); 2*C NMR (125 MHz, DMSO) § 211.09, 201.33, 151.72, 145.22, 125.81,

121.74,73.29, 71.04, 59.08, 50.65, 48.25, 44.05, 32.58, 25.72, 24.60, 21.43.

3.1.2. Me3Sn- Michael adduct 1.84

@)
Me
Me HO
—_— Me3Sn ~
' Me
""OH
Me
O
1.84

To MegSn; (0.9 mL, 17.36 mmol) in THF (9 mL) at 0 °C, 1.35M BuLi (3.0 mL, 4.04
mmol) was added dropwise. After stirring for 20 minutes the reaction mixture was cooled
to -78 °C and 1.83 (300 mg, 1.086 mmol) in THF (20 ml) was added dropwise and
continued to stir for another 30 minutes at that temperature. After the consumption of the
starting material (check by TLC) the reaction was quenched with 1N HCI and the organic
phase was extracted with dichloromethane. The organic phase was washed with Brine,
dried over Na,;SQOy, filtered and concentrated under vacuum. Chromatography (Hexanes:
EthylAcetate-5:2) gave 1.84 as an off-white solid, 342 mg (70% yield).

'H NMR (300 MHz, CD;0D) & 5.58-5.61 (dt, J = 6.3 Hz, J = 1.5 Hz, 1H), 2.98-2.91 (dd,
J=13.5Hz, J = 6.9 Hz), 2.78-2.7 (m, 2H), 2.6-2.58 (d, ] = 6.3 Hz, 1H), 2.5-2.4 (dd, J =
18.1 Hz, J = 13.5 Hz, 2.21-2.20 (d, J = 1.2 Hz, 1H), 2.02 (d, J = 1.2 Hz, 1H), 1.27 (s, 3H),
1.26 (s, 3H), 0.97 (s, 3H), 0.13 (s, 3H); *C NMR (75 MHz, CD;OD) & 216.89, 215.28,

148.77, 118.92, 76.81, 72.64, 62.48, 53.40, 53.31, 50.00, 40.35, 30.79, 27.44, 25.04,
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23.10, 22.92, -8.98; IR (film, cm™) 3423, 2973, 2942, 1714; HRMS (ESI) m/z [(M+H)']

(C19H3004Sn) calculated 442.1166, found 442.1064; mp 170-172 °C.

3.1.3. tetra-ol 1.85

(@)
Me
HO NaBH,/MeOH

Me —_—— Me

MesSn N e 99% Me,Sh
“IOH Me
Me :
- Me
o OH
1.84 1.85

To 1.84 (32 mg, 0.073 mmol) in EtOH (0.8 mL) at 0 °C was added NaBH4 (6 mg, 0.145
mmol) portionwise. The reaction mixture was slowly warmed to room temperature and
stirred for 30 minutes at that temperature. At this time, the reaction mixture was
concentrated under vacuum and DCM (10 mL) was added. The organic phase was then
washed with water, dried over MgSQO4 and concentrated under vacuum to give 1.85 as an
off-white solid, 32 mg (99% yield).

'H NMR (600 MHz, CD;0D) & 5.62-5.49 (d, ] = 6.6 Hz, 1H), 3.87-3.84 (m, 1H), 3.36-
3.33 (m, 1H), 2.67 (s, 1H), 2.43-2.41 (dd, J = 3.6 Hz, 1H), 2.21 (s, 1H), 2.06-2.03 (dd,
1H, J = 13.2 Hz, 6 Hz, 1H), 1.89 (s, 1H), 1.93-1.86 (m, 1H), 1.79-1.74 (td, j = 13.8 Hz,
5.4 Hz, 1H), 1.36-1.16 (m, 2H), 1.33 (s, 3H), 1.27 (s, 3H), 1.26 (s, 3H), 0.08 (t, J = 25
Hz, 9H), 0.06 (d, J = 25 Hz, 1H); *C NMR (150 MHz, CD;OD) & 143.94, 126.23, 84.86,
83.19, 76.40, 74.33, 50.944, 50.17,49.22, 48.97, 48.72, 44.12, 34.25, 34.25, 32.86, 31.87,
28.58,26.63, 22.42, -8.84; IR (film, cm™) 3443, 3031, 2928; HRMS (ESI) m/z [(M+H)']

(C19H34048n) calculated 446.1479, found 446.1388; mp 280-282 °C.
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3.1.4. Dihydro-dimer 1.88

3 3
Me
Me. HO Me. HO Me
N H, Pd/C N
—_—
_ Me Me
""OH EtOAc, 96% "OH
[l Me [l Me
) 0
1.83 1.88

This compound was prepared following the protocol by Adler' and is reproduced here
with the spectral data for the reader’s convenience. To 1.83 (25 mg, 0.09 mmol) in
ethanol (2.5 mL) was added 5% Pd/C (50 mg) and stirred for 5 hours under H, at
atmospheric pressure. After the consumption of starting material (check by TLC) the
reaction mixture was filtered over celite. This was rinsed with ethyl acetate and the
filtrate was concentrated under vacuum to yield 1.88 as a white solid, 24 mg (95% yield).
'H NMR (500 MHz, CD;0D) & 5.70-5.68 (dt, ] = 6.6 Hz, 1.5 Hz, 1H), 3.31-3.30 (dd, J =
2.5 Hz, 2 Hz, 1H), 2.62-2.61 (d, J] = 6 Hz, 1H), 2.60-2.53 (m, 1H), 2.45-2.44 (d, 2Hz,
1H), 2.40-2.34 (q, J = 7 Hz, 1H), 2.36-2.33 (m, 1H), 1.86-1.85 ( d, J= 2 Hz,1H), 1.72-
1.69 (q, J = 7 Hz, 1H); ®*C NMR (125 MHz, CD;0D) & 215.14, 213.99, 146.98, 121.45,

76.88, 72.13, 62.53, 52.92, 51.20, 40.55, 35.22, 33.50, 29.27, 25.68, 24.92, 22.50.

3.1.5. tetrahydrofuran 1.89

\ \ Me
Me. HO Me Me. HORY |
e N l,/MeCN Me
—_—
Me
"/OH 75% o
[l Me [l Me
(@] (@]
1.88 1.89
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1.88 (300mg, 1.08 mmol), NaHCO; (370 mg, 4.4 mmol), lodine (550 mg, 2.2 mmol) in
acetonitrile (3 mL) were stirred at room temperature for 72 hrs. At this time saturated
Na,S,0; was added. The aqueous phase was washed successively with DCM and Et,0.
The combined organic extracts were dried and concentrated under vacuum.
Recystallization from MeCN gave 1.89 as a white solid, 245 mg (75% yield).

'H NMR (600 MHz, CD;0D) & 4.84-4.82 (d, J = 4.2 Hz, 1H), 2.73-2.72 (d, ] = 3Hz,
1H), 2.59-2.523 (td, J = 15.6 Hz, 4.8 Hz, 1H), 2.39-2.38 (d, J = 3Hz, 1H), 2.31-2.30 (d, J
= 3.6 Hz, 1H), 2.29-2.26 (m, 1H), 2.06-2.01 (t, J = 14.4 Hz, 1H), 1.62 (s, 3H), 1.50-1.48
(m, 1H), 1.47 (s, 3H), 1.21 (s, 3H), 1.16 (s, 3H); **C NMR (150 MHz, CD;0D) & 211.30,
208.40, 81.69, 79.03, 68.54, 63.31, 56.46, 49.49, 36.50, 35.03, 33.19, 32.19, 30.97, 29.07,
25.73,21.54; IR (film, cm™) 3432, 2937, 1722; HRMS (ESI) m/z [(M+H)"] (C16H,110,)

calculated 404.0485, found 404.0386; mp 240-242 °C.

3.1.6. TMS-enol ether 1.90 and unsaturated diketone 1.91

R \ 2
Me Me ‘Me
HO | LDA/TMSCI  m&MSO I Pd(OAc), \EMSO |
Me M
Me Me Me
MeCN
5 96% o e -
0,
Il Me Me 5% Il Me
o) OTMS o
1.89 1.90 1.91

TMS-enol ether 1.90: To THF (0.4 mL) under N, at 0 °C was added diisopropylamine
(0.04 mL, 0.28 mmol). n-BuLi (0.1 mL, 0.25 mmol) was added dropwise and stirred at
that temperature for 30 min. This was then cooled to -78 °C and TMSCI (0.07 mL, 0.5
mmol) was added dropwise and stirred for 30 min at that temperature. At this time 1.89

(40 mg, 0.1 mmol) in THF (1.0 mL) was added dropwise at -78 °C and stirred for another
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1 hr at that temperature. After the consumption of starting material (check by TLC) Et;N
(0.4 mL), saturated NaHCO; (3 mL) was added and quickly extracted with Et,0O (2x 15
mL) washed with H,O, 0.IN citric acid. The Et,0O layer was dried, filtered and
concentrated under vacuum to yield 1.90 as a colorless liquid, 52 mg (96% yield). This

compound was used without further purification in the next step.

Unsaturated diketone 1.91: The crude product from the above was subjected to saegusa
oxidation by stirring with Pd(OAc), (21mg, 0.091 mmol) in CH3CN (1.5 mL) under
argon atmosphere overnight. After the consumption of starting material (check by TLC)
the reaction mixture was filtered through celite. The filtrate was concentrated and DCM
was added. This was then washed with aqueous saturated NaHCOs3, dried over Na;SO4
and then concentrated under vacuum to yield 1.91 as an off-white solid, 32 mg (74%
yield).

'H NMR (300 MHz, CDCl3) 8 6.31-6.28 (d, J = 10.5 Hz, 1H), 6.13-6.09 (d, J = 10.5 Hz,
1H), 4.51-4.50 (d, 1H, J = 3.9 Hz, 1H), 2.86-2.85 (d, J = 3.6 Hz, 1H), 2.56-2.55 (d, J =
1Hz, 1H), 1.75 (s, 3H), 1.66 (s, 3H), 1.38 (s, 3H), 1.31 (s, 3H), 0.11 (s, 9H); *C NMR
(75 MHz, CDCls) ¢ 207.33, 194.32, 152.14, 125.77, 82.33, 76.81, 71.76, 62.57, 60.31,
51.67, 39.38, 32.63, 30.48, 29.05, 25.23, 21.03, 2.67; IR (film, cm™) 2958, 1745, 1689;
HRMS (ESI) m/z [(M+H)"] (CxH37104Si,) calculated 474.0723, found 474.0625; mp

130-135 °C.
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3.1.7. diacetate 1.94

1.83 1.94

This compound was prepared following the protocol by Adler' and is reproduced here
with the spectra data for the reader’s convenience. To 1.83 (200 mg, 1.085 mmol), 2M
Ac,0O/Ethyl Acetate/1.15% HCIO4 (3 mL) was added in one portion and stirred for 10
minutes. At this time, water was added and the reaction mixture was diluted with DCM.
The organic phase was washed with IN NaOH, water and filtered over Na;SOu,
concentrated and dried under vacuum to give 1.94 as white solid in 343 mg, (87% yield).

'H NMR (300 MHz, CDCls) § 6.05-6.01 (d, J = 10.2 Hz, 1H), 5.92-5.89 (d, 10.2 Hz,
1H), 5.50-5.47 (dt, J = 6.3 Hz, ] = 1.8 Hz, 1H), 3.5-3.49 (t, ] = 1.8 Hz, 1H), 3.02 (s, 1H),
2.80-2.78 (d, J = 6.3 Hz, 1H), 2.13 (s, 3H), 2.04 (s, 3H), 1.78 (s, 3H), 1.74-1.73 (d, J =
1.8 Hz, 3H), 1.49 (s, 3H), 1.36 (s, 3H); *C NMR (75 MHz, CDCls)  205.48, 194.36,
169.95, 149.44, 144.02, 127.28, 123.16, 82.87, 80.18, 58.92, 46.94, 46.89, 44.64, 27.13,

26.02, 22.04, 22.02, 21.75, 20.01.
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3.1.8. PhSe-diacetate 1.95

(PhSe),, NaBH,
then AcOH
» PhSe

90%

1.94 1.95

To (PhSe); (30 mg, 0.094 mmol) in EtOH (2 mL) at 0 °C, NaBH4 (8 mg, 0.190 mmol)
was added portionwise. After stirring for 15 minutes at that temperature, acetic acid (0.03
mL) was added and stirred for 10 more minutes. At this time, 1.94 (52 mg, 0.144 mmol)
in DCM (5 mL) was added and slowly warmed to room temperature and stirred for 3 hrs.
After completion of starting material (check by TLC), the reaction mixture was diluted
with DCM, quenched with 1N HCI and the organic phase was dried over Na,SO4 and
concentrated under vacuum. Chromatography (Hexanes: Ethyl Acetate-3:1) gave 1.95 as
a white solid, 44 mg (90% yield).

'H NMR (300 MHz, CDCl3) & 7.50-7.47 (dd, J = 7.5 Hz, J = 1.8 Hz, 2H), 7.28-7.20 (m,
3H), 5.27-5.23 (dt, J = 6.6 Hz, ] = 1.5 Hz, 1H), 3.99-9.92 (dd, J = 12.6 Hz, ] = 8.4 Hz,
1H), 3.84 (s, 1H), 3.39-3.37 (d, J = 6.6 Hz, 1H), 2.98-2.72 (dd, J = 1.8 Hz, 1H), 1.96 (s,
3H), 1.92-1.91 (d, J = 1.8 Hz, 3H), 1.60-1.59 (d, J = 1.5 Hz, 1H), 1.49 (s, 3H), 1.38 (s,
3H), 1.02 (s, 3H); *C NMR (75 MHz, CDCl;) § 205.27, 205, 169.99, 169.71, 154.16,
145.69, 135.11, 129.60, 128.48, 119.53, 83.83, 80.61, 57.57, 51.24, 47.41, 47.17, 45.57,
44.75, 23.31, 22.85, 22.04, 20.083, 19.67, 18.82; IR (film, cm™) 3032, 2943, 1738;
HRMS (ESI) m/z [(M+H)'] (CaH300¢Se) calculated 518.1208, found 518.1100; mp

178-180 °C.
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3.1.9. PhSe-tetra-ol 1.96

HO HMe
Me H
PhSe N
Me
"'OH
- Me
OH
1.95 1.96

To 1.95 (522 mg, 1.01 mmol) in THF (15 mL), IM DIBAL-H/THF (8.07 mL, 8.07
mmol) was added slowly at room temperature. After stirring for 1 hr, the reaction mixture
was cooled to 0 °C and diluted with Et,0O and quenched slowly with H,O (0.5 mL), 15%
NaOH (0.5 ml), stirred for 15 minutes and MgSO, was added and continued to stir for
another 15 minutes. Further dilution with Ethyl Acetate the reaction mixture was filtered
over celite and the filtrate concentrated. Recrystallization from acetonitrile gave 1.96 as a
white solid, 292 mg (66% yield).

'H NMR (300 MHz, CD;0D) & 7.56-7.50 (m, 2H), 7.25-7.21 (m, 3H), 5.20-5.17 (dt, J =
6.6 Hz, 1.5 Hz, 1H), 3.96-3.90 (dd, J = 10.8 Hz, 8.4 Hz, 1H), 2.78-2.74 (dd, J = 6.6 Hz, 3
Hz, 1H), 2.45-2.33 (m, 2H), 2.19-2.18 (d, J = 1.5 Hz, 1H), 1.99-1.89 (m, 1H), 1.78-1.77
(d, J=1.5 Hz, 3H), 1.30 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H); *C NMR (75 MHz, CD;0D)
0 143.19, 135.54, 132.05, 129.97, 128.04, 125.13, 75.58, 75.47, 73.82, 69.46, 51.79,
50.62, 50.28, 49.98, 49.60, 44.20, 39.26, 30.20, 26.17, 25.50, 22.77; IR (film, cm™);
HRMS (ESI) m/z [(M+H)"] (C22H3004Se) calculated 438.1309, found 438.1211; mp

195-198 °C.
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3.1.10. PhSe-triol 1.97

Ho- M Ve Ho.H "
e
Me G I,/EtOAC Me O "

PhSe N —————————»  PhSe e
Me 58%
"'OH o
: Me : Me
OH OH
1.96 1.97

To 1.96 (100mg, 0.23 mmol) in Ethyl Acetate (2 mL) was added NaHCO; (77 mg, 0.92
mmol) and I, (117 mg, 0.46 mmol) and heated at 40 °C for 24 hrs. At this time, the
reaction was quenched with saturated Na,S,03 and washed with water. The organic phase
was dried over MgSQO4 and concentrated under vacuum. Chromatography (DCM: MeOH-
10:1) gave 1.97 as a faint yellow color solid, 46 mg (58% yield) (66% BRSM).

'H NMR (300 MHz, CDCl3) & 7.57-7.53 (m, 2H), 7.32-7.26 (m, 3H), 4.89-4.87 (d, J =
4.2 Hz, 1H), 4.47 (s, br, 3H), 3.76-3.70 (dd, J = 13.2 Hz, 2.7 Hz, 1H), 3.64-3.61 (dd, J =
5.4 Hz, 4.8 Hz, 1H), 2.94 (s, 1H), 2.94-2.91 (d, ] = 6.9 Hz, 1H), 2.56-2.54 (d, J = 5.7 Hz,
1H), 2.44-2.42 (d, ] = 3.3 Hz, 1H), 2.04 (m, 3H), 1.71-1.62 (m, 1H), 1.61 (s, 3H), 1.47 (s,
3H), 1.46 (s, 3H), 1.24 (s, 3H); *C NMR (150 MHz, CDCl5) & 134.23, 130.48, 129.61,
127.75, 82.19, 77.75, 75.07, 72.55, 67.09, 55.30, 51.00, 47.06, 46.76, 44.38, 42.34, 38.07,
36.31, 33.32, 31.11, 28.50, 25.05; IR (film, cm™) 3367, 2928; HRMS (ESI) m/z

[(M+H) '] (C22Hxl04Se) calculated 564.0276, found 564.0169; mp 110-112 °C.

100



3.1.11. allyl alcohol-iodide 1.103

H HO—H
" eHOHo Me ve. HOY
PhSe Me H202/THF Me
g 0
1.97 1.103

To 1.97 (5 mg, 8.8 umol) in THF (3 mL), 30% H»0O, (0.2 mL) is added dropwise at 0 °C
and slowly warmed to room temperature and stirred for 2 hrs. At this time, saturated
NaHCOs is added and the organic phase is extracted with Ethyl Acetate, washed with
water, brine and dried over MgSQ,, concentrated under vacuum. Chromatography
(Hexanes: Ethyl Acetate-3:1) gave 1.103 as a colorless viscous liquid, 3.5 mg (98%
yield).

'H NMR (300 MHz, CDCls) & 5.65-5.61 (dd, J = 10.5 Hz, 1.8 Hz, 1H), 5.39-5.35 (dd, J =
10.5 Hz, 2.1 Hz, 1H), 4.67-4.66 (dd, J = 3.9 Hz, 0.9 Hz, 1H), 4.31-4.28 (dd, J = 6.9 Hz,
1.8 Hz, 1H), 3.91-3.86 (dt, J = 11.1 Hz, 2.4 Hz, 1H), 2.71 (s, 1H), 2.47-2.46 (d, J = 3.9
Hz, 1H), 2.45-2.42 (d, J = 7.2 Hz, 1H), 2.27-2.25 (d, J = 3.3 Hz, 1H), 2.11-2.07 (d, J =
11.4 Hz, 1H), 2.04 (s, 1H), 1.59 (s, 3H), 1.46 (s, 3H), 1.40 9s, 3H), 1.31(s, 3H); *C
NMR (75 MHz, CDCls) & 136.65, 127.01, 78.76, 74.31, 70.84, 67.04, 55.22, 51.13,
49.16, 43.66, 35.09, 33.62, 30.71, 29.88, 28.73, 25.07; IR (film, cm™) 3381, 2925;

HRMS (ESI) m/z [(M+H)'] (C16Ha3104) calculated 406.0641, found 406.0543.
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3.1.12. allyl alcohol 1.102

HO—H Ve HO— 1 Ve
Me- HO | Me. HO
Me  AIBN/BusSnH Me
0 0
> Me Z Me
OH OH
1.103 1.102

To 1.103 (10 mg, 0.025 mmol), BusSnH (66 pL, 0.25 mmol), AIBN (2 mg, 0.012 mmol)
and benzene (4 mL) was degassed and then heated to reflux for 2 hrs. After this time, the
reaction mixture is cooled to room temperature and concentrated under vacuum.
Chromatography (Hexanes: Ethyl Acetate-20:1) gave 1.102 as a colorless viscous liquid,
~7 mg (98% yield).

'"H NMR (500 MHz, CDCl3) & 5.52-5.50 (d, J = 10 Hz, 1H), 5.34-5.32 (dd, J= 10 Hz, 1.5
Hz, 1H), 3.88-3.85 (d, ] = 11 Hz, 1H), 3.43-3.41 (dd, J = 7 Hz, 1Hz, 1H), 2.62-2.61 (d, j
=6.5 Hz, 1H), 2.59 (s, 1H), 2.49-2.48 (d, J = 3Hz, 1H), 2.22-2.20 (d, J = 11 Hz, 1H), 2.20
(s, 1H), 1.85-1.82 (dd, J = 14.5 Hz, 4.5 Hz, 1H), 1.65 (s, 1H), 1.41 (s, 3H), 1.40 (s, 3H),
1.39-1.24 (m, 2H), 1.31 (s, 3H), 1.27 (s, 3H); *C NMR (125 MHz, CDCl3) & 137.48,
125.70, 78.75, 78.13, 77.03, 71.04, 67.83, 55.39, 49.42, 42.78, 42.38, 34.31, 30.83, 29.05,
28.27, 26.06; IR (film, cm™) 3379, 2960, 2926, 1670; HRMS (ESI) m/z [(M+H)']

(C16H2404) calculated 280.1675, found 280.1573.
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3.1.13. 2-methoxy-4-(tosylmethyl) phenol 1.108

OH OH

OMe TolSOsNa OMe

AcOH, H2804
96 %
OH Q Ts

_ Ts 3-S5« ) Me
Vanillyl O
alcohol 1.108

To vanillyl alcohol (2 g, 0.013 mmol) was added sodium para-toluenesulfinate (3.24 g),
3M AcOH (80 mL), concentrated H,SO4 (4 drops) and heated to reflux for 3 hrs, after
which it was cooled to 0 °C and then the precipitate was collected, dried under vacuum to
give 1.108 as a white solid, 6.8 g (90% yield).

'H NMR (300 MHz, CDCl3) & 7.53-7.50 9d, J = 7.8 Hz, 2H), 7.25-7.23 (d, ] = 7.8 Hz,
2H), 6.76-6.73 (dd, J = 8.1 Hz, 1.5 Hz, 1H), 6.64 (s, 1H), 6.47-6.45 (d, ] = 8.1 Hz, 1H),
5.75 (s, 1H), 3.77 (s, 3H), 2.41 (s, 3H); *C NMR (75 MHz, CDCl3) & 146.62, 146.30,
144.76, 135.10, 129.64, 128.84, 124.29, 119. 99, 114.47, 113.18, 62.84, 56.03, 21.75; IR
(film, cm™) 3422, 1597, 1519; HRMS (ESI) m/z [(M+H)"] (C;sH;604S) calculated

292.0769, found 292.0664; mp 165-168 °C.

3.1.14. MOB-dimer 1.110

oH h e i
PhI(OAc), OMe
MeOH OMe
—_—
Quant.
T
S L Ts =
1.108 1.109 1.110

To 1.108 (530 mg, 1.82 mmol) and PhI(OAc), (642 mg, 2.0 mmol) under anhydrous

MeOH (18 mL) was stirred overnight. After this time, the reaction mixture was
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concentrated under vacuum. Chromatography (Hexanes: Ethyl Acetate -1:1) gave 1.110
as a faint yellow color solid, 589 mg (99% yield).

'H NMR (300 MHz, CDCl3) & 7.82-7.80 (d, J = 8.1 Hz, 2H), 7.77-7.74 (d, ] = 8.1 Hz,
2H), 7.39-7.37 9d, J = 8.1 Hz, 2H0, 7.33-7.31 (d, J = 8.1 Hz, 2H), 7.06-7.03 (d, J = 10.5
Hz, 1HO, 6.01-5.97 (d, J = 10.5 Hz, 1H), 5.90-5.88 (d, ] = 6.3 Hz, 1H), 4.11-4.09 (d, J =
6.9 Hz, 1H), 3.77-3.67 (m, 3H), 3.31 (s, 3H), 3.29 (s, 3H), 3.28 (s, 3H), 3.21-3.16 (d, ] =
14.4 Hz, 1H), 3.06 (s, 3H), 3.03 (s, 3H), 2.73 (s, 1H), 2.46 (s, 3H), 2.43 (s, 3H); ©°C
NMR (75 MHz, CDCl3) & 200.15, 193.06, 147.11, 145.35, 144.88, 137.68, 136.24,
134.30, 130.44, 130.21, 129.77, 128.52, 127.92, 127.84, 98.04, 94.59, 62.79, 60.48,
55.57, 51.45, 50.12, 48.86, 47.50, 47.14, 44.81, 21.74; IR (film, cm™) 2945, 1740, 1707;
HRMS (ESI) m/z [(M+H)"] (C3,H36010S) calculated 644.1750, found 644.1657; mp

110-115 °C.

3.1.15. diol 1.111

HO
Ts H
Me OMe
NaBH 4/MeOH R
CeClg. 7 Hzo
v e
99% - O% Ts
OH
1.110 1.111

To 1.110 (100 mg, 0.155 mmol) and CeCl;.7H,O (116 mg, 0.30 mmol) in DCM (1 mL)
at 0 °C was added NaBHy (12 mg, 0.155 mmol). MeOH (1 mL) was added dropwise
slowly and the reaction was continued to stir for 3-4 hrs slowly warming to room

temperature. At this time the reaction mixture was concentrated and DCM was added and
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the filtered over celite. The filtrate was then concentrated to give 1.111 as a faint yellow
color solid, 100 mg (99% yield).

'H NMR (300 MHz, CDCl3) & 7.97-7.94 (d, J= 8.4 Hz, 2H), 7.94-7.91 (d, J = 8.4 Hz,
2H), 7.52-7.50 9d, J = 8.4 Hz, 2H), 7.50-7.47 (d, J = 8.4 Hz, 2H), 6.56-6.54 (d, J = 6.6
Hz, 1H), 6.01-5.96 (dd, ] = 9.9 Hz, 5.7 Hz, 1H), 5.47 (s, 1H), 4.39-4.35 (d, J = 13.5 Hz,
1H), 4.08 (s, br, 3H), 3.97 (s, 1H), 3.71 (s, 1H), 3.59-3.54 (d, J = 13.2 Hz, 1H), 3.48 (s,
3H), 3.43 9s, 3H), 3.22 (s, 3H), 3.17 (s, 3H), 3.07-3.06 (d, J = 3 Hz, 1H), 2.95 (s, 1H),
2.60 (2s, 6H), 2.35 (s, 1H); *C NMR (75 MHz, CDCl;) & 144.84, 144.50, 138.64,
137.25, 134.50, 131.94, 129.86, 128.50, 127.90, 127.67, 124.10, 101.61, 99.96, 71.69,
63.65, 63.21, 59.82, 48.83, 48.50, 46.96, 45.03, 43.40, 42.98, 40.12, 21.69; IR (film, cm’
") 3492, 2945, 1597; HRMS (ESI) m/z [(M+H)"] (C3,H40010S,) calculated 648.2063,

found 648.1965; mp 115-118 °C.

3.1.16. diketone 1.112

HO H HO_ H
Ts Ts
Me OMe @)
N 2N HCI, THF Q
—_—
Y O(RA\éle Ts Y O Ts
OH OH
1.111 1.112

To 1.111 (135 mg, 0.21 mmol) in THF (20 mL) was added 2N HCI (30 mL) dropwise at
0 °C. After warming to room temperature and stirred overnight, the organic phase was
extracted with Ethyl Acetate and washed with Brine, dried over MgSO4 and concentrated
under vacuum to give 1.112 as a colorless viscous liquid, 110 mg (~ 95% pure, 94%

yield). The crude product was taken to the next step without further purification.
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'H NMR (300 MHz, CDCl3) & 7.64-7.61 (d, J = 6.4 Hz, 2H), 7.60-7.58 (d, ] = 8.4 Hz,
2H), 7.27-7.25 (d, J = 6.4 Hz, 2H), 7.24-7.22 (d, ] = 6.4 Hz, 2H), 6.12-6.09 (d, J = 6.9 hz,
1H), 5.59 (s, 1H), 5.07-5.06 (d, J = 2.7 Hz, 1H), 3.99-3.94 (d, J = 13.8 Hz, 1H), 3.87-3.80
(m, 2H), 3.77-3.68 (m, 2H), 3.51-3.46 (m, 2H), 3.37-3.35 (m, 2H), 3.11 (s, 1H), 3.27-
3.20 (m, 1H), 3.02-2.89 (m, 1H), 2.36 (s, 3H), 2.34 (s, 3H); *C NMR (75 MHz, CDCl;)
§ 208.95, 205.42, 145.48, 145.22, 137.80, 135.60, 131.99, 131.71, 130.20, 129.91,
129.61, 128.45, 128.20, 127.75, 73.29, 70.09, 63.16, 61.44, 55.38, 51.59, 49.54, 47.34,

21.81; IR (film, cm™) 3417, 1643.

3.1.17. bis-acetonide

MeO~O
HO H Me 7<Ho Et
Ts o Ts
= EtMgClI
N —_— —
PPTS CeCly TgoH Ts
S0 Ts O\ﬁ
OH OMe |
1.112 1.115 1.116
PN
=
—_—
PPTS Ao
: Et
55% (3 Steps) O
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bis-MIP ether 1.115

To 1.112 (255 mg, 0.46 mmol) in CDCl; (2 mL), PPTS (16 mg, 0.063 mmol) and 2-
methoxy propene (0.3 mL, 3.145 mmol) was added in one shot and stirred for 15
minutes. The reaction mixture was quenched with saturated NaHCO; and extracted with
DCM. The organic layers were combined, dried over Na,SO4 and concentrated under
vacuum to give 1.115 as a pale yellow solid, 322 mg (~ 99% pure) in nearly quantitative
yield. No attempt was made to purify this material and it was used directly for the

subsequent reaction.

Diol 1.116

The crude product from the above step without purification was then subjected to the
nucleophilic addition. Anhydrous CeCl; (1 g, 4 mmol) purchased from Aldrich was
heated at 160 °C for 3 hours under vacuum and while it is hot fill the flask with argon and
cooled to 0 °C. Freshly distilled cold THF (10 mL) (addition of hot THF forms pebbles)
was added and stirred vigorously overnight. After cooling to 0 °C, 2M EtMgCl (2 mL,
0.46 mmol) was added dropwise and stirred for 2 hours at that temperature. At this time,
1.115 (322 mg, 0.46 mmol) in THF (2 mL) was added dropwise and stirred for another 3
hours at 0 °C. The reaction was quenched by addition of water and then the filtered. The
filtrate was then washed with brine, water and dried with Na,SO,, filtered and
concentrated under vacuum to give 1.116 as a white solid, 244 mg (70% yield). No
attempt was made to purify this material and it was used directly in the subsequent

reaction.
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Bis-acetonide 1.117

The crude product 1.116 from the above step (244 mg, 0.32 mmol) was dissolved in
CDCI; (1 mL) and 2-methoxy propene (0.2 mL, 2.09 mmol) and PPTS (80 mg, 0.32
mmol) was added and stirred for 30 minutes at room temperature. After this time, the
reaction mixture was quenched with addition of saturated NaHCO; and extracted with
DCM. The organic phase was extracted and washed with brine, water, dried over
Na,S0,, filtered and concentrated under vacuum. Chromatography (Hexanes: Ethyl
Acetate -3:1) gave 1.117 as a pale yellow solid, 179 mg (56% yield, over 3 steps).

'H NMR (600 MHz, CDCl3) & 7.84-7.82 (d, J = 8.4 Hz, 2H), 7.82-7.81 (d, J = 8.4 Hz,
2H), 7.43-7.42 (d, J = 8.4 Hz, 2H), 7.39-7.38 (d, J = 8.4 Hz, 2H), 6.45-6.43 (d, J = 7.8
Hz, 1H), 5.78-5.77 (d, J = 10.2 Hz, 1H), 5.46-5.44 (d, J = 9.6 Hz, 1H), 4.72-4.70 (d, ] =
13.8 Hz, 1H), 4.20-4.16 (d, J = 21.6 Hz, 1H), 4.16 (s, 1H), 4.03-4.01 (t, J = 4.2 Hz, 1H),
3.94-3.93 (d, J = 3.6 Hz, 1H), 3.76-3.74 (d, J = 16.8 Hz, 1H), 3.10-3.08 (d, J = 13.2 Hz,
1H), 2.82 (s, 1H), 2.63 (s, 1H), 2.53 (s, 3H), 2.51 (s, 3H), 2.07-2.02 (quintet, J = 6.6 Hz,
1H), 1.66-1.61 (quintet, J = 7.8 Hz, 1H), 1.56-1.48 (m, 2H), 1.53 (s, 3H), 1.45 (s, 3H),
1.42 (s, 3H), 1.42 (s, 3H), 1.05-1.03 (t, ] = 7.2 Hz, 3H), 1.02-1.00 (t, J = 7.2 Hz, 3H); °C
NMR (150 MHz, CDCl;) 6 144.85, 144.28, 139.20, 137.36, 135.37, 132.89, 130.03,
129.95, 129.68, 127.94, 127.71, 111.53, 108.32, 86.96, 84.80, 82.77, 76.62, 76.60, 64.18,
60.09, 45.49, 45.46, 44.55, 44.18, 40.55, 35.54, 32.61, 29.90, 29.09, 27.02, 26.82, 21.72,
21.68, 8.77, 7.10; IR (film, cm™) 2978, 2936, 1597; HRMS (ESI) m/z [(M+H)"]

(C33H4305S,) calculated 696.2791, found 696.2705; mp 118-120 °C.
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3.1.18. Reductive fragmentation conditions

1117 1.119

Procedure A:

1.117 (11.4 mg, 0.0163 mmol) and HMPA (0.04 mL, 0.228 mmol) were degassed and
IM Sml,/THF (0.57 mL, 0.574 mmol) was added dropwise. The reaction mixture was
stirred for 5 hours and quenched with water and extracted with DCM. The organic phase
was washed with IN HCI, water, dried over MgSOQs, filtered and concentrated under
vacuum. Chromatography (Hexanes: Ethyl Acetate-4:1) gave 1.119 as a colorless viscous

liquid, 6.1 mg (68% yield) as a mixture of inseparable regioisomers.

Procedure B:

IM Sml,/THF (0.57 mL, 0.574 mmol) was added to degassed HMPA (0.04 mL, 0.228
mmol). To this mixture 1.117 (11.4 mg, 0.0163 mmol) in THF (0.5 mL) was added
dropwise over 30 minutes and stirred at room temperature for 5 hours. After the
disappearance of the purple color, the reaction was quenched and worked up as above to

give 1.119 in nearly the same yield.

Procedure C:

To Naphthalene (1.28 g, 1 mmol) and Li (0.07 g, 1 mmol), THF (25 mL) was added

under argon atmosphere and sonicated for 3 hours. Titration of this solution was done
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with s-BuOH/Toluene following the literature procedure.” This solution was added
carefully and dropwise to 1.117 (11.4 mg, 0.0163 mmol) at -78 °C and stirred for another
5 hours. At this time the reaction mixture was quenched by addition of IN HCI and
extracted in to organic phase using DCM. Concentration under vacuum gave 1.119 in

lower yield (54%).

Alkene 1.119

'"H NMR (600 MHz, CDCls) 6 7.73-7.72 (d, T = 7.8 Hz, 2H), 7.65-7.63 (d, J = 9Hz, 2H),
7.23-7.22 (2d, J = 9 Hz, 4H), 5.82-5.80 9d, J = 10.2 Hz, 1H), 5.65-5.52 (d, J = 10.2 Hz,
1H), 5.54-5.52 (d, ] = 7.2 Hz, 1H), 5.41-5.40 (d, J = 10.2 Hz, 1H), 5.31-5.29 9d, J = 10.2
Hz, 1H), 4.84 (s, 1H), 4.71 (s, 1H), 4.61-4.59 9d, J = 13.8 Hz, 1H), 4.51-4.49 (d, J = 14.4
Hz, 1H), 4.00 (s, 1H), 3.90 (s, 1H), 3.87-3.86 (d, J = 4.2 Hz, 1H), 3.81-3.80 9d, J = 4.2
Hz, 1H), 3.26-3.24 (m, 1H), 2.92-2.89 (d, J = 13.2 Hz, 1H), 2.75 (s, 1H), 2.72 (s, 1H),
2.73-2.71 (d, J = 13.8 Hz, 1HO, 2.43-2.40 (dd, J = 16.8 Hz, 4.8 Hz, 1H), 2.42 (s, 1H),
2.35 (2s, 6H), 2.23 (s, 1H), 1.90-1.86 (m, 2H), 1.77-1.74 (d, J = 18 Hz, 1H), 1.68 (s, 3H),
1.60-1.55 (quintet, J = 6.6 Hz, 2H), 1.50 (s, 3H), 1.48-1.42 (quintet, J = 6.6 Hz, 2H), 1.40
(s, 3H), 1.38 (s, 3H), 1.37-1.29 (m, 2H), 1.33 (s, 3H), 1.29 (s, 3H), 1.21-1.11 (m, 2H),
1.14 (s, 3H), 1.11 (s, 3H); ®C NMR (600 MHz, CDCl3) & 145.46, 144.01, 143.92,
139.82, 139.35, 139.25, 133.42, 131.61, 129.57, 129.51, 129.46, 127.57, 127.53, 127.20,
123.48, 113.91, 111.26, 108.86, 108.48, 108.22, 87.09, 84.49, 84.03, 83.98, 83.61, 83.48,
77.23, 76.56, 64.38, 64.28, 44.97, 44.51, 44.27, 44.12, 40.52, 39.96, 38.37, 37.75, 35.74,

34.33, 32.80, 32.52, 29.65, 29.31, 29.11, 29.09, 28.34, 27.95, 27.02, 26.74, 26.44, 26.13,
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21.54, 21.53, 21.08, 8.45, 7.63, 7.18, 6.36; IR (film, cm™) 3018, 2984, 2936; HRMS

(EST) m/z [(M+H)'] (C3;H4206S) calculated 542.2702, found 542.2777.

3.1.19. phenol 1.114

OH OH
OMe BCl, OH
—_—
35%
Ts Ts
alcohol '

To 1.108 (133 mg, 0.455 mmol) in DCM (0.5 mL) at 0 °C was added 1M BBr; (0.91 mL,
0.91 mmol) dropwise. After stirring for 1 hour at that temperature, the reaction mixture
was quenched with water and the organic phase was extracted with DCM, dried over
Na,S0y and filtered and concentrated under vacuum. Chromatography (Hexanes: Ethyl
Acetate-1:2) gave 1.114 as a white solid, 44 mg (35% yield).

'H NMR (300 MHz, CD;0D) & 7.53-7.50 (d, J = 8.1 Hz, 2H), 7.33-7.30 (d, ] = 8.4 Hz,
2H), 6.58 (s, 1H), 6.61-6.59 (d, J = 8.1 Hz, 1H), 6.38-6.35 (dd, J = 8.4 Hz, 2.1 Hz, 1H),
4.88 (s, 1H), 4.26 (s, 2H), 2.40 (s, 3H); *C NMR (75 Hz, CD;OD) & 147.19, 146.39,
146.29, 136.62, 130.71, 129.85, 123.97, 120.96, 119.10, 116.20, 63.08, 21.67; IR (film,
cm™) 3384, 1597, 1520; HRMS (ESI) m/z [(M+H)"] (C14H1404S) calculated 278.0613,

found 278.0512; mp 180-182 °C.
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3.2 Supporting information for englerin A

3.2.1. 6-methylhept-5-en-2-yl pivalate 2.141

Me
_ PIVC, EN  M&__
Me ___ " ~°_ Me
Me  HO DMAP,97% Me  PivO
2.140 2.141

Trimethylacetyl chloride (18 mL, 0.146 mol) was added drop wise to a stirred solution of
6-methyl-5-hepten-2-ol 2.140 (20.05mL, 0.132 mol), triethylamine (28 mL, 0.2 mol) and
4-(dimethylamino) pyridine (1.61 g, 0.0132mol) in dichloromethane (130 mL) under
argon atmosphere. After the completion of reaction (monitored by TLC), the reaction
mixture was concentrated under vacuum. Diethylether (100 mL) and IN HCI (100 mL)
were added. The organic layer was further extracted with diethylether (2x 50 mL). The
combined organic extracts were washed with 1IN NaOH (60 mL) and H,O (60 mL) three
times and finally washed with brine. The organic phase was dried over MgSO,, filtered
and concentrated under vacuum to afford of 2.141 as colorless liquid, 27.19 g (97%
yield).

'H NMR (300 MHz, CDCls) & 5.12-5.06 (t, ] = 6.6 Hz, 1H), 4.91-4.81 (septet, J = 6.6
Hz, 1H), 2.07-1.96 (m, 2H), 1.67 (s, 3H), 1.64-1.40 (m, 2H), 1.58 (s, 3H), 1.18(s, br,
12H); **C NMR (75 MHz, CDCl3) & 178.16, 132.06, 123.75, 70.29, 38.84, 36.21, 27.29,
25.81, 24.17, 20.00, 17.68; IR (film, cm™) 2972, 2931, 1727; HRMS (ESI) m/z

[(M+H)'] (C13H240,) calculated 212.1776, found 213.1849.
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3.2.2. 5-oxopentan-2-yl pivalate 2.142

Me
__ O4 Me,S _
= Ywe O5MeS o=/ )

Me PivO 98% PivO
2.141 2.142

A solution of alkene 2.141 (42.594 g, 200.6 mmol) in MeOH (400 mL) was cooled to 0
°C in a brine/ice bath and bubbled with ozone while stirring vigorously. A thermometer
measuring the solution temperature was used to make sure the reaction mixture stayed
below 10 °C. Completion of the reaction was marked by disappearance of starting
material on TLC. When treatment with ozone was complete, the solution was kept cold
and added slowly (over approximately 20 min) to a refluxing solution of dimethyl sulfide
(40 mL, ~2.5 equiv) in MeOH (100 mL) by using positive pressure of nitrogen to force it
through a cannula of Teflon tube. The solution was refluxed for 3 hours and concentrated
in vacuo. The remaining liquid was dissolved in pentane (250 mL) and washed with
water (2x200 mL) followed by brine (100 mL). The organic layer was dried with MgSQO4
and concentrated to furnish 36.642 g of 2-(5-oxopentyl) pivalate 2.142 as a colorless
liquid, 36.58 g (98% yield).

'H NMR (300 MHz, CDCls) & 9.72-9.71 (t, J = 1.2 Hz, 1H), 4.89-4.79 (sextet, J = 6.6
Hz, 1H), 2.46-2.41 (t, ] = 7.2 Hz, 2H), 1.93-1.75 (m, 2H), 1.17-1.15 (d, J = 6.6 Hz, 3H),
1.12 (s, 3H); *C NMR (75 MHz, CDCl3) & 201.51, 178.12, 69.75, 40.09, 38.87, 28.25,
27.23, 19.96; IR (film, cm™) 2976, 2715, 1727; HRMS (ESI) m/z [(M+H)"] (C1oH;503)

calculated 186.1256, found 186.1148.
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3.2.3. Michael-Aldol adduct 2.146

o) o:/_>-|v|e ? me2

Me (PhSe) PivO

Me DIBAL-H 2142 Me

R-(-)-Carvone 2.146

',/SePh
OPiv
To a well stirred solution of PhSeSePh (13.84 g, 44.34 mmol) in THF (40 mL) at -78 °C
was added DIBAL-H (1.5M in toluene, 59 mL, 88.5 mmol). The yellow solution became
clear and (R)-carvone (15.2 mL, 97.0 mmol) was added over 20 minutes. The solution
was stirred for 90 minutes after the completion of the addition and 2-(5-oxopentyl)
pivalate 2.142 (13.63 g, 80.55 mmol) was added over 15 minutes. The solution was
stirred for 30 minutes at -78 °C and quenched by adding a solution of 1M HCI (100 mL)
and MeOH (50 mL) over 2 minutes without removing the cooling bath. When the
addition was complete, the reaction mixture was allowed to warm slowly to room
temperature and was diluted with Et,O (100 mL) and 1M HCI (100 mL). The organic
layer was separated and the aqueous layer extracted with CH,Cl, (3x50 mL). The
combined organic extracts were washed with brine (200 mL), dried with MgSO,, and
concentrated in vacuo. The resulting yellow oil was split into two equal portions, and
each portion was purified separately by flash column chromatography (silica gel, 2” dia x
7-8” h, step-up gradient elution with 500 mL each 19:1 hexanes-Et,0, 9:1 hexanes-Ethyl
Acetate, 17:3 hexanes-Ethyl Acetate, 4:1 hexanes-Ethyl Acetate, 3:1 hexanes-Ethyl
Acetate). The rapid execution of this step was necessary to obtain maximum yields, and
a maximum of 20 minutes was allowed between application of the sample to silica gel
and elution. As such, each column was run at its maximum flow rate, approximately 4

mL/s. To ensure that a minimum amount of time would elapse during the changing of
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the eluent, the required solutions were premixed before running the column. Evaporation
of the desired fractions furnished the pure Michael-aldol adduct 3.8 as yellow viscous oil
21.118 g (53% yield), which was stored in a refrigerator before use.

'H NMR (300 MHz, CDCl3) 8 7.56-7.54 (m, 2H), 7.30-7.25 (m, 3H), 4.99-4.88 (m, 1H),
4.77 (s, 1H), 4.66 (s, 1H), 4.21-4.08 (m, 1H), 3.82-3.78 (m, 1H), 2.90-2.80 (m, 1H), 2.70-
2.50 (m, 1H), 2.17-1.40 (m, 4H), 1.54 (s, 3H), 1.21-1.18 (s, br, 16H); *C NMR (75
MHz, CDCl;) 6 212.35, 212.24, 178.39, 178.30, 146.31, 135.23, 135.19, 129.37, 129.34,
128.97, 128.91, 128.14, 128.16, 111.21, 75.03, 74.16, 70.83, 69.84, 57.48, 57.42, 49.21,
49.17, 42.53, 42.45, 41.26, 38.79, 33.76, 32.91, 31.65, 31.45, 28.17, 27.67, 27.20, 21.11,
21.03, 20.15, 16.72, 16.59; IR (film, cm™) 3484, 2972, 1717, HRMS (ESI) m/z

[(M+H)'] (C26H3304Se) calculated 494.1935, found 495.2008.

3.2.4. PhSe-acetate 2.147

(@] OH O OAc
Me-=
: Ac,0, DMAP
—_—
Me > Me py, 99% Me " Me
SePh SePh
OPiv OPiv
2.146 2.147

Acetic anhydride (2.7 mL, 28.23 mmol) and pyridine (2.3 mL, 28.23 mmol) was added to
a stirred solution of aldol 2.146 (4.65 g, 9.41 mmol) and 4-(dimethylamino) pyridine (120
mg, 0.941 mmol) in dichloromethane (10mL) at room temperature. After stirring for 30
minutes the reaction was quenched by addition of water (10 mL). The aqueous layer was
extracted with dichloromethane (2x 10 mL) and the combined organic extracts were dried
over Na,SO, filtered and concentrated to yield acetate protected Michael-aldol adduct

2.147 as a yellow viscous liquid (5.26 g, 99% yield).
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'H NMR (300 MHz, CDCls) & 7.49-7.46 (dd, J = 7.5 Hz, 1.5 Hz, 2H), 7.25-7.16 (m, 3H),
5.67-5.58 (m, 1H), 4.93-4.90 (m, 1H), 4.79-4.75 (m, 1H), 4.69 (s, 1H), 4.63 (s, 1H), 3.74-
3.70 (dd, J = 7.8 Hz, 7.5 Hz, 1H), 2.86-2.81 (m, 1H), 2.76-2.66 (td, J = 15 Hz, 5.1 Hz,
1H), 2.37-2.29 (m, 1H), 2.37 (m, 6 H), 1.94 (s, 3H), 1.53-1.51 (d, J = 4.8 Hz, 3H), 1.19-
1.10 (s, br, 15H); C NMR (75 MHz, CDCl3) & 210.12, 210.05, 177.76, 177.68, 170.43,
170.38, 146.24, 146.22, 135.35, 135.32, 129.22, 129.19, 128.65, 128.58, 128.16, 128.13,
110.66, 74.93, 73.96, 69.97, 69.11, 56.14, 56.01, 49.87, 42.18, 42.09, 41.05, 40.91, 38.59,
32.86, 32.18, 30.76, 30.59, 27.03, 25.35, 25.01, 20.72, 20.69, 20.61, 20.39, 20.16, 19.95,
16.48, 16.37; IR (film, cm™) 2974, 1730, 1722; HRMS (ESI) m/z [(M+H)']

(C18H4005Se) calculated 536.2041, found 537.2113.

3.2.5. Keto-Diene 2.148

30% H,0,

——

Me  THF 83%

'SePh
OPiv
2.147 2.148

30% Hydrogen Peroxide (8 mL) was added drop wise to selenide 2.147 (5.26 g, 9.41
mmol) in tetrahydrofuran (30 mL) at room temperature. Stirring was continued until the
yellow color disappears (30 min). NaHCOs (5 g) was added and the reaction was refluxed
for 2-3 hours. The reaction mixture was poured in to water (20 mL) and diethylether (20
mL). The organic layer was extracted with diethylether (2x 20 mL). The combined
organic extracts were washed with brine and dried over MgSOQs,, filtered and concentrated

to yield keto-diene 3.10 as a pale yellow viscous liquid 3 g (83% yield).
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'H NMR (300 MHz, CDCl;) & 5.84-5.79 (dd, J = 10 Hz, 2.1 Hz, 1H), 5.61-5.57 (d, J = 10
Hz, 1H), 5.15-5.09 (t, J = 10Hz, 1H), 4.85-4.77 (sextet, ] = 7THz, 1H), 4.81 (s, 3H), 4.77
(s, 3H), 3.19-3.14 (dd, J = 7.5 Hz, 1H), 2.65-2.57 (m, 2H), 2.05 (s, 3H), 1.74 (s, 3H),
1.57-1.37 (m, 4H), 1.16 (s, br, 12H), 1.13-1.11 (d, J = 7 Hz, 3H); *C NMR (75 MHz,
CDCl3) § 211.51, 178.18, 170.79, 146.40, 132.02, 131.96, 130.89, 111.72, 77.39, 76.93,
70.29, 69.84, 52.50, 45.33, 42.98, 38.93, 32.92, 32.65, 27.36, 26.25, 26.11, 21.21, 20.76,
20.59, 20.09; IR (film, cm™) 2973, 1739, 1723; HRMS (ESI) m/z [(M+H)"] (C2,H3405)

calculated 378.2406, found 378.2302.

3.2.6. Diene-triol 2.149

O eC:)AC
: LAH, THF
B ———————
Me Me 75% Me
OPiv
2.148 2.149

To the keto-diene 2.148 (3 g, 7.93 mmol) in tetrahydrofuran (16 mL) at 0 °C under argon
was added LAH (32 mL, 7.93 mmol, IM) drop wise. The reaction was slowly warmed to
room temperature over 30 minutes and cooled to 0 °C. The reaction was diluted with
diethylether (20 mL) and was added water (0.7 mL), 15% NaOH (0.7 mL) and water (0.7
mL) in that order. The reaction was warmed to room temperature and stirred for 30
minutes and MgSO,4 was added. After stirring for 30 minutes, the crude was filtered. The
filtrate was concentrated under vacuum to yield diene-triol 2.149 as a faint yellow
viscous liquid, 1.54 g (75% yield).

'H NMR (300 MHz, CD;0D) & 5.58-5.57 (d, J = 10.2 Hz, 1H), 5.49-5.45 (dd, J = 10.2

Hz, 1.5 Hz, 1H), 3.99-3.91 (m, 1H), 3.84-3.74 (m, 2H), 3.06-3.00 (m, 1H), 2.05-1.76 (m,
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2H), 1.74 (s, 3H), 1.71-1.44 (m, 4H), 1.25-1.23 (s, br, 6H); *C NMR (75 MHz, CD;0D)
5 149.43, 134.93, 131.17, 110.94, 79.05, 77.55, 77.47, 68.91, 68.67, 46.11, 43.02, 37.37,
37.27, 34.47, 29.06, 28.74, 23.78, 23.74, 20.50, 19.60, 19.56; IR (film, cm™) 3296, 2962,

2928; HRMS (ESI) m/z [(M+H)'] (C15Ha405) calculated 254.1882, found 255.1987.

3.2.7. Conjugated diene-triol 2.150

OH OH
e:

Bu'ONa/DMSO

Me 66%

OH
2.149 2.150

To a stirred suspension of sodium fert-butoxide (3.2 g, 33.25 mmol) in DMSO (30 mL)
under argon diene-triol 2.149 (1.54 g, 6.05 mmol) in DMSO (5 mL) was added dropwise
at 0° C. The reaction was heated to 100° C overnight and then quenched carefully with
IN HCI. It was then extracted with ethylacetate (6x 30 mL) dried over MgSQOy, filtered
and concentrated under vacuum to yield crude conjugated diene-triol 2.150 as a colorless
viscous liquid, 1.01 g (66% yield).

'H NMR (300 MHz, CD;0D) & 6.43-6.39 (d, J = 10.2 Hz, 1H), 5.32-5.28 (d, J = 10.2 Hz,
1H), 3.78-3.69 (m, 3H), 2.66-2.65 (dd, J = 15.6 Hz, 4.5 Hz, 1H), 2.48-2.40 (dd, J = 15.6
Hz, 10.8 Hz, 1H), 1.78 (s, 3H), 1.76 (s, 3H), 1.73-1.33 (m, 4H), 1.61-1.15 (d, J = 6.9 Hz,
3H), 1.10 (s, 3H); *C NMR (75 MHz, CD;0D) & 132.75, 130.13, 127.40, 126.53, 77.59,
77.51, 77.33, 68.95, 68.67, 43.27, 37.49, 37.35, 33.30, 29.24, 28.97, 23.80, 21.09, 20.08,
20.06, 20.01; IR (film, cm™) 3337, 3031, 2964, 1636; HRMS (ESI) m/z [(M+H)]

(C15sH2603) calculated 254.1882, found 254.1775.
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3.2.8. PMP-acetal 2.151

OMe
Meo@—<
OMe
PPTS

PMP :é‘QOMe

2.150 60% 2.151

To the conjugated diene-triol 2.150 (571 mg, 2.25 mmol), para-anisaldehyde dimethyl
acetal (0.8 mL, 4.41 mmol) and pyridinium p-toluenesulfonate (60 mg, 0.225mmol) were
stirred in dichloromethane (2.5mL) overnight. The reaction mixture was washed with
saturated NaHCOs (10 mL), water (10 mL), dried over Na,SQy, filtered and concentrated
under vacuum. The crude product was chromatographed (Hexanes: EthylAcetate-6:1) to
yield PMP acetal 2.151 as a colorless viscous liquid, 497 mg (60% yield).

'"H NMR (300 MHz, CDCls) & 7.46-7.43 (d, J = 8.4 Hz, 2H), 6.90-8.87 (d, ] = 8.4 Hz,
2H), 6.45-6.42 (d, J = 7.8 Hz, 2H), 5.92 (s, 1H), 5.32-5.29 (d, J = 7.8 Hz, 2H), 3.92-3.86
(m, 2H), 3.77 (s, 3H), 3.70-3.72 (m, 1H), 3.07-2.98 (dd, J = 13.5 Hz, 1H), 2.71-2.65 (dd,
J =14.7 Hz, 5.1 Hz, 1H), 1.80 (s, 3H), 1.78 (s, 3H), 1.70-1.38 (m, 4H), 1.32 (s, 3H),
1.14-1.12 (d, J = 6 Hz, 3H); *C NMR (75 MHz, CDCls) § 160.02, 159.96, 131.52,
131.32, 130.60, 130.50, 130.13, 130.00, 127.63, 127.56, 126.36, 126.30, 126.04, 126.00,
113.72,95.11, 95.01, 80.34, 80.27, 79.35, 67.99, 67.50, 55.30, 37.56, 36.76, 36.47, 26.17,
26.13, 26.10, 25.49, 23.54, 20.92, 20.45, 20.01; IR (film, cm™) 3412, 2962, 1614, 1516;

HRMS (ESI) m/z [(M+H)+] (Cy3H3,04) calculated 372.2301, found 372.2197.
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3.2.9. PMP-acetal-iodide 2.153

Me

OH

2.151 2.153

2.151 (93 mg, 0.26 mmol), triphenylphosphine (106 mg, 0.27 mmol) and imidazole (55
mg, 0.27 mmol) in dichloromethane (1.0 mL) was cooled to 0 °C and iodine (137 mg,
0.27 mmol) was slowly added under argon. After 15 minutes the reaction was quenched
with Na,S,03;. The reaction mixture was extracted with dichloromethane and washed
with water, brine, dried over Na,SO,, filtered and concentrated under vacuum. The crude
product was chromatographed (Hexanes: EthylAcetate-25:1) to yield the iodide 2.153 as
a faint yellow viscous liquid, 82 mg (68% yield) and tetrahydrofuran 2.154 18 mg, (30%
yield).

'"H NMR (500 MHz, CDCls) & 7.48-7.46 (d, J = 8.5 Hz, 2H), 6.92-6.91 (d, ] = 8.5 Hz,
2H), 6.48-6.46 (d, ] =9.5 Hz, 1H), 5.91 (s, 1H), 5.37-5.33 (dd, J = 9.5 Hz, 1H), 4.24-4.12
(m, 1H), 3.95-3.86 (m, 2H), 3.81 (s, 3H), 3.06-3.01 (t, J = 14 Hz, 1H), 2.14-2.08 (m, 2H),
1.93-1.91 (t, J = 6 Hz, 3H), 1.83 (s, 3H), 1.80 (s, 3H), 1.79-1.53 (m, 4H), 1.35 (s, 3H);
BC NMR (125 MHz, CDCl3) & 160.09, 160.06, 131.65, 130.51, 130.33, 130.30, 127.70,
127.66, 126.53, 126.09, 113.82, 113.79, 95.16, 95.09, 79.68, 79.44, 78.99, 55.48, 40.32,
39.67, 37.62, 34.82, 31.41, 30.54, 30.20, 29.47, 29.36, 28.90, 26.28, 26.29, 21.06, 20.66,
20.63, 20.17, 20.13, 14.32; IR (film, cm™) 3028, 2915, 1614, 1516; HRMS (ESI) m/z

[(M+H)"] (C23H3,103) calculated 482.1318, found 482.1388.
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3.2.10. tetrahydrofuran 2.154

2.150 2.154

2.150 (130 mg, 0.47 mmol), triphenylphosphine (135 mg, 0.47 mmol) and imidazole (155
mg, 0.47 mmol) in dichloromethane (1.5 mL) was cooled to 0 °C and iodine (36 mg, 0.47
mmol) was added in one portion under argon. After 45 minutes the reaction was
quenched with Na,;S,0;. The reaction mixture was extracted with dichloromethane and
washed with water, brine, dried over Na,SQy, filtered and concentrated under vacuum.
The crude product was chromatographed (Hexanes, Hexanes: EthylAcetate-25:1) to yield
the iodide furan 2.154 as yellow colored viscous liquid, 83 mg (75% yield).

'H NMR (500 MHz, CDCl3) & 6.43-6.37 (2d, J = 10.2 Hz, 2H), 5.27-5.19 (2d, J = 10.2
Hz, 2H), 4.31-4.28 (d, J = 8 Hz, 1H), 4.25-4.23 (d, J = 10 Hz, 1H), 4.20-4.08 (m, 2H),
4.03-3.93 (m, 2H), 3.75-3.62 (m, 2H), 2.71-2.59 (td, J = 15.3 Hz, 4.8 Hz, 2H), 2.47-2.32
(m, 2H), 2.05-1.81 (m, 6H), 1.77 (s, 3H), 1.74 (s, 3H), 1.47-1.33 (m, 2H), 1.22-1.20 (2d,
J=6Hz, 6H), 1.09 (s, 3H), 1.07 (s, 3H); *C NMR (125 MHz, CDCl3) & 131.09, 130.93,
130.19, 130.09, 128.54, 126.68, 126.38, 126.26, 126.14, 83.71, 82.39, 77.74, 76.82,
76.15, 76.12, 75.39, 42.00, 41.46, 33.62, 32.98, 32.81, 32.51, 28.04, 26.52, 21.63, 21.27,
21.14,20.15,20.12, 19.92, 19.51; IR (film, cm™) 3490, 3028, 2873, 1636; HRMS (ESI)

m/z [(M+H)'] (C1sH240,) calculated 236.1776, found 236.1669.
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3.2.11. Ph-acetal 2.156

Ph
PhCH,(OMe), P
TsOH.H,0
Me 90%
OH
2.150 2.155

To 2.150 (571 mg, 2.25 mmol), benzaldehyde dimethylacetal (0.66 mL, 4.41 mmol) and
para-toluenesulfonic acid monohydrate (171 mg, 0.9 mmol) were stirred in
dichloromethane (2.5 mL) overnight. The reaction mixture was washed with saturated
NaHCO; (10 mL), water (10 mL), dried over Na,SO,, filtered and concentrated under
vacuum. The crude product was chromatographed (Hexanes: Ethylacetate-10:1) to yield
benzaldehyde-acetal 2.155 as a yellow colored viscous liquid, 693 mg (90% yield).

'"H NMR (300 MHz, CDCl3)  7.58-7.56 (d, J = 7.5 Hz, 2H), 7.42-7.35 (m, 3H), 6.51-
6.46 (d, J =10.2 Hz, 1H), 6.00 (s, 1H), 5.38-5.34 (d, J = 10.2 Hz, 2H), 3.99-3.90 (m, 2H),
3.74-3.68 (m, 1H), 3.13-3.04 (dd, J = 14.1 Hz, 1H), 2.77-2.64 (dd, J = 14.1 Hz, 5.4 Hz),
1.85 (s, 3H), 1.83 (s, 3H), 1.78-1.42 (m, 4H), 1.38 (s, 3H), 1.16-1.14 (d, J = 6.3 Hz, 3H);
BC NMR (75 MHz, CDCl;) 5 138.88, 138.74, 130.43, 130.35, 129.91, 129.81, 128.70,
128.66, 128.15, 126.23, 126.17, 125.89, 125.86, 95.07, 94.99, 80.17, 80.12, 79.22, 67.60,
67.33, 37.48, 36.36, 36.23, 26.00, 25.74, 25.42, 23.41, 23.37, 20.80, 20.35, 19.89; IR
(film, cm™) 3400, 3064, 2858; HRMS (ESI) m/z [(M+H)"] (CxH300s3) calculated

342.2195, found 342.2095.
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3.2.12. Ph-acetal-iodide 2.156

PPhg, I,
Im. 78%

2.155 2.156

2.155 (2.45 g, 7.173 mmol), triphenylphosphine (1.975 g, 8.61 mmol) and imidazole
(1.02 g, 15.06 mmol) in dichloromethane (14.0 mL) was cooled to 0 °C and iodine (2.73
g, 10.75 mmol) was slowly added under argon. After 15 minutes the reaction was
quenched with Na;S,0;. The reaction mixture was extracted with dichloromethane and
washed with water, brine, dried over Na,SQ,, filtered and concentrated under vacuum.
The crude product was chromatographed (Hexanes then Hexanes: EthylAcetate-25:1) to
yield the iodide 2.156 as yellow viscous oil, 2.54 g (78% yield).

'H NMR (300 MHz, CDCls) & 7.61-7.58 (d, J = 7.5 Hz, 2H), 7.47-7.40 (m, 3H), 6.55-
6.51 (d, J=10.2 Hz, 1H), 6.01 (s, 1H), 5.43-5.38 (d, J = 10.2 Hz, 1H), 4.31-4.16 (m, 1H),
4.02-3.93 (m, 2H), 3.14-3.05 (t, J = 14.1 Hz, 1H), 2.80-2.73 (dd, J = 14.1 Hz, 5.1 Hz,
1H), 1.99-1.96 (m, 3H), 1.88 (s, 3H), 1.86 (s, 3H), 2.22-1.60 (m, 4H); *C NMR (75
MHz, CDCl3) 6 139.09, 130.43, 130.32, 128.92, 128.88, 128.42, 128.39, 126.54, 126.40,
126.36, 126.04, 95.28, 95.18, 79.73, 79.44, 79.03, 40.30, 39.64, 37.64, 31.27, 30.48,
30.10, 29.84, 29.54, 29.32, 28.89, 26.24, 21.06, 20.64, 20.62, 20.16; IR (film, cm™) 3064,
2916, 2857; HRMS (ESI) m/z [(M+H)'] (CHI0,) calculated 452.1212, found

452.1266.
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3.2.13. Carbocyclization under anionic conditions

1.

PMP )
- a.2eqt-BuLi
o b. 2 eq of TMEDA
Me> (or) _
a. 2 eq of TMEDA
b. 2 eq t-BulLi
2.153 2.162 X =CH=CH,

2.163 X:CH2CH3

To 2.153 (35 mg, 0.0725 mmol) in THF (0.3 mL) was added #BuLi (0.13 mL,
0.218 mmol) in one portion at -78 °C and stirred for 15 minutes at that
temperature. The reaction mixture was quenched by careful addition of H,O

dropwise and extracted with DCM, dried over Na,SO,, filtered and concentrated

under vacuum. Crude '"H NMR indicated 2.162 and 2.163 in 1:3 ratio.

To degassed TMEDA (70 uL, 0.155 mmol) was added #-BuLi (0.28 mL, 0.155
mmol) in one portion at -78 °C. To this was added 2.153 (75 mg, 0.155 mmol),
Et,O (1.55 mL) at that temperature dropwise. The reaction mixture was slowly
warmed to room temperature and continued stirring for another 45 minutes to 3
hours, after which the reaction was quenched by addition of H,O, followed by

workup as above. Crude "H NMR indicated a similar ratio of compounds.

To 2.153 (75 mg, 0.155 mmol) and Et,O (1.55 mL) at -78 °C was added #-BuLi
(0.28 mL, 0.155 mmol) dropwise. To this was added degassed TMEDA (70 uL,

0.155 mmol) at the same temperature and continued stirring for another 4 hours

124



slowly warming to room temperature. The reaction was quenched and worked up

as above to give the same result.

3.2.14. Free Radical cyclization procedure:

1. BugSnH/AIBN

PhH/reflux
_
2.TsOH.H,O
MeOH/H,0O
2 156 2.166 a major 2167
2.166 b minor
2.166 a/lb = 3.5

Bus;SnH (1.4 mL, 5.18 mmol), AIBN (142 mg, 0.86 mmol) and 2.156 (1.954 g, 4.321
mmol) in benzene (430 mL) were degassed by freeze-pump-thaw (3x). This was then
heated to reflux for 1.5 hrs and additional AIBN (284 mg, 1.73 mmol) was added
gradually in four portions over 1 hour. After refluxing overnight, benzene was removed
by concentrating under vacuum. TsOH.H,O (150 mg), DCM (10 mL), H,O (25 mL) and
MeOH (15 mL) were added and refluxed overnight. The reaction mixture was extracted
with DCM, dried over Na,SO,, filtered and concentrated under vacuum. The crude
product was chromatographed (Hexanes: Ethyl Acetate-6:1) gave 2.167 as viscous
colorless liquid, 35 mg (~ 4% yield) and 2.166 a/b as a viscous liquid, 560 mg (54%
yield) as a 3.5:1 mixture of diastereomers. (After the separation on silica the major

diastereomer was isolated 291 mg along with 203 mg of the mixture of diastereomers).
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Mixture of diols 2.166 a/b

'"H NMR (300 MHz, CD;0D) & 5.28 (s, 1H), 5.02 (s, 2.4H), 3.95-3.87 (m, 3.6H), 3.63-
3.55 (m, 3.42H), 2.41-1.37 (m, 35H), 1.21 (s, 9H), 1.19-1.16 (m, 12H), 1.04-0.96 (m,
26H); *C NMR (75 MHz, CD;OD) § 141.88, 140.35, 125.10, 116.58, 77.54, 77.12,
70.52, 69.44, 49.10, 47.62, 40.63, 40.09, 34.95, 34.71, 34.53, 32.24, 31.66, 30.35, 29.75,
28.41,26.40, 25.44,21.96, 21.57,21.17,21.09, 19.19, 17.87, 15.79; IR (film, cm™") 3349,
2956, 2845; HRMS (ESI) m/z [(M+H)"] (CisHx0,) calculated 238.1933, found

238.1833.

Major diastereomer diol 2.166a

OI—}\:AeC?)H

Me

¥

le-

Me

e

'H NMR (300 MHz, CDCl;) & 4.92 (s, 1H), 3.95-3.88 (dt, J = 10.8 Hz, 3.3 Hz, 1H),
3.66-3.58 (dt, J = 99.9 Hz, 6.3 Hz, 1H), 3.28-3.26 (d, ] = 6.3 Hz, 1H), 3.09-3.08 (d, J =
2.7 Hz, 1H), 2.34-2.27 (dd, J = 16.8 Hz, 4.8 Hz, 1H), 2.19-2.10 (m, 2H), 2.01 (s, 1H),
1.79-1.77 (m, 1H), 1.73-1.30 (m, 3H), 1.24 (s, 3H), 1.17-1.14 (d, J = 7.8 Hz, 3H), 0.98-
0.96 (d, J = 6.9 Hz, 3H); *C NMR (75 MHz, CD;0D) & 140.49, 125.26, 70.71, 49.25,
40.31, 34.85, 34.67, 31.81, 26.55, 25.69, 22.09, 21.70, 21.24, 17.94; IR (film, cm™) 3337,
2931, 2872; HRMS (ESI) m/z [(M+H)] (CisHy60,) calculated 238.1933, found

238.1833.
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Reduction product 2.167

'H NMR (300 MHz, CDCl;) & 6.45-6.42 (d, J = 11 Hz, 1H), 5.36-5.32 (d, J = 11 Hz,
1H), 3.89-3.83 (dd, J = 12 Hz, 5.8 Hz, 1H), 3.74-3.71 (d, J = 10.5 Hz, 1H), 3.01 (s, 1H),
2.84-2.82 (d, J = 5.8 Hz, 1H), 2.58 (s, 1H), 2.55 (s, 1H), 1.80 (s, 3H), 1.76 (s, 3H), 1.76-
1.30 (m, 6H), 1.07 (s, 3H), 0.93-0.88 (t, J — 6.8 Hz, 3H); *C NMR (75 MHz, CDCl5) &
131.53, 130.80, 125.42, 125.02, 75.85, 42.79, 32.27, 31.47, 29.91, 29.13, 23.01, 21.08,
20.35, 20.13, 14.31; IR (film, em™) 3310, 3100, 1600; HRMS (ESI) m/z [(M+H)']

(C15H360,) calculated 238.1933, found 238.1898.

3.2.15. Chemoselective protection of the major diastereomer

0 -.PMBz .PMBz
O eQH PMBz (_) Q PMBz- o MeQ
1.2 eqBuli L - %
2. PMBz-Cl Me\(@ \(@O Me -
z H =
Me Me Me
2.166 a 2.171 2.172 2.173

2.166a (291 mg, 1.22 mmol) in THF (2 mL) was cooled to -78 °C and 2.5M n-BuLi (1.1
mL, 2.68 mmol) was added dropwise under argon and stirred for 15 minutes. para-
methoxybenzoyl chloride (0.18 mL,1.34 mmol) in THF (2 mL) was added dropwise over
15 minutes. The reaction mixture was then stirred for 2 hours at -78 °C and it was
quenched with IN HCI and extracted with DCM. The organic phase was washed with
H,0, brine and dried over Na,SO4 and concentrated under vacuum. Chromatography
(Hexanes:Ethyl Acetate-8:1) gave 2.171 as white solid, 200 mg (44% yield), 2.172 as a
colorless viscous liquid, 22 mg (5% yield), 2.173 as a colorless viscous liquid, 191 mg

(33% yield) and 2.166 a (53 mg, 13%).
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Mono para-methoxybenzoate 2.171

'H NMR (300 MHz, CDCl3) § 7.96-7.93 (d, J = 9 Hz, 2H), 6.95-6.92 (d, ] = 9 Hz, 2H),
5.24 (s, 1H), 5.21-5.17 (dd, J = 7.8 Hz, 5.7 Hz, 1H), 3.98-3.94 (dd, J = 8.1 Hz, 4.8 Hz,
1H), 2.55-2.47 (m, 2H), 2.27-2.18 (m, 2H), 2.06 (s, br, 1H), 1.93-1.85 (m, 1H), 1.74-1,55
(m, 3H), 1.45-1.37 (m, 1H), 1.18-1.15 (d, J = 7.5 Hz, 3H), 1.03-1.01 (d, J = 6.9 Hz, 3H),
1.02-1.00 (d, J = 6.9 Hz, 3H), 1.15 (s, 3H); *C NMR (75 MHz, CDClL) & 165.94,
163.63, 139.19, 131.62, 123.95, 122.65, 113.97, 78.64, 70.56, 55.57, 48.11, 40.35, 34.73,
34.48,28.99, 27.24, 26.42, 21.71, 21.56, 21.33, 18.88; IR (film, cm™) 3503, 2957, 2869,
1706, 1606; HRMS (ESI) m/z [(M+H)'] (C,3H304) calculated 372.2301, found

372.2203; mp 95-97 °C.

Mono para-methoxybenzoate 2.172

'H NMR (300 MHz, CDCl3) & 8.00-7.97 (d, J = 9.3 Hz, 2H), 6.93-6.90 (d, J = 9.3 Hz,
2H), 5.38 (s, 1H), 5.32-5.29 (dd, ] = 7.8 Hz, 3.6 Hz, 1H), 3.85 (s, 3H), 3.69-3.63 (dd, J =
7.8 Hz, 5.7 Hz, 1H), 2.44-2.36 (d, J = 18 Hz, 1H), 2.23-2.16 (quintet, J = 6.9 Hz, 1H),
2.09-2.02 (m, 2H), 1.86-1.76 (m, 3H), 1.70-1.62 (m, 2H), 1.10 (s, 3H), 1.11-1.09 (d, J =
6.9 Hz, 3H), 1.02-1.00 (d, J = 6.9 Hz, 3H); **C NMR (150 MHz, CD;OD) & 167.56,
165.21, 139.95, 132.67, 124.64, 122.79, 114.93, 77.49, 74.70, 56.13, 45.75, 41.52, 36.34,
35.57, 34.10, 30.03, 28.60, 22.04, 22.00, 21.95, 21.92; IR (film, cm'l) 3502, 2927, 1705,

1606; HRMS (ESI) m/z [(M+H) '] (C23H3,04) calculated 372.2301, found 372.2193.
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Bis-para-methoxybenzoate 2.173

'H NMR (300 MHz, CDCl;) & 8.03-8.00 (d, J = 9.3 Hz, 2H), 7.76-7.73 (d, ] = 9.3 Hz,
2H), 6.92-6.89 (d, J = 9.3 Hz, 2H), 6.67-6.64 (d, J = 9.3 Hz, 2H), 5.39-5.36 (m, 2H),
5.21-5.17 (t,J = 5.7 Hz, 1H), 3.86 (s, 3H), 3.78 ( s, 3H), 2.47-2.26 (qd, ] = 18 Hz, 5.4 Hz,
1H), 2.26-2.17 (septet, J = 6.9 Hz, 1H), 2.10-2.02 (m, 1H), 2.02-1.93 (m, 1H), 1.83-1.77
(q, ] = 6.6 Hz, 2H), 1.73-1.63 (m, 1H), 1.59 (s, br, 1H), 1.49-1.36 (m, 1H), 1.20-1.18 (d, J
= 6.9 Hz, 3H), 1.17 (s, 3H), 1.02-1.00 (2d, J = 6.9 Hz, 3H each); **C NMR (75 MHz,
CDCl3) 6 166.36, 165.50, 163.41, 163.27, 139.60, 131.93, 131.80, 123.74, 122.98,
122.52, 113.78, 113.57, 77.65, 77.17, 76.80, 76.75, 76.63, 73.70, 55.65, 55.48, 48.15,
39.97, 34.82, 34.76, 29.67, 27.96, 26.18, 21.69, 21.59, 20.54; IR (film, cm™) 2930, 2957,
1707, 1606; HRMS (ESI) m/z [(M+H)] (C30Hs3sOs) calculated 506.6298, found

506.2578.

3.2.16. tosylate 2.178

(@] Ts
1. KHMDS - A

- . MeO

2. TsCl 75% Me

H :
Me Me

2.171 2.178
2.171 (200 mg, 0.54 mmol), TsCl (309 mg, 0.54 mmol) in THF (10 mL) was cooled to -
78 °C and 0.5N KHMDS (3.24 mL, 0.54 mmol) was added dropwise. Stirring was
continued for another 30 minutes after which the reaction mixture was allowed to warm
up to 0 °C in 10 minutes and then stirred at this temperature for another 20 minutes. The

reaction was quenched with 1N HCI and extracted with DCM. The organic phase was
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washed with H,O, dried and concentrated under vacuum. Chromatography
(Hexanes:Ethyl Acetate-10:1) gave 2.178 as a colorless viscous liquid, 213 mg (75%
yield).

'H NMR (300 MHz, CDCl3) & 7.95-7.92 (d, J = 8.1 Hz, 2H), 7.78-7.76 (d, ] = 8.1 Hz,
2H), 7.29-7.27 (d, J = 8.1 Hz, 2H), 6.93-6.90 (d, J = 8.1 Hz, 2H), .547 (s, 1H), 5.05-5.02
(dd, J =4.5 Hz, 1H), 4.69-4.66 (dd, J = 5.4 Hz, 3.6 Hz, 1H), 3.84 (s, 3H), 2.45-2.37 (m,
1H), 2.41 (s, 3H), 2.20-2.11 (quintet, J = 6.6 Hz, 1H), 2.09-2.01 (dd, J = 18.3 Hz, 3.3 Hz,
1H), 1.88-1.63 (m, 4H), 1.54-1.23 (m, 3H), 1.08-1.06 (d, J = 6.3 Hz, 3H), .96-0.92 (m,
6H), 0.96 (s, 3H); ®*C NMR (75 MHz, CDCls) & 166.201, 163.596, 144.588, 138.35,
134.83, 131.88, 129.89, 127.94, 122.87, 121.03, 113.93, 85.28, 75.36, 55.61, 46.49,
39.99, 46.49, 39.99, 34.82, 34.23, 31.74, 29.83, 27.90, 27.62, 22.81, 21.77, 21.53, 21.41,
21.36; IR (film, cm™) 2958, 2869, 1707, 1606; HRMS (ESI) m/z [(M+H)"] (C30H3306S)

calculated 526.2389, found 526.2286.

3.2.17. Solvolytic conditions for tosylate 2.178

PMBz < PMBz < PMBz <
z @] @] @]

1. 2.178 (40 mg, 0.076 mmol) in CF3CH,OH (0.5 mL) was heated to reflux for 1 hr.

The reaction mixture was concentrated under vacuum and chromatography
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(Hexanes: Ethyl Acetate-4:1) gave an inseparable mixture 2.179/2.180 as a
viscous liquid (21 mg, 80% yield).

2. 2.178 (40 mg, 0.076 mmol) in 0.5N AcOH/AcOK (24 mg/0.5 mL), was heated to
reflux for 3 hours. The reaction mixture was washed with H,O and extracted with
DCM. The organic phase was dried over Na,SO4 and concentrated under vacuum.
Chromatography gave 2.179/2.180 (~ 17 mg, 62% yield), 2.181 as a colorless
viscous liquid (~ 4 mg, 14% yield).

3. 2.178 (40 mg, 0.076 mmol) in 2eq AcOK/AcOH (15 mg/0.5 mL), was heated to
reflux for 3 hours. Workup and isolation as above gave 2.179/2.180 (~ 11 mg,
40% yield), 2.181 (~ 5 mg, 18% yield).

4. 2.178 in AcOH was heated to reflux for 3 hours. The reaction mixture was
subjected to the same work up as above. Isolated yield was 2.179/2.180 (~ 11 mg,

40% vyield), 2.181 (~ 6 mg, 21% yield).

alkene 2.179/2.180

'H NMR (300 MHz, CDCl3) & 7.98-7.95 (d, J = 9 Hz, 2H), 7.89-7.86 (d, J = 9Hz, 2H),
6.92-6.87 (m, 2H), 5.66-5.54 (m, 2H), 5.56-5.44 (m, 0.34H), 5.40-5.37 (d, J = 10.2 Hz,
1H), 5.10-5.07 (dd, J = 4.5 Hz, 2.4 Hz, 1H), 3.86 (s, 0.6H), 3.84 (s, 3H), 2.45-2.36 (dm, J
=19.2 Hz, 1H), 2.27-1.96 (m, 4H), 1.92-1.61 (M, 2H), 1.25-1.16 (m, 2H), 1.08-1.06 (d, J
= 6.6 Hz, 3H), 1.04 (s, 3H), 1.02-1.00 (d, ] = 4.2 Hz, 3H), 0.99-0.98 (d, ] = 4.2 Hz, 3H),
0.95-0.08 (m, 1H); *C NMR (75 MHz, CDCl3) & 166.38, 163.25, 138.02, 133.52,
131.81, 131.71, 131.21, 126.50, 124.35, 123.87, 123.69, 120.10, 113.74, 78.13, 76.80,

74.90, 55.61, 47.21, 45.81, 37.91, 37.27, 35.18, 34.77, 33.93, 31.82, 30.40, 29.91, 29.52,
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28.79, 26.72, 25.45, 22.27, 21.73, 21.40, 20.74; IR (film, cm™) 2959, 1707, 1606;

HRMS (EST) m/z [(M+H)'] (C23H3003) calculated 354.2195, found 354.2087.

mono para-methoxybenzoate 2.181

'H NMR (600 MHz, CDCl3) § 7.94-7.92 (d, J = 9 Hz, 2H), 6.94-6.92 (d, ] = 9 Hz, 2H),
5.72-5.71 (d, J = 3.6 Hz, 1H), 5.54-5.53 (d, J = 4.8 Hz, 1H), 3.86 (s, 3H), 3.42-3.38 (m,
1H), 2.75-2.73 (d, J = 10.2 Hz, 1H), 2.44-2.40 (d, br, J = 21.6 Hz, 1H), 2.28-2.23
(quintet, J = 6.6 Hz, 1H), 2.09-2.06 (d, J = 19.2 Hz, 1H), 1.76-1.66 (m, 2H), 1.59-1.51
(m, 2H), 1.46-1.43 (dd, J = 11.4 Hz, 5.7 Hz, 1H), 1.35-1.21 (m, 1H); **C NMR (150
MHz, CDCl;) ¢ 167.61, 163.80, 137.86, 132.10, 123.18, 120.29, 114.05, 79.08, 71.93,
55.67, 48.89, 40.59, 35.22, 35.09, 33.72, 32.35, 30.81, 29.91, 26.90, 21.82, 21.46, 21.41;
IR (film, cm™) 2923, 1699, 1606; HRMS (ESI) m/z [(M+H)] (C23H3,0.) calculated

372.2301, found 372.2188.

3.2.18. Mono para-methoxybenzoate 2.187

PMBz <«
OH, OH o OH PMBZ
% 1.2 eq BulLi -
Me 2. Q Me
H cl ove
Me Me
2.166 a/b 2.171 2.187

To the mixture of diastereomers 2.166 a/b (297 mg, 1.25 mmol) in THF (3 mL) at -78
°C, n-BuLi (1.8 mL, 2.75 mmol) was added dropwise under argon and stirred for 15
minutes at that temperature. para-methoxybenzoyl chloride (319 mg, 2.25 mmol) in THF

(1.5 mL) was added dropwise over 15 minutes. The reaction mixture was then stirred for
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2 hours at -78 °C and it was quenched with 1N HCI and extracted with dichloromethane.
The organic phase was washed with H,O, brine and dried over Na,SO4 and concentrated
under vacuum. Chromatography (Hexanes: Ethyl Acetate-8:1). This reaction furnished
2.171 (112 mg, 24%) and 2.187 as a viscous liquid, 112 mg (24% yield) contaminated
with 2.172, 2.173, 2.188, 2.189 was obtained.

'H NMR (300 MHz, CDCl3) & 7.93-7.90 (d, J = 8.7 Hz, 2H), 6.93-6.90 (d, J = 8.7 Hz,
2H), 5.30 (s, 1H), 5.22-5.16 (dd, J = 10.5 hz, 6.3 Hz, 1H), 4.09-4.04 (dd, J = 10.8 Hz, 4.5
Hz, 1H), 3.85 (s, 3H), 2.69 (s, 1H), 2.61-2.53 (dd, J = 17.1 Hz, 5.7 Hz, 1H), 2.31-2.19 (m,
2H), 2.14 (s, 1H), 2.00-1.96 (m, 1H), 1.78-1.73 (m, 1H), 1.62 (s, 1H), 1.55-1.42 (m, 2H),
1.24-1.07 (m, 1H), 1.11 (s, 3H), 1.01-.98 (m, 9H); *C NMR (75 MHz, CDCl3) & 165.73,
163.78, 141.59, 131.63, 122.48, 117.18, 114.08, 80.87, 68.89, 68.17, 55.69, 48.11, 41.26,

35.11,29.90, 29.10, 21.81, 21.32, 19.30, 15.63; IR (film, cm™) 2956, 1709, 1606.

3.2.19. mesylate 2.190

PMBz <
(@]
MsCI
_— =
Et3N, 35 %
2.187 2.190

To 2.187 (80 mg, 0.215 mmol), EtsN (0.15 mL, 1.075 mmol) in DCM (0.5 mL) at 0 °C,
was added MsCl1 (0.09 mL, 1.075 mmol) dropwise. The reaction mixture was stirred for
30 minutes and quenched with 1N HCI and extracted with DCM, dried and concentrated
under vacuum. Chromatography (Hexanes: Ethyl Acetate-12:1) gave 2.190 as a pale

yellow viscous liquid, 35 mg (36% yield).
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'H NMR (600 MHz, CDCls) & 8.06-8.04 (d, J = 8.7 Hz, 2H), 6.86-6.84 (d, J = 8.7 hz,
2H), 5.22 (s, 1H), 5.07-5.04 (dd, J = 10.8 Hz, 6 Hz, 1H), 5.01-4.98 (dd, ] = 12Hz, 5.4 Hz,
1H), 3.78 (s, 3H), 2.93 (s, 3H), 2.49-2.39 (m, 2H), 2.23-2.17 (septet, J = 6.6 Hz, 1H),
2.17 (s, 1H), 2.06-2.03 (m, 1H), 1.98-1.93 (m, 1H), 1.79-1.72 (qd, J = 12.6 Hz, 4.6 Hz,
1H), 1.51 (s, 1H), 1.45-1.42 (d, J = 13.8 Hz, 1H), 1.13 (s, 3H), 0.98-0.96 (2d, J = 6.8 Hz,
3H each), 0.94-0.92 (d, J = 6.8 Hz, 3H); **C NMR (150 MHz, CDCl3) § 166.60, 163.41,
143.39, 131.94, 122.89, 116.00, 13.58, 80.38, 77.92, 55.43, 49.22, 41.46, 39.85, 34.84,
29.15, 29.12, 28.57, 28.28, 21.58, 21.17, 18.73, 15.60; IR (film, cm™') 2958, 2872, 1707,

1606; HRMS (ESI) m/z [(M+H)'] (C24H34048) calculated 450.2076, found 450.1972.

3.2.20. Solvolytic conditions for mesylate 2.190

PMBz « AcOH PMBz 0
0
(or)
3M LiCIO,/THF
50-75 %
2.190 2.194

1. 2.190 in AcOH was heated to reflux for 3 hours. The reaction mixture was
subjected to the same work up shown earlier with the major diastereomer. Isolated

yield was 2.194 as a viscous liquid (~ 10 mg, 75% yield)

2. 5M LiClOy4 in THF (2 mL) was added to 2.190 under argon and then refluxed for

4 hours. Isolated yield was 50%.
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alkene 2.194

'H NMR (600 MHz, CDCl;) & 8.04-8.03 (d, J = 9.6 Hz, 2H), 6.94-6.93 (d, ] = 9.6 Hz,
2H), 5.74-5.71 (dd, T = 10.2 Hz, 1H), 5.68-5.66 (d, ] = 10.2 Hz, 1H), 5.24 (s, 1H), 5.08-
5.05 (dd, J = 10.8 Hz, 7.2 Hz, 1H), 3.87 (s, 3H), 2.24-2.09 (m, 6H), 1.82-1.77 (dt, J =
17.4 Hz, 4.8 Hz, 1H), 1.75-1.70 (dd, ] = 17.4 Hz, 11.4 Hz, 1H), 1.56 (s, 3H), 1.26-1.24
(m, 1H), 1.25 (s, 3H), 1.15 (s, 3H), 1.06-1.05 (d, J = 6.6 Hz, 3H), 0.97-0.96 (d, ] = 6.6
Hz, 6H); *C NMR (150 MHz, CDCI3) § 166.24, 163.51, 142.77, 131.79, 129.20, 128.54,
123.44, 116.49, 113.83, 77.82, 55.66, 46.35, 40.48, 35.28, 30.50, 29.19, 29.37, 27.95,
24.94, 21.79, 21.30, 19.40; IR (film, cm™) 2958, 2925, 1711, 1606; HRMS (ESI) m/z

[(M+H)'] (C23H3003) calculated 354.2195, found 354.2092.

3.3. References
1. Adler, E., Junghahn, L., Lindberg, U., Berggren, B., Westin, G. Acta. Chem.
Scand. 1960, 14, 1261-1273.

2. Screttas, C. G., Screttas, M. M. J. Org. Met Chem. 1983, 252, 263.
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