Washington University in St. Louis

Washington University Open Scholarship

Electrical and Systems Engineering Undergraduate Research

Electrical & Systems Engineering

4-28-2023

Experimental Validation of Motion Planning and Control Algorithms on Ground Robot Platforms

Yifei Li Washington University in St. Louis, liyifei@wustl.edu

Follow this and additional works at: https://openscholarship.wustl.edu/eseundergraduate_research

Recommended Citation

Li, Yifei, "Experimental Validation of Motion Planning and Control Algorithms on Ground Robot Platforms" (2023). *Electrical and Systems Engineering Undergraduate Research*. 6. https://openscholarship.wustl.edu/eseundergraduate_research/6

This Article is brought to you for free and open access by the Electrical & Systems Engineering at Washington University Open Scholarship. It has been accepted for inclusion in Electrical and Systems Engineering Undergraduate Research by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

INTRODUCTION

Background

Robotic systems are increasingly being used in various applications, from manufacturing and logistics to healthcare and education. However, the performance of these systems relies heavily on their ability to navigate through their environment.

Purpose

The purpose of this research project is to experimentally validate the effectiveness of a robot planning and control algorithm on a ground robot platform.

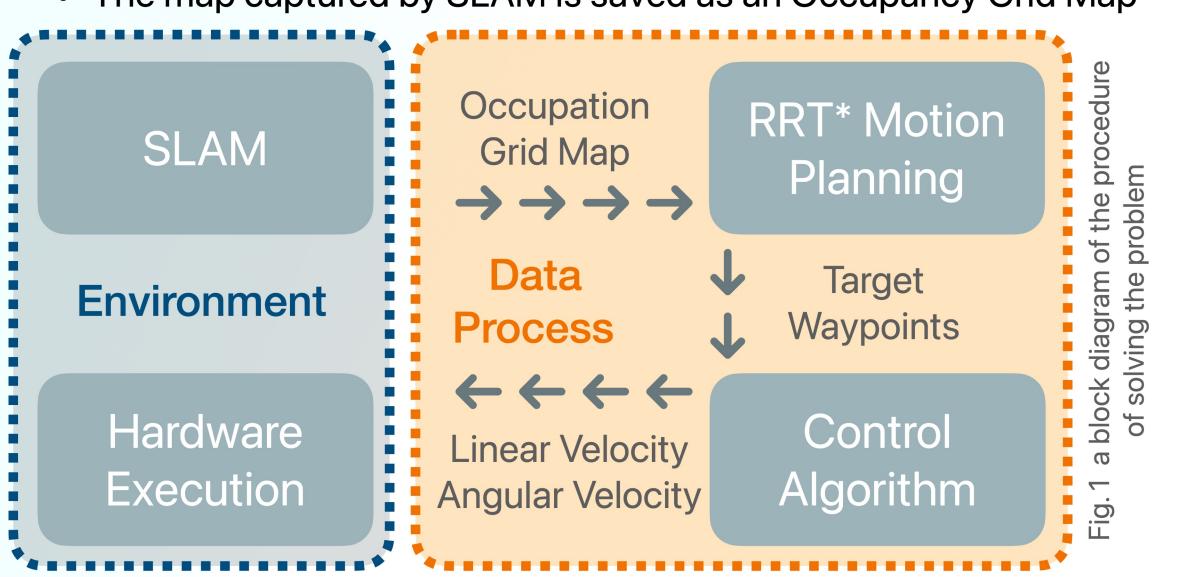
Specifically, we will use the Turtlebot 3 Waffle Pi, which is a 2-wheel ROS based robot platform with built-in 360-degree lidar distance sensor SLAM algorithms.

For the motion planning algorithm, we choose the incremental sampling-based motion planning algorithm RRT*, a improved version of RRT (Rapidly-exploring Random Tree), that has been proven to have asymptotic optimality, improved solution quality, and flexibility compared to RRT [1].

PROBLEM STATEMENT

Given

- The physical environment distributed with obstacles
- Coordinates of start and destination points
- The dimensions and available controls of the robot


Find

• The control scheme of the robot that departs from the start point and reach desired destination while avoiding obstacles

METHOD & PROCEDURE

1. Get knowledge of the environment

- Done by running built in SLAM and Teleop node on the Turtlebot
- The map captured by SLAM is saved as an Occupancy Grid Map

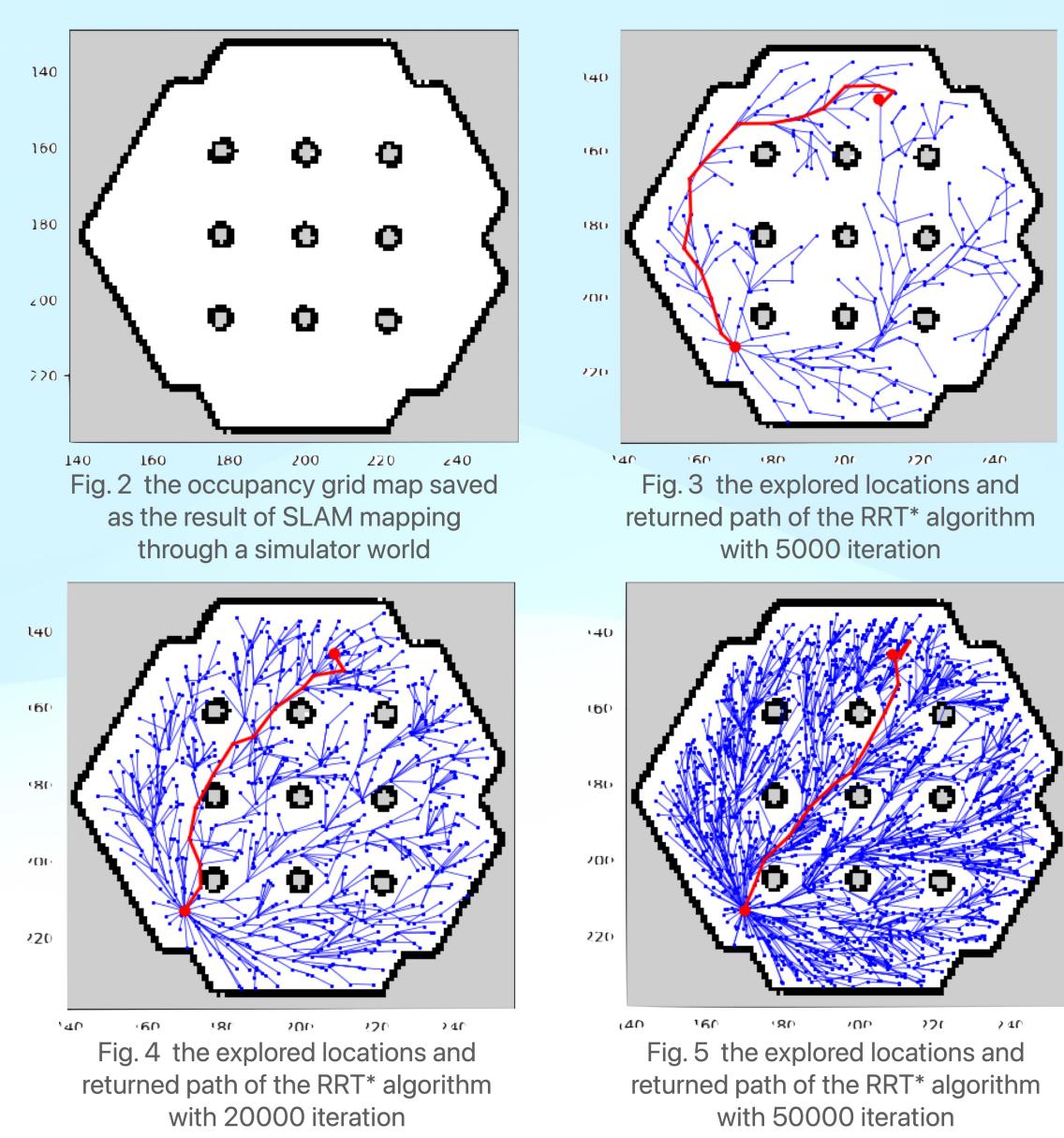
Experimental Validation of Motion Planning and Control Algorithms on Ground Robot Platforms

Yifei (Bruce) Li, Department of Electrical & Systems Engineering Research Advisor: Professor Yiannis Kantaros

2. Plan the motion path

- Given a existing map
- Given start and target point
- Use RRT* planning [1]

```
Algorithm 4: Extend_{RRT^*}
  V' \leftarrow V; E' \leftarrow E;
z x_{\text{nearest}} \leftarrow \text{Nearest}(G, x);
x_{\text{new}} \leftarrow \texttt{Steer}(x_{\text{nearest}}, x);
4 if ObstacleFree(x_{
m nearest}, x_{
m new}) then
          V' \leftarrow V' \cup \{x_{\text{new}}\};
         x_{\min} \leftarrow x_{\text{nearest}};
          X_{\text{near}} \leftarrow \text{Near}(G, x_{\text{new}}, |V|);
         for all x_{\text{near}} \in X_{\text{near}} do
                if ObstacleFree(x_{
m near}, x_{
m new}) then
                       c' \leftarrow \texttt{Cost}(x_{\text{near}}) + c(\texttt{Line}(x_{\text{near}}, x_{\text{new}}));
                       if c' < \text{Cost}(x_{\text{new}}) then
                        x_{\min} \leftarrow x_{\text{near}};
         E' \leftarrow E' \cup \{(x_{\min}, x_{\text{new}})\};
          for all x_{near} \in X_{near} \setminus \{x_{min}\} do
                if ObstacleFree(x_{
m new},x_{
m near}) and
               Cost(x_{near}) >
                \mathtt{Cost}(x_{\mathrm{new}}) + c(\mathtt{Line}(x_{\mathrm{new}}, x_{\mathrm{near}})) then
                       x_{\text{parent}} \leftarrow \texttt{Parent}(x_{\text{near}});
                      E' \leftarrow E' \setminus \{(x_{\text{parent}}, x_{\text{near}})\};
                      E' \leftarrow E' \cup \{(x_{\text{new}}, x_{\text{near}})\};
is return G' = (V', E')
```


Present planned path as a sequence of waypoints

3. Drive the robot

- Given the current position and a target position
- Compute next action of angular and linear velocity that the robot need to perform with following transfer function

Algorithm 1: Algorithm to get the next action for a robot **Input:** Current state $s = [x, y, \theta]$ and goal $goal = [goal_x, goal_y, goal_theta]$ Output: Next action for the robot in the form of [linear_vel, angular_vel] **Function** *get_next_action s, goal*: $x, y, \theta \leftarrow s$ $goal_x, goal_y, goal_theta \leftarrow goal$ $dx \leftarrow goal_{-}x - x$ $dy \leftarrow goal_{-}y - y$ $goal_dist \leftarrow \sqrt{dx^2 + dy^2}$ $goal_angle \leftarrow tan^{-1}(dy, dx)$ $angle_error \leftarrow goal_angle - \theta$ if $|angle_error| > threshold$ then $angular_vel \leftarrow angle_error$ $angular_vel \leftarrow 0.0$ $linear_vel \leftarrow 0.5 \times goal_dist$ return [linear_vel, angular_vel] end

RESULTS

We can observe that as the iteration of RRT* exploration increases, the returned path converges to an optimal solution

CONCLUSION & FUTURE DIRECTIONS

In this research project, we presented an experimental validation of robot planning and control algorithms on a ground robot platform.

Our results demonstrated that the proposed approach was effective in generating feasible paths that successfully navigated the robot to the desired destination while avoiding collisions with obstacles

By validating the effectiveness of the RRT* algorithm in a real-world setting with the specific model of robot, we can contribute to the development of more advanced and effective robotic controls.

Future directions could be investigate the effectiveness of the proposed approach with more complex obstacles; extend the proposed approach to plan in unknown environments; and update the planning online while the robot is in motion.

BIBLIOGRAPHY

[1] S. Karaman and E. Frazzoli, "Incremental sampling-based algorithms for optimal motion planning," Robotics: Science and Systems VI, 2010.