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ABSTRACT OF THE DISSERTATION

A geometric approach for deciphering protein structure from cryo-EM volumes

by

Sasakthi Senanayaka Abeysinghe

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2010

Research Advisor: Dr. Tao Ju

Electron Cryo-Microscopy or cryo-EM is an area that has received much attention in the

recent past. Compared to the traditional methods of X-Ray Crystallography and NMR

Spectroscopy, cryo-EM can be used to image much larger complexes, in many different

conformations, and under a wide range of biochemical conditions. This is because it does

not require the complex to be crystallisable [74, 89]. However, cryo-EM reconstructions are

limited to intermediate resolutions, with the state-of-the-art being 3.6Å [116], where sec-

ondary structure elements can be visually identified but not individual amino acid residues.

This lack of atomic level resolution creates new computational challenges for protein struc-

ture identification.

In this dissertation, we present a suite of geometric algorithms to address several aspects of

protein modeling using cryo-EM density maps. Specifically, we develop novel methods to

capture the shape of density volumes as geometric skeletons. We then use these skeletons

to find secondary structure elements (SSEs) of a given protein, to identify the correspon-

dence between these SSEs and those predicted from the primary sequence, and to register

high-resolution protein structures onto the density volume. In addition, we designed and

ii



developed Gorgon[1], an interactive molecular modeling system, that integrates the above

methods with other interactive routines to generate reliable and accurate protein backbone

models.
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Chapter 1

Introduction

Proteins are the fundamental building blocks of all life forms, and are made up of a linear
sequence of amino acid residues1 also known as its primary structure (Figure 1.1a). In
these proteins, neighboring amino acid residues can form groups of continuous segments
called secondary structure elements (SSEs) most often seen as long helical tubes known
as α-helices or large flat plates known as β -sheets2 (Figure 1.1b). Based on the global
interactions between these SSEs as well as the local interactions between the amino acids,
each protein “folds” up in space into a specific 3D shape (Figure 1.1d), that determines
how it interacts with other molecules. As a result, determining the 3D structure of proteins
has critical importance in biomedical research [90].

Traditionally, protein structure prediction involves the use of high resolution imaging tech-
niques, such as X-Ray crystallography and NMR spectroscopy. However, X-Ray crystal-
lography can only be used with small, crystallisable molecules, while NMR spectroscopy
is limited to relatively small molecules of an atomic mass less than 50 kDa. Therefore,
neither of these techniques can be used to understand most of the larger macromolecu-
lar complexes seen in nature in their original state. In order to overcome these problems,
computational techniques such as Ab-initio modeling and homology modeling have been
extensively studied and used. However, these methods are inherently limited by factors
such as availability of sequence homologues, variable accuracy and high computational
cost due to the large search space as described in Levinthal’s Paradox [61, 132].

In an ongoing project between the Washington University in St. Louis and the Baylor Col-
lege of Medicine, volumetric density maps of proteins obtained using an advanced imaging

1An amino acid is one of a class of organic compounds containing the amino (NH2) and carboxyl (COOH)
groups. An amino acid residue is such an amino acid that has lost a water molecule by joining with another
amino acid.

2We will refer to α-helices, β -sheets and β -strands as helices, sheets and strands in this dissertation.

1
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(a) Sequence of amino acid residues

(b) Secondary structure elements (c) Cα backbone (d) Atomic model (e) Cryo-EM density volume

Figure 1.1: The sequence of amino acid residues of the Rice Dwarf Virus (RDV P8) protein (a), its secondary
structure elements (α-helices in green, β -sheets and β -strands in blue) (b), backbone of amino-acid residues
(c) and full atomic structure (d). Observe that the tubular and plate-like elements in the 6.8Å density volume
obtained using Cryo-EM (e) roughly correspond to the α-helices and β -sheets seen in (b).

technique named electron cryo-microscopy (cryo-EM), are utilized to decipher the protein
structure. Cryo-EM addresses most of the scalability concerns of the traditional techniques
by being able to image large macromolecular complexes such as viruses at many different
functional states [74, 89]. However, the resolutions of the volumes obtained most often
range between 5Å and 10Å, with the state-of-the-art being 3.6Å [116]. Therefore, cryo-
EM volumes cannot be used to directly determine the structure of proteins at atomic level
resolution, or even its amino acid residue backbone. This limitation has motivated the
development of many computational tools that use the intermediate-resolution cryo-EM
volume to gather structural information about the protein [9, 59, 121, 106].
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Figure 1.2: Different stages of the molecular modeling pipeline. The methods in green will be discussed in
this dissertation, the method in gray has already been addressed by collaborators, and the methods in blue
will be discussed as future work.

1.1 Method overview

As mentioned earlier, we are interested in the development of a computational approach
that can be used to identify the atomic resolution structure of a molecule given its interme-
diate resolution cryo-EM volume. In other words, we are attempting to determine the 3D
locations and orientations of every atom that makes up the protein in question. Apart from
the density volume, we can also utilize the protein sequence information as well any known
high resolution structures of the same (or similar) protein at different conformations.

Towards this goal, we have designed the molecular modeling pipeline described in Fig-
ure 1.2. Here we decompose the complex task of protein structure prediction into smaller,
independent problems that we address using computational techniques that utilize the un-
derlying geometric properties of the data.
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A geometric approach: Our computational methods are grounded on the observation
that the geometry of the density map at intermediate resolutions (Figure 1.1e) is closely
related to the secondary structure elements and the shape of the protein backbone (Figure
1.1b). By understanding the geometry of the density maps, we are able to identify coarse-
level protein components, and further utilize these elements to guide the modeling of fine-
level structures.

Molecular modeling pipeline: Once again, our objective is to build a fine-level atomic
resolution model given a coarse level cryo-EM density volume. For this purpose we base
our molecular modeling pipeline on a coarse-to-fine paradigm, where we first identify
coarse-level structural elements and then use that information to deduce finer and finer
levels of detail. To realize this paradigm we must first identify geometric properties of the
density volume. This can be achieved with geometric skeletonization techniques, where
the shape and topology of the underlying density is captured in the form of a skeleton.

In the next stage of refinement, we use SSEHunter [9], a method proposed by our collabo-
rators at the Baylor College of Medicine to identify the 3D positions, orientations and sizes
of the secondary structure elements (SSEs). SSEHunter utilizes the geometric skeleton to-
gether with cross-correlation and geometric analysis to perform its function, and has been
demonstrated with high accuracy for intermediate resolution cryo-EM density volumes.

At this stage of the pipeline we have two alternative paths to achieve finer levels of detail.
The first path is based on the availability of a high-resolution structural homologue3. We
can achieve the goal atomic level detail by fitting this structural homologue to the density
in a flexible manner. For this purpose we first find the registration between the α-helices
observed in the density, and those annotated in the structural homologue. This registration
together with inter-atom bond properties can then form a set of constraints to an energy
minimization routine to determine the best flexible fit of the homologue in the density.

In the absence of a structural homologue, we can make use of the sequence of amino acid
residues to further refine our model. At this stage we find the correspondence between the
SSEs observed in the density volume, and the SSEs predicted from the sequence. This

3A structural homologue is a protein which is similar (but not identical) in shape to another protein. Most
often structural homologues have SSEs of the same shapes and sizes, but are scattered differently in 3D space
due to many hinge-like motions on the loop segments.
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correspondence together with the geometric skeleton allows us to find a mapping between
the sequence and the density, leading to a pseudo-backbone trace of the protein.

The pseudo-backbone trace is based purely on the geometric properties of the density, and
does not consider any inter-residue bond properties. Therefore, we can further refine this
model by allowing a user to interactively build a Cα backbone trace that is guided by the
pseudo-backbone, but is constrained by the inter-residue bond properties.

Finally, we envision refining this Cα backbone trace further by adding side-chains, and
performing energy minimization at the scale of these side chains to build the final atomic
structure.

1.2 Contributions

In this dissertation we address the activities highlighted in green in Figure 1.2. More specif-
ically, we make the following novel contributions:

• Segmentation-free geometric skeletonization: As mentioned earlier, geometric
skeletons give valuable insight towards understanding cryo-EM density volumes.
However, obtaining a geometric skeleton that accurately captures the shape and topol-
ogy of a density volume is a challenging task as there is no clear separation between
the protein and background. The lack of resolution and the presence of noise in cryo-
EM volumes further complicates this task. In Chapter 2, we discuss a segmentation-
free geometric skeletonization technique that we developed [4] that can be used to
quickly and accurately identify shape and topological features of complex and noisy
biomedical images.

• Correspondence between observed and predicted SSEs: In the absence of a struc-
tural homologue, creating a de novo model of a molecule imaged using cryo-EM
is a challenging and time consuming task. Knowing the correspondence between
the secondary structure elements visible in the density volume and predicted from
the sequence allows us to form an initial hypothesis on the structure of the protein
backbone. In Chapter 3, we extend our previous work [3] and propose a novel and
efficient method to identify a set of these most likely correspondences while being
robust under SSE detection errors. This correspondence can be used to deduce a
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pseudo-backbone that can then be used to help structural biologists build de novo
models.

• α-helix registration for flexible fitting: Given a high-resolution structural homo-
logue, one quick way of determining an approximate model is to fit the homologue
into the density. However, proteins undergo many hinge-like deformations at dif-
ferent conformations making this fitting problem a challenging task. In Chapter 4,
we propose a novel method that can be used to register the α-helices annotated in
a high-resolution model with those observed from the volume. In the future, these
registrations can be used as constraints for a better initialized flexible fitting routine.
Our method is robust under α-helix detection errors, and is also capable of finding
clusters of helices that remain isometric relative to each other.

• Gorgon: a molecular modeling system: Given a cryo-EM density volume, de
novo modeling today is often performed using a wide variety of tools usable only
as command line arguments or scripts. In Chapter 5, we describe Gorgon, a freely
distributed molecular modeling system that we created to enable users to visually
and interactively build molecular models. Gorgon provides a unique set of features
geared towards de novo modeling from Cryo-EM density volumes, and can be easily
extended to incorporate user-specific functionality.
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Chapter 2

Segmentation-free geometric
skeletonization

2.1 Introduction

As mentioned in the last chapter, we are faced with the task of understanding the structure
of a protein given an intermediate resolution density volume obtained using electron cryo-
microscopy. In these volumes, we lack the resolution to locate each individual atom or
even amino acid residue. However, a visual inspection of the density volume can be used
to roughly identify the locations of the secondary structure elements. For example, Figure
2.1a presents a simulated cryo-EM density volume of the 1BVP protein of the Bluetongue
virus (BTV). Here, we can visually identify tubular and plate-like elements in the volume
that correspond to the α-helices and β -sheets of the protein in 2.1c.
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(a) Volume (b) Geometric skeleton (c) Actual protein structure

Figure 2.1: The geometric skeleton of a density volume gives important information about its secondary
structure elements and connectivity. Observe that the plate-like and tubular parts of the density volume (a)
captured as surfaces and curves in the skeleton (b) correspond well with the helices and sheets of the actual
protein structure (c).
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(a) Volume (b) Segmentations (c) Geometric skeleton (d) Actual protein structure

Figure 2.2: A density volume of a protein molecule (a), the segmentation at various thresholds (b), the
skeleton generated by our segmentation-free method (c), and the ground-truth structure of the protein (d).

For solid objects, a typical approach for identifying their rod-like and plate-like shape com-
ponents is to consider the object’s skeleton [14]. As seen in Figure 2.1b, rod-like and plate-
like features are captured as curves and surfaces in the geometric skeleton, and correspond
well to the secondary structure elements of the protein. Based on this observation, methods
have been suggested [9, 3] that use geometric skeletons as an essential shape descriptor
towards protein structure prediction from cryo-EM density volumes.

An ideal skeleton for this purpose would consist of medial curves and surfaces lying cen-
tered at the rod-like and plate-like parts of the object [87, 15, 54]. Unfortunately, the 3D
data produced by cryo-EM (and most other medical imaging techniques) is usually in the
form of a grayscale volume, which lacks a clear boundary between the object and the
background. Although an object segmentation can be obtained by some particular thresh-
old gray value, the segmented objects may have widely varying shapes depending on the
choice of the threshold (as illustrated in Figure 2.2b). The skeletons of these segmenta-
tions would assume very different shapes, and the skeleton at a particular threshold may
not reflect all shape components intrinsic to the grayscale volume.

In this chapter, we discuss a novel skeletonization algorithm we proposed in [4] that does
not require an explicit segmentation of the volume into object and background, and is
capable of producing skeletal curves and surfaces that lie centered at rod-shaped and plate-
shaped sections of the volume. Our algorithm is not restricted to the protein domain, and
can be generally applied to most biomedical images. We demonstrate this using a suite of
data sets ranging from MRI scans of vascular structures to CT scans of bones.
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2.1.1 Problem statement

We are interested in computing the skeleton of a grayscale volume for identifying its in-
trinsic shape components. Instead of depending on the segmentation at some threshold, the
skeleton should consist of curves and surfaces that are centered at the rod-like and plate-like
parts of the full, un-segmented grayscale volume.

In contrast to the vast literature on skeletonization of solid models, computing skeletons on
un-segmented 3D volumes has received much less attention (see review in Section 2.2). In
particular, we know of no existing method capable of extracting both skeletal curves and
surfaces from a grayscale volume for the purpose of shape understanding without specific
domain knowledge or an object segmentation.

One aspect of this skeletonization problem that requires further clarification is what consti-
tutes a rod-like part or a plate-like part in a grayscale volume. In these volumes, the gray
values behave like a density distribution, where voxels with higher values are likely to be
located closer to the center of the imaged subject. In addition, different parts of the subject
may exhibit different brightness levels. Many bio-medical imaging techniques (i.e. MRI,
CT, EM) produce volumes that have features that satisfy these observations. However, dif-
ferent imaging modalities (ex: T1-weighted and T2-weighted MRI scans) capture different
features of the subject being imaged, and thus what is characterized as a rod-like part or a
plate-like part will vary based on the imaging modality. We explain our observations using
a synthetic Hand volume in Figure 2.3a, that contains 5 rod-like parts (the fingers) and 1
plate-like part (the palm):

Observation 1: A shape component, such as a rod or a plate, in a density-like volume is
usually captured by the segmented object at some threshold values. For example, the top
four fingers in the Hand volume appear as rods in the segmentation at one threshold (b),
while the palm forms a plate at a different threshold (c). However, this observation alone is
not sufficient to disambiguate the different types of shape components located in the same
part of the volume. For example, the top four fingers also form a plate in the segmentation
(c).

Observation 2: The center of a shape component usually lies at the “ridge” of the under-
lying density function. In particular, the variation of gray values at a ridge point is usually
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(a) Volume (b) High-threshold segmentation (c) Low-threshold segmentation
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(d) Volume X-Y cross-section (e) Volume X-Z cross-section

Figure 2.3: A grayscale volume (a), segmented surfaces at two thresholds (b,c), and close-up view of two fin-
gers at different angles (d,e) where the pink arrows illustrate the magnitude of grayscale variation in different
directions (see Section 2.1.1).

smaller along the ridge than in other directions. For example, the grayscale variation along
the center line of each finger is much smaller than along other directions (as illustrated in
the close-up view in (d)). In contrast, a plate-like shape formed by the top four fingers
would not have this property, as the grayscale variation along the center surface of this
plate can be much greater than in some other direction, especially between two fingers (as
illustrated in the cross-section view in (e)).

2.1.2 Method

Our algorithm extracts the skeleton of a density-like grayscale volume guided by the above
two principle observations. There are two main stages in this algorithm. In the first stage,
the algorithm visits all possible threshold values and identifies the shape components on
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the segmented object at each threshold by their center curves and surfaces. According
to observation 1, the collection of these shape components on various segmentations is a
super-set of those intrinsic to the grayscale volume, the latter of which, by observation 2,
are characterized by the ridge-like centers in the density distribution. Hence, the second
stage extracts the final skeleton as the sub-set of curves and surfaces generated in the first
stage that exhibit small grayscale variation.

An example result of our method is shown in Figure 2.2c. Note that the curves (black lines)
and surfaces (orange faces) in the skeleton correspond well to α-helices and loops (which
appear as rods in the volume) as well as β -sheets (which appear as plates in the volume) in
the actual protein structure in (d).

2.1.3 Contribution

The primary contribution of this chapter is a novel algorithm for computing the skeleton
of a density-like grayscale volume. The algorithm does not require segmentation at any
particular threshold, and the resulting skeleton consists of curves and surfaces centered at
rod-like and plate-like parts of the grayscale volume. The independence from a threshold
makes the skeletonization process less sensitive to human bias and allows for the under-
standing of the intrinsic shapes in such a volume. The method is demonstrated on both
synthetic and medical data.

2.2 Previous work

Here we briefly review skeletonization methods for 3D solid and grayscale models, with
an eye towards identifying shape components.

Solid models: Computing skeletons of 3D solid models has been extensively researched
in the past. A number of representative methods include morphological thinning [11, 79,
100], distance transforms [17], potential field methods [6], and Voronoi diagrams [95, 32].
For the purpose of identifying shape components, Saha et al. [87] and Bonnassie et al.[15]
differentiates curves and surfaces in the skeletons generated by morphological thinning by
classifying skeleton voxels based on their local neighborhood. While the result of such

11



classification can be highly sensitive to the quality of the skeleton, the method of Ju et al.
[54] directly extracts skeletal curves and surfaces during the thinning process without need
for post-classification. These methods have been used to classify rod-like and plate-like
structures in bone matrices [87, 15] and proteins [54].

Grayscale volumes: In contrast, few works have addressed skeletonization of unseg-
mented grayscale volumes. Although the use of morphological thinning has been well-
studied in the vision community for skeletonizing 2D grayscale images (see the excellent
survey by Mersal and Darwish [72]), extensions to 3D volumes have been rare. Seg-
mentation techniques (see surveys [88, 40, 115]) have been used to build solid models
of grayscale volumes; however, skeletons computed from these models are medial to the
segmentation and do not align well with the high density regions of the grayscale volume.
In contrast, the method of Svensson et al. [101] generates skeletal surfaces starting from
a known object segmentation, but utilizes the interior grayscale information. Similar to
ours, the method of Doklada et al. [33] computes an initial skeleton by thinning on the
full grayscale volume, but it then requires a grayscale threshold to remove insignificant
skeleton parts and is designed only for skeletal curves.

In a different approach, Lopez et al. [64] identifies centers of a grayscale distribution
using a multi-local crease-ness measure, continuing a body of research on ridge and valley
detection in 2D images (see the survey and evaluation in [63]). However, Lopez’s method
results in a collection of center points that lack any curve or surface structure necessary for
identifying shape components.

Several researchers have proposed to explicitly extract both curves and surfaces in a grayscale
volume based on the second-order tensor field of the volume [128, 55, 124]. However, these
methods are either designed for visualizing flow anisotropy [128, 55] rather than locating
shape components, or require domain-specific knowledge to find those curves or surfaces at
the center of the shape components [124]. In contrast, our method relies on the same tensor
field for extracting curve and surface geometry but is capable of placing such geometry at
the center of grayscale shape components without the use of application-domain specific
knowledge.
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Figure 2.4: Examples of grids with voxels (circled dots) where skeleton voxels (gray) form edges (black
lines) and a face (orange quad).

2.3 Overview

2.3.1 Data representation

Our algorithm takes in a volume represented as a 3D rectilinear grid, where each grid point,
called a voxel, is associated with a grayscale value. The output skeleton of our algorithm
consists of a subset of voxels on this grid. Figure 2.4 shows examples of grids and voxels
where skeleton voxels are colored gray.

For the purpose of shape understanding, we define two types of geometry, curves and sur-
faces, on a set of voxels. A curve is a collection of voxel edges, each consisting of two
voxels lying on the ends of a grid edge. A surface is a collection of voxel faces, each con-
sisting of four voxels lying on the corners of a grid face (i.e. a grid face surrounded by
four voxel edges). For example, the skeleton voxels on the left of Figure 2.4 form a voxel
edge, and those on the right form four voxel edges and a voxel face. In this figure (and
other figures in the chapter), voxel edges are drawn as black lines and voxel faces as orange
quads.

2.3.2 The algorithm

Given a density-like grayscale volume, our algorithm, guided by the observations in Section
2.1.1, extracts skeletons consisting of curves and surfaces corresponding to the rod-like and
plate-like parts of the volume. Since each shape component in the volume is captured by the
segmented object at some threshold value, we first identify the set of all shape components
at a range of threshold values. This is done by accumulating the skeletal curves and surfaces
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Figure 2.5: The four steps in our algorithm.

computed from the segmented objects at each threshold value. The sub-set of this initial
skeleton that represents the grayscale shape components are then identified as those curves
and surfaces exhibiting small grayscale variations. This is done by comparing the directions
of these geometric elements with the shape of grayscale variation in a local neighborhood
of each voxel.

In order to extract two types of skeletal geometry, namely curves and surfaces, we devise a
four-step flow that first extracts the skeletal surfaces followed by the skeletal curves. The
generation of each type of skeletal geometry follows the same stages of initial skeleton
generation and skeleton pruning, as illustrated in Figure 2.5:

• Step 1: Initial skeletonization. Accumulate the skeletal surfaces of each segmenta-
tion of the grayscale volume at a range of thresholds.

• Step 2: Pruning. Identifies those surfaces in the result of step 1 that exhibit small
grayscale variations.

• Step 3: Initial skeletonization. Accumulate the skeletal curves of each segmenta-
tion of the original grayscale volume at the same range of thresholds.

• Step 4: Pruning. Identifies those curves in the result of step 3 that exhibit small
grayscale variations.

To ensure accurate identification of surface and curve features, surface skeletonization and
pruning has to be done before curve skeletonization and pruning. This restriction arises
from the fact that a curve can be geometrically defined as a subset of a surface, and per-
forming curve skeletonization (and pruning) on a feature which is actually a surface (but
not yet classified as a surface) will result in that feature being incorrectly classified as a
curve.
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In the following section, we will describe the skeletonization and pruning steps in detail.

2.4 Method details

2.4.1 Initial skeletonization

Given a segmented object at a particular threshold, that is made up of voxels on a grid,
a classical approach of obtaining its skeleton is morphological thinning [11]. To be able
to identify shape components such as rods and plates, we consider the iterative thinning
approach of Ju et al. [54], which selectively generates curves or surfaces (as defined in
Section 2.3.1) centered at these parts. Briefly, this method shrinks the object to its medial
structure by iteratively removing its border voxels. Skeletal curves or surfaces are identified
by preserving voxels at the ends of either curves or surfaces during thinning.

To accumulate the skeletal surfaces or curves computed at multiple thresholds, we modify
the method of Ju et al. [54] to utilize skeletons generated at different thresholds. Specif-
ically, we segment the volume with decreasing threshold values. At each threshold, we
compute the skeletal surfaces (in step 1) or curves (in step 3) by thinning the segmented
object while additionally preserving, at each thinning iteration, the voxels belonging to the
skeletons generated at previous thresholds. This incremental approach, combined with iter-
ative thinning, ensures that skeletons computed at lower thresholds are aligned with skele-
tons at higher thresholds, and hence to regions with high gray values, which are likely to be
centers of the shape components in the grayscale volume. The results of this incremental
thinning for the hand example in Figure 2.5a are shown in Figures 2.5b and 2.5d.

In our implementation, the range of threshold values is taken as the full range of gray
values in the volume, unless the user specifies a maximum and/or minimum gray value
of interest. As enumerating each gray value present in the volume within the range can
be time-consuming, we may also use values at discrete intervals. In all our examples, we
discretize an input threshold range into 256 levels and visit each level in descending order.
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(a) Ellipsoidal visualization

(b) Line scoring (c) Surface scoring

Figure 2.6: Grayscale variation visualized as an ellipsoid (a), scoring of a line (red) as ratio between length
of the shortest axis (blue) over that of the line segment in the ellipsoid (b), and scoring of a plane (red) as
ratio between area of the smallest axial ellipse (blue) over that of the cross-sectional ellipse (c).

2.4.2 Pruning

The initial skeleton generated by the previous step (e.g. Figures 2.5b, 2.5d)) contains a
super-set of skeletal surfaces or curves that represent the actual shape components of the
grayscale volume. Based on our earlier observation, the desired sub-set of surfaces or
curves are those along which the grayscale variation is smaller than along other directions.
We will identify this sub-set in two phases. First, we will compute a score at each skeleton
voxel based on the direction of the skeletal surface or curve at that voxel with respect to the
shape of the local grayscale variation. Next, we will extract well-formed surfaces or curves
consisting of high-score voxels.

Scoring

Structure tensor: While it is possible to measure the grayscale variation at each voxel
by its local gradient, such measurement easily becomes unreliable in the presence of noise,
which is typical in medical volumes. Instead, the structure tensor offers an average mea-
surement of such variation within a neighborhood of each voxel, which is much more robust
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under noisy conditions. Specifically, we first compose a tensor T ′ at a voxel p as a 3× 3
matrix:

T ′p =
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(2.1)

where Ix = ∂ I
∂x , Iy = ∂ I

∂y and Iz = ∂ I
∂ z are the partial derivatives in the x, y and z directions of the

grayscale volume I at p. Performing spatial averaging of these tensors in the neighborhood
of p using a Gaussian convolution mask gσ with standard deviation σ gives the structure
tensor Tp:

Tp = gσ ∗T ′p. (2.2)

The key piece of information offered by the structure tensor Tp is in its Eigen-structure,
which reveals the principal directions and magnitudes of grayscale variation in the neigh-
borhood of p. As shown in Figure 2.6a, the shape of this variation can be visualized as
an ellipsoid whose axes are along the eigenvectors of Tp with the magnitude of the corre-
sponding eigenvalues. Intuitively, the gray values around the voxel p vary more dramati-
cally along directions closer to the major axis of the ellipsoid (i.e. the eigenvector with the
largest eigenvalue), and less along directions closer to the minor axis (i.e. the eigenvector
with the smallest eigenvalue).

Scoring surfaces and curves: The ellipsoidal representation of the grayscale variation
offers an intuitive way of measuring the variation in any given direction. For example, the
grayscale variation along a given line can be measured as the length of the line segment
within the ellipsoid (Figure 2.6b). Since we are more interested in whether such variation
is smaller than variations in other directions, we can score a voxel on a skeletal curve by the
ratio of the minimum length of such line segments (i.e., the shortest axis of the ellipsoid)
over the actual length along the tangent line of the curve. Likewise, we can score a voxel
on a skeletal surface by the ratio of the minimum area of a cross-section in the ellipsoid
(i.e. formed by the two shortest axes) over the actual area of the cross-section along the
tangent plane of the surface (Figure 2.6c).

Specifically, denote the eigenvectors and eigenvalues of the structure tensor Tp by {v1,v2,v3}
and {u1,u2,u3}. As Tp is a positive semi-definite matrix u1 ≥ u2 ≥ u3 ≥ 0. Given a line
passing through the origin in the unit direction of c = {cx,cy,cz}, the length of the line
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segment within the ellipsoid is:

L(c) =
u1u2u3

√

u2
2u2

3c2
x +u2

1u2
3c2

y +u2
1u2

2c2
z

. (2.3)

Given a plane passing through the origin defined by two orthogonal unit vectors n1 =

{n1x,n1y,n1z} and n2 = {n2x,n2y,n2z} on the plane, the area of the cross-section of the
ellipsoid (which is an ellipse) is computed as:

A(n1,n2) =
π

|m1 cosθ +m2 sinθ |× |m1 sinθ −m2 cosθ | (2.4)

where,

m1 =

{

n1x
u1

,
n1y
u2

,
n1z
u3

}

,

m2 =

{

n2x
u1

,
n2y
u2

,
n2z
u3

}

,

θ =
1
2 arctan

(

2m1 ·m2
m1 ·m1−m2 ·m2

)

.

The score of a skeletal curve with tangent vector c is therefore the ratio L(v3)
L(c) , and the score

of a skeletal surface with tangent vectors n1,n2 is the ratio A(v2,v3)
A(n1,n2)

. Note that the score
is bounded between [0,1], where 1 corresponds to the direction of minimum grayscale
variation locally at p. To avoid possible numerical instability when evaluating scoring
functions for very small values of u1, u2 and u3, we note the limit of these functions are
well defined when one or more of the eigenvalues approach zero. In practice, we treat any
eigenvalue smaller than a threshold (such as 0.00001) as zero and directly apply the limit
formula.

Due to the use of a rectilinear grid, the tangent orientation of the skeletal surface or curve
at a voxel, if computed locally, will assume a limited number of directions restricted by
the axis-aligned voxel faces and edges (i.e. six if using 6-connectivity). To overcome this
limitation, we obtain these orientations by computing a best-fitting line or plane to all voxel
faces or edges in a neighborhood of the voxel p.
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(a) Scored surfaces (b) Scored curves

Figure 2.7: Voxel scores on the skeletal surfaces (a) and curves (b) in Figure 2.5 (b,d), showing the ellipsoidal
representation of grayscale variations and the tangent orientation of surfaces and curves. Blue and red indicate
high and low scores.

In Figure 2.7, we show the scores computed for the surfaces and curves resulting from the
initial skeletonization steps in Figures 2.5b and 2.5d. Note that lower scores (colored red)
effectively indicate skeletal geometry (e.g. surfaces and curves between the fingers) that do
not correspond well to actual shape components in the grayscale volume.

Numerical stability of the scoring function: The ellipsoidal representation of the struc-
ture tensor has a clear geometric shape in the limit cases when the eigenvalues approach
zero, and can be used to explicitly derive the limit of scoring functions in these conditions.

When u1 approaches zero so does u2 and u3 (as u1 ≥ u2 ≥ u3). In this case we treat the
ellipsoid as a sphere, where all embedded line segments have the same length, and all
embedded cross sections have the same area. Therefore, the value of the scoring functions
(the ratio between the minimal and actual length / area) will always evaluate to one.

lim
u1→0

L(v3)

L(c) = 1, (2.5)

lim
u1→0

A(v2,v3)

A(n1,n2)
= 1. (2.6)

In the case where u2 approaches zero, so does u3, reducing the ellipsoid to a needle with
an infinitesimally small circular cross section (also can be interpreted as an infinitely long
cylinder). Here, the minimal line (or surface) is the projection of the actual line (or surface)
onto the plane defined by the surface normal v1, reducing the scoring functions to the
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following vector dot products:

lim
u2→0

L(v3)

L(c) = c · (v1× (c× v1))

‖v1× (c× v1)‖
, (2.7)

lim
u2→0

A(v2,v3)

A(n1,n2)
= (n1×n2) · v1. (2.8)

When u3 approaches zero, the ellipsoid reduces to a cylinder with an infinitesimally small
height and an ellipse shaped cross section where u1 and u2 are the length of the axes.
The minimal line is the projection of the actual line onto the v3 vector, reducing the curve
scoring function to the following vector dot product:

lim
u3→0

L(v3)

L(c) = c · v3. (2.9)

The surface score on the other hand, reduces to the product of two ratios; the first being
the ratio between u2 and the length of the curve within the ellipsoid in the l1 direction, and
the second being the ratio between l2 and its projection onto the v3 vector. l1 and l2 are
orthogonal unit vectors which both lie on the actual surface. Additionally, l1 also lies in the
plane defined by the normal v3.

lim
u3→0

A(v2,v3)

A(n1,n2)
=

√

u2
1 cos2(θ)+u2

2 sin2(θ)

u1
× (l2 · v3), (2.10)

where,

l1 =
v3×n
‖v3×n‖ ,

l2 = n× l1,

θ = arccos(v2 · l1),
n = (n1×n2).

Therefore, we can assume stable behavior for our scoring functions, and use the corre-
sponding limit values when u1,u2 or u3 approach near-zero values.
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Feature extraction

Given scored skeleton voxels (e.g. Figure 2.7), we next need to identify pieces of surfaces
(in step 2) or curves (in step 4) consisting of high-scored voxels. Ideally, the final skeleton
should consist of clean, recognizable surfaces and curves that are free of extraneous features
such as small branches and islands. To this end, we first remove all voxels that score
below a threshold. We find that the threshold of 1√

3 (the ratio of the edge length over
the diagonal length of a unit cube) works well for both surfaces and curves. Next, we
utilize the morphological opening operator in [54] designed for skeletal curves and surfaces
to remove extraneous skeleton features. Given user-specified size parameters εs,εc, this
operator removes surface branches with radius smaller than εs and curve branches shorter
than εc. The final results of skeleton pruning for the hand example are shown in Figures
2.5c and 2.5e.

As shown in Ju et al. [54], the choice of εs,εc controls the minimum size of the surface
or curve feature in the final skeleton. This number typically only depends on the grid
resolution and the type of subject being imaged. In our experiments, we use εs = εc = 5
except for imaged subjects made up of only rod-like parts (e.g., blood vessels), where we
set εs = ∞, and subjects made up of only plate-like parts (e.g., cortical bones), where we
set εc = ∞.

2.5 Results

We demonstrate our algorithm on a set of medical data produced by MRI, CT and cryo-
EM imaging, where the biological structure of interest consists of rod-like and/or plate-like
components.

Figure 2.8 shows the results of our method on an MRI scan of blood vessels in the hu-
man head. Observe from the close-up views, that, without relying on a particular threshold
value, our technique was able to capture vessels at a wide range of gray levels and thick-
nesses, some of which are not even visible to the naked eye.

Figure 2.9 shows both the intermediate and final results of our method on a CT scan of
blood vessels. The usefulness of pruning based on grayscale variations is illustrated in
the close-up view between two vessels, where a skeletal curve is generated during initial
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(a) Volume (b) Geometric skeleton

Figure 2.8: An MRI scan of blood vessels in the human head (a), the skeleton generated by our algorithm
(b) that captures thin blood vessels that are barely visible to the naked eye (A, B).

skeletonization (as the segmented surface is connected at a low gray level), but receives a
low score 2.9b as the curve exhibits a large grayscale variation, and finally gets removed
2.9d.

Figure 2.10 shows another example where our method computes a surface skeleton of corti-
cal bones in a CT scan of the human foot. As seen in the cross-sections (c,d), our technique
accurately captures the shell-shape of the cortical bones and preserves their hollow nature.
Note that the skeleton is computed independent of any thresholds, and hence is capable of
capturing both bright and dark potions of the cortical shell well.

As our overall goal is to understand molecular structures, we present two examples of
skeletonization of protein volumes imaged using cryo-EM in Figure 2.11 (simulated). As
mentioned earlier, the rod-like and plate-like parts of these volumes correspond well to
the secondary structure elements of the protein, including α-helices (rod-like), β -sheets
(plate-like) and loops (rod-like). Observe from Figure 2.11c that our method is capable of
capturing shape components that correlate well with the actual protein structures shown in
2.11d.

We additionally compare our method with a previous method by Yu et al. [124] for com-
puting skeletal curves and surfaces specifically in cryo-EM data. Yu’s method also relies
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(a) Volume (b) Initial skeleton (c) Scored ellipsoids (d) Pruned skeleton

Figure 2.9: A CT scan of blood vessels in the human head (a), the skeletal curves obtained after initial
skeletonization (Step 3) (b) and pruning (Step 4) (d), and the voxel scoring during pruning (c).

on the structure tensor for extracting the skeletal geometry, but requires explicit knowledge
about the typical thickness of α-helices and β -sheets as well as their brightness level in or-
der to locate the corresponding rod-like and plate-like parts in the volume. In comparison
with the result of Yu’s method in Figure 2.11b, our method, without any domain-specific
knowledge (i.e. the typical thickness of α-helices and β -sheets, or their brightness levels),
additionally extracts skeletal curves that correspond to loop structures in the protein. The
difficulty Yu’s method faces when identifying loops arises from the fact that loops lack a
uniform thickness and are often at low gray levels in a cryo-EM volume.

Data Set Dimensions Step 1 Step 2 Step 3 Step 4 Total
(voxels) Time Voxels Time Voxels Time Voxels Time Voxels Time

Hand 129×129×129 4.12 3640 4.40 1981 3.85 2331 1.65 2202 14.04
Protein 2ITG 64×64×64 6.76 4736 3.18 142 6.79 1198 0.73 659 17.48
Protein 1TIM 96×96×96 16.87 8954 5.93 978 17.04 3067 1.75 1735 41.61
Protein 1BTV 128×128×128 34.29 12232 8.48 747 34.76 3777 2.73 1910 80.27
Blood Vessels (CT) 121×71×66 11.67 6608 0.59 0 11.78 4737 1.85 1757 25.90
Blood Vessels (MRI) 101×82×111 11.34 10313 0.71 0 11.41 7753 2.75 2662 26.23
Bones 150×128×128 33.50 143617 76.29 78178 29.67 105708 9.98 78178 149.44

Table 2.1: Time taken (in seconds) for each step of the algorithm (see Section 3.2) and the number of skeleton
voxels after each step.

Table 2.1 shows the breakdown of the time for each step in our algorithm4. The time
complexity of the initial skeletonization process is O(ng), where n is the number of voxels,
and g is the number of distinct gray-levels in the grayscale volume. The pruning process

4All experiments were performed on a PC with a 3GHz Pentium-D CPU and 4GB of memory (our imple-
mentation runs on a single thread, thus utilizes only one of the cores of the CPU)
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(a) Volume (b) Geometric skeleton

(c) Cross section of the volume (d) Cross section of the skeleton

Figure 2.10: A CT scan of a human foot (a), the skeleton generated by our algorithm (b) that captures the
cortical bones as surfaces, and a cross-section view (c,d).

has a time complexity of O(εs) where s is the number of voxels in the initial skeleton, and
ε is the minimum size of the curve or surface feature in the final skeleton.

2.6 Conclusion and discussion

In this chapter, we discussed an innovative approach for skeletonization of density-like
grayscale volumes, for the purpose of shape understanding. Our method does not require
any explicit segmentation of the volume, is robust under the presence of noise, and is
capable of extracting skeletal surfaces and curves corresponding to plate-like and rod-like
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(a) Volume (b) Skeleton of Yu et al. (c) Our skeleton (d) Actual protein structure

Figure 2.11: Simulated cryo-EM volumes of proteins 1TIM (above) and 2ITG (below) at 8Å resolution (a),
skeletons computed by the method of Yu et al. [124] (b) and our method (c), and the ground-truth structure
of these proteins (d).

grayscale shape components. We tested our technique on synthesized and medical data-sets
to demonstrate its behavior in different application domains.

While emphasizing shape representation, the resulting skeleton of our method may not
exhibit the desired topology of the imaged subject. For example, as can be observed in the
top left curve of Figures 2.11c and 2.11d, the skeleton contains extraneous loops and broken
curves. This topological noise is mainly due to the sensitivity of morphological thinning to
image noise in the initial skeletonization stage. Unlike a solid model, the topology of the
imaged subject in the grayscale volume is not well defined, and a correct topology often
needs to be defined by a human expert. We were able to overcome this limitation using
an interactive skeletonization method we developed [2] that allows the user to point, click
and sketch using a mouse and a 2D screen, to quickly create a visually accurate geometric
skeleton. This method also uses the structure tensor based scoring function to better analyze
the underlying shape of the density volume, and suggest possible skeletal paths that satisfy
the interactive user constraints.

Limitations: The assumptions based on the observations of Section 2.1.1 limit the appli-
cability of our technique to density-like grayscale volumes where features of interest are in
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high-density areas. Although typical in medical imaging, they may not apply to other data
(e.g., a photograph of a scene). We would like to explore the extension of our algorithm to
a more general set of data. One possible solution is to explore mapping functions that con-
vert grayscale volumes in a different form to those satisfying our assumptions. However,
the assumptions hold true for density volumes obtained using Cryo-EM, and therefore has
been effectively used in literature for secondary structure identification purposes [126, 28]
via SSEHunter [9].

As described in the earlier section, the performance of the initial skeletonization step is
dependant on the number of distinct gray-levels of the volume. While the performance
can be improved by discretizing the range of gray-levels, performing iterative thinning
for each single gray-level is still time-consuming. To make the process more efficient,
a possible alternative that can be explored is to perform only one iterative thinning step
from low-density regions to high-density regions, while adjusting the shape and topology
preservation criteria in binary thinning to the grayscale data.

26



Chapter 3

Correspondence between observed and
predicted SSEs

3.1 Introduction

As discussed in the first chapter, the state of the art in cryo-EM based single particle re-
construction [130] can only produce density volumes at intermediate resolutions, and thus
cannot be directly used to determine the locations of amino acid residues. However, as seen
in Figure 3.1b, secondary structure elements are easily observed at intermediate resolutions
due to their characteristic tubular and plate-like shape. This has led to the development of
many manual [131] and automatic techniques such as SSEHunter [9], HelixHunter [51],
SheetMinter [58] and SheetTracer [59] that use geometric skeletons, template-based cross
correlation and heuristics to locate the observed SSEs within the density volume. Figure
3.1c displays the results of one such method (SSEHunter). For more details on detecting
SSEs in cryo-EM density volumes readers are directed towards the comprehensive survey
by Chiu et al. [25].

With the use of modern large scale DNA sequencing efforts such as the Human Genome
Project [84], obtaining the sequence of amino acid residues of a protein has become a
very accurate and efficient task. Subsequently, techniques such as PSIPred [53], JPred
[27] (Figure 3.1a), Scratch [24] and many others have been developed that accurately and
efficiently predict which amino acid residues in the sequence that might form SSEs.

Finding the correspondence between these observed SSEs in the volume and the predicted
SSEs in the sequence is very important for molecular modeling as it can be used to formu-
late an initial pseudo-backbone of the protein, shedding light on its actual structure.
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(a) Annotated sequence of amino acid residues

(b) Density volume (c) Secondary structure elements (d) Geometric skeleton (e) SSE Correspondence

Figure 3.1: The inputs to our method are the protein sequence where α-helices (green) and β -strands (blue)
are predicted using JPred [27] (a), and the 3D volume obtained by cryo-EM (b), where possible locations
of SSEs have been detected using SSEHunter [9](c). Our method computes the correspondence between the
two sets of SSEs (e) by matching the 1D sequence with a skeletal representation of the volume (d).

3.1.1 Problem statement

As a result, the computational problem that we will address here is the correspondence be-
tween the SSEs predicted from the sequence, and the ones observed in the density volume.
As illustrated in Figure 3.1e, such a correspondence would establish a coarse 3D protein
structure consisting of a chain of helices that sheds light on how the protein folds in 3D.
It is important to note that this correspondence may not be a bijection. Due to noise in a
typical density volume, an SSE detection algorithm may fail to find the locations of all the
SSEs within that volume and may also identify false SSEs.

In the past, the SSE correspondence problem has only been studied in the work of Wu et al.
[122]. Wu employed an exhaustive combinatoric search to find, amongst all permutations
of SSEs in the density volume, an ordering that best matches the protein sequence. Note
that this brute-force algorithm has a factorial time complexity. According to their experi-
ments, this method is only practical for very small inputs, taking 1.5 hours and 16 hours to
find the correspondence of a 3-helix and 8-helix protein respectively. In the first version of
our work [3] we achieved much better performance (i.e. 5 seconds for a 20-helix protein)
by formulating the correspondence problem as a subgraph-isomorphism. However, that
method focused on only the α-helix correspondence, and therefore could not be used to
generate accurate pseudo-backbones for proteins with β -sheets.
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3.1.2 Method

The central theme of our approach is to cast the SSE correspondence problem as that of
shape matching between the 1D sequence and the 3D volume. The key observation is that
the search space of possible SSE correspondences can be much reduced if the shape of the
density volume and the sequence are taken into consideration. That is, the successive SSEs
in the density volume must be connected by paths through high-density regions, and the
lengths of these SSEs and loops must match those in the sequence.

The key that makes such a matching possible is the modeling of both the 1D and 3D shapes
as graphs that encode the lengths of SSEs as well as their connectivity. In particular, the
graph representing the density volume is obtained by computing a geometric skeleton us-
ing the method described in Chapter 2 that encodes the topology of the high-density re-
gions (Figure 3.1d). Using the shape representations, SSE correspondence reduces to a
constrained error-correcting graph-matching problem, that seeks the best-matching simple
paths among two graphs. Using a best-first search algorithm, the optimal match can be
found in an efficient manner.

When applied to an extensive suite of test data, our method was shown to be capable of
identifying the correct SSE correspondence with no or minimal user-intervention for small
and medium size proteins. For example, Figure 3.1e shows the correspondence computed
by our method for the 2ITG protein of the Human Immunodeficiency Virus (HIV). Our
shape-matching approach improves the efficiency of an otherwise exhaustive search [122]
by several orders of magnitude, obtaining the correspondence of proteins with more than
25 SSEs in under 40 seconds. In addition, the availability of the skeleton allows us to plot a
path on the skeleton that connects successive SSEs, suggesting a possible pseudo-backbone
of amino acid residues.

3.1.3 Contributions

In summary, we see our work making the following contributions to shape modeling,
matching and computational biology:

• We introduce a common shape representation for both protein sequences and density
volumes as attributed relational graphs, that is suitable for structural matching.
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• We formulate a constrained error-correcting matching problem between attributed
graphs, that differs from previously known exact and inexact matching problems. In
addition, we develop an optimal solution based on a best-first search.

• We present a novel and efficient computational approach for solving an open prob-
lem in structural biology, that achieves orders of magnitude speedup over the best
available method and makes model building from cryo-EM volumes much easier for
medium-size proteins.

3.2 Previous work

Shape representation for matching: Shape representations, or descriptors, have been
widely employed in graphics and computer vision for matching purposes. Generally, such
representations can be classified into two classes. Global shape representations, often used
in shape retrieval from a large repository of models, aim at computing a compact set of
feature vectors of an entire object for fast comparison between objects [22, 96, 127]. We
would refer interested readers to the survey [96] for descriptions and comparisons of these
descriptors. Note that these global descriptors seldom provide local feature information
and are thus generally unsuitable for partial matching; that is, finding a portion of an input
object that matches a model object.

In contrast, local shape representations describe geometric features of an object (possibly
at multiple scales) and are designed for partial matching and object alignment. Some exam-
ples of local descriptors include SIFT features [67], local spherical harmonics [41], salient
surface features [42], curvature maps [43], and skeletons [99]. In this paper, we utilize
the skeleton descriptor to translate the shape of an iso-surface in the density volume into
a graph structure that can be used to identify connectivity among helices. Such a skeleton
can be efficiently generated from a discrete volume by iterative thinning [11, 16, 79, 100].
For our experiments, we first generate a binary skeleton using the method of Ju et al. [54],
and thereafter improve its connectivity using the grayscale skeletonization method [4] de-
scribed in Chapter 2.

Graph matching: In pattern recognition and machine vision, graphs have long been used
to represent object models such that object recognition reduces to graph matching. Here
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we only give a brief review of graph matching problems and methodologies and refer the
reader to the excellent surveys [20, 29] for the rich volume of matching techniques.

In general, graph matching problems can be divided into exact matching and inexact match-
ing. Exact matching aims at identifying a correspondence between a model graph and (a
part of) an input graph, that can be solved using sub-graph isomorphism [110, 30] or graph
monomorphism [118]. However, since real-world data is seldom perfect and noise-free,
inexact or error-correcting matching is desired in a large number of applications. As in the
work of Bunke [18], error-correcting matching can be formulated as finding the bijection
between two subgraphs from the model and input graph that minimizes some error function.
This error typically consists of the cost of deforming the original graphs to their subgraphs
and the error of matching the attributes of corresponding elements in the two subgraphs.
Note that, in most applications, the topology of the optimally matching subgraphs (e.g.,
whether it is connected, a tree, a path, etc.) is generally unknown. Such matching is said to
be un-constrained, since the minimization of the error function is the only goal.

The most popular algorithms for error-correcting graph matching are based on best-first
and A* searches [77]. These algorithms are optimal in the sense that they are guaranteed
to find the global optimal match. However, since the graph matching problem itself is
NP-complete, the actual computational cost can be prohibitive for large graphs. To this
end, various types of heuristic functions have been developed to prune the search space
[108, 93, 19, 91, 118]. Other methods such as simulated annealing [44], neural networks
[38], probabilistic relaxation [26], genetic algorithms [113], and graph decomposition [73]
can also be used to reduce the computational cost. Observe that all of these optimiza-
tion methods are developed for un-constrained matching where the matched subgraphs can
assume any topology.

For our problem domain, we know that the sequence will always be a linear chain of con-
nected secondary structure elements. We can use this observation to develop a specialized
form of subgraph isomorphism that benefits from this reduced search space.

3.3 Overview

As mentioned earlier, the central theme of our approach is to cast the SSE correspondence
problem as a specialized form of subgraph-isomorphism. We first analyze the sequence
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of amino acid residues together with its predicted SSE annotations to construct a Protein
sequence graph that is very sparse and linear. The Density volume graph is constructed by
analyzing the observed SSEs in the density volume, and by using the geometric skeleton to
identify their possible connectivity. Due to noise and the lack of high resolution in cryo-
EM densities, the geometric skeleton can often have many alternate paths, and therefore,
this graph is most often dense in nature. Section 3.4.1 describes in detail how each of these
graphs are constructed.

Once the graphs have been constructed, our task is to find how we can map the protein
sequence graph to the density volume graph while being robust to SSE detection errors
as well as connectivity errors in the density volume. For this purpose, we use a best-first
search algorithm complemented by an SSE attribute based cost function to quickly find a
set of likely correspondences. Furthermore, due to the nature of the best-first search, we
are guaranteed that the solutions found are indeed ones that have the globally minimum
costs [77]. Section 3.4.2 describes this search and associated cost functions in detail.

3.4 Method details

3.4.1 Shape representation using graphs

To solve the SSE correspondence problem as stated in Section 3.1.1, we first seek a com-
mon shape representation of both the 1D protein sequence and the 3D density volume that
is suitable for matching. In particular, such representation should encode the lengths of
each helix and strand as well as their connectivity. Here we introduce such a representation
using attributed relational graphs (ARG).

In general, an ARG G consists of a 4-tuple < VG,EG,αG,βG >, where VG is a non-empty
set of vertices (|VG| denotes the number of vertices), EG =VG×VG is a set of edges between
pairs of vertices, and αG,βG are attribute functions respectively on vertices and edges. Be-
low we detail the meaning of these graph components when describing a protein sequence
or a density volume, and conclude this section with a brief summary. Note that the graphs
are specifically designed to tolerate the low-resolution and noise in a density volume.
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(c) Protein sequence augmented with extra edges to tolerate one missing helix and one missing sheet (m = 1, n = 1)

Figure 3.2: The sequence of amino acid residues making up the 2ITG protein of the HIV virus (a), and the
corresponding attributed relational graphs that can tolerate up to 1 missing sheet (b), or one missing helix
and one missing sheet (c) where the vertices and edges have been colored by their attributes. Portions of the
sequence have been omitted for demonstration purposes, for the full sequence please refer to Figure 3.1a.

Protein sequence graph

We represent the α-helices and β -strands in the primary sequence using a collection of
vertices and edges in the protein sequence graph. Each helix is denoted by two vertices,
and each strand by one5. These vertices are augmented by two additional terminal vertices
denoting the two ends of the protein. To reflect the linearity of the sequence, we index the
vertices in VS in ascending order {1, . . . ,2r + s+2} where r is the total number of helices,
s is the total number of strands, and 1 and 2r + s+2 are the two termini of the protein. For
matching purposes, the different types of vertices are also distinguished by their attributes:
αS(x). For each x ∈VS, αS(x) returns a 2-tuple {αS1(x),αS2(x)}. The first attribute αS1(x)
assumes H, S, B or E if x represents an end of a helix, a strand, the beginning or the end of
the protein. The second attribute αS2(x) is applicable to only strand vertices, and maintains

5As we are interested in the directionality of the α-helix assignment we use two graph vertices that
correspond to each end point of the Helix. On the other hand multiple β -strands are associated with a single
β -sheet, and the lack of resolution does not allow us to determine directionality. Therefore, we denote β -
strands with only a single vertex.
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the strand length as the number of amino acid residues in the sequence. An example of
vertices and attributes is shown in Figure 3.2b for the sequence in 3.2a.

To encode the lengths of SSEs and their connectivity, a helix edge is formed between the
two ends of each helix, and a loop edge is formed between all other neighboring vertices
in the sequence(as shown in Figure 3.2b). For strands, we do not annotate an edge, as the
length information already encoded using the αS2(x) attribute described earlier. Note that
these edges form a simple path with different edge types. The attribute function βS(x,y)
for each edge {x,y} returns a 2-tuple: βS1(x,y) indicates the edge type, being H or L when
{x,y} is a helix edge or loop edge, and βS2(x,y) maintains the length of that helix or loop
as the number of amino acid residues in the sequence. Note that the graph is undirected,
that is, βSk(x,y) = βSk(y,x) for k = 1,2.

Due to the noisiness and the low resolution of the density volume, SSE detection in the
volume may not be able to find all secondary structure elements of that protein. To be able
to establish an error-correcting matching in the presence of missing elements, we augment
the graph with loop edges bypassing a sequential group of α-helices and/or β -strands. For
each sequential group of such SSEs beginning at vertex j and ending at vertex k, such a loop
edge connects vertices { j−1,k +1}. We include loop edges bypassing 1 . . .m helices and
1 . . .n strands, where m and n are user-specified maximum numbers of helices and strands
that could be missing in the volume. The attribute βS2(x,y) for each new loop edge is set
to be the total number of amino acids in the sequence bypassed by the edge. Figure 3.2b
shows an example with m = 1, n = 0, and Figure 3.2c shows an example with m = 1 and
n = 1. Note that after such an addition, any simple path in the graph connecting vertices
with ascending indices still consists of a sequence of vertices and edges that represents an
ordered subset of SSEs in the protein sequence. Due to the inherent limitations in accurately
detecting SSEs in the density volume, we assume n to be ≥ 1 in our experiments (Section
3.5).

Density volume graph

As in the sequence graph, the volume graph C consists of two vertices for each detected α-
helix, one vertex for each detected β -sheet, and two terminal vertices for the entire protein.
The different types of vertices are distinguished using the vertex attribute function αC1 , that
assumes H, S, B or E for the helix vertices, sheet vertices, beginning vertex or end vertex
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(a) Volume, skeleton and SSEs (b) Density volume graph

Figure 3.3: The density volume, skeleton, and detected SSEs (a), and the corresponding attributed relational
graph (b) where the two terminal vertices 1 and 9 are connected to every other vertex via loop edges. Three
helices have been omitted for demonstration purposes, for the full annotation refer Figure 3.1d.

of the protein. In the case of sheet vertices, a second attribute αC2 maintains the expected
individual strand length for the given sheet, which is estimated by comparing the relative
sizes of the different sheets. Unlike the sequence graph, where there is an explicit ordering
of vertices, the indices of vertices in VC do not imply any ordering.

To encode helix information, vertices representing the two ends of a helix are connected
by a helix edge. As in the sequence graph, the edge attribute function βC returns a 2-
tuple, where βC1 assumes H or L indicating a helix or loop edge, and βC2 returns the length
information. For a helix edge {x,y} ∈ EC, βC2(x,y) is the Euclidean length of the detected
helix in the density volume, which can be normalized by the resolution of the volume to
approximate the number of amino acids in the helix [9]. An example of such edges are
shown in green in Figure 3.3b representing the helices detected in the density volume in
3.3a.

Unlike the sequence graph, the density volume does not explicitly provide the needed con-
nectivity among detected helices and sheets. However, as stated earlier, two structures
(helices and/or strands) at successive positions in the sequence are more likely to be con-
nected in 3D through regions in the volume with high density. As a result, we seek a
representation that depicts the topology of such high-density regions. To this end, we ex-
tract a morphological skeleton of the density using a combination of erosion-based binary
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[54] and grayscale [4] skeletonization techniques. Such skeletons can be robustly generated
even from noisy surfaces while preserving the solid topology, and an example is shown in
Figure 3.3a.

Given the skeleton, we form loop edges as shown in Figure 3.3b. First, we link every
two vertices in the graph that represent two different structures (helices or sheets) and are
connected by a path on the skeleton, as long as the path does not pass through a helix. When
multiple paths exist between two structures, the shortest is taken. Note that, due to noise
present in the volume, these skeleton paths may not capture all the necessary connectivity
among structures. To this end, we additionally create a loop edge between ends of every
two structures whose Euclidean distance is within a user-specified value ε . Finally, to
complete the graph, a loop edge is created between each terminal vertex and every non-
terminal vertex. The edge attribute βC,2 for the above three classes of loop edges are set to
the length of the skeleton path, the Euclidean distance, and zero respectively (normalized
by the resolution of the volume as in [9]).

Summary: Here we briefly summarize the common meanings of the graph components
< VG,EG,αG,βG > in a sequence graph (G = S) and in a volume graph (G = C).

• Vertices VG: A helix vertex represents one of the two ends of an α-helix. A strand
vertex (in the sequence graph) represents a β -strand and a sheet vertex (in the volume
graph) represents a β -sheet. A terminal vertex represents one of the two terminals of
the protein.

• Edges EG: A helix edge connects two ends of an α-helix. A loop edge connects ends
of two structures (helices or sheets) or between a structure and a protein terminal.

• Vertex attribute:

– αG1(x): Returns H, S, B or E if x is a helix vertex, strand vertex, the start
terminal or the end terminal.

– αG2(x): For a strand vertex in the sequence graph, returns the length of a strand.
For a sheet vertex in the volume graph, returns the expected length of a strand.

• Edge attribute:

– βG1(x,y): Returns H or L if {x,y} is a helix edge or a loop edge.
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– βG2(x,y): Returns the length of the edge {x,y}, measured as the number of
amino acid residues (in the sequence graph) or as the expected number of amino
acid residues in the skeleton path (in the volume graph).

3.4.2 Constrained graph matching

Given two graphs representing the secondary structure elements (helices and strands/sheets)
in the sequence and in the volume, we show that finding the correspondence between the
two sets of structures reduces to a constrained graph matching problem. We first define:

Definition 1 A chain of an ARG G is a sequence of nodes {v1, . . . ,vn} ⊆ VG that form a
path in G. A chain is ordered if v1 = 1,vn = |VG|, and vi < vi+1 for all i ∈ [1,n−1]. A chain
is simple if vi 6= v j for all i, j ∈ [1,n−1].

For example, an ordered chain in the sequence graph consists of a sequence of nodes and
edges depicting a linked sequence of helices and strands. A correspondence between struc-
tures in the sequence and the volume is therefore a bijection between an ordered, simple
chain in the sequence graph and a chain in the volume graph. Note that the definition of
chain allows establishing partial correspondence between a subset of the structures in both
the sequence and the volume. More generally, the problem can be defined for any pair of
attributed relational graphs:

Problem 1 Let S,C be two ARGs. Find an ordered, simple chain {p1, . . . , pn} ⊆ VS and
chain {q1, . . . ,qn} ⊆VC that minimize the matching cost:

n
∑
i=1

cv(pi,qi)+
n−1
∑
i=1

ce(pi, pi+1,qi,qi+1) (3.1)

where cv,ce are any given functions evaluating the cost of matching node pi with qi or edge
{pi, pi+1} with {qi,qi+1}.

Comparing to previously studied graph matching problems such as exact graph (or sub-
graph) isomorphisms, inexact graph matching and maximum common subgraph problems
[47], Problem 1 is unique in that it seeks best-matching subgraphs from two graphs that
have a particular shape. Given such constraints, previous graph matching algorithms that
are guided only by error-minimization can not be directly applied.
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Cost functions

Here we explain our choice for the two cost functions cv,ce in Equation 3.1 when matching
the sequence graph and the volume graph. Note that the algorithm we present in the next
section works for any non-negative cost function.

Each cost function measures the similarity of the attributes associated with two vertices
or two edges. The vertex cost function has two purposes: it ensures that two matched
vertices are of the same type, and for a strand-sheet vertex pair, it computes the difference
between the length of the strand and the expected strand length for that sheet. The vertex
cost function is defined as:

cv(x,y) =











|αS2−αC2 |, if αS1(x) = αC1(y) = ‘S’
0, if αS1(x) = αC1(y) 6= ‘S’
∞, otherwise

(3.2)

The edge cost function enforces type matching and computes the length difference between
two helix edges or two loop edges, and is defined as:

ce(x,y,u,v) =































|βS2(x,y)−βC2(u,v)|, if βS1(x,y) = βC1(u,v),
and y = x+1.

|βS2(x,y)−βC2(u,v)|+ γS(x,y), if βS1(x,y) = βC1(u,v),
and y > x+1.

∞, otherwise.

(3.3)

Here, the γS term penalizes missing helices and sheets in the volume graph and is set to be
a weighted sum of the length of helices and strands bypassed by a link edge. For a link
edge in the protein sequence connecting nodes x and y, we compute the penalty as:

γS(x,y) = ωh ∑
x < i < y−1, and
βS1 (i, i+1) = ‘H’

βS2(i, i+1) + ωs ∑
x < i < y, and
αS1 (i) = ‘S’

αS2(i) (3.4)

where ωh and ωs are user-specified weights that adjust the influence of missing helices and
missing strands in this penalty term.
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An optimal best-first search algorithm

In this section, we present a best-first search algorithm for solving Problem 1. Our method
extends the tree-search paradigm popularized in computing unconstrained error-correcting
graph matching and is guaranteed to find the optimal match.

To find a match between two graphs, a tree-search algorithm starts out from an initial,
incomplete match and incrementally builds more complete matches. To find matching
chains in graphs S,C, we first consider a partial match as a sequence of node-pairs

Mk = {{p1,q1}, . . . ,{pk,qk}}

where {p1, . . . , pk} and {q1, . . . ,qk} are the initial portion of some ordered, simple chain
in S and some chain in C. Based on the definition of chains and our matching goal of
minimizing cost functions, elements of Mk must satisfy the following requirements:

• Vertex requirement: For all i ∈ [1,k]:

p1 = 1, pi ∈VS, qi ∈VC, and cv(pi,qi) 6= ∞,

and for all j ∈ [1,k], i 6= j, αC1( j) 6= ‘S’:

qi 6= q j.

In other words, the only vertices that may repeat in Mk are sheet vertices in the
volume graph, and vertices in each pair must be of the same type.

• Edge requirement: For all i ∈ [1,k−1]:

pi < pi+1, {pi, pi+1} ∈ ES, {qi,qi+1} ∈ EC, and ce(pi, pi+1,qi,qi+1) 6= ∞.

In words, {p1, . . . , pk}must form an ordered chain, and the two edges connecting the
two nodes in neighboring pairs in Mk must be of a same type.

Starting with an empty match M0 = /0, the search algorithm incrementally builds longer
matching chains. Specifically, we define an expansion of a partial match Mk as a new
partial match Mk+1 = Mk∪{{pk+1,qk+1}} such that the added nodes pk+1,qk+1 satisfy the
node requirement and the added edges {pk, pk+1},{qk,qk+1} (for k > 0) satisfy the edge
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// Finding the optimal common chain in S,C

ChainMatch(S,C)
// Q is a min heap
// The key of each element M ∈ Q is g(M)

Q← {M0}
Repeat

Mk ← Pop(Q)
// Mk has the form {{p1,q1}, . . . ,{pk,qk}}
If pk = |VS|

Return Mk
Repeat for each expansion Mk+1 from Mk

Insert(Q,Mk+1)

Figure 3.4: Pseudo-code for our best-first search based algorithm.

requirement. Note that usually a Mk can be expanded into multiple Mk+1. A match Mk is
complete (i.e., no more expansion can be done) if pk = |VS|.

Observe that the search procedure essentially builds a tree structure with M0 at the root of
the tree, expanded partial matches Mk at the kth level of the tree, and complete matches
at the tree leaves. Our goal is therefore to find the complete match that minimizes the
matching error defined in Equation 3.1.

Best-first search

To avoid an exhaustive tree search to find the optimal complete match, we adopt the best-
first search algorithm that prioritizes the expansion of incomplete matches using the cost
function. We denote the cost function for partial match Mk as g(Mk). The best-first search
algorithm works by maintaining all un-expanded partial matches in a priority queue and
only expanding the partial match with the best (smallest) cost function value. Figure 3.4
outlines the pseudo-code of the algorithm.

Observe from Figure 3.4 that the algorithm returns the first complete match that it finds.
Due to the nature of the node expansion, where the current lowest cost match is always
expanded first, the first complete match is guaranteed to be the optimal match. For our
purposes, we extend the algorithm to continue expanding after the first match is found.
Based on the same best-first proof, the subsequent match (and the next match thereafter, ad
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Protein Volume Size Sequence Density Volume
(d3) Helix count Strand count Sheet count Missing helices Missing sheets

1UF2 96 4 - - - -
2ITG 64 6 4 1 - -
1IRK 96 9 9 3 1 1
1WAB 64 9 5 1 2 -
1DAI 64 9 9 3 - 2
1BVP 128 10 14 3 - -
3LCK 64 12 7 2 5 -
1TIM 96 12 8 1 3 -
GroEL (Apical Domain) 100 5 8 2 - -
RDV P8 96 14 8 3 2 1

Table 3.1: Data used to evaluate our method for finding the correspondence between SSEs.

infinitum) is guaranteed to be the next-best match. This allows us to find a set of the lowest
cost matches, ordered by the ascending order of their costs.

3.5 Results

In this section, we discuss the performance of our method on an extensive suite of protein
data. For the majority of these data sets, we observed that our method was capable of find-
ing the correct SSE correspondences without any user intervention. However, for density
volumes of poor quality, the optimal graph matching may not represent the actual SSE cor-
respondence, and user-interaction is needed to yield the correct result. For this purpose, we
present the user with statistical information gathered from the top matches, to give them a
better idea of the most likely interaction choices.

3.5.1 Setup

Our experiment consists of ten cryo-EM volumes at 4Å-10Å resolution, eight of which
are simulated from the actual atomic model obtained from the Protein Data Bank [34] and
two which are authentic cryoEM reconstructions (RDV P8 at 6.8Å, GroEL-Apical domain
at 4.2Å6). These structures, while not an exhaustive representation of those found in the
Protein Data Bank, do represent commonly occurring folds of the major families of protein
structure. Table 3.1 shows the number of helices and strands in the protein sequence, the
number of sheets in the density, and the number of missing helices and sheets in the density
(given as the parameters m and n when creating the sequence graph).

6EMDB numbers for these authentic reconstructions are 1060 (RDV P8) and 5001 (GroEL)
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In each example, we utilize the protein sequence data from the Protein Data Bank, the
SSEs in density volumes detected using SSEhunter [9], and the skeleton created using
the methods of Ju et al.[54] and Abeysinghe et al.[4] (Chapter 2). The matching result
is presented as a correspondence between SSEs in the sequence with those in the density
volume. In our most noisy data set, (RDV P8) an Euclidean distance threshold of ε = 10Å
was used for creating extra edges in the volume graph to allow for missing connectivity in
the geometric skeleton. In all our experiments the missing helix and sheet penalty terms in
equation 3.4 are set to ωh = 5,ωs = 5.

3.5.2 Evaluation method

To evaluate the accuracy of matching, we compare the SSE correspondence computed by
our method with a manual labeling of the SSEs in the density volume based on the known
atomic structure (for simulated data) or a structural homologue (for authentic data). To
improve on a binary evaluation of whether or not our method finds the correct correspon-
dence, we compute a list of candidate correspondences between the SSEs in the sequence
graph and the volume graph, ranked by their matching costs. This can be done easily in
the best-first search framework by terminating the search only after a number of complete
matches (e.g., 35) have been found. In our experiments, the accuracy of our method is
reported as the ranking of the manual-labeled correspondence in this candidate list.

Quantifying the benefit to the user: In Figure 3.5, we see our method used to identify
the SSE correspondence for the 1IRK protein. As we will discuss later, this type of data
set is challenging due to missing SSE elements and similar lengths of loops, strands and
helices. Although we do not detect the correct strand correspondence in our candidate list,
we see that the pseudo-backbone generated for the first candidate is almost identical to the
ground truth. Furthermore, we provide users with statistics (probability of occurrence of a
given pairing in the list of top candidates) that allow them to make reasonable assumptions
when interactively refining the search. Due to this reason, the rank by itself is not a good
indicator of the accuracy of our method, and we make use of the evaluation function Es

(described below) which is a better estimate of accuracy that also captures the interactive
nature of our approach.

42



(a) Results displayed as a pseudo-backbone, and the probabilities for each pairing (b) Actual Cα backbone

Figure 3.5: Our method used to identify the SSE correspondence of the 1IRK protein of the Human Insulin
Receptor(a), where the pseudo-backbone is displayed on the left, and the individual SSE correspondences are
displayed on the right together with the probability of that occurrence in the list of candidates. Even though
the correspondence does not have a perfect sheet matching, the pseudo-backbone is almost identical to that
of the ground truth (b).

Given the probability of occurrence7 for each pairing P({i, j}) of the sequence SSE i and
the density SSE j, a naı̈ve user-interaction method is to pick the highest probability pairing
for each secondary structure element in the sequence. We compare the correspondence
obtained from this method Cn against the ground truth Cg to form an evaluation Ep:

Ep(Cn,Cg) =
1
|Cg|

|Cg|

∑
i=1

δCn[i],Cg[i] (3.5)

where δa,b is the Kronecker delta function δa,b =

{

1, if i = j
0, if i 6= j

. In other words, Ep is the

fraction of correct individual SSE pairings if we pick the highest occurrence match for each
SSE. Due to the binary nature of Ep this can be an overly conservative measure of accuracy.
For example, for each SSE if the probability of the correct pairing is only slightly lower than
that of an incorrect match, we would have Ep = 0. Due to this reason, we must consider the
probability of the correct pairing compared against that of the highest-occurrence match.

7The probability of a pairing P(a) is defined as the ratio between the number of occurrences of a in the
list of candidates, and the total number of candidates (which in our experiments is set to 35).
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1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 ENPASKPTPVQDVQGDGRWMSLHHRFVADSKDKEPEVVFIGDSLVQLMHQCEIWRELFSPLHALNFGIGGDSTQHVLWRLENGELEHIRPKIVVVWVGTN
101 NHGHTAEQVTGGIKAIVQLVNERQPQARVVVLGLLPRGQHPNPLREKNRRVNELVRAALAGHPRAHFLDADPGFVHSDGTISHHDMYDYLHLSRLGYTPV
201 CRALHSLLLRLL

� � ��� � � � 	 
� �
�

(a) Annotated sequence of amino acid residues

(b) Density volume (c) Detected SSEs and geometric skeleton (d) SSE Correspondence

Figure 3.6: The annotated sequence of amino acid residues of the 1WAB protein (a), the density volume (b),
the detected secondary structure elements together with the skeleton (c), and the correspondence between the
two sets of SSEs computed as the optimal match between the sequence and volume graphs (d).

Es (Ep ≤ Es ≤ 1) achieves this task by allowing partial credit for each pairing.

Es(Cn,Cg) =
1
|Cg|

|Cg|

∑
i=1

P(Cg[i])
P(Cn[i])

. (3.6)

In our experiments we have observed that an Es score higher than 0.8 indicates a very good
list of candidate matches that are only one or two assignments different from the ground
truth. Table 3.2 evaluates the accuracy of our method by considering the rank, and the Es

score.

3.5.3 Unsupervised matching

Figures 3.1 and 3.6 show two examples (2ITG and 1WAB) where our method is able to
identify a correct SSE assignment as a top-ranked candidate. Observe that our algorithm
is robust to noise in the data, such as the two missing helices in the density volume of
1WAB. As a by-product of our algorithm, a pseudo-backbone can be visualized by ren-
dering the skeleton paths represented by the graph edges in the optimally matching chain.
This pseudo-backbone serves as a starting point when determining the actual Cα backbone
as described in Chapter 5. In Figure 3.5, we compare the pseudo-backbone for the 1IRK
protein of the Human Insulin Receptor with the actual Cα backbone. Observe that although
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1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 SKRYFVTGTDTEVGKTVASCALLQAAKAAGYRTAGYKPVASGSEKTPEGLRNSDALALQRNSSLQLDYATVNPYTFAEPTSPHIISAQEGRPIESLVMSA
101 GLRALEQQADWVLVEGAGGWFTPLSDTFTFADWVTQEQLPVILVVGVKLGCINHAMLTAQVIQHAGLTLAGWVANDVTPPGKRHAEYMTTLTRMIPAPLL
201 GEIPWLAAATGKYINLALL

� � � �� � � � 	
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(a) Annotated sequence of amino acid residues

(b) Rank 1 correspondence (c) Actual correspondence (d) Two missing β -sheets

Figure 3.7: The annotated sequence of amino acid residues of the 1DAI protein (a), the optimal correspon-
dence computed by our method (b) and the actual correspondence (c) which ranks 17th in the candidate
matches. Observe that our method accurately identifies the missing sheet highlighted on the actual molecular
model (d).

the top-ranking correspondence was not able to correctly identify the two missing β -sheets,
the backbones are almost identical.

Figure 3.7 shows an example where the correct correspondence (Figure 3.7c) is ranked
17th in the candidate list, and differs from the top candidate (Figure 3.7b) by only the
helix assignments B and C. These two helices exhibit very similar lengths and connectivity,
illustrating why graph-matching alone cannot distinguish right from wrong without further
user interaction. However, it is worthwhile to note that our method was able to accurately
identify the two missing β -sheets highlighted in Figure 3.7d for all but two of the top 35
candidate matches. This is also reflected by the high Es scores observed for this experiment
in Table 3.2.

3.5.4 Interactive matching

In the case where the resolution of the density volume does not provide sufficient shape
or topology information of the embedded protein, our shape-matching based approach
may not produce the correct correspondence in the candidate list. Proteins that exhibit
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1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
1 APRKFFVGGNWKMNGKRKSLGELIHTLDGAKLSADTEVVCGAPSIYLDFARQKLDAKIGVAAQNCYKVPKGAFTGEISPAMIKDIGAAWVILGHSERRHV
101 FGESDELIGQKVAHALAEGLGVIACIGEKLDEREAGITEKVVFQETKAIADNVKDWSKVVLAYEPVWAIGTGKTATPQQAQEVHEKLRGWLKTHVSDAVA
201 VQSRIIYGGSVTGGNCKELASQHDVDGFLVGGASLKPEFVDIINAKH

� � � �� � � �	 
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(a) Annotated sequence of amino acid residues

(b) Density, skeleton and SSEs (c) Optimal correspondence (d) Optimal after constraint (e) Actual correspondence

Figure 3.8: The annotated sequence of amino acid residues of the 1TIM protein (a), the optimal corre-
spondence computed by our method (b) and the actual correspondence (c) which ranks 9th in the candidate
matches. Observe that our method accurately identifies the missing sheet highlighted on the actual molecular
model (d).

symmetrical elements such as similar-length helices that surround a beta barrel (Figure
3.8), or similar-sized β -sheets that are located close together (Figure 3.9) also pose a chal-
lenge to our method due the large amount of possible correspondences that have the same
cost as defined in Equation 3.1. To overcome this limitation, we allow the user to man-
ually assign matching constraints based on their biological knowledge of the spatial ar-
rangement of SSEs. Specifically, the user may designate the correspondence between a
small subset of helix edges and/or sheet vertices in the sequence graph and the volume
graph. Such information can be translated into additional edge and/or node attributes (e.g.
βS,1({x,y}) = βC,1({u,v}) = Hk if edge {x,y} and {u,v} are the kth corresponding pair) to
enforce such explicit matching in the best-first search.

Figure 3.8 shows an example of the 1TIM protein found in chicken muscle where the
correct SSE correspondence was not found in the initial candidate list without any user
constraints (we computed a list of 35 top matches, the optimal match is shown in Figure
3.8c). After a user specified constraint (D), the correct correspondence was found ranking
25th in the candidate list as shown in Figures 3.8d and 3.8e. The reason that graph matching
was not able to identify the correct correspondence without user constraints is that the SSEs
in the protein exhibit similar lengths and are spatially close-by, hence pose challenges to
matching which is primarily based on SSE and loop lengths. Interactive constraints, that
carry domain knowledge, can be used in these cases to provide anchor points to guide our
method towards a more accurate correspondence. In this example, the constraint is picked
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1 MDTIAARALTVMRACATLQEARIVLEANVMEILGIAINRYNGLTLRGVTMRPTSLAQRNEMFFMCLDMMLSAAGINVGPISPDYTQHMATIGVLATPEIP
101 FTTEAANEIARVTGETSTWGPARQPYGFFLETEETFQPGRWFMRAAQAVTAVVCGPDMIQVSLNAGARGDVQQIFQGRNDPMMIYLVWRRIENFAMAQGN
201 SQQTQAGVTVSVGGVDMRAGRIIAWDGQAALHVHNPTQQNAMVQIQVVFYISMDKTLNQYPALTAEIFNVYSFRDHTWHGLRTAILNRTTLPNMLPPIFP
301 PNDRDSILTLLLLSTLADVYTVLRPEFAIHGVNPMPGPLTRAIARAAYV
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(a) Annotated sequence of amino acid residues

(b) Helix-only correspondence (c) Optimal correspondence after helix constraints (d) Actual correspondence

Figure 3.9: The annotated sequence of amino acid residues of the 1BVP protein (a), and the optimal corre-
spondence computed by our method where the helix correspondence is correct (b). The optimal correspon-
dence after the helices have been constrained (c), and the actual correspondence (d).

by analyzing the sequence to find the shortest of the only helix pair that has a loop segment
separating them.

For proteins where the β -sheets are clustered away from the α-helices our method can
predict the α-helix correspondence with very high accuracy. For example, for the 1BVP
protein of the Blue-Tongue Virus shown in Figure 3.9, our method was able to predict the
α-helix correspondence as the optimal cost match. However, due to the clustered nature
of the β -strands, the correct β -strand correspondence does not appear in the top list of
candidates. For proteins of this nature, we provide the user with a 2-stage interaction
approach, where they can first find the α-helix only correspondence. Once they are satisfied
with the helix correspondence, they can constrain the helices and continue to search for the
β -strand correspondence guided by the probabilities of occurrence (Figure 3.5).
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Protein User Helix only Helices and Strands Execution time (s)
Constraints Rank Es Rank Es(Strand only) Es(Composite) First match Top 35 matches

1UF2 - 1 0.96 1 - 0.96 0.00 0.00
2ITG - 1 1.00 1 1.00 1.00 0.00 0.01
1IRK - 1 1.00 >35 0.76 0.92 0.65 0.82
1WAB - 11 0.89 11 1.00 0.91 0.65 1.14
1DAI 1 17 0.82 17 1.00 0.89 0.21 0.32
1BVP -/10∗ 1 1.00 >35 0.58 0.83 0.86 1.50
3LCK - 7 0.95 >35 0.71 0.89 17.01 21.04
1TIM 1 25 0.91 25 1.00 0.93 11.60 15.41
Groel - 1 1.00 >35 0.90 0.95 0.07 0.11
RDV P8 6 12 0.96 >35 0.88 0.94 36.54 38.32

Table 3.2: The number of user constraints specified for each experiment, the rank and Es score when con-
sidering only the α-helix correspondence, the rank and Es scores when considering both α-sheet as well as
β -strand correspondences, and the execution times to find the first correspondence and the list of the top
35 candidates. ∗For 1BVP the experiment was conducted by first finding the helix correspondence using no
constraints, and then constraining all the helices to find the β -strand correspondence.

Due to the accumulation of error in the search process because of the inherent ambiguities
present in low-resolution imaging, we observe that the amount of user constraints needed
to obtain a high-ranked correct correspondence increases with the decreasing accuracy (in
terms of resolution as well as noise) of the density map. The shape of the protein is also a
factor, as proteins with rotational symmetry require a few user constraints to act as anchor
points. As discussed later, the worst-case computational cost of our approach is exponen-
tially proportional to the number of SSEs in the protein. Therefore, an increasing number
of user constraints can to be used to reduce the computational cost when performance is a
critical factor.

Although user constraints demand a time investment by a domain expert, we note that the
time needed to specify these constraints is much smaller compared to the time needed if
the user was to specify all the helix correspondences.

3.5.5 Performance

The result for all 10 proteins are presented in Table 3.2, showing the number of user-
specified constraints used, the rank of the ground truth when considering only the helix
correspondences, the rank of the ground truth considering all of the SSEs, the execution
times, and the associated Es scores for the list of top 35 candidates.

Observe from the tables that the graph matching approach in combination with the domain-
specific strategies allow accurate identification of protein structure with no or a small
amount of human input depending on the quality of the density volume. Also observe
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(a) Volume and detected SSEs (b) Actual molecular model

Figure 3.10: The density volume and detected SSEs for the 1BVP protein (a), and the actual molecular model
(b). Observe that in the SSEs detected using SSEHunter (a), the β -sheet highlighted in the molecular model
has been incorrectly detected as being part of the larger sheet is located immediately above.

that for proteins where the ground truth correspondence did not appear in the list of candi-
dates, the Es scores are still high implying that the statistical information can be effectively
used to guide the user towards the correct correspondence. The only exception to this ob-
servation is 1BVP where its Es score is 0.58 even after constraining the helix elements. In
this case, a set of β -strands that appear as a separate sheet in the sequence are incorrectly
identified by SSEHunter as belonging to a large β -sheet (Figure 3.10). In this situation, our
method performs poorly due to the mismatch between the expected strand length, and the
actual strand length, leading to the low Es score observed in Table 3.2.

Also note that the time taken to perform a computation is almost negligible in human terms
(< 40(s) for RDV P8), which facilitates a smooth user-interactive functionality8.

3.6 Conclusion and discussion

In this chapter we reported a novel application of shape modeling and matching to roughly
register the sequence of amino acid residues to an intermediate resolution density volume

8Experiments were performed on a PC with a 3GHz Pentium D CPU and 4GB of memory (our imple-
mentation runs on a single thread, thus utilizes only one of the cores of the CPU)
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obtained using electron cryo-microscopy. We translated the biological problem into a com-
putational one by representing the shapes of biological data (e.g., protein sequence and den-
sity volume) as attributed relational graphs. We solved the SSE correspondence problem
using graph matching, and we demonstrated the effectiveness of the method on authentic
as well as simulated data sets. One of our main contributions is an optimal algorithm for
constrained error-correcting graph matching, which will be useful in other shape-matching
tasks where the sought match has a linear shape.

Limitations: One of the limitations of our graph matching algorithm, like other best-
first search based graph isomorphism techniques, is its high computational cost (both time
and memory) for large graphs. In particular, our implementation of the method has dif-
ficulty in handling proteins with more than 25 SSEs without a fairly large number (> 6)
of user-specified constraints. In the future, we plan to explore variants of the best-first
search, including A*, iterative-deepening and memory-bounded A*, that are better suited
for solving the graph matching problem on large data sets.

As demonstrated in Figure 3.10, our method is very sensitive to one type of β -sheet mis-
predictions in the density volume where multiple sheets are incorrectly identified as one.
In the future we plan to explore better alternatives for SSE prediction from density vol-
umes, and also incorporating techniques into our graph matching so that it can tolerate
these mispredictions in a much more robust manner.

In our current method, user constraints are specified in the form of known SSE correspon-
dences. There are also situations where different forms of user interaction may be more
convenient to specify and more effective. For example, in proteins such as 1TIM (Figure
3.8) users can easily specify a pair of SSEs that occur one after the other by looking at the
sequence. However, due to the symmetry they are not able to anchor them to a specific
section in the sequence. For these cases, we intend to provide an interaction mode that
allows users to constrain SSEs in the density to be neighboring elements.

Another beneficial interaction mode is to trace the most likely paths in 3D space of the
strands making up each β -sheet. While the density does not contain adequate resolution
for this purpose, we can approximate the paths of the strands by finding the shortest path on
the geometric skeleton that connect the β -sheet end points. As incorrect configurations are
very likely to contain paths that cross-over (which is not something seen in nature), this can
be a very valuable visual clue when guiding the user towards an accurate correspondence.
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We can take this one step further and try to incorporate this observation into our cost metric.
However, to obtain reasonable results with such a cost metric the β -sheet detections would
have be more accurate than they presently are.

The reason for lower success rates at lower resolutions often stem from the bad quality of
the geometric skeleton obtained. These skeletons often contain many incorrect paths, and
can lead to wrong estimates when using a shortest-path based value to approximate the
loop length between SSEs in the density graph. In the future we wish to annotate the loop
edges of the density graph with not only the length of the shortest path, but also a statistical
measure of all the possible paths that bridge the same pair of SSEs. This can lead to a more
accurate estimate of the loop lengths, and thus a more accurate cost measure.

Finally, our evaluation method assumes the existence of a manually labeled correspon-
dence. This begs the question: in a practical application of this method, how do we identify
the correct correspondence within the candidate list when no “ground-truth” is available?
Indeed, this is a common problem in structural biology. Many structure prediction algo-
rithms produce a gallery of structures that range in accuracy. The end user is often required
to evaluate the model in the context of other data. The ranking achieved by our program
is at least on par with the best algorithms if not significantly better. However, a fully au-
tomated approach for finding the most physically accurate correspondence based from a
(much larger) list of candidates can be very beneficial. We are currently working on a
method towards this goal and is discussed in more detail in Section 6.1.

A note on protein flexibility: Finally, we would like to note that while cryo-EM is well
suited for imaging large macromolecular complexes in near-native solution conditions, the
method ultimately reconstructs only a single snapshot of the assembly for a given set of im-
ages. In the event that there is some intrinsic flexibility in the molecule, the corresponding
regions within the density map will appear less well resolved and have more ambiguous
density values. Based on empirical evidence, most flexibility on the order of helix or sheet
shifts are not easily identifiable until sufficiently high resolutions are reached (typically
better than 7Å-8Å resolution). We envision that, given density maps of higher resolution
our technique could produce potential secondary structure topologies through regions of
disorder that may not have been readily detectable by visual observation.
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Chapter 4

α-helix registration for flexible fitting

4.1 Introduction

The monumental developments towards solving atomic structures in the recent years, and
the wide-spread use of the Protein Data Bank (PDB) [10] has resulted in a large number9

of high-resolution structures being made publicly available. The significant majority of
these structures have been solved using X-Ray crystallography and NMR spectroscopy,
and are thus much smaller in scale than the typical macromolecular complex imaged using
cryo-EM. Nevertheless, fitting these high-resolution structures to the low-resolution density
map of the much larger complex may provide a reasonable approximation of its structure
[78, 92], and is therefore a valuable tool for structural biologists.

Traditionally this problem of fitting a high-resolution model into the density map was based
on the assumption that the protein undergoes only a rigid deformation (positional/rotational
changes) [119]. While this was a reasonable assumption for maps obtained using X-Ray
crystallography (as all molecules must be in a crystallisable conformation), it is no longer
true for cryo-EM. This is because cryo-EM is capable of obtaining density maps at many
different conformations, and these conformational changes are often non-rigid in nature
with deformations similar to that of articulated bodies (i.e. hinge-like motions) [89, 74].

To overcome this limitation many flexible-fitting methods have been proposed in the re-
cent past [102, 98, 106]. They start with an initial rigid-body alignment, and thereafter
perform an energy minimization constrained by the density volume and the molecular Van
der Waals forces. As these methods operate at the micro-level (i.e. atoms or amino acid
residues) there are many degrees of freedom [61], and therefore are very computationally

9As of March 20th 2010, the PDB contains 64098 structures of which 55,361, 8,296 and 279 have been
solved using X-ray crystallography, NMR spectroscopy and cryo-EM respectively
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(a) Structural homologues (b) Isometric α-helix clusters (c) α-helix registration

Figure 4.1: Cryo-EM density volume, and α-helices of the 1OEL-chain A (a-above), and a high-resolution
model of the 2C7C-chain A (a-below) which has a similar shape to that of 1OEL. Our method can be used
to identify the isometric helix clusters (b) as well as the registration of each individual helix (c) to form a
macro-level alignment of the two proteins.

intensive, taking days and often weeks to complete. More importantly, they are affected by
local minima in the search space, and are accurate only when the initial rigid body align-
ment is reasonably close to the final conformation, with a very small degree of non-rigid
deformation. Exacerbating the problem is that the failure case for rigid body alignment is
also when the protein undergoes a large amount of non-rigid deformation, leading to bad
initializations. For example, for the proteins shown in Figure 4.1a that undergo hinge-like
unrolling deformations, a rigid-body alignment would result in approximately 50% of the
map being misaligned. In these cases the micro-level flexible fitting methods can benefit
greatly with an initialization that is accurate at the macro-level (i.e. secondary structure
elements).

Our goal is to efficiently compute the macro-level deformation from a model to the map,
accounting for both global (positional/rotational) and local (hinge motion) differences. To
compute the deformation we consider only α-helices; for four reasons:

1. They are few, making the computation more efficient.

2. They tend to stay the same length among structural homologues and proteins at dif-
ferent conformations.

53



3. When undergoing hinge-like deformations they most often stay congruent10 to a
small cluster of α helices (most often in the same molecular domain).

4. They can be robustly detected from cryo-EM maps [9].

Our approach proceeds in two steps:

Step 1: Compute the deformation that takes helices in the high-resolution model to those
in the cryo-EM map. Assuming hinge-motions dominate the shape change, we consider
deformations consisting of a set of isometric transformations between clusters of helices.

Step 2: Propagate the helix deformations to the residues on sheets and loops, resulting in
an initial alignment of the model with the map. The propagation should be smooth while
respecting the density information.

In this chapter, we address Step 1, leaving Step 2 to be addressed as future work. Step 1 is
a geometric problem falling under the broad category of feature registration with a special
assumption that the protein deforms in a quasi-isometric manner (or like an articulated
body).

4.1.1 Problem statement

Given two sets of helices, one from the high-resolution model and the other from the cryo-
EM map, we wish to identify clusters within each set such that corresponding clusters in
the two sets can be mapped to each other using isometric (or congruent) transformation.
Isometric transformations are more general than rigid-body ones, and additionally include
reflections (by a plane or by a point). We consider this more general class of transforma-
tions due to the fact that reflections can be one of the many possible differences between
structural homologues [80].

More specifically, consider the two sets of helices S,T that may have different cardinalities.
The difference could be attributed to inaccuracy of helix prediction in either the high-
resolution structure or the cryo-EM map, the occasional breaking and merging of helices in
homologues or during conformational changes, or mapping a sub-unit S to a larger complex

10In geometry, two shapes are congruent if and only if one can be transformed onto the other by an isometry,
where an isometry is a combination of translations, rotations and reflections.
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Figure 4.2: Two sets of helices with symmetric subunits (left), and several ways these subunits can be
matched (right). The (red) highlighted matchings are less plausible as they map neighboring subunits in one
set to distant ones in the other set.

T (or vice versa). Our goal is to identify a set of helix clusters CS = {CS
1 , . . . ,CS

k} in S and
another set CT = {CT

1 , . . . ,CT
k } in T with the following properties:

1. Quasi-isometric: For any i∈ [1,k], corresponding clusters CS
i ,CT

i have the same car-
dinality, and there is an isometric transformation Mi such that Mi(CS

i ) approximately
matches CT

i up to some user-specified tolerance.

2. Disjoint: For any i 6= j ∈ [1,k], CS
i ∩CS

j = /0 and CT
i ∩CT

j = /0.

3. Maximal: Each cluster in CS or CT cannot be expanded, while satisfying (1,2), by
either merging with other clusters or adding additional helices. Also, no additional
clusters can be added to the sets CS or CT while satisfying (1,2).

Note that such matching cluster sets CS,CT may not be unique. For example, if S or T
contains symmetric parts, a group of helices in S may be isometrically mapped to multiple
groups in T . This is illustrated in the example in Figure 4.2, where both S and T consist
of three symmetric subunits (A,B,C and a,b,c respectively), each can be considered as a
cluster. There are 6 different ways in which these clusters can be mapped that all satisfy
the above properties (shown on the right). However, some mappings (colored red) are
obviously less plausible than others, as they map neighboring clusters in S to far-away
clusters in T (or vice versa).

With this scenario in mind, we wish to find among the multiple choices the matching cluster
sets CS,CT that best maintain the spatial coherence of the clusters in S and T . That is, if
clusters CS

i ,CS
j are spatially close for any i 6= j ∈ [1,k], so should be CT

i ,CT
j , and vice versa.
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4.1.2 Method

To identify the matching clusters, our key observation is that a pair of quasi-isometric
clusters, one in S and the other in T , can be represented as a clique in an appropriately
constructed product graph. In this graph, each vertex represents a pair of helices with
matching length, one in S and the other in T , and each edge represents a pair of helices in S
that can be isometrically mapped to another pair in T within some user-specified tolerance.
This graph formulation will be detailed in Section 4.3.

Based on the observation, we derive a greedy heuristic to search for the desirable matching
clusters as a set of maximal cliques in this graph, which represent disjoint clusters in S and
T and which maximize the spatial coherence among these clusters. The search involves a
best-first tree expansion, and uses a fast approximated clique-searching algorithm enabled
by the specific structure of the graph. The details of the algorithm will be explained in
Section 4.4.

4.1.3 Contribution

The contribution of this work to the field on feature registration is two fold. First, while
registration of point features has been extensively studied before, there has been few works
on matching line features. We propose a graph-based formulation of isometric mapping
between line features, and a fast algorithm for computing such mapping based on proper-
ties of this graph. Second, we propose a heuristic solution to the problem of semi-rigid
mapping, particularly in the presence of symmetry, which has been rarely addressed in the
past.

In addition, we make a practical contribution to the flexible fitting problem in structural
biology by providing a fast and accurate way of aligning secondary structures (helices, in
particular) using multiple rigid-body or reflective transformations.
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4.2 Previous work

4.2.1 Protein docking

Multi-resolution modeling has been an active field of research in the recent past, leading to
many different fitting techniques in two main classes: rigid-body fitting that considers the
high resolution structure (template) as a rigid body, and attempts to find the best fit within
the volume, and flexible fitting that allows each atom/amino acid residue of the template to
move relative to each other, to better fit the density.

Rigid Body Fitting: Most of the early methods for rigid-body fitting [49, 70] were based
on error minimizations (i.e. least squares fit) between observed and calculated structure
factors in Fourier space with respect to the rotational and translational parameters of the
template. These techniques are most useful when the diffraction amplitudes are the only
source of information, or when you want to avoid the numerical complications when trans-
forming into direct space [119]. However, deviations in the structure factors in the Fourier
space do not correspond to localized position or orientation changes in direct space, thereby
making it very difficult to refine the atomic positions of the template based on the fitting er-
ror [71]. Direct space fitting on the other hand provides much better control over localized
changes in the structure [119], allows the development of visual tools for interactive dock-
ing [75, 5] and can easily incorporate atomic energy constraints [76]. These advantages
have led to the development of many fitting techniques that exhaustively search (6 degrees
of freedom) for the position and orientation maximizing the cross correlation between the
low-resolution density volume and the template11 [51, 86, 112, 57] in direct space, or its
Laplacian [21]. However, as searching for the relative position of the template is far more
time consuming in direct space than in Fourier space, these techniques are most often used
only after an initial position has been estimated, or the appropriate molecule has been seg-
mented out from the density volume.

The computation cost for the above methods lie in the range of a few hours, and has mo-
tivated the development of information-guided fitting techniques that perform rigid body
fitting in a matter of minutes. Mod-EM [105] and Fold Hunter [51, 105] are two such

11In these techniques the high-resolution template is blurred to be the same resolution as the cryo-EM scan
in order to simplify the cross-correlation function.
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methods that use Monte-Carlo based sampling and progressively smaller step sizes, re-
spectively, to achieve fitting times of a few minutes. However, both techniques selectively
sub-sample the search space, and are therefore not guaranteed to find the optimal alignment
between template and volume. Situs [121, 120] finds the fitting in a few seconds using vec-
tor quantization by training a topology preserving artificial neural network [69]. However,
this method requires that all of the density volume be accounted for by the template(s), and
therefore cannot be used with most larger macromolecular complexes. For further infor-
mation on rigid body fitting methods, we direct the readers towards the excellent survey by
Wriggers and Chacón [119].

Flexible Fitting: Most often the shape of a protein within a large assembly undergoes
many hinge-like deformations when compared to its crystalized structure [89, 74] (avail-
able via the protein data bank). Therefore, the fitting process must allow deformations of
the high-resolution model to better fit the volume. Methods such as FlexProt [94] and FAT-
CAT [123] have been proposed that can efficiently detect the flexible alignment between
two high-resolution molecules, but they depend on the relative ordering of secondary struc-
ture elements which is not readily available in the case of cryo-EM densities. Wang and
Guibas [114] attempts to overcome this limitation by using a geometric approach to find the
registration between surface features of the two molecules. However, for cryo-EM densities
this method yields poor results as the noisy surface segmentations are often very different
from the surface segmentations of the noise-free X-Ray crystallography based densities.
To overcome these limitations, the recent past has seen the introduction of many flexible
fitting methods such as NMFF-EM [103, 102], NORMA [98], RSRef [37], S-flexfit [111],
Flex-EM [106] and MDFF [107]. The input for most of these techniques is a template
that is rigidly aligned to the density volume, after which each method uses its own energy
minimization routines or molecular dynamics simulations to locally move each individual
atom (or amino acid residue) to obtain the best fit in the density while preserving their ge-
ometric and chemical properties. While these methods obtain much better alignment than
rigid body fitting techniques, they are computationally intensive (Flex-EM takes 92 CPU
hours for a 200 residue protein [106]) as they operate on the micro-level of the structure
(i.e. atoms or amino acid residues), and therefore, have many degrees of freedom within the
search space [61]. Furthermore, as they often use gradient-descent based energy minimiza-
tion routines, they are affected by local minima in the search space, and are accurate only
when the initial rigid body alignment is reasonably close to the final conformation, with a
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very small amount of non-rigid deformation. Therefore, an accurate macro-level alignment
(i.e. secondary structure elements) can be used to significantly improve the accuracy, and
efficiency of these flexible fitting methods.

As mentioned earlier, we can consider part of this macro-level alignment problem to be
a specialized form of the feature registration problem and therefore, consider the many
methods that have been proposed in the computer graphics and vision communities.

4.2.2 Feature registration

Computing the registration between rigid or isomorphic sets of features have been exten-
sively researched in the past. The majority of this work first identifies two sets of annotated
landmark features by using local shape descriptors such as SIFT [67], local spherical har-
monics [41], salient surface features [42], curvature maps [43], spin images [52], geometric
hashing [117], etc. Thereafter, Iterative closest point (ICP) [12] or statistical analysis meth-
ods such as RANSAC [39, 83] are used to find the registration as the lowest-error alignment
of the feature sets. These methods are very efficient [7, 48], but are only suited when there
is a significant amount of rigid overlap between the two shapes.

To allow for articulated body based deformations, methods [50] have been proposed that
use spectral embedding to represent each shape within the same coordinate system. How-
ever, these methods depend on a dense sampling of feature points, and cannot be used for
the macro-level alignment problem as we have only a very small amount of α-helices (all
of which can potentially move independently).

A more recent development utilizes voting mechanisms coupled with a greedy algorithm
to quickly find the registration [114, 62]. However, the voting framework for these meth-
ods return ambiguous results in the presence of symmetries [125]. Au et al. on the other
hand proposes a graph-based voting mechanism that is robust under symmetrical condi-
tions, however, it is computationally expensive and can be used only with small (< 20)
sets of features [8]. Zheng and Doermann [129] use spin images and local neighborhood
constraints to find the lowest-error flexible deformation. However their local neighbor-
hood criteria assumes only a small amount of flexing within each local neighborhood and
therefore perform poorly in the presence of large transformations between helix clusters.
The work of Zhang et al. [125] introduces a deformation-driven algorithm that attempts to
find the registration between the features detected in the shape extremities by performing a
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combinatorial search. While they produce promising results, their error measure for each
registration involves deforming one shape to align the corresponding features, and then
measuring the resulting shape distortion. Computing this deformation is computationally
intensive, especially on complex shapes.

Another body of work that is similar to ours involve finding a maximum subgraph isomor-
phism of the two shapes. This is an NP-hard problem, and heuristics have been proposed
to avoid the exponential time complexity. Many such approaches [45, 99, 109, 13] assume
an underlying shape topology, and therefore are not suitable for finding the registration
between sets of features where the topology is unknown. This is the case for the protein
fitting problem, as the connectivity between the secondary structure elements observed in
the density volume cannot be accurately determined due to the lack of resolution. In con-
trast our method utilizes a clique-finding approach in a product graph to find the feature
registration within a few seconds, and therefore, does not depend on the shape topology.

4.3 Graph formulation

As mentioned earlier, our method is based on a graph formulation of isometry between
helix clusters. We will first explain the construction of the graph, and then establish the
relation between two isometrically aligned helix clusters and a clique in this graph.

4.3.1 Graph construction

We consider a product graph that represents the associative relation between the two sets
of helices S and T . Vertices in this graph represent a pair of helices, one from S and one
from T that have similar lengths. An edge between two vertices indicates a likely isometric
mapping between two helices in S and two helices in T . To facilitate subsequent analysis,
we consider each helix to be represented by two oriented line segments (OLSs) that have
the same length as the helix but are pointing in opposite directions. As we will show in the
next section, with this construction, a clique in the graph represents two clusters in S and T
associated with an approximate isometry. More specifically:
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Figure 4.3: The R(~e1,~e2) descriptor for the oriented line segments ~e1 and ~e2 consists of the distance between
their centroids d, and the angles α , β and θ .

Vertex construction: For each pair of OLSs ~e ∈ S, ~f ∈ T , we can create a vertex in the
graph if ‖L(~e)−L(~f )‖ ≤ εl , where L indicates length, and εl is a user-chosen threshold.
This construction yields four vertices for each pair of features. However only two of these
vertices define a unique (direction specific) registration between this feature pair, and there-
fore only these two vertices are added to the graph.

Edge construction: To assess how well a pair of OLSs in S can be mapped isometrically
to another pair in T , we first introduce a descriptor for a pair of OLSs that is invariant to
isometric transforms. This descriptor, R(~e1,~e2) = {d,α,β ,θ} consists of four scalars mea-
suring various distances and angles within a pair of OLSs {~e1,~e2}, as illustrated in Figure
4.3. In particular: d is the Euclidean distance between the midpoints p1, p2 respectively
of ~e1,~e2. α and β are the angles respectively spanned by vector pairs {~e1,(p2− p1)} and
{~e2,(p1− p2)}, and θ is the angle spanned by vector pair {~e1,~e2}. It is easy to see that R
is unaffected under any isometric transformation of {~e1,~e2}. The rational behind using this
particular set of measures is that it is intuitive for users to specify error tolerances in fitting,
based on their understanding of how much the helices could have moved or rotated relative
to each other after undergoing conformational change.
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Figure 4.4: The zero-tolerance product graph G0 (right) constructed for two sets of helices S,T (left), where
each helix is represented by two oriented line segments (OLSs) indicated by arrows and labeled by letters. A
clique (highlighted in orange) in the graph corresponds to an isometric mapping from a cluster of OLSs in S
to another cluster in T .

Given two graph vertices representing OLSs {~e1, ~f1} and {~e2, ~f2}, where ~e1,~e2 ∈ S and
~f1, ~f2 ∈ T , we connect the two vertices by an edge if ~e1,~e2 (and ~f1, ~f2) are not representing
the same helix in S (and T ), and if ‖R(~e1,~e2)−R(~f1, ~f2)‖ ≤ {εd,εa,εa,εθ}, where εd,εa,εθ

are user-specified distance and angular tolerances.

The graph: We denote the graph constructed this way as Gε , where ε = {εl,εd,εa,εθ}
denotes the various error tolerances. In particular, we use G0 as a shorthand to denote the
graph constructed with zero tolerances ε = {0,0,0,0}. In this graph, the vertices and edges
represent helices and helix pairs between S and T that are mapped by exact isometries. An
example of the graph G0 is shown in Figure 4.4.

4.3.2 Isometric clusters as cliques

Based on the above construction, we can show that two helix clusters in S and T that are
mapped by an exact isometry is equivalently represented by a clique in the zero-tolerance
graph G0, and vice versa. This is the key observation that motivates our clique-based search
algorithm (discussed in the next section), that identifies quasi-isometric clusters as cliques
in the non-zero-tolerance product graph Gε .

We will prove the above equivalence claim in each direction.
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Proposition 1 Let {~e1, . . . ,~en} ⊆ S and {~f1, . . . , ~fn} ⊆ T be two clusters of OLSs such that
no two~ei,~e j (or~fi,~f j) represent a same helix for any i 6= j ∈ [1,n]. If the two clusters can be
exactly aligned using an isometric transformation, then there is a clique {v1, . . . ,vn} ⊆ G0

where each vertex vi (i ∈ [1,n]) represents the pair {~ei,~fi}.

Proof: By isometry, L(~ei) = L(~fi) for any i ∈ [1,n], hence vertices vi exist in the graph G0.
Also by isometry, R(~ei,~e j) = R(~fi,~f j) for any i 6= j ∈ [1,n], thus each pair of vertices vi,v j

is connected by an edge. Hence the vertices {v1, . . . ,vn} form a clique in G0. �

Proposition 2 Consider a clique {v1, . . . ,vn} ⊆ G0, and denote the two OLSs represented
by each vertex vi (i∈ [1,n]) as {~ei,~fi}. Then the clusters {~e1, . . . ,~en}⊆ S and {~f1, . . . , ~fn}⊆
T can be exactly aligned using an isometric transformation, and no two ~ei,~e j (or ~fi,~f j)
represent a same helix for any i 6= j ∈ [1,n].

Proof: Being a clique, it follows that L(~ei) = L(~fi) for all i ∈ [1,n] and R(~ei,~e j) = R(~fi,~f j)

for all pairs i 6= j ∈ [1,n]. By definition of L,R, these relations imply that the six pairwise
distances between the four end-points of any two OLSs ~ei,~e j (i 6= j ∈ [1,n]) are the same as
those of in~fi,~f j. It is a well known fact that an isometric transformation exists between two
point sets where all pair-wise distances are preserved. Hence the end points in the cluster
{~e1, . . . ,~en} can be mapped to those in {~f1, . . . , ~fn} by some isometry M. Also, since an
isometry is linear, it maps straight lines to straight lines. Hence the same isometry M also
maps the OLSs between those end points. �

As an example, the highlighted triangle (a 3-clique) in the graph on the right of Figure
4.4 represents a isometric transform from the OLSs A,C,F in S to a,c,f in T . Next, we
will describe our algorithm for identifying cliques that represent disjoint matching clusters,
while additionally considering the problem of symmetry (as shown in Figure 4.2).

4.4 The algorithm

4.4.1 Overview

Recall from our problem statement (Section 4.1.1) that our goal is to identify a set of quasi-
isometric pairs of helix clusters in S and T that are disjoint, maximal, and preserving the
spatial coherence among neighboring clusters in S or T . Now that we formulated a quasi-
isometric cluster pair as a clique in the product graph Gε , the task becomes searching for
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a set of maximal cliques that represent disjoint, spatially coherent cluster pairs. Note that
this is a hard combinatoric optimization problem, as the number of maximal cliques in a
graph can be very large (exponential to the size of the graph in general), not to mention
the number of different combinations of these maximal cliques. Here we propose a greedy
heuristic that finds a locally optimal solution. As we will demonstrate in the next section,
the heuristic gives reasonable matching results in all our test cases involving actual protein
structures.

Our algorithm is a greedy, best-first tree search. A node in the search tree consists of a set
of maximal cliques Q = {q1, . . . ,qk} ⊆ Gε that represent two disjoint, quasi-isometrically
matched sets of helix clusters CS = {CS

1 , . . . ,CS
k},CT = {CT

1 , . . . ,CT
k } respectively in S,T .

A cost function H(Q) is used to assess how well the neighborhood relation among clusters
in CS is preserved among their counterparts in CT . The lower the H(Q), the more coherent
is the matching between CS and CT .

At the root of the tree, we create one child node for the largest clique q in Gε and more
child nodes for each of its symmetric cliques. A clique q′ is symmetric to q if they map
a similar cluster of helices in S (or T ) to different clusters in T (or S). At each iteration
of the algorithm, we pick the tree node representing cliques Q with the lowest cost H(Q),
and consider the residue graph of Gε that consists of only vertices (and their edges) repre-
senting helices that have not appeared in Q. We then expand multiple children nodes, each
adding to Q either the largest clique q in the residue graph or a symmetric clique of q. The
search terminates when, at the point of expansion, no more cliques (containing at least two
vertices) are found, and the cliques represented by the to-be-expanded node are output as
the matching.

In practice, we have observed that the most time-consuming part of the search is expanding
size-1 cliques (e.g., individual vertices in the residue graph) near the bottom level of the
search tree. This is because symmetric 1-cliques are typically much more abundant than
larger cliques (which represent symmetry involving larger clusters), thus significantly in-
creasing the branching factor. Hence, in practice, we terminate the search when, at the point
of expansion, the residue graph does not contain cliques of size larger than 1. The remain-
ing 1-cliques are identified using a simpler, even more greedy cost-matrix based procedure
instead of the best-first tree search, guided by the same spatial-coherence principle.

In the next section, we will detail the components of this algorithm. In particular, we will
present a fast approximate algorithm for finding the largest clique based on the specific
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(a) Highest valence edge (b) Vertex that can be added (c) Vertex that cannot be added (d) Final clique

Figure 4.5: Our triangle based search finds the largest clique in the graph (d) by first finding the highest
valence edge (a), and for each vertex that form triangles with this edge we add it to the clique if it shares
edges with the vertices already in the clique (b), and discard it if not (c).

structure of our graph. We will then discuss finding symmetric cliques, our cost function,
and the cost-matrix based procedure for identifying smaller cliques.

4.4.2 Finding largest cliques

The key operation in our algorithm is identifying the largest clique in Gε or its subgraph
(e.g., residue graph). The problem of finding the largest clique in a general graph is known
to be NP-complete and hard to approximate. The best algorithm runs in O(20.249n) =

O(1.1888n) where n is the size of the graph [85]. However, due to the special structure
of cliques in Gε (which represent isometry), we can use a much simpler, polynomial-time
algorithm to find an approximate solution. This algorithm runs in O(m2) where m is number
of edges in Gε , and is guaranteed to find the largest clique in the special case of a zero-
tolerance graph G0.

Our algorithm performs a triangle-based search. For each edge in the graph, we compute
its “valence” as the number of triangles in the graph that contains the edge. If the graph
is void of edges, an arbitrary vertex is output as the largest clique. Otherwise, as shown
in Figure 4.5 we take the edge with the greatest valence as our initial clique, and visit the
third vertex in each triangle containing the edge, each time adding the vertex to the clique
if the vertex is also connected to existing vertices in the clique. The complexity of the
algorithm is dominated by the valence computation, which we do by taking the union of
the adjacency list at each vertex of the edge. A naı̈ve implementation of this union for each
edge uses time linear to the total number of out-going edges at the two end-vertices of the
edge, hence the total time is bounded by O(m2).
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We next show that the algorithm indeed returns the largest clique in the exact isometric
matching scenario. We will start with a few lemmas that will lead to this claim.

Lemma 1 Let v1,v2 be two vertices in G0 connected by an edge and representing OLSs
{~e1, ~f1},{~e2, ~f2}. If ~e1,~e2 are non-coplanar, then there is a unique isometric transform
from {~e1,~e2} to {~f1, ~f2}.

Proof: By Proposition 2, an isometry exists between {~e1,~e2} and {~f1, ~f2}. Such isometric
transform is unique, because there is a unique isometric transform (if such transform exists)
between a pair of four non-coplanar points in 3D. �

Lemma 2 Let v1,v2 be two vertices in G0 connected by an edge and representing OLSs
{~e1, ~f1},{~e2, ~f2}, and {u1, . . . ,ul} be vertices connected to both v1,v2 and representing
OLSs {~gi,~hi} (i ∈ [1, l]). If~e1,~e2 are non-coplanar, then {v1,v2,u1, . . . ,ul} is a clique.

Proof: Since each triple {v1,v2,ui} (i ∈ [1, l]) forms a clique, by Proposition 2, there is an
isometric transform, denoted as Mi, between {~e1,~e2,~gi} and {~f1, ~f2,~hi}. Following Lemma
1, all such Mi for i ∈ [1, l] must be identical as they all involve mapping from {~e1,~e2} to
{~f1, ~f2}. By Proposition 1, {v1,v2,u1, . . . ,ul} forms a clique. �

Based on Lemma 2, the valence of an edge in G0 indicates the size of the largest clique
containing the edge. As a result, the edge with the greatest valence is contained in the
largest clique, which will be found by our triangle-based search algorithm.

4.4.3 Finding symmetric cliques

As mentioned before, in the presence of symmetry in S or T , a cluster in one model can be
equally well matched to different clusters in another model. The largest clique we found in
the product graph Gε only finds one matching that involves the largest number of helices,
and this matching may not be the optimal one in terms of maintaining spatial coherence (as
seen in Figure 4.2). As a result, in addition to finding the largest clique, we will explore
symmetric cliques that map the same cluster in S (or T ) to different clusters in T (or S).

Given the largest clique q found (using the algorithm described above) in some residue
graph G that represents a quasi-isometric mapping from a cluster E = {~e1, . . . ,~el} ⊆ S to
another cluster F = {~f1, . . . ,~fl} ⊆ T , we use an iterative procedure to find other cliques
in G that represent mapping from E to different clusters in T (and similarly for cliques
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(a) Registration without spatial coherency (b) Registration with spatial coherency

Figure 4.6: The result of our method in the presence of symmetry without using the spatial coherency cost
(a), and with using spatial coherency (b).

representing mapping from different clusters in S to F). Starting with an empty set of
symmetric cliques W = /0, we proceed as follows:

• Step 1: Consider the subgraph G′ of G consisting of only those vertices (and their
edges) representing two OLSs {~e, ~f} such that ~e ∈ E and ~f /∈ F . Find the largest
clique q′ in G′ that represent a mapping between clusters E ′ ⊆ E and F ′ ⊆ T \F .

• Step 2: If the ratio of the size of q′ over that of q is smaller than a user-chosen
threshold, stop and output W . Otherwise, add q′ to W , update F = F ∪F ′ and repeat
from Step 1.
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4.4.4 Cost function

The cost function in our best-first tree search is used for measuring the spatial non-coherence
among the isometric mappings represented by a set of cliques. We first introduce a pair-
wise cost function between two cliques p,q⊆ Gε :

h(p,q) = min
v∈p,u∈q

d(v,u)

Here, v,u are two vertices in the corresponding clique. Denote the OLSs represented by
them as {~ev,~fv} and {~eu, ~fu}, d(v,u) evaluates |d1− d2| where d1 and d2 are respectively
the distance between the midpoints of ~ev,~eu and ~fv, ~fu. Intuitively, h measures how far two
clusters in S (or T ) have been torn apart when transformed to T (or S) using the transfor-
mations represented by p,q.

To make our tree search better approximate the optimal solution, we would like the cost
function associated with the tree nodes to be non-decreasing as the nodes are expanded.
To achieve this effect, we consider the cliques at each tree node as an ordered set Q =

{q1, . . . ,qk} where newly added cliques are appended to the end, and the cost function as

H(Q) =
k
∑
i=2

w(qi)min
j<i

h(qi,q j) (4.1)

where the weight function w(q) = 1/(1− e−Size(q)/λ ) down-grades the penalty for larger
cliques. This is because larger cliques represent isometric mapping between greater number
of helices, and are less susceptible to noise. Hence we can place a higher confidence on
them. For our experiments we found a value of λ = 10 to give good results. Figure 4.6
shows a comparison of our method being used with and without the spatial coherency cost
function.

4.4.5 Finding single helix registrations using a cost matrix

As mentioned earlier, we stop the best-first search when only 1-cliques remain in the
residue graph, due to the high branching factor (and hence computational cost) of node
expansion with 1-cliques. To find the remaining 1-cliques, which represent matching be-
tween individual helices in S and T that do not belong to any larger isometric clusters, we

68



� � � � � � � � � � � �
��������	
������
��
�������
�

�

�

� �

� �

� 	

� �

� �

� �

� � � �
� ����� �� 
� ����

(a) Clusters after best-first search (b) Cost-matrix (c) Clusters after single-helix registration

Figure 4.7: Isometric clusters identified after the best-first search (a) where black indicates un-assigned
helices, the cost matrix for the single-helix registration (selected helix pairs have been highlighted with white
circles) (b), and the final set of isometric clusters after the single-helix matching step.

resort to a greedy cost-matrix based scheme guided by the same spatial coherence principle
that we used to find larger clusters.

We construct a two dimensional cost matrix whose rows and columns are respectively the
un-matched helices in S and T after the best-first tree search. Each entry in the matrix
records the spatial non-coherence of matching a helix x in S and a helix y in T with respect
to the already matched clusters. More specifically, denote the cliques found by tree search
as Q, and the four graph vertices representing the pairwise matching between the two OLSs
for x and the two OLSs for y as v1, . . . ,v4, the entry of the matrix is set to be

min
i∈[1,4]

H(Q∪{vi})

where H is the cost function in Equation 4.1. If none of these vertices exist in the graph,
the cost is set to be ∞. Figure 4.7b shows such a cost matrix. Given this matrix, we match
up the helices that give the lowest cost in the matrix, eliminate the corresponding row and
column from the matrix, and repeat this process until all helices in S or T are assigned, or
a maximum cost threshold has been exceeded.
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(a) α-helices of 1OEL-A (b) α-helices of 2C7C-A (c) Aligned by red cluster (d) Aligned by green cluster

Figure 4.8: α helices detected in the 1OEL-chain A and 2C7C-chain A proteins shown as cylinders (a) and
coils (b) are colored by the isometric clusters identified using our method. We can align the two shapes by
the red (c) or green cluster (d) to visually inspect their isometric alignment. (helices that have no registrations
are displayed in black)

4.5 Results

We are interested in the problem of finding the quasi-isometric registration between the
sets of α-helices obtained from a high-resolution model and those identified in the density
volume. However, to validate our results we must compare against an established ground
truth and therefore, we demonstrate our method on a set of protein data obtained from the
Protein Data Bank [10]. For each experiment, we pick two high-resolution models that are
structurally similar and have similar sequences. Thereafter, we extract OLSs from their α-
helix annotations, and use the sequence alignment to establish a ground truth registration.
It is this registration that we use to validate the accuracy of our results.

Figure 4.8 shows the results of our method on two proteins. As you can see from 4.8a and
4.8b the protein has two main isometric clusters, where the top cluster in 2C7C (green)
unrolls out from the lower cluster (red). Our method accurately identifies these isometric
clusters, and furthermore determines the correct registrations for the helices that move
independent of both main clusters. Figure 4.1c shows the individual helix registrations
obtained from our method12.

12In this chapter (apart from Figures 4.1c and 4.10-bottom) we have a common coloring theme to demon-
strate our results. Each helix (either represented as a cylinder or coil) is colored based on the isometric
cluster that it is assigned to. This allows quick visual identification of the corresponding isometric clusters
of each protein. The only deviations to this norm are in Figure 4.1c where each helix is colored based on its
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(a) α-helices of 3E8K (b) α-helices of 2GP1 (c) 3E8K and 2GP1 rigidly overlayed

Figure 4.9: α-helices detected in the 3E8K (a) and 2GP1 (b) proteins of the HK97 Bacteriophage colored by
the identified isometric clusters. The two proteins are overlayed (c) to show their differences. Observe that
our method has successfully tolerated α-helix identification errors where one helix has broken into multiple
helices (region A), and where helices in one protein are not present in the other (region B).

Experiment Ground truth Correctly found Not found Incorrectly
reg. count reg. % reg. % found reg.

1 3E8K-A 2GP1-A 6 6 100.00%
2 3E8K-A 3DDX-A 7 7 100.00%
3 1OEL-A 1SS8-A 19 19 100.00%
4 1OEL-A 2C7C-A 20 18 90.00% 2 10.00%
5 3E8K-A 2GP1 46 45 97.83% 1 2.17% 2
6 3E8K-A 3DDX 49 49 100.00%
7 3E8K 2GP1 57 55 96.49% 2 3.51% 2
8 1OEL-A 1SS8 133 133 100.00% 7
9 1OEL-A 2C7C 331 242 73.11% 89 26.89% 7

Table 4.1: The results of our method compared against the ground truth.

α-helix identification errors can pose a significant challenge when determining their reg-
istration. For example a helix identified in one shape can be detected as multiple helices
in the other shape, or not be seen at all. As shown in Figure 4.9 our method is capable of
robustly tolerating these errors, and does not register those helices.

In Figure 4.10 we can see how finding the α-helix registrations can be used segment pro-
teins based on their symmetrical elements (chains). To achieve this, we first find the regis-
tration of the single-chain protein with the multi-chain molecule (Figure 4.10(above)). We
can then remove the associated vertices from the residual graph Gε , and iterate the process
until all symmetrical elements have been found as seen in Figure 4.10(below). Recall from
Figure 4.1 that the 1OEL-A and 2C7C-A registration finds multiple isometric clusters in
each protein, and observe that our method has correctly found the proper grouping of these

unique registration, and Figure 4.10-bottom where the symmetrical chain elements are colored separately to
demonstrate their segmentation.
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(a) Segmentation of 3DDX (b) Segmentation of 1SS8 (c) Segmentation of 2C7C

Figure 4.10: Our method used to segment helices detected in proteins 3DDX (a), 1SS8 (b) and 2C7C (c) by
their symmetrical elements (chains). The one-to-one registration after our method is run once (above), and
the segmentation after multiple iterations (below).

clusters even in the presence of large amounts of symmetry (Figure 4.10c). This is due to
the spatial non-coherence cost function defined in Equation 4.1.

In Table 4.1, we compare the results of our method against the ground truth. For a wide
variety of shapes, we are able to find the helix registrations with a very high accuracy
(for all experiments > 95% of registrations found are correct). However, our method fails
to identify all possible registrations in cases where the shapes undergo a large amount of
flexible deformation (i.e. the isometric clusters are very small).

Performance: As seen in Table 4.2 our algorithm is able to identify the α-helix regis-
tration for large molecules in under four minutes13, which is orders of magnitude faster
than flexible fitting methods. This allows our method to be used as a much more accurate

13All experiments were performed on a PC with 3GHz Pentium D CPU and 4GB of memory (our imple-
mentation runs on a single thread, thus utilizes only one core)
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Experiment Time (seconds)
Graph const. Best-first Cost matrix Total

1 3E8K-A 2GP1-A 0.01 0.00 0.00 0.01
2 3E8K-A 3DDX-A 0.01 0.00 0.00 0.01
3 1OEL-A 1SS8-A 0.04 0.00 0.00 0.04
4 1OEL-A 2C7C-A 0.09 0.01 0.01 0.11
5 3E8K-A 2GP1 0.93 0.15 0.01 1.09
6 3E8K-A 3DDX 1.28 0.17 0.03 1.48
7 3E8K 2GP1 32.07 5.43 0.10 37.6
8 1OEL-A 1SS8 9.90 1.48 0.06 11.44
9 1OEL-A 2C7C 151.04 51.34 0.71 203.09

Table 4.2: The times taken by our method to find the α-helix registrations.

initialization for flexible fitting, at a practically negligible time cost. The time complexity
for the initial graph construction is O(n4), where n is the number of helices in a protein.
In the future we anticipate using a hashing mechanism to reduce this time complexity to
O(n2). Finding the correct set of isometric clusters is an NP-Hard problem, and therefore,
has a worst-case exponential time complexity. However, in our experiments we have seen
that the cost function used to guide the search performs reasonably well and terminates
within a few seconds for large data sets. The cost-matrix based single-helix matching step
has an O(m2r) time complexity where r is the number of isometric components found in
the best-first search, and m is the number of unassigned helices.

4.6 Conclusion and discussion

In this chapter, we proposed an automatic method to find the registration between α-helices
of a high-resolution molecular model with the α-helices observed in a density volume.
Additionally we can also find the isometric clusters of α-helices where each cluster defines
a unique isometric transformation in 3D space that aligns the two registered sets of helices.
In the future we envision utilizing this registration to deform the high-resolution model to
approximately fit the density volume, and thereafter use that alignment as an initialization
for micro-level flexible fitting routines. Our method is efficient, accurate, and is robust
to errors in α-helix detection. We tested our technique on a suite of protein data and
demonstrated its accuracy as well as its performance on small to large sized molecules.

Limitations: Our method is based on the assumption that proteins undergo hinge-like
deformations and therefore, can be segmented into multiple isometric clusters. However,
for some shapes (Figure 4.10c) there can be a significant subset of helices that deform
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independent of all other helices, and therefore violates our assumption. Our method regards
these as errors in helix detection and annotation, and fails to find the registration for these
helices. In the future, we would like to explore relaxing the rigidity constraints to allow a
significant amount of flexing in the helices as long as they maintain the same relations to
their neighbors.

Currently we only find the registration between the α-helices in the high-resolution model
and the density. This can lead to potential errors when deforming proteins that contain
β -sheets. In the future we would like to extend our method to also support different feature
types (surfaces in this case), leading to much more accurate registrations. Section 6.1 in
Chapter 6 provides more details in this direction.
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Chapter 5

Gorgon: An interactive molecular
modeling system

5.1 Introduction

In the previous chapters, we described computational techniques that can be used to tackle
three stages of the protein modeling pipeline. These techniques together with the many
other methods in literature provide a plethora of options for the structural biologist. How-
ever, they most often appear as individual isolated systems, and many hours need to be spent
learning, tweaking and managing data between them. Furthermore, most systems are based
on command-line arguments and scripting languages, and therefore visualizing their results
often require the use of another system. In recent years, many molecular visualization and
analysis tools have been developed [81, 35]. However, they focus on molecules imaged
using X-Ray crystallography, and do not apply well to intermediate resolution cryo-EM
density volumes.

5.1.1 Problem statement

We are interested in the problem of developing a modeling system specifically geared to-
wards building molecular models from intermediate resolution density volumes, most of-
ten obtained using electron cryo-microscopy or low-resolution X-Ray crystallography. We
want the system to be visual, interactive, support a wide variety of data formats, and be ex-
tensible such that new computational techniques can be easily incorporated and can work
in unison with the other methods available in the system.
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5.1.2 Contributions

In order to address the above-mentioned challenges we have developed “Gorgon”, an in-
teractive molecular modeling system that is available for the Windows, MacOS and Linux
platforms as independent 32 and 64 bit binaries. Gorgon can be freely downloaded for aca-
demic and non-profit use from http://gorgon.wustl.edu and currently14 has 191 registered
users from 27 different countries. We make the following key contributions to the field of
structural biology:

• Visual, easy-to-use interface for all stages of the de novo molecular modeling pipeline,
with a focus on intermediate resolution density volumes.

• Incorporation of many tools that can be used for molecular modeling [9, 3, 54, 2, 4]

• Extensible plug-in architecture allowing users to interface with existing techniques,
or add their own methods and scripts.

• Support for a wide variety of input and output data formats.

5.2 Previous work

A simple search on the internet for “volumetric data visualization” yields hundreds of com-
mercial and academic tools such as Slicer-Dicer [82], VolView [56] and VolVis [97], that are
freely available, and are widely used in many different disciplines. However, most of them
can only be used to visualize density volumes, and not for modeling molecular structures.
On the other extreme are tools such as Modeller [36], Rosetta [31] and EMAN [68] that
allow users to create molecular models using only command-line arguments or scripting
languages. While most of these tools now have visualization routines, they are often only
for display purposes, and cannot be used to interactively build molecular models.

The most commonly used software packages that allow users to visually and interac-
tively model molecular structures include UCSF Chimera [81] and Coot [35]. While these
packages provide a large amount of functionality for molecular modeling, they focus on
near-atomic resolution (1-2.5Å) density volumes obtained using X-Ray Crystallography or
NMR Spectroscopy, and are not well suited for intermediate resolution cryo-EM density

14The registered user count is current as of the 14th of March 2010.
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volumes. In contrast, Gorgon provides a visual, interactive and intuitive molecular model-
ing system that focuses on modeling structures that are imaged using cryo-EM, and features
a set of novel automatic algorithms that are uniquely designed for these intermediate reso-
lution density volumes (3.5-10Å).

5.3 Main features

5.3.1 Visualizing molecular data

We provide an integrated visualization platform for volumetric data, geometric skeletons,
secondary structure elements and Cα backbones. As seen in Figure 5.1, these different
stages of the modeling pipeline can be visualized together, thereby allowing interactive
visual refinement of the model being generated.

Volumetric data can be visualized as Iso-surfaces (using the Marching Cubes algorithm by
Lorenson and Cline [65]), wire-frame meshes, volume renderings or cross sections. This
allows users to load and visually analyze a wide variety of data sets not limited to cryo-EM
density maps of proteins, and get a better understanding of their underlying 3D structure.
As seen in Figure 5.1 geometric skeletons are visualized as non-manifold meshes that con-
tain edge and face elements, while α-helices and β -sheets are shown as cylinders and
surfaces respectively. We provide a ball and stick visualization method of Cα backbones
where the bond is colored based on its deviation from the statistical median distance of
3.8Å (i.e. bond is colored blue if it is too short, and red if too long). We can also simulate
side-chains allowing users to easily compare their backbone against the density volume for
a rough visual alignment.

5.3.2 Computing geometric skeletons

As described earlier, geometric skeletons are powerful shape descriptors that can be used
to simplify and understand the underlying structure of density volumes. In Gorgon, we
provide three geometric skeletonization routines that can be used based on the data-set
being analyzed.
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Figure 5.1: The 1BVP protein of the Blue Tongue Virus displayed in Gorgon, where the volume is shown as
a transparent wire-frame, the skeleton as a red mesh, α-helices as green cylinders, β -sheets as blue surfaces,
and the Cα backbone as a ball (yellow) an stick (light-blue) model.

• Binary skeletonization: Here we implement the method of Ju et al. [54] that can
efficiently create geometric skeletons given a threshold to segment the density. Based
on this segmentation, a skeleton will be generated that accurately captures its shape
and topology. This method is quick and efficient, but is dependent on the threshold
used, and should be used only when you can clearly segment the volume using that
single threshold.

• Grayscale skeletonization: Here we implement the work described in Chapter 2
[4]. This method does not require a specific threshold, and can effectively find the
shape and topology of a density volume even when the features are seen at different
thresholds. In the presence of a large amount of noise (i.e. volumes obtained using
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photo-acoustic imaging), this method can generate incorrect loop segments, and bro-
ken connectivity. For these data sets, we suggest using the interactive skeletonization
method described next.

• Interactive skeletonization: This method implements our work [2] that allows a
user to quickly create a geometric skeleton by using the interactive user interface
provided by Gorgon. With a few mouse clicks and sketches, a user can quickly
create a visually accurate skeleton even in the most noisy data sets.

The three skeletonization methods described above should be used based on the noise-level
and resolution of the density volume being analyzed. For this purpose, we suggest the
following approach for generating skeletons of cryo-EM density volumes. First, obtain a
skeleton by performing binary skeletonization using a relatively high threshold that allows
you to visually observe the individual secondary structure elements without them grouping
together. This would generate a high-quality skeleton for the SSEs, but will not contain all
of the loop information. To obtain this loop information, we suggest performing grayscale
skeletonization while maintaining the skeleton created in the earlier step. In our experi-
ments, we have found that this approach leads to the best quality skeletons that can then
be used for finding the correspondence between the observed SSEs and the ones predicted
from the sequence.

5.3.3 Annotating secondary structure elements

For the annotation of secondary structure elements, we implement SSEHunter [9], a widely
used tool for this purpose that was first made available in command-line form in the EMAN
[68] application suite. This method utilizes a geometric skeleton, cross-correlation rou-
tines, as well as geometric shape measures to generate a set of annotated pseudo-atoms as
seen in Figure 5.2. Gorgon colors these pseudo-atoms based on their likelihood of being
part of an α-helix (red) or a β -sheet (blue), which in-turn makes it easier for a user to
interactively select them and create the SSEs that they represent. Furthermore, we allow
the user to fit the created SSEs to the underlying density volume. This allows the creation
of much more accurate SSE annotations that can increase accuracy when computing the
correspondence between these SSEs and the ones predicted from the sequence.
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Figure 5.2: The pseudo-atoms scored based on their SSE likelihood are shown as red (possible α-helix), blue
(possible β -sheet) and white (uncertain) spheres. In this figure the user has interactively created an α-helix
and a β -sheet.

5.3.4 Finding the correspondence between SSEs observed from the
density and predicted from the sequence

In 2008, we first released Gorgon to the public with an implementation of a search that
allowed a user to find the correspondence between the observed and predicted α-helices
of a protein [3]. Since then we have incorporated the α-helix and β -sheet correspondence
method described in Chapter 3. This method allows a user to quickly find a set of the
most likely correspondences, visually compare them, constrain correspondences that they
are certain of, and iterate the process if needed. An additional benefit of incorporating the
β -sheets in this correspondence search is that it allows us to trace out the skeletal paths
that connect the corresponding elements. With this, we can obtain a pseudo-backbone that
is used to visually guide the user when building the actual Cα backbone trace. Figure 5.3
shows a correspondence generated for the GroEL apical domain.
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Figure 5.3: Here we show the correspondences found between the observed and predicted SSEs for the
GroEL apical domain. The volume is shown as a transparent iso-surface, and the SSEs and pseudo-backbone
paths are colored based on their corresponding location in the sequence.

5.3.5 Semi-automatic methods for building a Cα backbone

Building an accurate Cα backbone requires a significant time investment and understanding
of density features. Size, complexity and quality of the density map all affect the model
building process. Even the most experienced users may not be able to build a reliable model
in poorly resolved regions of density maps. Therefore, the time and ease of building a de
novo model is most often proportional to the map quality, complexity of the structure and
experience of the user. Gorgon attempts to integrate and streamline the model building pro-
cess while at the same time enhancing model accuracy using the following complementary
methods that utilize the density-sequence correspondence as well as other domain-specific
geometric measures:
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Figure 5.4: Gorgon is being utilized to build a Cα backbone guided by the correspondence. Cα atoms have
been placed for one of the α-helices, and a loop is being built using the atomic editor.

• Helix editor - Cα placement of α-helices: Given the correspondence between the
observed helices in the volume and the predicted helices in the sequence, we know
which region in the density those amino acid residues need to be placed. We use that
spatial information together with the known bond-angles to let the user place Cα with
a press of a button.

• Loop editor - Interactive Cα placement of loops and β -strands: For this, we uti-
lize a technique similar to that of our interactive skeletonization routine [2]. The
user first selects a range of amino acid residues from the sequence, and then inter-
actively clicks the start point in the 3D volume visualization area and moves the
mouse towards the end point. Based on this input, Gorgon suggests a Cα backbone
that aligns well with the underlying density volume. If the suggestion is wrong, the
user can quickly correct it using a mouse-drawn sketch. This method can be used to
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quickly place large loop segments, and also allows the user to visually measure its
bond-length accuracy based on the coloring scheme (i.e. bonds that are too long get
colored red, and too short get colored blue).

• Atomic editor - Manual, iterative Cα placement: If the user wishes to incremen-
tally build the Cα backbone, we allow them to do so using this manual method. The
user must first place Cα atom at a known location (most often obtained using the helix
editor), and then Gorgon suggests possible Cα atom locations based on the distance
to the selected atom, and the geometric skeleton in that local neighborhood. The user
can approve the most likely location and proceed to place the next residue.

• Placement - Manual refinement of 3D locations: We also provide a set of widgets
to give the user a precise method of changing the location (and orientation) of the Cα

atoms that have already been placed. This is most useful when you want to slightly
move the Cα atoms to better fit the density volume.

Figure 5.4 shows the manual, iterative Cα placement in practice. Anecdotally, the con-
struction of GroEL model by hand required approximately three months to construct. With
Gorgon, an experienced user can build a model of similar quality for the apical domain
(∼ 40% of the entire protein) within a few hours.

5.3.6 I/O support and extensibility

Input Output Data Formats: We currently support a wide array of input/output data
formats. These formats are listed in Table 5.1.

Plugin framework: We have developed an open, extensible and easy to use framework
that allows users and third party developers to write their own plug-ins for Gorgon. A
user-written plug-in has access to all the internal Gorgon methods, libraries and visual-
ization techniques. Currently we bundle only a single plug-in with Gorgon that acts as
both a documented template for third-party developers as well as a version checker look-
ing for newer Gorgon releases. In the future, we envision the development of plug-ins
that allow Gorgon to interface with popular molecular research tools and libraries such as
EMan[68], Modeller[36] and Rosetta[31], allowing the structural biology community to
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Extension Description Input Output

Density Volumes
MRC Cryo-EM density volumes X X

CCP4 X-Ray crystallography density volumes X X

MAP X-Ray crystallography density volumes X X

RAW Raw 3D float arrays X X

PTS 3D point clouds X

NB 3D Mathematica list X

BMP Bitmap image set X

OFF Surface mesh X

TNS Local directionality vector field X

Geometric Skeletons
MRC Binary density volumes X X

OFF Surface mesh X X

SSE Annotations
VRML VRML Cylinders and surfaces X X

WRL VRML Cylinders and surfaces X X

SSE DeJaVu SSE annotations X X

Sequence and Cα Atom Locations
PDB Protein Data Bank files X X

SEQ Annotated sequence information X X

Table 5.1: The input/output file formats supported by Gorgon.

utilize the plethora of computational tools available in these frameworks via the intuitive
and interactive Gorgon interface.

5.3.7 Other features

Geometric routines: To give users better flexibility, we also make available other useful
geometric tools such as Laplacian smoothing, volume cropping, resizing, down-sampling
and normalization.

Session support: Molecular modeling is a multi-step, time-consuming process. There-
fore session support is an essential functionality that would allow users to save their cur-
rent work so that it can be resumed later, or shared between collaborators. We provide a
transparent session functionality that allows users to save their work-in-progress as well as
camera and other visualization information. The session information is stored as remarks
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using the PDB file format, giving the users the option of using partial backbone information
with other molecular modeling tools.

Sequence based SSE prediction: While Gorgon does not natively implement any se-
quence based SSE prediction algorithms, we provide an interface that allows a user to dis-
patch their sequence information to the JPred [27], PSIPred [53], and Scratch [24] servers.
In the future we would like to integrate such methods into Gorgon in a much more seamless
manner, providing users a much better experience.

5.4 System design and implementation

5.4.1 Design

Gorgon was designed specifically to handle the modeling pipeline of a single molecule at
any given time. For each data element in this pipeline (i.e. volume, skeleton, set of SSEs,
Cα backbone) we have a visualizer that is responsible for the user-interface elements, and a
renderer that is responsible for the OpenGL rendering routines. We enforce each Visualizer
and Renderer class to be a singleton (only one instance exists at any given time), thereby
ensuring that only data related to a single molecule is loaded at any given time.

Complex activities that require multiple user interactions and intensive computation need to
be kept separate from the remainder of the application to allow independent implementation
as well as to minimize memory consumption. For this purpose, we model these activities
as engines, where each engine is responsible for implementing a specific functionality, and
is instantiated only when necessary.

All menu driven tasks in Gorgon are modeled using the command design pattern, and
handled in the MenuManager and ActionManager classes. This lets each action to be im-
plemented in an independent fashion while also allowing the same functionality to be used
multiple times throughout the application without code duplication. Additionally, actions
and menu items can be queried using their unique, statically-assigned identifiers. This
makes it easier for plug-ins and scripts to access and trigger internal Gorgon functionality.

For molecular modeling, it can be useful to observe a model from different perspectives.
For this purpose we have designed Gorgon in such a way that multiple cameras can be used
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Figure 5.5: The UML model showing the high-level design elements of the Gorgon system.

to observe the same scene from different viewpoints. While the current implementation
only makes use of one such camera, we expect to utilize this design to provide a 3D viewing
experience in the future. Figure 5.5 shows a high-level UML model that captures the more
important design elements of the Gorgon system.

5.4.2 Implementation

The implementation decisions for Gorgon were based on four major requirements: inter-
active performance, platform independence, scripting support and code reusability. We
achieved the performance goals by implementing all of the computationally intensive rou-
tines using C++, and by also using efficient data structures such as priority queues, oct-
trees, hash-maps etc. While C++ allows high-performance computation, it does not offer
an easy-to-use model for building user-interface elements. For this purpose, we use Python
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Figure 5.6: The C++ and Python layers, and the libraries used within each layer of Gorgon.

together with PyQT that has the added benefit of utilizing a modern operating system spe-
cific look-and-feel while being platform independent. The use of Python also allowed us
to provide scripting support that let users write their own tools as well as interface with
external software.

Implemented using 52,460 lines of code in 113 files, we can conceptually structure our
C++ implementation layer into six main components. The Abstract Data Types component
implements many computationally efficient data structures and algorithms, while the Math-
ematics component implements mathematical constructs such as complex numbers, Eigen
decomposition, singular value decomposition, and also provides an interface to external
math libraries such as Alglib and FFTW. The Visualization component utilizes OpenGL to
implement the rendering routines and the Skeletonization, Sequence Correspondence and
Shape Feature Correspondence components implement the methods outlined in Chapters
2, 3 and 4 respectively.

The python layer consists of 14,226 lines of code in 67 files, and houses two main compo-
nents. The Windowing component implements platform-independent window management
and messaging functionality, and the OpenGL elements component uses PyOpenGL to en-
able simple rendering options such as camera parameters and model colors. Finally, we
utilize Boost-Python to interface between the C++ and Python layers. Figure 5.6 outlines
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Figure 5.7: A screenshot of the Gorgon website.

this layered implementation structure as well as the internal components and external li-
braries used within Gorgon.

5.5 Maintenance and distribution

The source code for Gorgon is maintained using a CVS repository. This allows parallel
development, version history, release tagging and other useful functionality essential for
working in a team environment. Gorgon is developed as a collaboration between Wash-
ington University in St. Louis and Baylor College of Medicine, and the development team
currently consists of four graduate students15 and three faculty advisors16. We also have

15Sasakthi Abeysinghe, Stephen Schuh, Ross Coleman, Austin Abrams
16Tao Ju, Matthew Baker, Wah Chiu
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two alums17, who have contributed to the development of Gorgon, but are no longer work-
ing on the project.

To facilitate alpha testing, we have created shell scripts that automatically create executa-
bles and make them available via the Gorgon website on a nightly basis. These scripts first
download the latest source code from CVS, generate platform-dependant make files using
CCMake, compile them using their native C++ compilers18, and then package the Python
code and dependencies using Py2Exe for Windows, Py2App for MacOS and Freeze for
Linux. This automated nightly-build process allows us to quickly identify cross-platform
build errors, and lets interested users and research collaborators immediate access to the
most recent features.

For the general audience, Gorgon is freely available for academic and non-commercial
use under the creative commons public license. We maintain an annual release cycle with
major releases occurring once every year, and minor releases approximately once every
six months. Gorgon is currently in its third release cycle and is available for download as
stand-alone 32 or 64 bit executable for the Windows, MacOS and Linux platforms via our
website.

The Gorgon website, available via http://gorgon.wustl.edu, is a comprehensive resource
for all Gorgon users. Here we have all major and minor releases, sample data sets, a
user guide, video tutorials and a bug tracking system that allows users to submit errors or
feature requests. To-date, we have 191 registered users from 27 different countries who
have downloaded Gorgon.

5.6 Conclusion and discussion

In this chapter we discussed Gorgon, an interactive molecular modeling system that can
be used to visualize, analyze and quickly build Cα backbone models from intermediate
resolution cryo-em density volumes. Currently in the 2nd major release, Gorgon has 191
registered users from 27 different countries, and is freely available to download for the Win-
dows, MacOS and Linux platforms as 32 and 64 bit binaries. To the best of our knowledge
Gorgon has been so far used to model at least two molecular structures [28, 126].

17Mike Marsh, Troy Ruths
18To compile our C++ source code we use Microsoft Visual Studio for Windows, and GCC for MacOS

and Linux.
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As described, Gorgon contains a number of unique utilities that allow for the construction
of reliable and robust protein structural models from intermediate and near-atomic resolu-
tion density maps. In Gorgon, model construction is based on establishing a sequence to
structure correspondence using secondary structure elements. While shown to be relatively
accurate, there are several caveats. For building de novo backbone models, the density
map must contain secondary structure elements that can be clearly identified. While loops
connecting these secondary structure elements may not be unambiguous, density must be
present. Therefore, the resolution of the density map to be modeled must be high enough
to resolve these features. As all maps vary in composition, quality and resolution, it is dif-
ficult to assign a resolution cut-off for building models. Certainly model building is easier
and more reliable at higher resolutions than at resolutions where the pitch of an α-helix or
separation of strands in a β -sheet is not visible. However, it is possible to build reliable
models even at lower resolutions depending on the resolvable features in the map. It should
also be noted that there are potential complications in the highest resolution structures. In
particular, feature detection with SSEHunter can be problematic, as the β -sheets look more
like a series of parallel loops rather than a thin flat plate.

Future work: Gorgon currently supports a de novo approach for protein modeling, and
does not use homology information when available. In the future, we envision incorporat-
ing tools that can mine the protein data bank for structural homologues, and then utilize
the shape feature correspondence algorithm described in Chapter 4 to provide rigid and
flexible fitting routines to quickly and accurately build atomic resolution models. We can
also take advantage of the wide array of tools (e.g. Rosetta [31], Modeller [36], EMAN
[68]) available in the community via the Gorgon plug-in framework to provide a feature
rich experience to the structural biologist.

Finally, we would like to leverage on recent advancements in 3D viewing technology (e.g.
NVidia 3D Vision System) to provide an actual 3D view of biological data thus making
it much easier for users to “see” and therefore model the underlying molecular structure.
Section 6.1 outlines the immediate goals towards the next version of Gorgon.

90



Chapter 6

Conclusion and future work

In this dissertation, we proposed a geometric approach for protein structure prediction from
intermediate resolution density volumes obtained using electron cryo-microscopy. More
specifically, we address three distinct computational challenges in the molecular modeling
pipeline (Figure 6.1), and present Gorgon, an interactive molecular modeling system freely
available to the public.

The first step towards molecular modeling from cryo-EM is understanding the shape and
topology of the density volume. The geometric skeleton is a suitable shape descriptor
for this purpose. However, obtaining accurate geometric skeletons from density volumes
where the actual segmentation is unknown, and where there is a significant amount of
noise, is a challenging computational task. In Chapter 2 we proposed a novel skeletoniza-
tion method that can capture the shape and topology of the density volume while being
robust under noise. The key strength of our method is that it does not require any prior
segmentation of the density volume, and therefore can be used to quickly and automati-
cally build geometric skeletons for a wide array of biomedical data sets including, but not
limited to cryo-EM.

Given a cryo-EM volume and its geometric skeleton, we can use techniques such as SSE-
Hunter [9] to accurately determine the 3D locations of its secondary structure elements.
However, to build a molecular model we need an understanding of how those 3D SSEs
can be mapped to the actual sequence of amino acid residues. In Chapter 3, we proposed
a graph-theory based technique to quickly generate a set of most likely correspondences
between the SSEs observed in the volume, and predicted from the sequence. This method
is orders of magnitudes more efficient than other techniques, and can also be used in a
semi-automatic fashion to incorporate user constraints. Given such a correspondence we
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then automatically create pseudo backbone trace that can guide a user towards interactively
creating the actual Cα backbone.

An alternative approach of creating a high-resolution model from a cryo-EM volume is to
fit a structural homologue into the density. The challenge here lies in the fact that proteins
undergo many global shape changes based on hinge-like motions when exposed to different
bio-chemical stimuli. Due to this reason, high-resolution structural homologues are most
often very different in shape to the protein imaged using cryo-EM, requiring flexible fitting
techniques to find their best fit. While many methods have been proposed for this purpose,
they operate at the micro-level of atoms and residues, and therefore are very computation-
ally expensive. They are also very sensitive to an initial rigid alignment which is most often
very different from the actual shape. In Chapter 4, we proposed a novel technique that can
be used to find this flexible fit at the macro-level of α-helices. Our method in a few seconds
can identify isometric clusters of α-helices, determine the transformations needed to align
them, and also establish a registration that maps each α-helix in the high-resolution struc-
ture to each α-helix observed in the density volume. This macro-level registration can then
be used to deform the high resolution model at the micro-level that can thereafter be used
as a better initialization for flexible fitting techniques.

The aforementioned computational methods, together with the other techniques available
in literature give the structural biologist a wide choice of tools. However systems that incor-
porate all those tools together allowing users to visually and interactively build molecular
structures from cryo-EM volumes are rare, and most often focus on volumes obtained using
X-Ray crystallography. For this purpose, in Chapter 5 we designed and developed Gorgon
as a comprehensive molecular modeling system geared towards the cryo-EM community.
Gorgon features many unique computational techniques for molecular modeling, provides
a visual, interactive and easy to use interface, and has a complete pipeline for users to start
with a cryo-EM density volume, and progressively build the molecular model to the level
of a Cα backbone. Furthermore, we provide many I/O formats together with an extensible
plug-in framework allowing users to integrate Gorgon with the other external tools that
they wish to utilize in their molecular modeling process. Gorgon currently has 191 regis-
tered users from 27 different countries, and has been used to model at least two molecular
structures [28, 126]

Our work on molecular modeling has led us to several challenges that we plan on addressing
in the future, and Figure 6.1 shows how they can be incorporated to the molecular modeling
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Figure 6.1: Different stages of the molecular modeling pipeline. The methods in gray have been addressed
in this dissertation or by collaborators in the past. We envision the methods in blue to be computational
challenges to be addressed in the future.

pipeline. We now present these challenges in the context of our work and outline possible
solutions.

6.1 Future work

6.1.1 Building physically accurate Cα backbone traces

Using the method described in Chapter 3 we are able to automatically find a set of most
likely correspondences between the SSEs observed in the cryo-EM volume and predicted
from the sequence. Using each correspondence we generate a pseudo-backbone that can
guide users towards interactively building the actual backbone trace. While this interactive
process is orders of magnitude faster (hours instead of weeks) than building the backbone

93



without a pseudo-backbone, it still requires a substantial effort by an expert, and motivates
the need for a fully automatic backbone generation process. Based on discussions with
collaborators19 in the ab-initio modeling community, we have observed that energy min-
imization techniques can be used to discriminate the difference between physically valid
and invalid backbone models with a high degree of accuracy. We are currently working
towards using the correspondence search in Chapter 3 to automatically generate a large set
(100-1000) of most likely Cα backbone traces, and thereafter using energy minimization
techniques from Rosetta [31] to automatically identify the most physically accurate.

6.1.2 Adding side-chains to Cα backbones

Given an accurate Cα backbone trace, there exists methods in literature [104] that utilize
density cross-correlation to identify the orientations of side chains based on templates avail-
able in Rotomer libraries [66]. While these methods can be used with great accuracy for
X-Ray crystallography based density volumes, cryo-EM densities lack the resolution to be
used in this form. For this purpose, a more suitable approach would be to first arbitrarily
place side-chains on the backbone, and then find the optimal rotations that minimize the
global molecular energy. In the future, we would like to investigate the incorporation of
such methods into Gorgon, to provide a complete molecular modeling pipeline to build
atomic resolution structures from intermediate resolution cryo-EM density volumes.

6.1.3 β -sheet registration for flexible fitting

In Chapter 4, we proposed an approach that can be used to register a high-resolution model
with the cryo-EM density based on α-helices. While this registration defines how each
high-resolution helix gets mapped to the density volume, we still need a mechanism for
mapping β -sheets. Although conceptually our algorithm can be extended to handle differ-
ent feature types (surfaces in this case), β sheets are more unstable by nature, and can have
a wide array of deformations when a molecule undergoes conformational changes. In other
words, a β -sheet is more likely to grow/shrink or disappear altogether. This can poten-
tially invalidate the measures we use when evaluating whether feature pairs are isometric.
To overcome this we envision using a geometric skeleton induced neighborhood criteria

19We have an ongoing collaboration with David Baker and Frank Dimaio from the University of Washing-
ton towards the problem of automatically determining accurate Cα backbones.
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to complement the isometric measures. A method based on this approach would be more
robust under large amounts of flexible deformations, and not be limited to quasi-isometric
hinge-like motions.

6.1.4 Deforming a high-resolution model based on a SSE registration

Given a macro-level registration between secondary structure elements of a high-resolution
structural homologue and a cryo-EM density volume, we need to find a set of deformations
that can be used to approximately fit the molecule onto the density. Many such techniques
exist in the computer graphics community where deformations are smoothly propagated
outwards from constrained points (in our case, we need the deformations to be propa-
gated onto the loops while the SSE locations are constrained). However, in the domain
of molecular modeling, smooth propagation of the deformation may not be accurate. For
example, when undergoing conformational changes, loop segments can bend, unwind and
potentially have a completely independent motion to that of the SSEs. For this scenario,
a better approach would be to perform the deformation guided by the underlying density.
However, density based cross-correlation is a computationally expensive task, and is not
suited for this purpose. We envision using a geometric skeleton guided approach for this
task, where we propagate the deformation between SSEs by smoothly parameterizing along
the geometric skeleton. When given the possibility of multiple skeletal paths, we should
chose the one that best satisfies atomic constraints (i.e. Cα atoms should be approximately
3.8Å apart).

Once this deformation has been achieved, we can then use the deformed structure as an
initialization for constrained flexible fitting routines [106] to obtain a high-resolution model
of the cryo-EM density volume.

6.1.5 Gorgon version 3

Gorgon as described in Chapter 5 is currently in its 2nd major release and has tools to
build molecular models at the level of Cα backbones. For the next major release, we envi-
sion incorporating the aforementioned work to allow users to build complete atomic-level
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models. Furthermore, we envision providing plug-ins that allow users to seamlessly in-
tegrate Gorgon with other molecular modeling libraries such as EMAN [68], Rosetta [31]
and Modeller [36].

Another feature that is most beneficial is the ability to validate the accuracy of models
being generated. For this purpose, we envision incorporating tools such as WhatCheck
[46], ProCheck [60] and MolProbity [23] that are widely used in the structural biology
community for this purpose.
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