David Brown

Newcastle University

A criterion for the solvability of a μ -synthesis problem

Abstract

We give a solvability criterion for the following μ -synthesis problem. Let μ be the structured singular value for the diagonal matrices with entries in \mathbb{C} .

Problem. Given distinct points $\lambda_1, \ldots, \lambda_n$ in the open unit disc \mathbb{D} and target 2×2 complex matrices W_1, \ldots, W_n such that $\mu(W_j) \leq 1$ for all $j = 1, \ldots, n$, find a holomorphic 2×2 matrix function F on \mathbb{D} such that $F(\lambda_j) = W_j$ for each j, and $\mu(F(\lambda)) \leq 1$ for all $\lambda \in \mathbb{D}$.

By [1, Theorem 9.2], this problem is equivalent to the following interpolation problem: does there exist a holomorphic function x from the disc to the tetrablock $\overline{\mathbb{E}}$ such that $x(\lambda_j) = (w_{11}^j, w_{22}^j, \det W_j)$ for each j? The tetrablock is the domain in \mathbb{C}^3 defined by

$$\overline{\mathbb{E}} := \{ (x_1, x_2, x_3) \in \mathbb{C}^3 : 1 - x_1 z - x_2 w + x_3 z w \neq 0 \text{ for all } z, w \in \mathbb{D} \}.$$

In this talk we show such an x exists if and only if, for distinct $z_1, z_2, z_3 \in \mathbb{D}$, there are positive 3n-square matrices $[N_{il,jk}]$, of rank 1, and $[M_{il,jk}]$ such that

$$\left[1 - \frac{\overline{z_l x_{3i} - x_{1i}}}{x_{2i} z_l - 1} \frac{z_k x_{3j} - x_{1j}}{x_{2j} z_k - 1}\right] \ge \left[(1 - \overline{z_l} z_k) N_{il,jk}\right] + \left[(1 - \overline{\lambda_i} \lambda_j) M_{il,jk}\right],$$

where $(x_{1j}, x_{2j}, x_{3j}) = (w_{11}^j, w_{22}^j, \det W_j)$ for each j.

The talk is based on a joint work with Z. A. Lykova and N. J. Young. [1] A. A. Abouhajar, M. C. White and N. J. Young, A Schwarz lemma for a domain related to μ -synthesis, *J. Geom. Anal.* 17, (2007), pp. 717-750

Talk time: 2016-07-18 03:00PM— 2016-07-18 03:20PM Talk location: Cupples I Room 207