Comparisons of Intrinsic Motivation for Novel Stroke Rehabilitation Interventions for UE

Dorothy Kalmbach

Follow this and additional works at: https://openscholarship.wustl.edu/undergrad_etd

Part of the Psychology Commons

Recommended Citation
https://openscholarship.wustl.edu/undergrad_etd/4

This Unrestricted is brought to you for free and open access by the Undergraduate Research at Washington University Open Scholarship. It has been accepted for inclusion in Senior Honors Papers / Undergraduate Theses by an authorized administrator of Washington University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.
Comparisons of Intrinsic Motivation for Novel Stroke Rehabilitation Interventions for UE

Introduction

Purpose
To compare how intrinsically motivating stroke patients found upper extremity (UE) rehabilitation carried out in the HPL to how intrinsically motivating stroke patients who participated in other studies found their UE rehabilitation.

Background
Stroke is the leading cause of long-term disability in US: 795,000/year[1].
- 80% experience UE dysfunction[2]; impediment to ADLs
Motor rehabilitation can improve motor function in chronic stroke.
- Little chance of success if a patient is nonadherent to regime
- Approximately 65% of patients demonstrate nonadherence[3]
Motor intervention in the HPL utilizes virtual reality (VR) gaming.
- Interventions have produced significant improvement in motor impairments and achieved a greater number of repetitions than and are more interesting and enjoyable than traditional therapy[4]

Method

Literature Review
Extracted I/E subscale scores from 17 studies of novel interventions for UE rehabilitation post-stroke. Interventions were sorted into categories and average levels of I/E were determined and ranked.

Categories:

- Gaming
- Gaming with Assistance
- Conventional Therapy
- Mixed Reality
- Robotic Training

<table>
<thead>
<tr>
<th>Category</th>
<th>Overall M±SD</th>
<th>Participants</th>
<th>IM Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaming</td>
<td>5.67±0.45</td>
<td>52</td>
<td>Highly Positive</td>
</tr>
<tr>
<td>Gaming with assistance</td>
<td>5.69±0.67</td>
<td>83</td>
<td>Highly Positive</td>
</tr>
<tr>
<td>Conventional Therapy</td>
<td>5.11±0.31</td>
<td>59</td>
<td>Highly Positive</td>
</tr>
<tr>
<td>Mixed Reality</td>
<td>6.18±0.50</td>
<td>42</td>
<td>Highly Positive</td>
</tr>
<tr>
<td>Robot Training</td>
<td>6.17±1.25</td>
<td>5</td>
<td>Highly Positive</td>
</tr>
<tr>
<td>HPL</td>
<td>5.59±0.86</td>
<td>20</td>
<td>Highly Positive</td>
</tr>
</tbody>
</table>

All of the categories produced a highly positive mean I/E score.

Results

Discussion

Some approaches to therapy can produce higher levels of intrinsic motivation than others. Work being done in the HPL is more intrinsically motivating than traditional therapy and as intrinsically motivating as other novel therapy approach to UE rehabilitation for persons with stroke.

Comparisons
Mixed Reality, the manipulation of tangible objects to produce on screen consequences, scored highest.
- Use of daily tasks and objects can increase patient motivation
Robot training scored second highest, but only 1 study was included.
Gaming interventions barely outperformed HPL, but they lack the affordability, accessibility, and variety of the HPL.

Future Work could investigate studies that used interviews and other measures of IM or administer each of these interventions types to a group post-stroke and measure their levels of IM for each approach.

References

Acknowledgements
Special thanks is given to Jack Engsberg of the HPL for his mentorship as well as to Anna Boone, Matthew Foreman, Jenny Barrett, Corrine Martin, and Graham Jones for their data and assistance.

For more information contact Dorothy Kalmbach (dorothy.kalmbach@wustl.edu)