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ABSTRACT OF THE DISSERTATION 

 

Regulation of peripheral nerve regeneration by the mTOR pathway 

 

by 

 

NAMIKO ABE 

 

While neurons in the central nervous system (CNS) have limited capacity for 

regrowth after damage, neurons in the peripheral nervous system (PNS) have a robust 

ability to regenerate their axons following injury.  Successful regeneration depends upon 

both extrinsic cues in the environment and the activation of intrinsic mechanisms to 

promote regrowth.  A number of inhibitory molecules in the CNS environment that 

prevent axonal regrowth have been identified, but less is known regarding the signaling 

mechanisms that regulate regenerative ability in PNS neurons.  Here, we explored 

multiple components of injury signaling in the PNS, including the retrograde transport of 

local axonal injury signals, enhancement of axonal growth capacity in the cell body, and 

the response of Schwann cells that myelinate the damaged axon.   

We first addressed how axonal injury triggers enhancement of axonal growth 

capacity in PNS neurons.  The lack of regenerative ability of CNS neurons has been 

linked to downregulation of the mammalian target of rapamycin (mTOR) pathway.  We 

find that PNS dorsal root ganglia neurons (DRGs) activate mTOR following damage, and 

that this activity contributes to enhance axonal growth capacity following 

injury.  Furthermore, upregulation of mTOR activity by deletion of tuberous sclerosis 
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complex 2 (TSC2) in DRGs is sufficient to enhance axonal growth capacity in vitro and 

in vivo.   We identified GAP-43 as a downstream target of this pathway, which may 

contribute to enhance regenerative ability.   However, while genetic upregulation of 

mTOR activity in sensory neurons facilitates axonal regrowth, it also leads to a number 

of developmental and functional defects, including aberrant target innervation.  Thus, 

while manipulation of the mTOR activity could stimulate nerve regeneration in the PNS, 

fine control of mTOR activity may be required for proper target innervation and 

functional recovery.  

mTOR activation in the damaged neuron is likely to represent one of several 

signaling events that mediate nerve regeneration.  We thus also explored other aspects of 

peripheral nerve injury signaling, including the retrograde transport of local injury signals 

by axonal vesicles, and the response of myelinating Schwann cells to axonal damage.  

Our results indicate that several classes of signaling pathways occurring both in axons 

and Schwann cells cooperate to generate a robust regenerative response.  A better 

understanding of the signaling pathways leading to increased regenerative growth ability 

of PNS neurons may guide new strategies to enhance nerve regeneration in the CNS. 
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Chapter 1: Introduction- Nerve injury signaling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A modified version of this text appears in the manuscript: 
 
Abe N and Cavalli V (2008) Nerve injury signaling.  Curr Opin Neurobiol 18: 276-283. 
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ABSTRACT 
 

Although neurons within the peripheral nervous system (PNS) have a remarkable 

ability to repair themselves after injury, neurons within the central nervous system (CNS) 

do not spontaneously regenerate. This problem has remained recalcitrant despite a 

century of research on the reaction of axons to injury. The balance between inhibitory 

cues present in the environment and the intrinsic growth capacity of the injured neuron 

determines the extent of axonal regeneration following injury. The cell body of an injured 

neuron must receive accurate and timely information about the site and extent of axonal 

damage in order to increase its intrinsic growth capacity and successfully regenerate. One 

of the mechanisms contributing to this process is retrograde transport of injury signals. 

For example, molecules activated at the injury site convey information to the cell body 

leading to the expression of regeneration-associated genes and increased growth capacity 

of the neuron. Here we discuss recent studies that have begun to dissect the injury-

signaling pathways involved in stimulating the intrinsic growth capacity of injured 

neurons. 
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INTRODUCTION 
 

The extremely polarized morphology of neurons (i.e. axon length extending for 

up to 1 m) poses challenging problems for intracellular-signaling pathways. Information 

about distant injury, for example, has to be communicated to the cell body to initiate a 

proper regenerative response. Research on nerve regeneration has classically focused on 

identifying the inhibitory factors present in the environment, which include the glial 

scar and molecules such as Nogo and myelin-associated glycoprotein [1].  We know 

much less about the mechanisms that activate the intrinsic growth capacity of neurons 

following injury. Upon embryonic to adult transition, the intrinsic neuronal growth 

activity is repressed to allow for proper synaptic development. Injury to adult peripheral 

neurons, but not to central nervous system (CNS) neurons, reactivates the intrinsic 

growth capacity and allows regeneration to occur. Primary sensory neurons 

with cell bodies in the dorsal root ganglion (DRG) provide a useful model system to 

study the mechanisms that regulate regeneration. DRG neurons are pseudobipolar 

neurons and possess two axonal branches: a peripheral axon that regenerates when 

injured and a centrally projecting axon that does not regenerate following 

injury. Remarkably, injury to the peripheral branch before injury to the central branch 

promotes regeneration of central axons [2] [3].  This phenomenon is referred to as the 

‘conditioning lesion’ paradigm (Figure 1) and indicates that retrograde injury signals 

travel from the peripheral injury site back to the cell body to increase the intrinsic growth 

capacity of the neuron. An increased intrinsic growth state as a result of a preconditioning 

lesion may enable centrally injured axons to regenerate. A series of elegant studies in the 

early 1990s in the mollusk Aplysia californica provided evidence for the existence of 
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multiple injury signals functioning in a temporal sequence [4]: injury-induced discharge 

of axonal potentials, interruption of the normal supply of retrogradely transported target-

derived factors (also called negative injury signals) and retrograde injury signals traveling 

from the injury site back to the cell body (also called positive injury signals) (Figure 2).  

The retrograde transport of injury signals is one of the essential cellular 

mechanisms leading to regeneration. Coordination between several injury-signaling 

pathways is necessary to regulate the appropriate genes to promote neuronal survival and 

increase the intrinsic growth state of injured neurons. In this thesis, we depart from the 

traditional focus on inhibitory factors in the non-regenerating CNS, and focus on 

signaling mechanisms leading to the enhanced intrinsic growth capacity of peripheral 

neurons following injury. 

 

Injury signaling in the axon 

Positive injury signals 

The positive injury signals identified thus far cover a broad array of functionally 

distinct proteins that include members of the mitogen-activated protein kinase family 

(MAPK), cytokines, and their downstream transcription factors, as well as locally 

translated importin, a main regulator of nuclear import and export. Axonal transport of 

several kinases was initially suggested to play a role in relaying information from the 

nerve terminal to the cell body [5].  It is now known that axonal injury induces local 

activation and retrograde transport of several MAPKs, including Erk [6] [7], the c-Jun N-

terminal kinase (JNK) [8] [9], and the protein kinase G [10].  These studies strongly 

suggest that activation of kinases, in particular JNK and Erk and their interaction with the 
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dynein/dynactin retrograde molecular motors is required for regeneration [6] [8].  Indeed, 

deletion of JNK2 or JNK3 leads to defects in axonal outgrowth in response to 

dissociation [8].    Transport of such injury signal is complicated by the fact that many 

kinases including JNK and Erk are activated by reversible phosphorylation and without 

proper protection this signal may not persist [11]. 

A key question then is how to prevent deactivation of the signal during the long 

journey to the cell body. One elegant solution is to protect the signal with scaffolding 

proteins.  For example, it has been recently shown that the intermediate filament vimentin 

interacts with phosphorylated Erk1 to protect it from dephosphorylation by calcium-

dependent steric hindrance [12].  Another mechanism proposed to protect 

dephosphorylation is storage within intraluminal vesicles of multivesicular bodies [13].  

Indeed, kinases such as JNK can hitchhike on axonal vesicles [8] and intraluminal 

vesicles are not always destined to lysosomes for degradation; they can also fuse back 

with the limiting membrane of late endosomes [14]. This process is hijacked by several 

toxins and viruses to reach the cell body and could similarly be exploited by signaling 

proteins. Combined with a protection mechanism against phosphatases during transport, 

activation and retrograde transport of MAPKs might play an important role in 

regeneration. The upstream signaling cascade leading to MAPK activation in the axon 

remains yet to be established. 

In addition to MAPK, axonal injury activates several transcription factors through 

the local release of cytokines. These include the gp130 cytokines leukemia inhibitory 

factor (LIF), interleukein-6 (IL-6), and ciliary neurotrophic factor (CNTF). LIF and IL-6 

are required for the increased growth state of DRG neurons following peripheral injury 
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through activation of downstream genes such as GAP43 [15] [16], although Cao et al. 

[17] reported that IL-6 knockout animals do not show defects in nerve regeneration. 

Upregulation of IL-6 in DRG cell bodies themselves following injury [17] [18] [19] 

raises the possibility of paracrine or autocrine action of IL-6, which may amplify a 

cytokine-induced retrograde signal. The gp130 cytokines signal through a common 

receptor, gp130, and the JAK-STAT pathway, which leads to STAT3 phosphorylation 

and translocation into the nucleus [20]. Although retrograde transport of locally activated 

STAT3 has been suggested [21] [22], in vitro studies using compartmentalized cultures 

suggest a signaling endosome model in which the gp130/JAK complex is endocytosed 

and retrogradely transported to activate STAT3 in the cell body [23]. Interestingly, 

STAT3 activation through the Jak2-signaling pathway occurs in DRG neurons cell body 

after peripheral, but not central, lesion [24] [25], strongly supporting a role for STAT3 in 

neuronal regeneration. Although STAT3 signaling promotes axonal regrowth, in vitro 

studies showed that suppressor of cytokine signaling (SOCS3) inhibits STAT3 [26] and 

SOCS3 levels are increased by peripheral injury [27]. Although the influence of 

endogenous SOCS3 on axonal growth in peripheral neurons may be limited, SOCS3 may 

contribute to the lack of regeneration in CNS neurons [26]. Indeed, deletion of SOCS3 in 

retinal ganglion cells promotes regeneration [28].  The pathways leading to STAT3 

activation are partially understood but the downstream targets of the cytokine-STAT3 

signaling remain to be clearly defined. 

Work over the past ten years has confirmed that axons have the capacity to locally 

synthesize proteins [29].  Axonal mRNA translation plays a role in axonal growth during 

development [29]and mature neurons use axonal mRNA translation to transfer injury 
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signals to the nucleus of injured neurons.  Following peripheral nerve injury, de novo 

synthesis of importin-beta [7]and vimentin [6] leads to the formation of an importin-

activated Erk–vimentin complex that recruits the retrograde motor dynein, linking the 

nuclear import machinery to retrograde injury signaling. Since a surprisingly large 

population of mRNAs localizes to sensory axons [30], future studies will reveal the 

possible role for other de novo synthesized proteins in injury signaling. 

The positive injury signals identified so far share one common theme: 

microtubule-dependent retrograde transport.  In chapter 4, we examine the localization 

and transport properties of axonal vesicles that contain Sunday Driver, a scaffolding 

protein that links active JNK molecules with axonal transport [8].  Future studies may 

identify new molecules involved in injury signaling and elucidate how these signals 

interact with the axonal transport machinery.  It is tempting to speculate that the 

combination of several positive injury signals might serve as an indicator of the extent 

and nature of damage.   

 

Negative injury signals 

Although loss of negative cues represents another important mechanism to sense 

injury, surprisingly little is known about this type of signaling. Once a neuron is 

connected with its target, target-derived signals must repress the intrinsic neuronal 

growth activity to allow for proper synaptic development. This repression has to be 

relieved to allow regeneration to occur. Although neurotrophins represent the ideal 

candidates, evidence for their role as negative signals following injury have not yet been 

established. 
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One recently identified negative injury signal is the TGF beta/SMAD2/SMAD3 

pathway (personal communication with Zhigang He). SMAD2 is downregulated 

following peripheral nerve injury, indicating that SMAD2-dependent gene transcription 

may restrict the axonal growth ability in healthy neurons and injury may relieve this 

inhibition. Whether SMAD2/SMAD3 contributes to the decreased regenerative ability of 

adult CNS neurons remains to be determined.  The transcription factor ATF-2 is also 

rapidly suppressed in neurons following injury [31]. Similarly to SMAD2, ATF2-

dependent gene transcription may repress neuronal growth capacity. Future studies are 

needed to explore the role of negative injury signals in axonal regeneration. 

 

Electrical activity 

Recent data suggest an important role of neural activity in regeneration. The 

transection of axons initiates a large depolarizing voltage discharge that travels back to 

the soma and triggers vigorous spiking activity and sustained depolarization [32]. This 

extensive electrical activity produces a strong calcium influx in both the axon and the 

soma. Propagation of this response requires the activation of voltage-gated sodium 

channels and is necessary for regeneration, since axotomy in the presence of tetrodotoxin 

reduces the regenerative process [32]. Calcium influx is also necessary for regeneration 

in vitro and is likely to act through protein kinases such as ERK or PKA [33]. In vivo 

studies showed that electrical stimulation accelerates motor [34] and sensory [35] axon 

outgrowth and increases intracellular cAMP levels in DRG neurons as effectively as the 

conditioning lesion [35]. However, electrical stimulation did not recapitulate all 

characteristics of axonal outgrowth, indicating that cAMP alone is not sufficient to 
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trigger a complete regenerative response [35]. In marked contrast, electrical stimulation 

of CNS axons does not promote regeneration, even when provided a permissive growth 

environment through a peripheral nerve graft [36]. Electrical activity thus may play an 

important role as an early injury signal in the peripheral nervous system (PNS), but might 

be insufficient to initiate regeneration of CNS neurons. 

 

Signaling mechanisms in CNS axons 

Induction of retrograde injury signals has so far been demonstrated in peripheral 

neurons. Recent studies in CNS neurons of the retina have unravelled the existence of 

parallel mechanisms between CNS and PNS neurons and demonstrated that the growth 

capacity of CNS neurons can be enhanced. While retinal ganglion cells (RGCs) normally 

fail to regenerate their injured axons, lens injury activates macrophages and stimulates 

regeneration of RGCs [37]in a process that resemble the conditioning injury in DRG 

neurons. Soluble factors released by activated macrophages, such as oncomodulin, are 

sufficient to promote RGC regeneration through a Ca2+/calmodulin-dependent pathway 

[37].  While oncomodulin promotes neurite outgrowth in cultured central and peripheral 

neurons [38], its role in sensory nerve regeneration has yet to be explored in vivo. Lens 

injury also induces upregulation of CNTF in retinal astrocytes, a process that is 

independent of macrophages, and leads to STAT3 activation in RGCs [39] [40]. The 

cytokine-mediated activation of STAT3 is a central injury signaling mechanism in PNS 

neurons, suggesting another possible parallel between the responses of CNS and PNS 

neurons to injury.  
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A separate study in RGCs have shown that downregulation of an intrinsic growth 

pathway is linked to their poor regenerative ability.  RGC neurons show a developmental 

decline in mTOR activity, which correlates with their decreased growth capacity [41].  

Furthermore, axotomy to RGCs leads to a further downregulation of mTOR activity [41].  

Remarkably, activation of mTOR by genetic deletion of the upstream negative regulators 

PTEN or TSC1 promotes regeneration in these normally non-regenerating central 

neurons [41].  In chapter 2, we examine whether the mTOR pathway is activated in 

peripheral neurons following injury, and whether this pathway contributes to enhance 

axonal growth capacity.   

Similarly, transcriptional repression is linked to the downregulation of intrinsic 

growth capacity in RGCs.  RGCs show a developmental increase in the expression of 

Kruppel-like factor-4 (KLF4), a transcriptional repressor, which is correlated with the 

decline in growth ability [42].  Deletion of KLF4 in adult RGCs promotes regeneration 

[42].  However, the KLF-4 target genes that regulate growth ability have not yet been 

identified. 

To elucidate molecular factors responsible for the poor regenerative capacity of 

the CNS neurons, it will be important to determine whether CNS neurons lack the ability 

to activate or transport injury signals, are unable to relieve the growth inhibition brought 

about during their maturation or are less responsive to cytokines and other injury induced 

stimuli. 

 

Somatic injury signaling 

Role of cAMP 
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Elevation of cAMP levels in the soma following axonal injury to peripheral 

neurons contributes to the initiation of axonal regrowth [43]. cAMP not only increases 

the growth capacity of injured neurons but also partly relieves CNS myelin inhibition. 

The increase in cAMP levels appears to be transient and initiates a series of signaling 

pathways involving PKA [44]. The effects of cAMP are transcription dependent [45] and 

require the transcription factor cAMP response element binding protein (CREB) [46]. 

Interestingly, CREB mRNA is present in developing axons and CREB translation and 

retrograde transport is triggered by the nerve growth factor (NGF) [47]. Whether CREB 

translation plays a role in injury signaling in adult neurons remains to be determined. 

Downstream targets of cAMP signaling include Arginase1, which mediates synthesis of 

polyamines [48], neuropeptide Y, CREM (cAMP response element modulator), VGF 

(NGF-inducible growth factor), and IL-6 [17] [19]. Some of these genes were also 

identified in studies comparing the pattern of gene expression at different times after 

sciatic nerve transection [27] [49], revealing a temporal hierarchy of gene activation 

following injury. Although cAMP analogs fail to activate the intrinsic growth state of 

RGCs [50] they potentiate the effect of lens injury [40], indicating that multiple pathways 

act in parallel to stimulate RGCs regeneration. Although a direct link between retrograde 

signaling in axons and elevation of cAMP in cell body of injured neurons is still lacking, 

these results strongly suggest that the intrinsic growth capacity of the CNS neurons can 

be enhanced under appropriate conditions. 

 

Transcription factors 
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Initiation of a regeneration program requires that retrograde signals from the 

injury site alter transcription of multiple genes [45]. Members of the immediate-early 

genes family, including c-Jun and JunD [51] [52], as well as members of the constitutive 

transcription factors CREB, STAT3, SOX11, and ATF3 [24] [46] [53] [54] are elevated 

and in some cases also activated in DRG cell bodies after peripheral injury. The 

activation of c-Jun in the cell body is essential for the initiation of transcriptional changes 

required for successful axonal regeneration. Some of the identified c-Jun-dependent 

genes include integrin a7b1, CD44, and galanin [55]. Deletion of c-Jun in the nervous 

system, while causing little effect on axonal growth during development, leads to a 

marked defect in regeneration upon nerve transection [55]. The importance of c-Jun for 

regeneration also comes from the observation that c-Jun activation in DRGs is drastically 

greater following peripheral versus central branch axotomy [56] and c-Jun activation 

persists until successful target reinnervation has been achieved [57] [58]. The time course 

of c-Jun induction depends on the distance between the injury site and the cell body [57], 

suggesting that JNK activation in the axon may lead to c-Jun expression in the cell body 

[8] [9]. Similarly to c-Jun, ATF3, and STAT3 are induced in DRG neurons after 

peripheral, but not central injury [24] [59]. Overexpression of ATF-3 in cultured neurons 

enhances neurite outgrowth [59]and transgenic expression of ATF3 can partially 

recapitulate a conditioning injury [60]. Conditional gene disruption of STAT3 indicates 

that this gene may contribute to the survival of motor neurons after peripheral nerve 

lesion through activation of motor neuron survival factors such as Reg-2 and Bcl-xl [61], 

but a direct role on nerve regeneration per se has not been demonstrated. In vitro studies 

show that another transcription factor Sox11 is expressed at high levels in developing and 
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regenerating sensory neurons and regulates neurite outgrowth and cell survival [62].  

Although the identity of the genes activated by injury is being unravelled, the overall 

sequence and coordination of transcriptional events that initiate and sustain a 

regeneration program awaits further studies. 

 

Neurotrophic factors 

Neurotrophic signaling is mostly known to play a role in neuronal survival during 

development. The function of neurotrophins has been recently extended to other aspects 

of neuronal function, including regeneration [63]. Upregulation of the glial-derived 

neurotrophic factor GDNF and one of its receptors GFRa1 in injured nerves suggest that 

GDNF provides neurotrophic support for injured DRG neurons [64]. GDNF delivery 

directly to DRG cell bodies facilitates the conditioning injury induced growth promoting 

effect [65]. Although GDNF and GFRa1 are retrogradely transported in peripheral axons 

[66], a role of GDNF in injury signaling has not yet been examined. Fibroblast growth 

factor-2 (FGF-2) is another neurotrophic factor contributing to nerve regeneration [67]. 

FGF-2 is upregulated following injury both at the lesion site and in the cell bodies of 

peripheral nerves and transgenic mice overexpressing FGF2 show a greater increase in 

the number of regenerating axons after sciatic nerve transection [68]. The presence of 

neurotrophin signaling in injured nerve emphasizes the signaling crosstalk that is required 

to promote neuronal survival and regeneration. 

 

Support from Schwann cells  
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 Extrinsic factors in the environment interact with axonal injury signals for 

successful regeneration.  In the peripheral nervous system, Schwann cells play an 

essential role in the maintenance of axon health and integrity in addition to providing 

insulation for fast saltatory conduction of action potentials.  In healthy nerves, the 

relationship between axons and their myelinating Schwann cells is maintained by 

contact-mediated reciprocal signaling [69].  Disruption of Schwann-cell-axon contact, 

such as in the case of injury, activates a series of molecular and morphological changes in 

Schwann cells [70].  These include dedifferentiation and demyelination, transfer of 

ribosomes to axons, phagocytosis of axonal and myelin debris, synthesis of growth 

factors and extracellular matrix proteins, and proliferation [70] [71].  Such Schwann-cell 

mediated events play a critical role in the response of axons to injury and are discussed in 

more detail in Chapter 5. 

 

Conclusions 

A single signaling pathway is unlikely to fully mediate nerve regeneration. 

Several classes of injury signals may coexist to ensure precise information on the nature 

of the damage and its distance from the cell body (Figure 3). It is tempting to speculate 

that the difference in time between the arrival at the soma of the back propagating axonal 

depolarization—the first injury signal, and the later arrival of a positive injury signal 

might serve as an indicator of the distance of the injury site from the cell body.  

Computational modeling analyses speculate that two signals-a rapid signal carried by 

action potentials, and a slow signal carried by dynein-based transport-is sufficient to 

estimate the distance between the injury site and the cell body [72]. However, a clear link 
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between the arrival of injury signals and specific gene activation is still missing. 

Ultimately, a direct comparison between injury-signaling mechanisms in CNS and PNS 

neurons might shed light on the poor regenerative capacity of CNS neurons. This 

knowledge will be essential to our understanding and ultimately treatment of many 

debilitating CNS disorders, since in addition to traumatic axonal damage resulting from 

spinal cord injury or stroke, axonal damage can also occur in many neurodegenerative 

diseases in which axonal pathologies interrupt the cell body/synapse connection. 
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Figure 1. Conditioning injury paradigm 
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Figure 1. Conditioning injury paradigm. Primary sensory neurons within dorsal root 

ganglia (DRG) are particularly useful to study axonal regeneration. DRG neurons are 

unique in having two axonal branches; a long sensory CNS branch ascends the dorsal 

column in the spinal cord and a second branch projects through a peripheral nerve. 

Sensory axons in the adult spinal cord do not regenerate after injury (a), while peripheral 

injury results in a robust regenerative response. Regeneration of the central branch can be 

greatly enhanced by a prior injury to the peripheral branch, referred to as a ‘conditioning 

injury’ (b). The conditioning injury suggests that distinct signaling mechanisms regulate 

responses to central versus peripheral injury in DRG neurons and may contribute to their 

different abilities to axonal regrowth. 
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Figure 2. Injury signaling mechanisms 
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Figure 2. Injury signaling mechanisms. The cell body of injured neurons must receive 

accurate and timely information on the site and extent of axonal damage in order to 

orchestrate an appropriate response leading to successful regeneration. Pioneering work 

from the laboratories of Ambron and Walters have led to the notion that three distinct 

signaling mechanisms may act in complementary and synergistic roles: (1) injury-

induced discharge of axonal potentials, (2) interruption of the normal supply of 

retrogradely transported trophic factors or negative regulators of neuronal growth from 

the target, and (3) retrograde transport of activated proteins emanating at the injury site, 

termed positive injury signals. 
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Figure 3. Activation of the intrinsic growth capacity by peripheral injury 
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Figure 3. Activation of the intrinsic growth capacity by peripheral injury. Nerve 

injury triggers multiple signaling events in the axon, including membrane depolarization, 

JNK activation, mRNA translation, and cytokine-mediated STAT3 activation. These 

events lead to the microtubule-based retrograde transport of signaling molecules back to 

the cell body (shown by plain arrows). When these signaling molecules reach the cell 

body, they mediate the expression of a number of transcription factors that regulate the 

expression of genes involved in cell survival and neurite outgrowth. These downstream 

targets also include some components of the injury signal, such as IL-6 and LIF, which 

may amplify the injury signal via positive feedback. 
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Chapter 2: mTOR activation increases axonal growth capacity of injured peripheral 

nerves 
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ABSTRACT 

Unlike neurons in the central nervous system (CNS), injured neurons in the 

peripheral nervous system (PNS) can regenerate their axons and re-innervate their targets.  

The lack of regenerative ability of CNS neurons has been linked to downregulation of the 

mammalian target of rapamycin (mTOR) pathway.  We report here that PNS dorsal root 

ganglia neurons (DRGs) activate mTOR following damage, and that this activity 

enhances axonal growth capacity.  Furthermore, genetic upregulation of mTOR activity 

by deletion of tuberous sclerosis complex 2 (TSC2) in DRGs is sufficient to enhance 

axonal growth capacity in vitro and in vivo.  We further report that mTOR activation 

increases the expression of the growth-associated protein GAP-43, suggesting that 

mTOR-dependent protein synthesis contributes to enhance regeneration of injured 

peripheral neurons.    
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INTRODUCTION 

While neurons in the central nervous system (CNS) have limited capacity for 

regrowth after damage, neurons in the peripheral nervous system (PNS) have a robust 

ability to regenerate their axons following injury. However, functional recovery of 

injured peripheral nerves often remains suboptimal, especially in cases of damage to a 

significant length of a peripheral nerve. Successful regeneration depends upon both 

extrinsic cues in the environment and the activation of intrinsic mechanisms to promote 

re-growth. The glial environment of the adult CNS includes inhibitory factors that 

prevent axon regrowth [1,2,3].  Components of the glial scar, which forms after CNS 

injury, act as additional barriers to axon regeneration [4]. Furthermore, CNS neurons 

display a decreased intrinsic capacity to regenerate, as removal of extracellular inhibitory 

cues is not sufficient to promote successful regeneration [5,6,7,8]. Remarkably, genetic 

deletion of all three major myelin inhibitors, Nogo, OMgp, and MAG does not promote 

CNS regeneration [8].    

 Injured peripheral neurons benefit from the absence of inhibitory signals in their 

environment, and in addition activate intracellular signaling pathways that enable axonal 

regrowth. The ‘conditioning injury’ paradigm observed in dorsal root ganglia neurons 

(DRGs) provides evidence for the existence of such intracellular signaling pathways 

induced by injury, which enhance axonal growth capacity [9,10,11]. Injury to the sciatic 

nerve several days prior to dissection allows affected DRG neurons to extend more 

elongated, rapidly growing axons in culture compared to DRG neurons not subjected to a 

conditioning injury [10]. This suggests that the robust response of peripheral axons to 
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injury is not merely a ‘default’ state, but results from activation of injury signals to 

increase axonal growth capacity. 

Injury signals elicited both locally at the injury site and in the DRG cell bodies 

increase the intrinsic growth capacity.  Members of the MAPK family including JNK 

[12,13], protein kinase G [14], and Erk1/Erk2 [15,16] are activated in injured axons and 

retrogradely transported to the cell body, where they activate downstream effectors 

required for regeneration. In DRGs cell bodies, transcription factors including c-Jun 

[17,18], CREB [19], STAT3 [20] and ATF3 [21] are activated and initiate transcriptional 

changes that contribute to regeneration. Despite the growing number of molecules 

identified that play a role in regeneration, no single signaling pathway or transcription 

factor alone has been shown to be sufficient for complete regeneration in the PNS, 

suggesting that multiple pathways work in concert to maximize axonal growth capacity.   

Recent evidence implicates the control of protein synthesis by the mTOR pathway 

in the ability of neurons to regenerate.  In non-neuronal cells, the mTOR pathway plays a 

critical role in the regulation of cellular growth, proliferation, and survival during 

development via the regulation of protein synthesis [22,23]. Upstream regulators of 

mTOR include Akt and the TSC1/TSC2 complex, which sense the level of growth factors, 

nutrients, ATP, and reactive oxygen species to either inhibit or activate mTOR [24] 

(Figure 1). Activation of mTOR leads to the downstream phosphorylation of S6 

ribosomal protein and 4EBP-1 to initiate protein translation [24] (Figure 1). The 

developmental decline in mTOR activity observed in retinal ganglion cells correlates 

with their decreased growth capacity [25]. Moreover, axotomy to retinal ganglion cells 

leads to a further downregulation of mTOR activity [25]. Activation of mTOR by 
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deletion of the upstream negative regulators PTEN or TSC1 promotes regeneration of 

retinal ganglion cells, suggesting that mTOR activity is sufficient to increase growth 

capacity in normally non-regenerating central neurons [25]. While inactivation of mTOR 

activity is associated with decreased growth ability in the CNS, it is not yet known 

whether this pathway is activated in the PNS after injury and whether it contributes to 

increased axonal growth capacity.  

In this study, we report that the mTOR pathway is activated in DRG neurons after 

injury.  Inhibition of mTOR activity by rapamycin partially blocks the conditioning 

injury effect in DRGs, suggesting that mTOR activity contributes to the enhancement of 

axonal growth capacity upon injury.  Furthermore, deletion of TSC2, a negative regulator 

of mTOR activity, leads to increased basal level of mTOR activity, which is sufficient to 

mimic the conditioning injury-effect and enhance regeneration in vitro and in vivo.  We 

further report that mTOR activation increases the expression of the growth-associated 

protein GAP-43, suggesting that mTOR-dependent increased protein synthesis 

contributes to enhance regeneration of injured peripheral neurons. 
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RESULTS 

The mTOR pathway is activated in DRGs cell bodies following injury- To test 

whether peripheral neurons upregulate the mTOR pathway following injury, we induced 

sciatic nerve injury by ligation, then dissected and analyzed L4 and L5 DRGs one to four 

days later.  Phosphorylation of ribosomal S6 protein (S6), a downstream effector of 

mTOR, was used as a marker for mTOR activity.  One day following sciatic nerve 

ligation, we observed a ~2-fold increase in the level of phosphorylated S6 protein in 

DRGs cell bodies from the ligated nerve compared with those from the contralateral 

unligated nerve (Figure 2A, 2B).  By four days following ligation, S6 phosphorylation 

levels returned to basal, revealing the transient nature of the mTOR pathway activation 

(Figure 2B).  To confirm that mTOR activation is the source of S6 phosphorylation 

following injury, we tested whether S6 phosphorylation in DRG cell bodies upon sciatic 

nerve ligation can be blocked by rapamycin, a potent inhibitor of mTOR.  DRG cell 

bodies of mice injected intraperitoneally with rapamycin prior to sciatic nerve ligation 

showed a lower level of S6 phosphorylation compared to those of vehicle-treated ligated 

mice, suggesting that mTOR activity contributes to S6 phosphorylation after injury 

(Figure 2C, 2D).  Interestingly, a minor component of S6 phosphorylation following 

injury was resistant to rapamycin, suggesting that in addition to mTOR activity, there 

may be mTOR-independent modes of S6 phosphorylation after injury (Figure 2D). 

In addition to the increase in S6 phosphorylation levels, we also observed an 

increase in the total level of S6 protein itself in DRG cell bodies one day following sciatic 

nerve injury (Figure 2A, 2C, 2E).  Inhibition of mTOR activity by rapamycin blocked the 



 35

increase in the total level of S6 protein after injury, suggesting that the mTOR pathway 

may regulate the translation of S6 itself (Figure 2E).    

mTOR contributes to enhance axonal growth capacity following injury- 

Inactivation of the mTOR pathway following injury was shown to mediate the decreased 

growth capacity of retinal ganglion cells [25]. To determine whether increased mTOR 

activity after injury contributes to the enhanced axonal growth capacity of DRGs, we 

used the conditioning injury paradigm, in which prior injury causes a transition in 

neuronal morphology (or ‘growth pattern’) from compact, branched arbors to elongated, 

more sparsely branched axons [10]. We tested whether the presence of rapamycin, a 

potent inhibitor of mTOR activity during the conditioning injury blocks the increase in 

axonal outgrowth. To measure the extent of axon outgrowth, we calculated the distance 

between the cell body and the tip of the longest axon (‘radial projection length’). DRGs 

cultured in the presence of NGF from mice injected intraperitoneally with vehicle as a 

control showed the expected ~2 fold increase in mean radial projection length upon a 

conditioning injury (Figure 3A, 3B).  In contrast, intraperitoneal injection of rapamycin 

partially blocked the enhanced radial projection of axons upon a conditioning injury 

(Figure 3A, 3B, 3C). These results suggest that the mTOR pathway contributes at least in 

part to increase axonal growth capacity following injury. 

Deletion of TSC2 in DRGs leads to elevated mTOR activity- To test whether 

mTOR activation is sufficient to increase axonal growth capacity, we genetically 

increased basal level of mTOR activity by deleting TSC2, a negative regulator of mTOR 

activity, in DRGs. Tsc2flox/flox mice [26] were crossed to mice expressing cre under the 

control of the advillin promoter, which is expressed almost exclusively in peripheral 
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sensory neurons [27]. Tsc2flox/flox; AdvillinCre/+ mice are thereafter referred to as TSC2KO. 

Tsc2flox/flox; Advillin+/+ littermates are referred to as control. Deletion of TSC2 was 

confirmed by analyzing protein expression in DRGs cell bodies and brain extracts by 

western blot (Figure 4A).  As TSC2 is a negative regulator of mTOR activity, we 

predicted that TSC2 deletion would upregulate mTOR activity.  As expected, deletion of 

TSC2 in DRGs led to enhanced basal level of S6 phosphorylation, specifically in DRGs  

(Figure 4A and 4B).  We measured a ~2 fold increase in basal S6 phosphorylation levels 

in DRGs cell bodies isolated from TSC2KO mice compared to control littermates, a level 

similar to the increase in S6 phosphorylation levels we observed in DRGs cell bodies one 

day after injury in wild-type mice (Figure 4B).   

DRGs lacking TSC2 display enhanced axonal outgrowth in vitro and in vivo- 

To test whether increased mTOR activity is sufficient to increase axonal growth capacity 

in DRGs in the absence of a conditioning injury, we cultured DRGs from TSC2KO and 

control mice in the presence of NGF and assessed axonal outgrowth.  TSC2KO DRGs 

grew more elongated, less arborized axons compared to those of control DRGs, 

mimicking the morphology of DRGs subjected to a conditioning injury (Figure 4C, 4D, 

4E).  The radial projection length of TSC2KO DRG axon was greater than that of control 

littermate and similar to that of control littermate DRGs subjected to a conditioning 

injury (Figure 4C, 4D).  Conditioning injury to TSC2KO neurons did not significantly 

increase radial projection length compared to the uninjured condition, suggesting that 

even without the presence of a conditioning injury, TSC2KO DRGs have reached their 

maximal growth capacity in this assay (Figure 4C, 4D). The presence of the cre 

recombinase is not sufficient to enhance axonal growth capacity, as wild-type; 
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AdvillinCre/+ mice did not show significant difference with wild-type; Advillin+/+ 

littermate controls (Figure 4F). 

To test whether TSC2 deletion facilitates axonal regeneration in vivo, we crushed 

the sciatic nerve in TSC2KO mice and control littermates and assessed the level of 

regeneration past the crush site 12 or 24 hours later. To visualize re-growth of damaged 

axons, longitudinal sciatic nerve sections were stained for the growth-associated protein 

GAP-43. The reported concentration of GAP-43 in axonal growth cone [28]together with 

its strong expression in regenerating axons [29] makes it an ideal marker to track nerve 

regeneration in vivo [30].  The length of GAP-43-expressing axons past the crush site was 

markedly increased in TSC2KO sciatic nerve compared to that of control littermates 

(Figure 5A, 5B). We quantified this increase by normalizing GAP-43 fluorescence 

intensity to that at the crush site to control for the increased GAP-43 expression level 

observed from TSC2KO neurons (Figure 6B, 6C). We calculated a regeneration index by 

measuring the distance away from the crush site in which the average GAP-43 intensity is 

half that observed at the crush site.  The regeneration index was significantly higher in 

TSC2KO sciatic nerves compared to control nerves for both the 12 and 24 hours 

timepoints (Figure 5C).  Thus, this result suggests that enhanced mTOR activity is 

sufficient to facilitate axon regeneration in vivo.   

mTOR activity regulates GAP-43 expression following injury- GAP-43 is a 

crucial component of axonal outgrowth in developing and regenerating neurons 

[29,31,32]. The enhanced growth capacity of neurons lacking TSC2 may thus result from 

an enhanced expression of GAP-43. To directly test whether mTOR activity regulates 

GAP-43 expression following injury, we analyzed GAP-43 levels in nerve portions 



 38

proximal and distal to an axotomy site and in contralateral non-injured sciatic nerve by 

western blot. 24 hours after injury, GAP-43 protein level increased in the sciatic nerve 

proximal to the injury site in both TSC2KO and control and mice (Figure. 6B, 6C). 

Accumulation of GAP-43 in the proximal nerve stump is consistent with its role in 

promoting axonal outgrowth.  However, both the basal and injury-induced levels of GAP-

43 in the sciatic nerve were significantly higher in TSC2KO mice compared to controls 

(Figure 6B, 6C). Cultured DRGs also show a higher GAP-43 expression at the cell body 

and the tip of growing axons (Figure 6A).  In contrast to the local increase of GAP-43 

expression in sciatic nerve, injury did not increase GAP-43 levels in the DRGs cell 

bodies of TSC2KO mice or controls. However, the basal level of GAP-43 expression was 

enhanced in TSC2KO DRGs as observed in the sciatic nerve (Figure 6D, 6E).  

To confirm that mTOR activity is required for the increase in GAP-43 expression 

after injury, we tested whether inhibition of mTOR by rapamycin reduces GAP-43 

protein levels in injured and uninjured sciatic nerve.  Intraperitoneal injection of 

rapamycin one hour prior to injury partially blocked the increase in GAP-43 expression 

in the proximal injured nerve stump (Figure 6F, 6G).  Together, these results suggest that 

mTOR activity regulates GAP-43 expression in peripheral nerves following injury.   

To determine whether the effect of TSC2 deletion on GAP-43 expression is 

specific to GAP-43 or is due to a global upregulation of protein translation, we 

determined whether the levels of other proteins are also increased in TSC2 KO DRGs.  

We examined the levels of peripherin and β−actin, whose translation after injury has been 

implicated in axon regeneration [16,33].   The basal level of peripherin and β−actin in 

uninjured sciatic nerve were not significantly different between control and TSC2 KO 
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mice (Figure 7A, 7B).  Furthermore, the elevated level of these proteins in injured sciatic 

nerve were also unaffected by TSC2 deletion (Figure 7C, 7D).  The expression levels of 

these proteins were also not significantly altered in DRGs cell bodies of TSC2 KO mice 

compared to control (Figure 7C, 7D). Thus, mTOR may be regulating the expression 

level of a specific subset of proteins that includes GAP-43.   
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DISCUSSION 

The extent of axonal regeneration not only depends on the presence or absence of 

inhibitory cues in the environment, but also on the intrinsic growth capacity of the 

damaged neurons. Research on nerve regeneration has largely focused on identifying the 

inhibitory molecules in the CNS environment that act as barriers to regeneration.  Recent 

evidence suggests that in addition to differences in their environments, CNS and PNS 

neurons differ in their intrinsic ability to regrow their axons after injury.  

Work in retinal ganglion cells has implicated the mTOR pathway in regulating the 

growth capacity of neurons.  Axotomy to retinal ganglion cells markedly reduces mTOR 

activity while genetic activation of mTOR activity by PTEN or TSC1 deletion is 

sufficient to boost the regenerative ability in these normally non-regenerating neurons 

[25]. We found that in contrast to retinal ganglion cells, DRG neurons in the PNS activate 

the mTOR pathway in response to injury.  Activation of the mTOR pathway in DRGs 

implies that the ability of PNS neurons to regenerate is not solely due to the lack of 

inhibitory molecules in the environment, but also to an active intracellular mechanism 

that enhances growth capacity.  Indeed, we find that rapamycin blocks the enhancement 

in axonal outgrowth following a conditioning injury, suggesting that mTOR activity 

contributes to boost the regenerative potential after damage. The observation that mTOR 

activation is transient and returns to basal level 3 to 4 days following injury suggests that 

prolonged mTOR activity may further enhance PNS regeneration. 

Similarly to what was observed in CNS neurons, we found that upregulation of 

the mTOR pathway is sufficient to enhance axonal growth capacity in PNS neurons.  

Genetic ablation of TSC2, a negative regulator of mTOR activity, led to enhanced axonal 
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outgrowth and regenerative capacity in DRGs.  TSC2KO DRGs grew faster, more 

elongated and sparsely branched axons in culture, similarly to wild-type DRGs subjected 

to a conditioning injury [10].  Thus, increased mTOR activity is sufficient to enhance 

axonal growth potential even in the absence of a conditioning injury.  We also observed 

that injured TSC2KO DRGs grew further past the injury site in vivo compared to control 

DRGs.  Based on our observation that TSC2 deletion primes DRGs to grow long axons in 

vitro in the absence of a conditioning injury, TSC2KO DRGs may also be primed to 

respond to injury in vivo and initiate axon regrowth earlier than control DRGs.  

Alternatively, TSC2 deletion may affect injury-induced retraction that occurs prior to 

axon elongation.  Clearly, a more detailed analysis will determine the precise mechanism 

regulating regenerative growth in the absence of TSC2.  Nevertheless, the observation 

that TSC2 deletion can facilitate the regrowth of crushed peripheral axons in vivo 

supports the notion that regeneration of injured axons in the PNS can be further enhanced.   

The major downstream targets of mTOR are components of the translation 

machinery, including those that regulate the recruitment of ribosomes to mRNA.  Protein 

synthesis plays a critical role in both injury signaling [16,34,35,36] and the formation of 

new growth cones during regeneration [37]. Several proteins translated in peripheral 

neurons after injury, including vimentin and importin β, have been shown to be critical 

for regeneration [16]. However, whether their expression is regulated by mTOR activity 

has not been explored.  Our present study identified GAP-43 as a downstream target of 

mTOR activity.  TSC2KO neurons showed enhanced GAP-43 levels both in naïve and 

injury-induced conditions.  In addition, rapamycin treatment partially blocked the 

increase in GAP-43 protein levels after injury, showing that the mTOR pathway regulates 
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GAP-43 expression. As GAP-43 plays a key role in axon sprouting and outgrowth in 

regenerating axons [31,32] [38], [39], it is likely that the enhancement of axon growth 

capacity by the mTOR pathway is at least in part due to the regulation of GAP-43 

expression.  However, overexpression of GAP-43 alone is not sufficient to fully stimulate 

regrowth of axons in the central branch of DRGs into the spinal cord [11]. Thus, the 

mTOR pathway likely regulates the translation of a number of proteins in addition to 

GAP-43 to maximize the axonal growth capacity. 

Our work indicates that PNS neurons turn on the mTOR pathway following injury, 

while CNS neurons do not [25]. It will therefore be important in future studies to identify 

the upstream regulators of mTOR that are specifically activated by PNS injury to better 

understand the poor regenerative ability of CNS neurons. In non-neuronal cells, a number 

of upstream regulators of mTOR have been identified, and include the serine/threonine 

protein kinase Akt and the TSC1-TSC2 complex. Growth factors, nutrients and insulin 

among other factors activate PI-3Kinase, which leads to the phosphorylation and 

activation of Akt. Active Akt in turn phosphorylates and inhibits TSC2 activity leading to 

mTOR activation via Rheb GTPase [40,41,42,43,44] (Figure 1). Surprisingly, we did not 

detect Akt phosphorylation in DRGs cell bodies 24 hr after injury at time points at which 

S6 is already phosphorylated (Figure 8A).  A recent study reported a decrease, rather than 

an increase in Akt phosphorylation levels in DRGs three days following sciatic nerve 

injury [45].  However, as chronic activation of mTOR can downregulate Akt activation 

via a feedback mechanism, a more detailed time-course study of Akt activation should be 

performed to address whether mTOR activation after injury occurs through Akt [46].   
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Interestingly, we found that TSC2KO DRGs, which have an increased basal level 

of S6 phosphorylation, are able to further increase S6 phosphorylation levels upon sciatic 

nerve injury even in the absence of TSC2 (Figure 8B). Thus, inactivation of TSC2 by Akt 

may not fully account for mTOR activation in DRGs cell bodies after injury, and other 

pathways independent of TSC2 may converge to activate mTOR.  One TSC2- 

independent mode of mTOR regulation occurs through phosphatidic acid [47] (Figure 

8C). Phosphatidic acid production is mediated by phospholipase D1, which is activated 

by the small GTPase Cdc42 [48]. Interestingly, Cdc42 mRNA is upregulated in DRGs 

following axotomy, and Cdc42 overexpression induces enhanced axonal outgrowth [49]. 

Another possible TSC2-independent regulator of mTOR activity is the JAK-STAT–

SOCS3 signaling pathway (Figure 8D). SOCS3 is a negative regulator of JAK-STAT 

signaling which suppresses regeneration in retinal ganglion cells [50]. Genetic deletion of 

SOCS3 in retinal ganglion cells is sufficient to activate the mTOR pathway and promotes 

regeneration [50]. In DRGs, injury induces activation of JAK-STAT signaling through 

the cytokine CNTF and its receptor gp130 [51], suggesting that CNTF-mediated JAK-

STAT signaling may interact with the mTOR pathway after peripheral nerve injury. 

Enhancement of axonal regeneration in both CNS and PNS neurons by activation 

of the mTOR pathway presents an exciting therapeutic target for facilitating recovery 

from nerve injury.  However, it remains unclear whether upregulation of mTOR activity 

can promote successful target re-innervation in addition to facilitation of axonal regrowth.  

Interestingly, we observe that activation of mTOR in injured DRGs is transient, returning 

to basal levels after four days following injury (Figure 2A, 2B).   This finding led us to 

question whether prolonged activation of mTOR in peripheral neurons could have 
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deleterious effects on target innervation and functional recovery.  In Chapter 4, we 

examine the consequences of persistent mTOR activity in peripheral nerve development 

and function to speculate whether upregulation of mTOR activity can offer a safe 

therapeutic approach to repair injured peripheral neurons.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 45

MATERIALS AND METHODS 

Antibodies and reagents- The following antibodies were used: anti-tuberin/TSC2 (Santa 

Cruz Biotechnology,  C-Term), anti-phosphorylated S6 ribosomal protein (Cell Signaling, 

Serine 240/244), anti-S6 ribosomal (Cell Signaling), anti- α−tubulin (Sigma), anti-SMI-

31(Sternberger Monoclonals Incorporated), anti-beta actin (Sigma), anti-peripherin 

(Millipore), anti-GAP-43 (Abcam), anti-tau (Synaptic Systems), and anti-GAP-43 

(Chemicon) when used with anti-tau.   

Animals- For experiments involving wild-type animals, C57B6 6 to 9 month of age 

females from Harlan were used. Tsc2flox/flox animals were previously described [26]and 

AdvillinCre/Cre mice were used to drive expression of cre in sensory neurons, based on the 

previous characterization of the advillin-hPLAP reporter mouse [27,52]. To generate 

Tsc2flox/flox; AdvillinCre/+  conditional knockout mice, we crossed Tsc2flox/flox females to 

AdvillinCre/Cre males to generate Tsc2flox/+; AdvillinCre/+ animals.  Then, 

Tsc2flox/floxAdvillin+/+ females were crossed to Tsc2flox/+; AdvillinCre/+ males to generate 

Tsc2flox/flox; AdvillinCre/+ conditional knockout animals and Tsc2flox/flox; Advillin+/+ 

littermate control animals.  Genotype was confirmed by tail PCR at weaning age.  4-8 

weeks old animals and sex- matched littermate controls were used for all experiments. 

Surgical procedures and drug treatment- All surgical procedures were approved by the 

Washington University in St. Louis, School of Medicine, Animal Studies Committee.  

Sciatic nerve injury experiments were performed as described previously ([12]). Briefly, 

the right sciatic nerves of mice were ligated, axotomized, or crushed unilaterally at the 

midpoint, and mice were sacrificed at the indicated time after surgery.  For biochemistry 

on DRGs cell bodies, L4, L5, and L6 DRGs were dissected from both the injured side 



 46

and the contralateral uninjured side for control.  For biochemistry on sciatic nerve, equal 

lengths (5mm) of the proximal and distal parts were homogenized.  DRGs and nerves 

were homogenized in lysis buffer (20mM Tris-HCl pH 7.5, 150mM NaCl, 1mM 

Na2EDTA, 1mM EGTA, 1% Triton, 2.5mM sodium pyrophosphate, 1mM β-

glycerophosphate, 1mM Na3VO4, 1μg/ml leupeptin) with phosphatase inhibitor cocktail 1 

and 2 (Invitrogen).  Equal protein amounts were loaded and analyzed by SDS-PAGE and 

western blot. 

 Rapamycin was delivered by intraperitoneal injection at 5mg/kg body weight.  

Rapamycin was dissolved in 200 μl DMEM from a 10 mg/ml stock solution in DMSO.  

An equivalent volume of DMSO was dissolved into 200 μl DMEM for vehicle control. 

Intraperitoneal injection was performed 1 hr before sciatic nerve ligation, and repeated 

two days following ligation.  Animals were sacrificed and DRGs and nerves were 

dissected one or four days following ligation. 

Primary DRGs culture and immunofluorescence- L4, L5, and L6 DRGs were dissected 

and dissociated in 0.7 mg/ml Liberase Blendzyme 3 (Roche), 600 µg/ml DNAse, 10 

mg/ml BSA, in DMEM AIR (DMEM/F12 with 10mM Glucose, and 1% Pen/Strep) at 

37ºC for 15 minutes, followed by trypsinization with 0.25% trypsin in DMEM AIR at 

37°C for 15 minutes.  DRGs were then triturated and placed in culture media (DMEM, 

10% FBS, 1% pen/strep) with 50ng/ml NGF (Invitrogen) on poly-D-lysine-coated plates. 

 After 20-24 hrs, DRGs were fixed in 4% paraformaldehyde and 4% sucrose in 

PBS for 10 minutes.  For immunofluorescence staining, cells were permeabilized and 

blocked in 10% Goat Serum, 0.1% Triton-X in PBS for 15 minutes.  Staining was 

performed with the indicated primary antibodies for 30 minutes at room temperature, and 
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with Alexa-conjugated secondary antibodies for 20 minutes.  Images were acquired with 

Nikon Eclipse TE2000-E inverted microscope and analyzed using Nikon NIS Elements 

Advanced Research 2.30 Imaging Software.  To quantify levels of axonal outgrowth, we 

measured the distance between the cell body and the tip of the longest axon and 

annotated this measurement as the radial projection length.  For each condition, radial 

projection lengths of all cells imaged were measured, and both means and histograms 

were used for comparison across conditions. 

Immunohistochemistry- Crushed sciatic nerves were dissected and fixed for 1-2 hours in 

4% PFA in PBS, then cryoprotected overnight in 20% sucrose.  Posterior hindpaw skin 

sections were fixed in 15% picric acid, 2% paraformaldehyde in PBS for 3-4 hours, and 

cryoprotected in 30% sucrose for 48 hours.   Nerves and skin were embedded in OCT 

(Tissue-Tek) and frozen in dry-ice-cooled methanol.  Serial 10-µm (nerve) or 30-µm 

(skin) cryostat sections were cut and mounted onto coated slides (Fisher Scientific). 

Sections were permeabilized and blocked with 10% goat serum, 0.1% Triton X-100 in 

PBS for 30 min. Primary staining with the indicated antibodies was performed in the 

blocking solution overnight at 4ºC.  Staining with Alexa-conjugated secondary antibody 

was performed for 1 to 3 hours.  Sciatic nerve images were acquired with Nikon Eclipse 

TE2000-E inverted epifluorescence microscope and analyzed using Metamorph 6.2.  
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Figure 1. Major components of the mTOR pathway 
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Figure 2. The mTOR pathway is upregulated in DRG cell bodies following sciatic 

nerve injury 
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Figure 2. The mTOR pathway is upregulated in DRG cell bodies following sciatic 

nerve injury (A) Injury to the sciatic nerve of wild-type mice was induced by ligation 

and S6 phosphorylation levels were assessed in L4, L5, L6 DRG cell bodies at the 

indicated time points.  DRG cell bodies display increased S6 phosphorylation levels one 

to two days following ligation.  L4, L5, L6 DRG lysates from one mouse were pooled for 

each time point.  Cytochrome c was used as loading control.  (B) Quantification of fold 

change in S6 phosphorylation levels between DRG cell bodies from injured and un-

injured nerves shows 2 fold increase in S6 phosphorylation one day after ligation which 

reached basal level 4 days following ligation. S6 phosphorylation levels were normalized 

to loading control. At least 4 mice were tested for each time point.  Data are mean +/- 

SEM. *p<0.05 (Student’s t-test).  (C) Wild-type mice were treated with rapamycin or 

DMSO as a vehicle control by intraperitoneal injection and then subjected to sciatic nerve 

ligation to provoke injury one hour later.  L4, L5 and L6 DRGs were dissected 24 hours 

later and S6 phosphorylation levels were assessed by western blot.  L4, L5, L6 DRG 

lysates from one mouse were pooled for each time point.  Basal and injury-induced levels 

of S6 phosphorylation are significantly reduced by rapamycin treatment.  Tubulin was 

used as loading control.  (D) Quantification of S6 phosphorylation levels from (A) shows 

a major component of S6 phosphorylation after injury is mTOR-dependent. S6 

phosphorylation levels were normalized to loading control. 4 mice were tested for each 

condition.  Data are mean +/- SEM. *p<0.05, ***p<0.001 (Student’s t-test).  (E) 

Quantification of total S6 protein levels of DRGs from (A) shows increase in total S6 

levels following injury is mTOR-dependent.  Total S6 levels were normalized to loading 
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control. 4 mice were tested for each condition.  Data are mean +/- SEM. 

*p<0.05(Student’s t-test).   
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Figure 3.  The mTOR pathway contributes to enhance axonal growth capacity after 

peripheral nerve injury 
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Figure 3.  The mTOR pathway contributes to enhance axonal growth capacity after 

peripheral nerve injury. (A) Wild-type mice were treated with rapamycin or DMSO as 

a vehicle control by intraperitoneal injection and then subjected to sciatic nerve ligation 

to provoke injury one hour later.  L4, L5 and L6 DRGs were dissected and cultured 4 

days later.  DRG cultured from injured sciatic nerve showed enhanced axonal outgrowth 

at 24 hours in culture. This effect was partially blocked by rapamycin. Axons were 

stained with α-SMI-31 antibody.   (B) Quantification of radial projection length of naïve 

and injury-conditioned DRGs cultured from vehicle or rapamycin treated mice show 

rapamycin partially blocks conditioning injury paradigm.  n=4 mice per condition; 100-

350 neurons were analyzed per set of DRGs.  Data are mean +/-SEM. *p<0.05, **p<0.01, 

***p<0.001 (Student’s t-test).  (C) Histogram of radial projection length of injury-

conditioned DRGs from one representative experiment shows shift in distribution upon 

rapamycin-treatment. (A) Bar=100μm.   
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Figure 4. TSC2KO DRGs display enhanced axonal outgrowth in vitro.   
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Figure 4. TSC2KO DRGs display enhanced axonal outgrowth in vitro.  (A) Western 

blot of DRG cell bodies and brain lysates from TSC2KO and control animals show that 

TSC2 protein level are dramatically reduced in DRGs but not in brain.  As expected, S6 

phosphorylation level is increased in TSC2KO compared to control animals. 

Representative western blot is shown (B) Quantification of (A); n=5 mice per genotype, 

Data are mean +/- SEM. **p<0.01(Student’s t-test). (C). Cultured TSC2KO DRGs show 

enhanced axonal outgrowth in the absence of a conditioning injury.  Injury to the sciatic 

nerve 4 days prior to dissociation does not further increase axonal outgrowth in TSC2KO 

DRGs.  Axons were stained with α-SMI-31 antibody. (D) Quantification of radial 

projection of naïve and injury-conditioned DRGs cultured from TSC2KO mice and 

controls.  n=3 mice per genotype; 60-370 neurons were analyzed per set of DRGs. Data 

are mean +/- SEM. n.d.=no statistically significant difference, *p<0.05, **p<0.01 

(Student’s t-test). (E) Histogram of radial projection lengths of naive TSC2KO and 

control DRGs in culture.  Data shown is from one representative experiment.  (F) There 

was no significant difference in radial projection length between DRGs cultured from 

wild-type; AdvillinCre/+ mice and those cultured from wild-type; Advillin+/+ mice.   n=3 

mice per genotype. 100 to 200 neurons were measured per genotype.  Data are mean +/- 

SEM. n.d.=no statistically significant difference (Student’s t-test). (C) Bar=100μm.  
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Figure 5. TSC2KO neurons display enhanced regeneration in vivo. 
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Figure 5. TSC2KO neurons display enhanced regeneration in vivo. TSC2KO and 

control mice were subject to a sciatic nerve crush, and regeneration of crushed axons was 

assessed 12 or 24 hours later.  (A) Longitudinal section of sciatic nerve dissected 12 or 24 

hours after crush reveals increased length of GAP-43 positive axons past the crush site in 

TSC2KO mice compared to control mice for both time points.  Dashed line indicates 

crush site. (B) Average GAP-43 intensity at various distances distal to crush site 12 and 

24 hours after crush reveal regenerating axons grew longer distances in TSC2KO mice 

compared to controls.  GAP-43 intensity values were normalized to that at the crush site 

to control for the increased GAP-43 expression level observed from TSC2KO neurons.  

Data are mean +/- SEM.  n=3 mice per genotype, 3 to 5 longitudinal sections were 

analyzed per mouse for both time points (Student’s t-test).  (C) Regeneration index was 

measured as the distance away from the crush site in which the average GAP-43 intensity 

is half that observed at the crush site.  TSC2KO mice show a higher regeneration index 

compared to controls at both 12 and 24 hour timepoints..  *p<0.05, **p<0.01 (Student’s 

t-test). (A) Bar=200μm. 
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Figure 6. The mTOR pathway regulates GAP-43 expression.   
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Figure 6. The mTOR pathway regulates GAP-43 expression.  (A) Naïve TSC2KO 

DRGs show enhanced cell body and axonal GAP-43 expression in culture.  Arrows 

indicate cell body, arrowheads indicate axonal tips.  (B) Injury to the sciatic nerve of 

TSC2KO and control mice was induced by axotomy and GAP-43 levels in nerve portions 

proximal and distal to the axotomy site and in contralateral non-injured sciatic nerve were 

analyzed by western blot 24 hours later. Control mice show an increase in GAP-43 

expression in sciatic nerve proximal to the injury site.  Both the basal level and injury-

induced level of GAP-43 expression is enhanced in TSC2KO mice.  GAP-43 levels were 

normalized to loading control (tubulin).  Data are mean +/- SEM.  n=3 mice per genotype, 

*p<0.05 (Student’s t-test).  (C) Representative western blot from one experiment (one 

mouse per genotype) from (B).  (D) As in (B), but DRG cell bodies were analyzed.  

GAP-43 levels were increased in DRG cell bodies of TSC2KO mice compared to control.  

Axotomy did not increase GAP-43 levels in DRG cell bodies in either genotype.  n=3 

mice per genotype, **p<0.01 (Student’s t-test). (E) Representative western blot from one 

experiment (one mouse per genotype) from (C).  (F) Rapamycin blocks increase in GAP-

43 expression after injury.  Wild-type mice were injected intraperitonealy with rapamycin 

or DMSO vehicle control, then sciatic nerve injury was induced by ligation.  Four days 

following ligation, unligated nerve and ligated nerve distal and proximal to the ligation 

site were analyzed for GAP-43 expression.  Data are mean +/- SEM.  n=3 mice per 

condition. *p<0.05, *p<0.01 (Student’s t-test). (G) Representative western blot from one 

experiment from (F).  (C) Bar=100μm. 
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Figure 7. TSC2 deletion in DRG does not affect peripherin or β-actin expression.  
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Figure 7. TSC2 deletion in DRG does not affect peripherin or β-actin expression.  

(A) Injury to the sciatic nerve of TSC2KO and control mice was induced by axotomy. 

peripherin and β-actin levels in nerve portions proximal and distal to the axotomy site 

and in contralateral non-injured sciatic nerve were analyzed by western blot 24 hours 

later.  No significant difference in basal or injury-induced levels of peripherin or β-actin 

between TSC2KO and control mice was observed. Peripherin and β-actin levels were 

normalized to loading control (tubulin). Data are mean +/- SEM.  n=3 mice per genotype. 

n.d.=no statistically significant difference (Student’s t-test).  (B) Representative western 

blot from one experiment (one mouse per genotype) from (A).  (C) As in (A), but DRG 

cell bodies were analyzed.  Peripherin and  β-actin levels in DRG were not significantly 

different between TSC2KO and control.  Data are mean +/- SEM. n=3 mice per genotype. 

n.d.=no statistically significant difference (Student’s t-test).  (D) Representative western 

blot from one experiment (one mouse per genotype) from (C). 
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Figure 8. mTOR activation after peripheral nerve injury may be Akt/TSC2- 

independent. 
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Figure 8. mTOR activation after peripheral nerve injury may be Akt/TSC2- 

independent. 

(A) Injury to the sciatic nerve of wild-type mice was induced by ligation and  

phosphorylation of Akt (S473) and S6 was assessed in L4, L5, L6 DRG cell bodies at the  

indicated time points.  While S6 phosphorylation was observed at 12 and 24 hour time  

points, Akt phosphorylation was not detected.   Cytochrome c was used as loading  

control.  (B) TSC2 KO DRGs cell bodies further upregulate S6 phosphorylation after 

sciatic nerve axotomy.  DRGs were collected 24 hours after sciatic nerve axotomy and  

analyzed by western blot with the indicated antibodies. Tubulin was used as loading 

control.  (C) Potential Akt/TSC2-independent modes of mTOR activation. 
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Chapter 3: Persistent mTOR activity in peripheral neurons leads to developmental 

and functional defects 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part of this work appears in the manuscript:  

Abe N, Borson SH, Gambello MJ, Wang F, Cavalli V (2010) mTOR activation increases 

axonal growth capacity of injured peripheral nerves. J Biol Chem. In press. 

 

Contributions: Experiments in figure 4 were performed by Judy Golden. 
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ABSTRACT 

Enhancement of axonal regeneration in both CNS and PNS neurons by activation 

of the mTOR pathway presents an exciting therapeutic target for facilitating recovery 

from nerve injury.  However, it remains unclear whether upregulation of mTOR activity 

can promote successful target re-innervation and functional recovery in addition to 

axonal regrowth.  Here, we examined the consequence of prolonged mTOR activity by 

conditional deletion of TSC2 in dorsal root ganglia (DRGs).  Deletion of TSC2 in DRGs 

in vivo resulted in major developmental and functional defects, including increased 

mortality, small size, early death, sensory impairments, movement abnormalities, and 

aberrant target innervation and axon morphology.  These developmental and functional 

defects suggest that prolonged elevation of mTOR activity may also interfere with axon 

targeting and functional recovery of regenerating axons. Thus, while manipulation of the 

mTOR activity could provide new strategies to stimulate nerve regeneration in the PNS, 

fine control of mTOR activity may be required for proper target innervation and 

functional recovery. 
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INTRODUCTION 
 
 While much research in nerve regeneration has focused on identifying extrinsic or 

intrinsic factors that accelerate growth, little is known regarding the consequences of 

prolonged potentiation of growth pathways on target re-innervation and functional 

recovery.  As neurotrophin-mediated growth pathways are intimately linked to axon 

guidance [1,2], it is possible that over-activation of axon growth could interfere with 

axon navigation and target innervation.  Genetic activation of the mTOR pathway in PNS 

and CNS neurons facilitates axon regrowth, raising the exciting possibility that this 

pathway may be targeted for therapy following nerve injury [3,4].  However, whether 

persistent activation of mTOR in peripheral neurons has deleterious effects on target 

innervation or function has not yet been explored.  Given the growing evidence for the 

role of mTOR in multiple aspects of neuronal development, it is possible that 

hyperactivation of mTOR activity in peripheral neurons could disrupt axon targeting and 

function. 

 Persistent mTOR activity in the central nervous system contributes to many of the 

pathologies of Tuberous Sclerosis (TSC) [5,6].  TSC is an autosomal dominant disorder 

associated with hamartoma formation resulting from inactivating mutations in either 

TSC1 or its interacting gene TSC2 [7,8].  TSC2 is a GTPase-activating protein for Rheb-

GTPase, which is an activator of mTOR [9].  TSC1 does not have any known functional 

domains but binds to and prevents the degradation of TSC2 [10].  While TSC can affect 

multiple organs including skin, kidney, heart, lung, and eye, the most significant patient 

morbidity is attributed to its effects on the brain [11].  Common neurological symptoms 

of TSC patients include epilepsy, autism, and cognitive disabilities and are associated 
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with developmental malformations of the cerebral cortex called cortical tubers [12,13,14].  

Cortical tubers consist of giant cells, which are large ovoid cells unique to TSC patients 

and extend short, thickened process of unclear identity [15].  Consistent with a role of the 

TSC1-TSC2 complex in inhibiting mTOR activity, giant cells display an elevated level of 

S6 phosphorylation indicative of hyperactive mTOR signaling [15,16].  Neuron-specific 

deletion of TSC1 in mice results in many of the features and pathologies of tuberous 

sclerosis, including spontaneous seizure activity, the presence of enlarged, aberrant 

neurons characteristic of those in TSC cortical tubers, and hyperactive mTOR signaling 

[5].     Rapamycin, an mTOR inhibitor, can reverse many of these abnormalities in this 

TSC mouse model, indicating that hyperactive mTOR signaling contributes to TSC 

pathologies [6]. 

 The TSC1 and TSC2 tuberous sclerosis complex plays a critical role in axon 

specification of hippocampal neurons through its regulation of mTOR activity [17].  

Specification of neuronal processes as axon or dendrite is essential for proper neuronal 

function and information flow.  In vitro studies of hippocampal neurons show that TSC2 

phosphorylation, and downstream mTOR signaling is restricted to the axon [17].  

Deletion of TSC1 or TSC2 results in the formation of multiple axons, suggesting that 

spatial regulation of mTOR activity essential for axon specification and neuronal polarity 

[17].  Rapamycin treatment reduces the number of TSC1 or TSC2-deficient neurons with 

multiple axons, suggesting that the TSC1-TSC2 complex regulates axon specification 

through its modulation of mTOR activity [17]. 

 Recent studies in retinal ganglion neurons have identified a role of TSC1-TSC2 

and mTOR in axon guidance [18].  TSC2 heterozygote mice show aberrant projections of 
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retinal ganglion neurons into the dorsal lateral geniculate nucleus (dLGN) [18].   TSC2 

deficient neurons in culture are insensitive to ephrin-mediated growth cone collapse, 

suggesting that TSC2 acts downstream of ephrin signaling which is critical for the 

formation of the topographic map in the dLGN [18].  Furthermore, ephrin-mediated 

growth cone collapse involves inhibition of protein translation by TSC2-mediated mTOR 

inactivation [18].  Thus, fine modulation of mTOR activity by axon guidance cues may 

play an instructive role in axonal targeting. 

 In chapter 2, we report that genetic upregulation of mTOR activity in dorsal root 

ganglia (DRG) facilitates axonal regrowth following injury.  Given the therapeutic 

potential of mTOR activation in nerve injury, it is important to test the consequence of 

persistent mTOR activity on target innervation and function.  Here, we extend the work 

described in chapter 2 by further characterization of the phenotype of TSC2flox/flox; 

AdvillinCre/+ conditional knockout mice (TSC2KO), in which deletion of TSC2 in DRGs 

results in hyperactive mTOR signaling (Chapter 2, Figure 4A, 4B). We find that TSC2 

deletion in DRGs results in increased mortality, smaller body size, abnormal posture, 

ataxia, and early death.  Furthermore, TSC2 knockout DRGs display larger soma, 

abnormal morphology, altered target innervation, and functional defects.  Thus, while 

manipulation of the mTOR activity could provide new strategies to stimulate nerve 

regeneration in the PNS, fine control of mTOR activity may be required for proper target 

innervation and functional recovery. 
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RESULTS 

TSC2KO mice have increased mortality and are smaller in size-  To generate 

TSC2flox/flox; AdvillinCre/+ mice, we bred TSC2flox/flox; Advillin+/+ females to TSC2flox/+; 

AdvillinCre/+ mice.  Because female mice show leaky expression of Cre recombinase in 

the germline (personal communication with Fan Wang), we used male mice to pass down 

the AdvillinCre knock-in allele.  For the male in this breeding scheme, we used TSC2flox/+; 

AdvillinCre/+ mice rather than TSC2flox/flox; AdvillinCre/+ mice (TSC2KO) as TSC2KO male 

mice were unable to breed.  Only 12% of the pups born from this breeding were 

TSC2KO, which is about half of the expected Mendelian percentage of 25% (Figure 1A).  

The remaining three genotypes were born at equal ratios (Figure 1A).  Thus, TSC2 

deletion in DRGs may be interfering with development in utero. 

 Of the TSC2KO mice that are born, many are smaller in size compared to control 

siblings (Figure 1B, 1C).  Over the first few months following birth, these mice become 

progressively ataxic, develop tremors, and die around 2.5 ~ 3 months of age.  The cause 

of death is not yet determined.  TSC2+/+;AdvillinCre/+ mice display a wild-type phenotype, 

confirming that these abnormalities are due to deletion of TSC2 rather than the 

expression of the Cre recombinase. 

TSC2-deficient DRGs have axon targeting defects and abnormal morphology-  

To assess whether constitutive mTOR activity in DRGs alters axonal target innervation, 

we examined sensory nerve innervation of hindlimb glabrous footpad skin in adult 

TSC2KO and control littermates. TSC2 deletion led to a significant loss of epidermal 

innervation (Figure. 2A, 2B).  We found no gross effects of TSC2 deletion on neuronal 

survival or the number of axons in the peripheral branch of L5 DRG (Figure 3A-3C), 
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suggesting that the loss of innervation is due to axon targeting defects rather than 

degeneration or neuronal loss. Furthermore, of the sensory nerves that innervated the 

epidermis, a large proportion displayed excessive branching at the axon terminal (Figure 

2A, 2C).  Not only was the proportion of endings with excessive branching higher in 

TSC2KO mice, the absolute number of these endings was also greater (Figure 2D). The 

presence of the cre recombinase does not alter skin innvervation, as wild-type; 

AdvillinCre/+ mice did not show significant difference from wild-type; Advillin+/+ 

littermate controls (Figure 2A-D). These results suggest that TSC2 deletion in peripheral 

neurons leads to abnormal target innervation and axonal branching.  As dorsal root 

ganglion neurons also project into the spinal cord, it is also possible that targeting of 

these centrally-projecting axons is also disrupted by TSC2 deletion.   

 TSC2 deletion and increased mTOR-mediated protein synthesis has been shown 

to increase cell size in hippocampal neurons as well as non-neuronal cells.  We measured 

soma size in dissociated DRG cultures from TSC2KO mice and found that TSC2 deletion 

results in larger cell size in DRGs (Figure 2E).  Thus, mTOR-mediated regulation of cell 

size may be conserved across cell types.   

TSC2KO mice have defects in sensory nerve function- To determine whether 

TSC2 deletion in DRGs results in impaired function in addition to axonal targeting and 

morphological defects, we performed a panel of behavioral tests that measure sensory 

nerve function.  These experiments were performed by Judy Golden in Rob Gereau's 

laboratory.  TSC2KO mice display lowered sensitivity to thermal and mechanical stimuli, 

suggesting that sensory function is compromised (Figure 4A).  The response of TSC2KO 

mice to acetone, a cold stimulus, was not statistically altered (Figure 4A).  
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 We also tracked motor behavior of TSC2KO and control mice in an open-field 

test.  In the span of one hour measured, TSC2KO mice spent significantly less time 

moving, and traveled shorter distances compared to control (Figure 4B).  Their 

movements also appear abnormal, as they walk in a "waddling" pattern with a hunched 

back (Figure 4C).  They also display a limb clasping phenotype in response to the tail 

suspension test, a sign of impaired sensory-motor circuitry.  Furthermore, mutant mice 

perform poorly on the rotarod test compared to controls, indicative of impaired motor 

coordination (Figure 4D).  As the conditional deletion occurs in sensory neurons rather 

than motor neurons [19], we speculate that these motor defects in TSC2KO mice are a 

result of poor proprioception.  In addition to defects in peripheral axons, there could also 

be defects in the projection of sensory axons back into the spinal cord for connection with 

the local motor circuit or the central nervous system.  However, it will be critical to 

perform lineage tracing analysis of Cre expression pattern using ROSA gene trap mouse 

[20], to ensure that the deletion of TSC2 occurs exclusively in DRG neurons.   
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DISCUSSION 

 Deletion of TSC2 in DRGs in vivo resulted in marked developmental and 

functional defects, including increased mortality, small size, early death, sensory 

impairments, movement abnormalities, and aberrant axon innervation and morphology.  

As precise innervation of axons to their target is critical for the function of the nervous 

system, we speculate that axon targeting defects in TSC2KO mice contribute to the 

impairment of sensory function.  Preliminary experiments show that the conduction 

velocity of sensory nerves is normal in TSC2KO mice, supporting the idea that the 

functional impairments are linked to innervation and morphological defects (with Bob 

Baloh). 

 In the central nervous system, Ephrins mediate axon guidance in retinal ganglion 

neurons by modulation of TSC2 and mTOR activity in growth cones [18].  Our finding 

that TSC2 deletion interferes with axonal targeting in DRGs suggest that the mTOR 

pathway also plays a role in the guidance of peripheral sensory axons.  While we cannot 

exclude the possibility that these abnormalities are due to mTOR-independent effectors 

of TSC2, it is likely that constitutive activation of mTOR contributes to axon innervation 

defects given the importance of protein synthesis and degradation in growth cone 

dynamics[21,22,23]. Axonal guidance molecules involved in targeting of sensory axons, 

including Netrin-1, NGF, and Semaphorin3A mediate growth cone collapse or extension 

through local protein translation [24,25].  It is not yet known whether local protein 

translation by these axon guidance cues requires mTOR activity.  It will be interesting to 

examine whether axon guidance molecules in the central and peripheral nervous systems 
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converge upon mTOR activity to regulate the directionality of growth cones during 

development. 

Unlike c-Jun activation which persists in the DRG cell body until regeneration is 

complete, the increase in mTOR activity following peripheral nerve injury is a transient 

response, returning to basal levels four days following injury.  Because prolonged mTOR 

activity results in axon targeting defects, it is tempting to speculate that following the 

boost of axonal growth by robust activation of mTOR upon injury, the level of mTOR 

activity is reduced to allow the axon to be sensitive to extracellular guidance cues for 

proper targeting.  If fine modulation of mTOR activity is required for the response of 

axons to local guidance cues during development, it is likely that this pathway also plays 

an instructive role in target re-innervation following axonal damage.  Thus, while 

targeting the mTOR pathway to increase the speed and extent of recovery of both PNS 

and CNS neurons may represent an attractive clinical strategy, it will be important to 

control the duration and level of mTOR activity to allow for proper re-innervation of 

targets and functional recovery. 
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MATERIALS AND METHODS 

 
Antibodies and reagents- The following antibodies were used: anti-SMI-31, anti-SMI-32 

(Sternberger Monoclonals Incorporated), anti-Caspase-3 (Millipore), and anti-GAP-43 

(Abcam).  For TUNEL staining, in situ cell death detection kit (Roche) was used 

according to product protocol. 

DRG dissociation for size analysis- L4, L5, and L6 DRGs were dissected and dissociated 

in 0.7 mg/ml Liberase Blendzyme 3 (Roche), 600 µg/ml DNAse, 10 mg/ml BSA, in 

DMEM AIR (DMEM/F12 with 10mM Glucose, and 1% Pen/Strep) at 37ºC for 15 

minutes, followed by trypsinization with 0.25% trypsin in DMEM AIR at 37°C for 15 

minutes.  DRGs were then triturated and placed in culture media (DMEM, 10% FBS, 1% 

pen/strep) on poly-D-lysine-coated plates. DIC images were acquired with Nikon Eclipse 

TE2000-E inverted microscope and analyzed using Nikon NIS Elements Advanced 

Research 2.30 Imaging Software. 

Immunohistochemistry- Sciatic nerves and L4 DRGs were dissected and fixed for 1-2 

hours in 4% PFA in PBS, then cryoprotected overnight in 20% sucrose.  Posterior 

hindpaw skin sections were fixed in 15% picric acid, 2% paraformaldehyde in PBS for 3-

4 hours, and cryoprotected in 30% sucrose for 48 hours.   Nerves and skin were 

embedded in OCT (Tissue-Tek) and frozen in dry-ice-cooled methanol.  Serial 10-µm 

(nerve and DRG) or 30-µm (skin) cryostat sections were cut and mounted onto coated 

slides (Fisher Scientific). Sections were permeabilized and blocked with 10% goat serum, 

0.1% Triton X-100 in PBS for 30 min.  Primary staining with the indicated antibodies 

was performed in the blocking solution overnight at 4ºC.  Staining with Alexa-conjugated 

secondary antibody was performed for 1 to 3 hours.  Sciatic nerve images were acquired 
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with Nikon Eclipse TE2000-E inverted epifluorescence microscope and analyzed using 

Metamorph 6.2.  Fluorescent images from hindpaw skin sections were acquired using 

Olympus 500 confocal microscope.  Confocal images were acquired at 1 µm intervals 

and all images from one 30 µm stack were compressed into one image using Metamorph 

6.2 

Behavioral assays 

The Hargreaves, von Frey, acetone withdrawal, open-field, and rotarod tests were 

performed by Judy Golden as described previously [26]. 
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Figure 1. TSC2KO mice have increased mortality and smaller body size 
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Figure 1. TSC2KO mice have increased mortality and smaller body size 

(A) Percentage of each genotype born from TSC2flox/flox; Advillin+/+ and TSC2flox/+; 

AdvillinCre/+ breeding pair.  Fewer TSC2KO pups were born than Mendelian ratio. 

(B) TSC2KO mice are smaller in size.  Sample TSC2KO and control sibling pair.  (C) 

Quantification of average weight of each genotype shows TSC2KO mice weigh less than 

controls. n=4 mice per age and genotype. *p<0.05 (Student’s t-test).   
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Figure 2.  TSC2 deletion leads to abnormal target innervation and axon morphology.   
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Figure 2.  TSC2 deletion leads to abnormal target innervation and axon morphology.   

(A) Posterior hindpaw glaborous skin sections were stained with α-GAP-43 to visualize 

axonal endings innervating skin.  Red dashed line indicate epidermal layer.  Low 

magnification (15X) confocal images reveal fewer axons penetrating epidermal layer in 

TSC2KO mice compared to control.  High magnification (60X) confocal images reveal 

enrichment of endings with excessive branching (arrow) and sharp turning (arrowhead) 

compared to controls. The presence of cre recombinase does not contribute to the 

innvervation defects, as wild-type; AdvillinCre/+ mice did not show significant difference 

from wild-type; Advillin+/+ littermate or control. (B) Quantification of innervation density 

reveals loss of skin innervation in TSC2KO mice.  Data are mean +/-SEM.  n=3 mice per 

genotype, 17-56 sections were analyzed per mouse (Student’s t-test).  Quantification of 

percentage (C) and number (D) of nerve endings with excessive branching (axons with 

more than 2 branches at tip, or those that turned 90 degrees were counted). (E) 

Measurement radii of L4, L5 and L6 DRG cell bodies dissociated from TSC2KO or 

control mice reveal larger cell size in TSC2KO mice. n=3 animals per genotype, 70-375 

cells were analyzed per animal. *p<0.05, n.d.=no statistically significant difference 

(Student’s t-test). 
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Figure 3. TSC2 deletion does not lead to axon degeneration or apoptosis. 

 

 

 

 

 

 

 

 

 

 

 



 86

Figure 3. TSC2 deletion does not lead to axon degeneration or apoptosis. (A) Cross  

section of the peripheral branch of L5 DRG stained with the axonal marker SMI-31  

revealed no significant difference in axon number between TSC2 KO and controls.  (B)  

Quantification of (A). n=3 mice per genotype, 2 sections analyzed per mouse (Student’s  

t-test).  (C) Cross-section of L4 DRGs of 2 month-old adult TSC2KO and control mice  

were stained for neuronal cell body marker SMI-32 and the apoptotic markers TUNEL or  

Caspase-3.  Neither control nor TSC2KO DRGs were positive for TUNEL or Caspase-3.   

(A) and (C) Bar=100μm. 
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Figure 4. TSC2KO mice have behavioral abnormalities indicative of impaired  

sensory function. 
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Figure 4. TSC2KO mice have behavioral abnormalities indicative of impaired  

sensory function. (A) TSC2KO and control mice were subjected to the Hargraves, von  

Frey, and acetone tests for sensitivity to heat, mechanical stimuli, and cold respectively.   

Sensitivity to heat and mechanical stimuli are significantly impaired in TSC2KO animals .   

Data are mean +/-SEM.  **p<0.01 (Student’s t-test).  n=6 mice per genotype.  (B)  

TSC2KO and control mice were subjected to the open field test for one hour, and  

monitored for time spent moving and distance traveled to assess motor activity.   

TSC2KO animals spent significantly less time moving and traveled fewer distances than  

controls.  Data are mean +/-SEM.  *p<0.05 (Student’s t-test). n=5 mice per genotype.   

(C) TSC2KO animals have postural abnormalities.  (D)  TSC2KO animals show poor  

performance on the rotarod test compared to controls.  Data are mean +/-SEM.  *p<0.05  

(Student’s t-test). n=6 mice per genotype. 
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 Chapter 4:  Sunday Driver interacts with two distinct types of axonal vesicles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work appears as part of the manuscript: 
 
Abe N, Almenar-Queralt A, Lillo C, Shen Z, Lozach J, et al. (2009) Sunday driver  
interacts with two distinct classes of axonal organelles. J Biol Chem 284: 34628-34639. 
 
 
Author contributions: V.C. performed the experiments in Figures 1, 2B, 3A and 3B.  
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ABSTRACT 
 
 Intracellular trafficking pathways play a critical role in the communication 

between the neuronal cell body and distant synaptic terminals for survival, function, 

injury signaling, and repair.  The motor-binding protein Sunday Driver (syd) has been 

previously shown to link vesicular axonal transport to nerve injury signaling.  Electron 

microscopy and mass-spectrometry analyses of immunopurified syd vesicles have 

revealed two classes of syd-associated vesicles of distinct morphology and protein 

composition.  Gene Ontology analyses of each vesicle protein content have revealed their 

unique identity and indicated that one class of syd vesicles belongs to the endocytic 

pathway, whereas another may belong to an anterogradely transported vesicle pool. To 

validate these findings, we examined the transport and localization of components of syd 

vesicles within axons of mouse sciatic nerve. Together, our results lead us to propose that 

endocytic syd vesicles function in part to carry injury signals back to the cell body, 

whereas anterograde syd vesicles may play a role in axonal outgrowth and guidance. 
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INTRODUCTION 
 

The cell body of an injured neuron must receive accurate and timely information 

about the site and extent of axonal damage in order to initiate molecular changes, 

including the enhancement of intrinsic growth capacity and the initiation of the 

regeneration program. The extreme length of axons poses a challenge for such signals to 

arrive at the cell body.  One mechanism contributing to this process in peripheral neurons 

is microtubule-based retrograde transport of locally-activated injury signals.  Sciatic 

nerve injury experiments in rats and mice have identified several signaling molecules that 

are retrogradely transported to the cell body upon injury.  For example, mitogen-activated 

protein kinases (MAPKs) Erk1 and Erk2 are phosphorylated in sciatic nerve axoplasm 

following axonal injury and are targeted for retrograde transport upon binding to 

vimentin and the beta-importin/dynein complex [1] [2].  c-Jun N-terminal kinase (JNK) is 

also activated in axons upon injury and is retrogradely transported to the cell body [3] [4].  

Retrograde transport of JNK leads to JNK and c-Jun activation in the cell body [4]. 

 Activation of JNK and c-Jun in the cell body is essential for the initiation of 

transcriptional changes required for axonal regeneration.  JNK and c-Jun activation 

persists following injury until successful target re-innervation has been achieved [5] [6].  

Deletion of JNK2, JNK3, or c-Jun in the nervous system, while causing little effect on 

axonal growth during development, leads to a marked defect in regeneration upon injury 

[7] [8].  Furthermore, c-Jun activation in DRGs is drastically greater following peripheral 

branch axotomy compared to that after central branch axotomy, suggesting that 

successful activation of c-Jun contributes to regenerative capacity [9].  The mechanism 
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by which activated JNK in peripheral axons is retrogradely transported to the cell body to 

initiate c-Jun activation remains unclear. 

 One candidate regulator of JNK transport following nerve injury is Sunday Driver 

(syd).  Syd was originally identified in a screen for axonal transport mutants in 

Drosophila [10].  Also known as mammalian JNK interacting protein 3 (JIP3) or JSAP1, 

syd is part of a family of JNK interacting proteins including JIP1, JIP2, and JIP4 [11] 

[12] [13].  In the sciatic nerve, syd and JNK3 form a complex on axonal vesicles and 

interact with kinesin-1 for anterograde transport and the dynactin complex for retrograde 

transport [3].  Following sciatic nerve injury, JNK is locally activated and activated JNK 

and syd are transported mainly retrogradely.  Injury induces an enhanced interaction 

between syd and dynactin, promoting the retrograde transport of activated JNK and syd 

[3].  These observations suggest that syd provides a link between axonal damage signals 

and axonal transport.  In addition, syd-dependent vesiclar transport may be critical for 

axon growth and regeneration as syd deletion in the central nervous system results in 

axonal outgrowth defects [14] [15]. 

To better understand syd function in axonal transport and injury signaling, Valeria 

Cavalli and Larry Goldstein developed a purification strategy to isolate syd vesicles from 

mouse brain cortices [16].  Electron microscopy analysis of immunoisolated syd vesicles 

revealed the presence of two classes of organelles of distinct morphology: large, 

endosomal-like vesicles, and smaller-sized vesicles [16] (Figure 1).  Immuno-EM 

analysis from ligated sciatic nerve revealed that the smaller size syd vesicles move 

mainly anterogradely, while the larger size syd vesicles move retrogradely [3].  
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In addition, mass spectrometry revealed that the two types of syd vesicles have 

distinct molecular compositions.  Proteins found in the smaller syd vesicles include 

synaptic vesicle proteins (vacuolar ATPase, Rab5, AP50, synaptoporin), trafficking-

related proteins (synaptotagmin VII, SNAP29), signaling proteins (sprouty, Minkk1 

kinase, casein kinase), cell adhesion proteins (neogenin, neurocan), cytoskeletal proteins, 

and ribosomal proteins [16].  Among the proteins identified in the larger syd vesicles 

were molecular motors (dynein, kinesin heavy chain, Myosin Va), trafficking-related 

proteins (Rab15, Rab18, RabGDI), endosomal proteins (VAMP3, Syntaxin13, Rab5, 

Rab7, Rab11, dynamin, AP180, neurobeachin, AP2, amphiphysin, clathrin), ubiquitin-

related proteins (ubiquitin carboxyl-terminal hydrolase 5, Phr1, Cullin-associated 

NEDD8-dissociated protein 1), signaling proteins (adenylate cyclase, phosphoinositide 

kinases), transporters, channels, and cytoskeletal proteins. [16].   

Electron microscopy images combined with mass-spectrometry analyses of these 

two distinct classes of syd vesicles indicate that the large vesicles belong to the endocytic 

pathway, while the smaller vesicles belong to an anterogradely transported vesicle pool.  

To validate these findings, we examined the transport and localization of components of 

these distinct syd vesicle classes within axons of mouse sciatic nerve.  Together, our 

results lead us to propose that endocytic syd vesicles function in part to carry signals back 

to the cell body, whereas anterograde syd vesicles may play a role in axonal outgrowth 

and guidance. 
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RESULTS 

In vivo validation of components of syd vesicles -Previous biochemical analyses 

revealed the isolation of two populations of syd vesicles with distinct protein composition 

and morphology, and immuno-EM analyses showed that in mouse sciatic nerve, 

anterogradely moving syd-associated vesicles are mostly small vesicles/tubules and 

retrogradely transported syd vesicles are larger, often multivesicular organelles [3]. Small 

syd vesicles may belong to the anterograde pathway, whereas large syd vesicles may 

belong mainly to the retrograde pathway. To test this possibility, we used sciatic nerve 

ligation experiments to assess in vivo the transport properties of several markers 

identified in each type of syd vesicle.  Mouse sciatic nerves were subjected to ligations, 

and nerve portions proximal or distal to the ligation site were analyzed by 

immunofluorescence microscopy and Western blotting. Proteins moving in the fast 

anterograde axonal transport pathway generally accumulate on the proximal side of a 

ligation, while proteins moving in the retrograde pathways generally accumulate on the 

distal side. Slow moving or non-axonal proteins remain unchanged. 

 Immunofluorescence of longitudinal sections of a ligated nerve revealed 

accumulation of syd on both sides of the ligature (Figure 2A), as reported previously [3]. 

Proteins identified in the small syd vesicle population, SNAP29 and Synaptotagmin VII, 

accumulated mostly proximal to the ligation site, indicative of anterograde axonal 

transport, as predicted (Figure 2A, 2B). In contrast, proteins identified on the large syd 

vesicle population, such as VAMP3/cellubrevin and syntaxin 13, accumulated on both 

proximal and distal sides, indicative of bidirectional transport (Figure 2B, 2D). Our 

results indicate that morphologically and biochemically distinct syd vesicles display 
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distinct axonal transport properties. Small syd vesicles primarily travel in the anterograde 

direction, and syd-endosomes may travel bidirectionally, consistent with the presence of 

both kinesin and dynein-dynactin on these vesicles, and with previous observations that 

early/recycling endosomes travel bidirectionally along axons of culture neurons [17,18].  

Together, these findings suggest that the two distinct pools of syd vesicles may play 

different roles in axonal growth, maintenance, or repair. 

 In vivo co-localization of syd with endosomes—Previous immuno-EM analyses 

in sciatic nerve indicated that syd localizes to multivesicular organelles on the distal side 

of a ligation [3], but these experiments did not demonstrate whether these organelles 

belong to the endocytic pathway. To address whether syd plays a role in endosomal 

trafficking along axons in vivo, we labeled the endocytic pathway in peripheral nerves 

and examined syd co-localization with labeled endosomes by fluorescence microscopy. 

We labeled the endocytic pathway in sensory neurons by subcutaneous injection of the 

endocytic tracer Texas Red dextran in the mouse rear leg footpad. Nerves are able to take 

up tracers at the sensory terminals and transport them retrogradely along axonal tracts to 

the cell body in the dorsal root ganglia. We performed a sciatic nerve ligation 

concomitant with dye injection to increase the number of labeled structures accumulating 

distal to the ligation site. The sciatic nerve was analyzed 24 hours after injection. Distal 

to the ligation site, axons labeled with Texas Red dextran contained syd (Figure 3A). In 

contrast, proximal to the ligation site, no dextran was detected, but syd accumulated, as 

expected (Figure 2A, 3A) [3].  

When examined at higher magnification (Figure 3B) or by confocal microscopy 

(Figure 3C) followed by deconvolution, Texas Red dextran-positive structures partially 



 98

co-localized with syd within single axons.  Structures positive for syd and Texas Red 

dextran also partially co-localized with the endosomal marker VAMP3 [19] (Figure 3D), 

which we found associated with large syd vesicles. These results indicate that syd resides 

at least in part on axonal endosomes. However, the exact nature of the labeled endosomes 

awaits further investigation at the EM level. Together, our findings further our previous 

observations and show that syd associates with two distinct axonal vesicle populations, 

thereby shedding light on the function of syd in both development and regeneration. 
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DISCUSSION 

Our data suggest that syd vesicles represent a population of bidirectional 

early/recycling endosomes that utilize kinesin-1 and dynein-dynactin for transport along 

the axon.  Movement of endosomes in axons was thought to be exclusively retrograde 

[19], but other studies have shown bidirectional movement of recycling endosomes 

[20]and late endosomes/lysosomes [21]. More recently, live imaging experiments in 

cultured neurons revealed that the anterograde transport of endosomes mediates targeting 

of the adhesion molecule L1/Cam to the axon [18].  L1/Cam is present in large syd 

vesicles [16], suggesting that a syd-dependent recruitment of kinesin to endosomes may 

mediate L1/Cam transport to the axon. syd may represent a regulatory switch for motor 

proteins of opposing direction that controls trafficking of endocytic vesicles along the 

axon because the binding sites for kinesin and dynactin are mutually exclusive [22].  

At the ligation site, syd-endosomes may contribute to local membrane trafficking 

events including exo- and endocytosis. Indeed, several studies have shown that exo- and 

endocytosis are required for plasma membrane repair in epithelial cells [23] [24]. 

Although the endocytic pathway in epithelial cells is well characterized, the molecular 

machinery mediating endosomal trafficking in neurons is still poorly understood. 

Nonetheless, the emerging picture of endosomal trafficking in neurons suggests that 

different endosomal pools may be involved in the regulation of distinct signaling 

pathways and polarized distribution of guidance and adhesion molecules [25]. 

The retrograde transport of endosome/multivesicular bodies (MVBs) is believed 

to represent the organelle that carries neurotrophic factors in axons. Although the brain-

derived neurotrophic factor TrkB receptor was identified on syd vesicles [16], our data do 
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not allow us to establish whether syd mediates the retrograde transport of the classical 

neurotrophin-signaling endosome. Furthermore, the role of MVBs in retrograde signaling 

endosomes in axons has been recently challenged [26], and MVBs may instead represent 

a population of organelles that arises upon injury in axons. Indeed, the retrograde 

transport of MVBs may play a role in injury signaling. Storage of signaling molecules 

within intralumenal vesicles of multivesicular bodies may prevent their deactivation 

during the long journey from the axon back to the cell body [27].  Intralumenal vesicles 

are not always destined for lysosomal degradation; they can also fuse back with the 

limiting membrane of late endosomes [28]. This process is hijacked by several toxins and 

viruses to reach the cell body and could similarly be exploited by signaling proteins [28].  

For example, storage of phosphorylated proteins within intralumenal vesicles may allow 

effective long range signaling in neurons and may play an important role in nerve 

regeneration.  

The precise nature and function of the small syd vesicles await further studies. 

However, the presence of adhesion and cytoskeletal regulatory proteins as well as 

ribosomal proteins [16], together with the observation that small syd vesicles mainly 

travel in the anterograde pathway [3] lead us to propose that small syd vesicles may play 

a role in neurite outgrowth and guidance. This hypothesis is supported by the axonal 

growth defects observed in syd knock-out animals [14,15].  Another link between syd 

and axonal growth and guidance comes from C. elegans studies. UNC-14, a protein 

required for axonal elongation and guidance, interacts with syd/UNC-16 [29]. If small 

syd vesicles play a role in axonal outgrowth during development, they may serve a 

similar role during nerve repair and regeneration. Synaptotagmin VII, a member of the 
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synaptotagmin family of Ca2+-binding proteins, was identified in small syd vesicles. 

Synaptotagmin VII mediates exocytosis of lysosomes, a process important for the repair 

of plasma membrane wounds [24] and for neurite outgrowth [30]. 

In summary, we have uncovered the molecular anatomy of two distinct classes of 

syd-associated vesicles. Our studies point to a role for endocytic syd vesicles in the 

transport of signals along the axon and in the recycling of synaptic vesicles. In addition, 

syd may play a role in axonal growth and guidance through its interaction with another 

class of small anterograde vesicles. The identification of syd vesicle protein composition 

should contribute to define the mechanisms regulating axonal growth, guidance, and 

repair.  
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MATERIALS AND METHODS 

Antibodies and Reagents- syd antibodies were previously described [10].  We used the 

following antibodies: anti-tubulin DM1A (Sigma), anti-amyloid precursor protein 

(Chemicon), anti-syntaxin 13, anti-SNAP29, anti-synaptotagmin VII, and anti-

cellubrevin/VAMP3 (Synaptic Systems), Alexa Fluor-labeled secondary anti-mouse and 

anti-rabbit antibodies (Invitrogen).  Texas Red dextran 3000 MW was purchased from 

Invitrogen.  

Sciatic Nerve Ligation- Sciatic nerve ligation experiments were performed as described 

previously [3]. Briefly, the sciatic nerves of mice were ligated unilaterally at the midpoint, 

and mice were sacrificed at the indicated time after surgery. To avoid contamination of 

proximal and distal parts, two ligations were placed 1 mm apart.  Sciatic nerves were 

dissected 6 hours following ligation.  For biochemistry, equal lengths of the proximal and 

distal parts were homogenized in sample buffer, and equal protein amounts were loaded 

and analyzed by SDS-PAGE and Western blotting. The tubulin Western blot serves as 

loading control. For in vivo labeling of the endocytic pathway, two ligations were placed 

1 mm apart, the nerve was sectioned in between the two knots, and 5 μl of 20 mg/ml 

Texas Red dextran 3000 MW was injected in the rear leg footpad. All surgeries were 

performed using adult female C57/bl6 mice and anesthetized with isofluorane. The sciatic 

nerve was dissected 24 hours following ligation and dextran injection.  All procedures 

were approved by the Washington University in St. Louis, School of Medicine, Animal 

Studies Committee.  
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Immunofluorescence-  Sciatic nerves were dissected and postfixed 2 h in 4% 

paraformaldehyde in PBS. Nerves were incubated overnight in 20% sucrose, embedded 

in Tissue-Tek OCT medium, and frozen in dry ice-cooled methanol. Serial 10-μm 

cryostat sections were cut and mounted onto coated slides (Fisher Scientific). Sections 

were permeabilized and blocked with 10% goat serum, 0.1% Triton X-100 in PBS, or 5% 

fish skin gelatin, 0.3% Triton X-100 in PBS for 30 min. Sections were incubated with the 

indicated primary antibodies overnight at 4 °C and with Alexa Fluor-conjugated 

secondary antibodies for 3 h. For low resolution images, sections were observed with a 

×20 objective on a Nikon TE2000. For high resolution images, sections were observed 

with a ×100 objective on an Olympus FV500 confocal microscope or a Nikon Optigrid 

and deconvolved using Metamorph software. 
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Figure 1. syd interacts with two types of vesicles of distinct size and morphology.   
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Figure 1. syd interacts with two types of vesicles of distinct size and morphology.  

Electron microscopy analyses of immunoisolated syd vesicles reveal larger (left) and 

smaller (right) vesicle types.  Both single membrane vesicles (arrowheads) and tubules 

(arrows) were found.   
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Figure 2.  Axonal transport of syd vesicle components. 
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Figure 2.  Axonal transport of syd vesicle components. Sciatic nerves were ligated 

unilaterally at the midpoint and processed for immunofluorescence microscopy or SDS-

PAGE and Western blot analysis 6 hours later. (A) syd accumulates on both the proximal 

and the distal side of the ligation site, as expected. Ab, antibody. (B) Ligated and 

contralateral unligated sciatic nerves were dissected and extracts were analyzed by 

Western blot with the indicated antibodies. SNAP29 and synaptotagmin VII (SytVII), 

two proteins identified on the small syd vesicles, accumulated mostly on the proximal 

side, indicative of anterograde transport. Low levels are also detected to some extent on 

the distal sides, similarly to amyloid precursor protein (APP), a well established 

anterograde marker. The synaptotagmin antibody recognizes several isoforms, as 

indicated. Syntaxin 13, identified on the large syd vesicles, was detected on both the 

proximal and the distal sides, indicating that these proteins are transported in both 

anterograde and retrograde directions. Tubulin is used as a loading control. Ul, unligated; 

P, proximal; D, distal. C and D, SNAP29 and synaptotagmin VII are found mostly on the 

proximal side (C), and syntaxin 13 and VAMP3 are found on both sides (D), similarly to 

syd. In (A), (C), and (D), bar = 100 μm. 
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Figure 3. syd localization with in vivo labeled endosomes. 
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Figure 3. syd localization with in vivo labeled endosomes. The endocytic pathway 

within sensory neurons was labeled by subcutaneous injection of the tracer Texas Red 

dextran in the mouse rear leg footpad. A sciatic nerve ligation concomitant with dye 

injection was performed to increase the number of labeled structures accumulating distal 

to the ligation site. The sciatic nerve was dissected 24 h after injection, fixed, and 

embedded in cryomold. Longitudinal sections were analyzed by immunofluorescence. 

(A) Low magnification images showed syd accumulation in Texas Red dextran (TR 

dextran)-positive axons (arrowheads). (B) and (C), Nikon Optigrid structured 

illumination microscopy (B) or confocal microscopy (C) followed by deconvolution 

showed that Texas Red dextran puncta partially co-localize with syd. Three consecutive 

sections in the z plane are shown in (B) (D) Triple immunostaining showed that syd-

dextran-positive structures also contained the endosomal protein VAMP3/cellubrevin, 

further supporting the notion that syd resides at least in part on axonal endosomes. (A) 

bar = 100 μm; (B), (C), (D)= 5 μm. 
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Chapter 5: Sciatic nerve injury induces mTOR activation in Schwann cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Contributions: Semithin sectioning and staining was performed by Howard Wynder at the 
Developmental Biology Histology Core 
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ABSTRACT 
 

The response of Schwann cells to peripheral nerve injury play an integral role in 

nerve repair by creating a permissive environment for regeneration.  While the 

morphological and functional responses that occur in Schwann cells following peripheral 

nerve injury have been characterized, the signaling pathways that mediate these events 

are not well known.  We find that components of the mTOR pathway, Akt and S6 

ribosomal protein are rapidly phosphorylated in Schwann cells within minutes to hours 

following sciatic nerve injury.  Injury-induced S6 phosphorylation is abolished by 

rapamycin, indicating that mTOR is active following damage.  Akt phosphorylation is 

concentrated at the paranode and spreads asymmetrically down the length of the node.  In 

contrast, S6 phosphorylation occurs in the perinuclear space.  Mechanical trauma to 

purified Schwann cells in vitro is not sufficient to activate Akt or S6 phosphorylation, 

suggesting that reciprocal signaling between axons and Schwann cells is important for the 

activation of this pathway.   
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INTRODUCTION 
 
 Successful regeneration depends upon not only intrinsic injury signals, but also on 

extrinsic factors in the environment.  In the peripheral nervous system, Schwann cells act 

not only as insulators for fast, salutatory conduction of action potentials, but also play an 

essential role in the maintenance of axon health and integrity.  In healthy nerves, the 

relationship between axons and their myelinating Schwann cells is maintained by 

contact-mediated reciprocal signaling [1].  Following injury, Schwann cells undergo a 

series of molecular and morphological changes upon disruption of contact with the axons 

that they myelinate [2].  These Schwann-cell mediated events play a critical role in the 

response of axons to injury.   

 One remarkable feature of Schwann cells is their ability to reverse differentiation.   

Within two days following nerve injury, Schwann cells undergo de-differentiation, or 

reversion from a differentiated myelinated state to an undifferentiated, immature state [3].  

Dedifferentiation occurs through downregulation of myelination genes, including P0, 

myelin basic protein (MBP), myelin associated glycoprotein (MAG), and periaxin, 

[4,5,6,7].  Concurrently, genes that are active in immature Schwann cells prior to 

myelination, such as L1, neural cell adhesion molecule (NCAM), p75 low affinity 

neurotrophin receptor (p75NTR) and glial fibrillary acidic protein (GFAP), become 

upregulated [8].  Following nerve damage, demyelination of injured axons creates a 

permissive environment for axonal regeneration [9,10].  Consistently, Schwann cell-

specific deletion of c-Jun, a gene essential to drive dedifferentiation, results in a delay in 

myelin sheath degradation after nerve injury, as well as a significant loss of regenerative 

ability and functional recovery[11,12]. 
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 Following demyelination, degradation of myelin and axonal debris occurs through 

phagocytosis initially by Schwann cells, then later by macrophages that are recruited to 

the injury site [13,14,15,16].    Phagocytosis of axon and myelin debris is critical for 

degeneration of the nerve distal to the injury site, as well as for the regeneration of 

proximal axons.  Myelin-associated proteins such as MAGs act as a potent negative 

regulators of axonal outgrowth. [17].  Thus, the removal of such inhibitory molecules by 

phagocytosis is essential to create a permissive environment for regeneration [18].  

Indeed, the inability of the central nervous system to efficiently remove myelin debris 

following injury is linked to loss of regenerative ability [19].   

 Loss of axonal contact after injury also triggers Schwann cells to proliferate.  As 

Schwann cells divide, they form linear arrays called bands of Bungner along the empty 

basement membrane of the endoneurial tube [20,21].  These bands of Schwann cells 

provide a platform for the growth of new axons into the distal end of the injury.  Injury-

induced proliferation of Schwann cells is mediated by a multitude of mitogenic factors 

released by macrophages, axons, and Schwann cells themselves [22]. 

 Schwann cells are also a major source of growth factors that support the survival 

and growth of axons following injury.  These include the neurotrophic factors NGF, 

BDNF, GDNF, as well as cytokines tumor necrosis factor (TNFα) and leukemia 

inhibitory factor (LIF) [23,24,25,26,27].  Such growth factors influence regeneration by 

not only enhancing survival and outgrowth of neurons, but also by regulating Schwann 

cell differentiation and remyelination of newly formed axons [28].  Furthermore, 

Schwann cells synthesize and provide surface cell adhesion molecules (CAMs), such as 

N-CAM, Ng-CAM/L1, N-cadherin, as well as basement membrane proteins such as 
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laminin, collagen, and fibronectin [22].  These molecules mediate adhesion between 

axons, axons and Schwann cells, and axons and the basal lamina, and thus provide 

substrates for the regrowth of new axons [22]. 

 While the molecular and morphological changes that occur in Schwann cells 

following peripheral nerve injury have been documented, the signaling pathways that 

initiate these events are not well known.  Furthermore, most studies have focused on 

events that occur days to weeks following damage, rather than early responses.  Here, we 

sought to determine molecular pathways that become activated in Schwann cells as an 

immediate response to nerve injury.  We find that Akt and S6 ribosomal protein, 

components of the mTOR pathway, are rapidly phosphorylated in Schwann cells within 

minutes to hours following sciatic nerve injury.  Rapamycin potently blocks injury-

induced S6 phosphorylation in Schwann cells, indicative of active mTOR following 

damage.  We find that Akt phosphorylation is most robust at the paranode and spreads 

asymmetrically down the length of the node, while S6 phosphorylation occurs in the 

perinuclear region.  Mechanical injury to Schwann cells in vitro is not sufficient to 

activate Akt or S6 phosphorylation, suggesting that reciprocal signaling between axons 

and Schwann cells is important for the activation of this pathway.  Future work may shed 

light on the functional relevance of the mTOR pathway in Schwann cells in their 

response to nerve damage. 
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RESULTS 

Akt and S6 ribosomal protein, components of the mTOR pathway, are rapidly 

phosphorylated in Schwann cells following injury-   To identify signaling events that 

occur locally in the sciatic nerve following injury, we dissected the sciatic nerve 5mm 

proximal and distal to the ligation site at various time points after injury.  Western 

blotting of unligated and ligated sciatic nerve extract revealed phosphorylation of Akt at 

Serine 473 as early as 15 minutes after ligation (Figure 1A, 1B).  Akt phosphorylation 

levels peaked at 1 hour following injury, and returned to basal levels 9 hours later (Figure 

1A, 1B).  We also observed phosphorylation of S6 ribosomal protein at Serine 240/244, 

whose upstream kinase S6 kinase is activated by mTOR (Figure 1A, 1C).  S6 

phosphorylation was also observed within 15 minutes after ligation, but unlike Akt 

phosphorylation, steadily increased and persisted for at least 10 hours following injury 

(Figure 1A, 1C).  Immunostaining of longitudinal sciatic nerve sections using phospho-

Akt and phospho-S6 antibodies revealed that phosphorylation of these proteins occurs 

both proximal and distal to the ligation site (Figure 1D).   

 Akt and S6 ribosomal proteins are upstream and downstream components of the 

mTOR pathway, respectively.  Injury-induced phosphorylation of S6 was completely 

abolished by intraperitoneal injection of the mTOR inhibitor rapamycin, indicating that 

mTOR activity is responsible for this phosphorylation event (Figure 1E).  Intraperitoneal 

injection of the PI-3-kinase inhibitor LY294002 failed to inhibit the injury-induced 

phosphorylation of Akt.  Thus, we have yet to determine whether Akt activation in the 

sciatic nerve following injury contributes to mTOR activity or to mTOR-independent 

pathways. 
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 To determine whether injury-induced phosphorylation of Akt and S6 occur in 

axons or in surrounding Schwann cells, we performed immunohistochemical analyses on 

ligated sciatic nerve cross-sections.  Phosphorylation of Akt in the unligated nerve occurs 

mostly in axons (Figure 2).  However, in ligated sciatic nerve cross-sections, the majority 

of phospho-Akt signals overlap with the s100 Schwann cell marker, indicating that the 

increase in Akt phosphorylation levels after injury occurs in Schwann cells (Figure 2).  

Similarly, we found a marked increase in S6 phosphorylation levels in Schwann cells in 

ligated sciatic nerve cross sections (Figure 2).  These results indicate that sciatic nerve 

injury induces phosphorylation of Akt and S6 in Schwann cells after injury. 

Subcellular localization of Akt and S6 phosphorylation-  To examine the 

subcellular localization of injury-induced Akt and S6 phosphorylation within Schwann 

cells, we performed immunohistochemical analyses on teased sciatic nerve preparations 

in which individual axons and their myelinating Schwann cells are laid flat on a two-

dimensional surface.  At low magnification, we observed that Akt phosphorylation is 

most concentrated near nodal regions and spreads unidirectionally down the internode 

away from the ligation site (Figure 3A, 3B).  As contact-mediated reciprocal signaling 

between axons and Schwann cells occurs at the paranode [29] [1], we suspected that Akt 

phosphorylation may be concentrated at these sites.  High-magnification confocal images 

of teased nerve sections stained for p-Akt and Caspr, a paranodal marker [29], confirmed 

that Akt phosphorylation occurs at the paranode on both sides of the node (Figure 3B).  

As observed in the low magnification images, the spread of Akt phosphorylation down 

the internode was detected only on one side of the node (Figure 3B, 3D).  In marked 

contrast, phosphorylated S6 ribosomal protein is concentrated near the perinuclear 
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regions, consistent with the role of this protein in recruitment of ribosomes to mRNA 

(Figure 3C).  

  Mechanical injury to Schwann cells in vitro is not sufficient to activate Akt and 

S6 ribosomal protein-   To better understand how the mechanism by which nerve injury 

activates Akt and S6 in Schwann cells, we tested whether mechanical injury to Schwann 

cells is sufficient to trigger phosphorylation of these proteins.  We cultured Schwann cells 

from rat postnatal sciatic nerves and crushed them with a flathead instrument to induce 

mechanical injury.   Mechanical injury to purified Schwann cells in vitro was not 

sufficient to activate Akt or S6 ribosomal protein, indicating that that reciprocal signaling 

between axons and Schwann cells may be required for the activation of this pathway 

(Figure 4).   

mTOR activity is not required for demyelination-  To explore whether activation 

of the mTOR pathway in Schwann cells have a functional role in their response to injury, 

we tested whether inhibition of mTOR activity by rapamycin could block demyelination 

of damaged axons.  We chose to examine demyelination as a potential function of the 

mTOR pathway, as this process is one of the earlier events that occur in Schwann cells 

after damage and correlates temporally with the observed mTOR activation.  We injected 

mice with either DMSO or rapamycin one hour prior to sciatic nerve ligation, dissected 

the sciatic nerve 48 hours later, and performed toluidine blue staining on semithin 

sections to visualize myelin sheaths.  The degree of disorganization and unwinding of 

myelin sheaths was not markedly different between DMSO and rapamycin-treated ligated 

nerves, suggesting that mTOR activity in Schwann cells is dispensable for demyelination 
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after injury (Figure 5).  Further studies will be required to determine the function of 

mTOR activity in Schwann cells in their response to damage. 
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DISCUSSION 

 While the morphological and functional responses of Schwann cells to peripheral 

nerve injury has been observed, little is known about the molecular pathways that 

mediate these processes.  We find that the mTOR pathway becomes activated in Schwann 

cells as early as 15 minutes following sciatic nerve injury.  We observed robust 

phosphorylation of S6 ribosomal protein which can be blocked by the mTOR inhibitor, 

rapamycin.  Akt, one of the upstream regulators of mTOR activity, is also rapidly 

phosphorylated and activated in Schwann cells after injury.  However, we have yet to 

determine whether Akt activity in Schwann cells contributes to mTOR activation, or 

whether it acts on other downstream targets independent of the mTOR pathway.  We 

attempted to test this by pharmacological inhibition of Akt activation, but intraperitoneal 

injection of PI3-kinase inhibitor LY294002 did not successfully inhibit Akt activation.  

Other PI3-kinase inhibitors such as Wortmannin, or direct application of the drug into the 

nerve may be more effective in inhibiting kinase activity in vivo.  As we observed in 

injured DRG neurons, it is possible that mTOR activation is occurring through Akt-

independent mechanisms.  Furthermore, the distinct subcellular localization of Akt and 

S6 phosphorylation suggests that activity of these proteins may have independent 

functions. 

 The concentration of p-Akt near the paranode in injured nerves indicate that 

reciprocal signaling between axons and Schwann cells may play an integral role in the 

activation of this protein.  We found that mechanical trauma to purified Schwann cells in 

vitro is not sufficient to activate Akt or S6 phosphorylation, consistent with the idea that 

the intricate morphological and biochemical interaction between axons and Schwann 



 124

cells is critical for these signaling events.  It would be interesting to test whether axotomy 

of myelinated axons in Schwann cell-DRG co-cultures could induce activation of Akt or 

S6.  Our in vivo analyses of the subcellular localization of Akt phosphorylation revealed 

that the spread of Akt phosphorylation down the internode occur unidirectionally away 

from the injury site.  In our teased nerve preparations, we could observe only a few nodes 

in a given nerve fiber.  Preparations of longer nerve fibers may allow us to track the 

pattern of Akt phosphorylation in multiple nodes along a given fiber, which could 

provide better insight on the mechanism and relevance of the asymmetric nature of this 

signal. 

To determine the functional relevance of mTOR activation in Schwann cells in 

their response to injury, we tested whether mTOR is required for demyelination of 

damaged axons.  Rapamycin failed to block disorganization and unwinding of myelin 

sheaths, indicating that mTOR may not contribute to demyelination.  As demyelination is 

tightly coupled with dedifferentiation, we speculate that dedifferentiation also does not 

require mTOR activity.  Due to caveats of pharmacological experiments, genetic ablation 

of mTOR activity in Schwann cells will be necessary to confirm that this pathway is 

dispensable for dedifferentiation and demyelination after injury. 

 One potential function of the mTOR pathway in Schwann cells after peripheral 

nerve injury is phagocytosis of myelin and axonal debris.  Akt has been implicated to 

mediate phagocytosis in macrophages through its activation of the mTOR pathway.  

Overexpression of constitutively-active Akt in macrophages in vitro increases efficiency 

of phagocytosis, while inhibition of mTOR by rapamycin blocks this effect.  [30].  

Furthermore, recent reports have implicated the mTOR pathway in the regulation of actin 
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dynamics through cdc42 and rac1 [31].  As remodeling of the actin cytoskeleton by 

cdc42 and rac1 is essential for phagocytosis [32], it is possible that mTOR activity in 

Schwann cells contributes to this process.  To test this possibility, electron microscopic 

analyses will be required to visualize phagocytosis of debris by Schwann cells in the 

injured nerve in vivo.  Phagocytosis could also be assayed in vitro using cultured 

Schwann cells; however, we would first need to identify signals or ligands that could 

activate phagocytosis in Schwann cells in vitro. 

  mTOR activation in Schwann cells may also contribute to protein synthesis.  

After sciatic nerve injury, Schwann cells synthesize and release a number of proteins that 

support survival and regeneration, including growth factors and extracellular matrix 

proteins [22,23,24,25,26,27].  Given the role of mTOR in ribosomal recruitment and 

protein translation, [33], it is possible that mTOR activity contributes to protein synthesis 

after injury.  It would be interesting to test whether inhibition of mTOR activity by 

pharmacology or genetics could inhibit this process.  As many of these proteins are 

soluble, immunodetection by ELISA may be required to assess changes in the levels of 

these Schwann-cell synthesized molecules.   

 It is possible that Akt activity after nerve injury has a distinct function 

independent of mTOR regulation.  The concentration of p-Akt in paranodes in the injured 

nerve resembles the localization of p-ErbB2 [34].  Phosphorylation of ErbB2 is necessary 

and sufficient for demyelination after peripheral nerve injury [35].  Additionally, 

myelination of axons during development is regulated by reciprocal signaling between 

axons and Schwann cells, and requires ErbB2 and Akt activity [36].  In vitro studies 

show that Akt phosphorylation occurs downstream of ErbB2 activity [37].  As the 
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timecourse of ErbB2 phosphorylation after injury correlates with the timecourse of Akt 

phosphorylation, it is possible that Akt phosphorylation acts downstream of ErbB2 

activation in Schwann cells after injury.   As rapamycin does not block demyelination, 

ErbB2 and Akt may be regulating demyelination through other downstream effectors.  

Interestingly, ErbB2 phosphorylation occurs distal, but not proximal to the ligation site, 

while Akt phosphorylation occurs on both sides.  Thus, it is possible that Akt activation 

has distinct roles on the two sides of the injury. 

 We speculate that cross-talk between axons and its myelinating Schwann cells is 

essential both for injury signaling and in the regenerative response.    Understanding the 

molecular pathways that mediate Schwann cell response to injury, the mechanism by 

which they are activated, and their functional relevance could shed light on how 

environmental cues cooperate with intracellular growth pathways for successful 

regeneration.   
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MATERIALS AND METHODS 

Antibodies and reagents- The following antibodies were used: anti-phosphorylated Akt 

(S473) (Cell Signaling), anti-Akt (Cell signaling), anti-phosphorylated S6 ribosomal 

protein (Cell Signaling, Serine 240/244), anti-S6 ribosomal protein (Cell Signaling), anti- 

α−tubulin (Sigma), anti-SMI-31(Sternberger Monoclonals Incorporated), anti-s100 

(Sigma), anti-Caspr monoclonal (gift from Elior Peles). 

Surgical procedures and drug treatment- All surgical procedures were approved by the 

Washington University in St. Louis, School of Medicine, Animal Studies Committee.  

Adult female Sprague-Dawley rats were used for experiments involving 

immunohistochemistry with anti-Caspr antibody.  Adult female C57B6 mice were used 

for all other experiments.  Sciatic nerve injury experiments were performed as described 

previously [38]. Briefly, the sciatic nerves of mice were ligated at mid-thigh at two points 

1 mm apart.  Mice were sacrificed indicated time after surgery and unligated and ligated 

nerves 5mm proximal and distal to the ligation site were dissected.  For biochemical 

analyses, nerves were homogenized in lysis buffer (20mM Tris-HCl pH 7.5, 150mM 

NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton, 2.5mM sodium pyrophosphate, 1mM β-

glycerophosphate, 1mM Na3VO4, 1μg/ml leupeptin) with phosphatase inhibitor cocktail 1 

and 2 (Invitrogen).  Equal protein amounts were loaded and analyzed by SDS-PAGE and 

western blot. 

 Rapamycin was delivered by intraperitoneal injection at 5mg/kg body weight.  

Rapamycin was dissolved in 200 μl DMEM from a 10 mg/ml stock solution in DMSO.  

An equivalent volume of DMSO was dissolved into 200 μl DMEM for vehicle control. 
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Intraperitoneal injection was performed 1 hr before sciatic nerve ligation.  Animals were 

sacrificed and nerves were dissected 48 hours following ligation. 

Schwann cell culture and immunofluorescence-.  For Schwann cell cultures, sciatic 

nerves were dissected from P3 Sprague-Dawley rats and incubated in 0.1% collagenase 

in DMEM at 37º C for 30 minutes.  Cells were collected by centrifugation at 800g for 10 

minutes, washed, and resuspended in D-media (DMEM, 10% FBS, 2mM glutamine, 1% 

Pen/Strep) onto laminin-coated tissue culture flasks.  After two passages, Schwann cells 

were purified by complement-killing of fibroblasts with anti-Thy1.1 antibody (Serotec).  

Purified Schwann cells were plated onto laminin-coated plastic dishes and maintained in 

D-media.  For immunofluorescence staining, cells were fixed in 4% PFA/PBS for 30 

minutes, then permeabilized and blocked in 10% Goat Serum, 0.1% Triton-X in PBS for 

15 minutes.  Staining was performed with the indicated primary antibodies for 30 minutes 

at room temperature, and with Alexa-conjugated secondary antibodies for 20 minutes.  

Images were acquired with Nikon Eclipse TE2000-E inverted microscope and analyzed 

using Nikon NIS Elements Advanced Research 2.30 Imaging Software. 

Immunohistochemistry- For preparation of frozen sections, ligated and unligated sciatic 

nerves were dissected and fixed for 1-2 hours in 4% PFA in PBS, cryoprotected 

overnight in 20% sucrose, and embedded in OCT (Tissue-Tek) and frozen in dry-ice-

cooled methanol.  10-µm serial cryostat sections were cut and mounted onto coated slides 

(Fisher Scientific).  For teased nerve preparations, ligated and unligated sciatic nerves 

were dissected, fixed for 10 minutes in 4% PFA in PBS, and washed with PBS.  After the 

perineurium was removed, nerves were manually teased apart in PBS with forceps, then 

transfered onto coated slides with a drop of PBS.  Nerves were dried overnight at room 
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temperature and frozen at -80ºC until used for immunostaining.  Frozen cryostat sections 

and teased nerve fibers were permeabilized and blocked with 10% goat serum, 0.1% 

Triton X-100 in PBS for 30 min. Primary staining with the indicated antibodies was 

performed in the blocking solution overnight at 4ºC.  Staining with Alexa-conjugated 

secondary antibody was performed for 1 to 3 hours.  Images were acquired with Nikon 

Eclipse TE2000-E inverted epifluorescence microscope or Olympus 500 confocal 

microscope and analyzed using Metamorph 6.2.  

Semithin sections and toluidine blue staining-  Fixation of nerve, embedment, 

sectioning, and toluidine blue staining were performed by Howard Wynder at the 

Developmental Biology Histology Core.  Nerves were fixed in 4% PFA/2.5% 

gluteraldehyde/0.1M cacodylate buffer overnight at 4ºC, followed by wash with 0.1M 

cacodylate buffer.  Secondary fixation in 1% Osmium Tetroxide was performed for 1 

hour at room temperature, followed by wash with 0.1M cacodylate wash.  Nerves were 

then dehydrated in 50% ethanol for 15 minutes, 70% ethanol for 30 miutes, 95% ethanol 

for 45 minutes, then 100% ethanol for 1 hour.  Following dehydration, nerves were 

incubated in propylene oxide for 30 minutes, then in a 1:1 mixture of propylene oxide 

and Epon overnight at room temperature.  The next day, nerves were incubated in freshly 

prepared Epon for several hours, then placed in another batch of fresh Epon for 

embedment at 65ºC overnight.  Nerves were sliced into .5 to 1μm semithin sections using 

Leica Ultramicrotome and stained with toluidine blue. 
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Figure 1. Akt and S6 ribosomal protein are phosphorylated in sciatic nerve 

following injury.   
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Figure 1. Akt and S6 ribosomal protein are phosphorylated in sciatic nerve 

following injury.  (A) Unligated and ligated sciatic nerves 5mm distal and proximal to 

the ligation site were dissected at the indicated time points following ligation, and Akt 

and S6 phosphorylation levels were assessed by western blot.  One mouse was used per 

time point.  Akt and S6 phosphorylation were detected as early as 15 minutes following 

ligation.  Quantification of Akt phosphorylation (B) and S6 phosphorylation (C) were 

based on 3 independent experiments.  * p<0.05, data are mean +/- SEM (Student’s t-test).  

(D) Immunohistochemistry on longitudinal sections of unligated nerve and ligated nerve 

6 hours following ligation reveal Akt and S6 phosphorylation occur on both proximal and 

distal sides of the ligation.  Bar=50μm.  (E) Mice were injected intraperitoneally with 

rapamycin or DMSO vehicle control one hour prior to sciatic nerve ligation, and sciatic 

nerves were dissected 6 hours following ligation.  Rapamycin treatment abolishes S6 

phosphorylation in the ligated sciatic nerve.   
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Figure 2.  Injury-induced phosphorylation of Akt and S6 ribosomal protein occurs 

in Schwann cells.   
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Figure 2.  Injury-induced phosphorylation of Akt and S6 ribosomal protein occurs 

in Schwann cells.  Cross sections of unligated nerve or ligated nerve 2mm distal to the 

ligation site were stained with s100 Schwann cell marker and (A)p-Akt or (B)p-S6 

antibody.  Nerves were dissected 6 hours following ligation. (A) Basal Akt 

phosphorylation is detected in axons, (arrows), but injury-induced phosphorylation of Akt 

occur predominantly in Schwann cells (arrowheads). (B) S6 phosphorylation in the 

ligated nerve occurs in Schwann cells (arrowheads).   Bar=100μm.   
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Figure 3. Subcellular localization of Akt and S6 phosphorylation.   
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Figure 3. Subcellular localization of Akt and S6 phosphorylation.  Teased nerve 

preparations from ligated nerve distal to the ligation site were stained with the indicated 

antibodies.  Sciatic nerves were dissected 6 hours following ligation.  (A) Akt 

phosphorylation occurs near nodal regions and spreads asymmetrically down the 

internode away from the ligation site.  (B) p-Akt signal overlaps with paranodal marker 

Caspr, indicating that Akt phosphorylation occurs at the paranode on both sides of the 

node.  Spread of the p-Akt signal down the internode occurs only on one side.  (C) S6 

phosphorylation occurs in the perinuclear region surrounding that DAPI stain.  (D)  

Schematic of pattern of Akt and S6 phosphorylation in Schwann cells following injury.  

Each axonal internode is myelinated by one Schwann cell.  Akt phosphorylation occurs at 

the paranode on both side of the node, but the spread of this signal down the internode 

occurs unidirectionally away from the ligation site.  This pattern occurs both proximal 

and distal to the ligation.  (Α), (Β), (C) Bar=10μm 
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Figure 4.   Mechanical injury to Schwann cells in vitro is not sufficient to induce Akt 

and S6 phosphorylation.   
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Figure 4.   Mechanical injury to Schwann cells in vitro is not sufficient to induce Akt 

and S6 phosphorylation.  Schwann cells from P3 rat sciatic nerves were plated and 

crushed in vitro and fixed 1 or 6 hours later.  No significant increase in Akt or S6 

phosphorylation was detected in crushed Schwann cells.  Bar=50μm. 
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Figure 5.  mTOR activity is not necessary for demyelination following injury.  
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Figure 5.  mTOR activity is not necessary for demyelination following injury.  Mice 

were injected intraperitoneally with DMSO vehicle control or rapamycin one hour prior 

to sciatic nerve axotomy.  Unligated nerve and ligated nerve ~2mm distal to the ligation 

site were dissected 48 hours following ligation.  Toluidine blue staining of semithin 

sections reveal no significant difference in demyelination between DMSO and rapamycin 

treated ligated nerves. 

Bar=50μm.  
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Chapter 6: Conclusions and future directions 
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Injury to the central nervous system (CNS) results in permanent loss of neuronal 

function due to the inability of injured axons to regenerate.  In contrast, neurons in the 

peripheral nervous system (PNS) can extend new axons and reinnervate their targets 

following injury.  Successful regeneration depends upon a balance between extrinsic 

factors in the environment and the intrinsic growth capacity of the injured neuron.  The 

absence of glial-derived inhibitory cues in the PNS environment has been strongly linked 

to the regenerative ability of PNS neurons.  However, much less is known about the 

intrinsic signaling pathways activated after PNS injury to promote axonal regrowth.   

 One potential regulator of growth capacity in injured neurons is the mTOR 

pathway.  In non-neuronal cells, this pathway is active during development and is 

essential for cellular growth, proliferation, and survival [1] [2].  In the CNS, 

downregulation of mTOR activity following injury is linked to their lack of regenerative 

ability [3].  In contrast to CNS neurons, we found that dorsal root ganglia (DRG) in the 

PNS activate the mTOR pathway upon axonal damage, and that mTOR activation is both 

necessary and sufficient to enhance axonal growth capacity.  Furthermore, we found that 

mTOR activation increases the expression of the growth-associated protein GAP-43, 

suggesting that mTOR-dependent protein synthesis contributes to enhance regeneration 

of injured peripheral neurons.  However, overexpression of GAP-43 alone is not 

sufficient to fully stimulate regrowth of central branch axons to the level of a 

preconditioning injury, suggesting that the mTOR pathway regulates the translation of 

additional proteins to maximize axonal growth capacity [4].  Quantitative mass 

spectrometry analyses between wild-type and TSC2-deficient DRGs may reveal other 

proteins whose expression is regulated by mTOR. 
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 Injury-induced activation of the mTOR pathway in PNS neurons demonstrate that 

the ability of PNS neurons to regenerate is not merely due to the lack of inhibitory cues in 

the environment, but also due to the active initiation of intracellular mechanisms that 

enhance growth capacity.  Downregulation of this pathway by injured CNS neurons 

underscores the link between the mTOR pathway and intrinsic growth ability.  To better 

understand the differences between CNS and PNS neurons in their ability to activate 

mTOR after injury, it will be important to identify the upstream regulators of mTOR that 

are activated by PNS injury.  Our data suggest that activation of mTOR in injured DRGs 

occurs through Akt- and TSC2-independent mechanisms.  Other candidate upstream 

regulators of mTOR include phosphatidic acid, and the JAK-STAT signaling pathway.  

[5] [6].   

 Activation of the mTOR pathway presents a promising therapeutic strategy to 

facilitate regeneration of both CNS and PNS neurons.  However, we found that TSC2 

deletion and persistent mTOR activation in DRGs leads to major developmental and 

functional defects, including increased mortality, small size, early death, sensory 

impairments, and aberrant target innervation and axon morphology.  Though we have not 

yet tested whether re-innervation of injured axons is affected by TSC2 deletion, these 

developmental defects suggest that prolonged elevation of mTOR activity may also 

interfere with axon targeting and functional recovery of regenerating axons.   Thus, while 

manipulation of mTOR activity could stimulate regrowth of injured axons, fine control of 

mTOR activity may be required for proper target innervation and functional recovery.  

Alternatively, understanding the precise mechanism by which mTOR regulates growth 
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versus axon targeting and morphology may offer more specific strategies on enhancing 

axonal regrowth without interfering with innervation.   

 For the injured neuron to activate molecular changes in the cell body such as the 

enhancement of intrinsic growth capacity or the activation of regeneration-associated 

genes, the cell body must first receive accurate information about the site and extent of 

axonal damage.  Microtubule-based retrograde transport of locally activated injury 

signals has been proposed to contribute to this process.  For example, JNK scaffolding 

protein Sunday driver (syd) has been shown to link vesicular axonal transport to injury 

signaling [7].  In naive nerves, syd binds to both kinesin for anterograde transport and 

dynactin for retrograde transport.  Following sciatic nerve injury, JNK is locally activated 

and activated JNK and syd are transported mainly retrogradely [7].  The retrograde 

transport of JNK after injury is mediated by an enhanced interaction between syd and the 

dynactin complex [7].   

 To better understand syd function in axonal transport and injury signaling, syd 

vesicles were immunoisolated and analyzed by electron microscopy and mass-

spectrometry.  These studies have revealed two classes of syd-associated vesicles of 

distinct morphology and protein composition, and suggested that one class of syd vesicles 

belongs to the endocytic pathway, while another may belong to an anterogradely 

transported vesicle pool.  Here, we validated these findings by examining the localization 

and transport of syd vesicle components within the sciatic nerve.  Our results lead us to 

propose that the endocytic syd vesicles function to carry injury signals back to the cell 

body, whereas anterograde syd vesicles may play a role in axonal outgrowth and 

guidance.  Genetic ablation of syd in DRGs will be necessary to test whether syd-
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dependent axonal transport is essential for peripheral nerve regeneration.  Furthermore, 

removing the expression of proteins that specifically interact with a specific class of syd 

vesicles may elucidate the distinct role of these two types of axonal organelles.   

 In addition to the activation of intracellular injury signaling pathways, regrowth of 

peripheral neurons is guided by Schwann cells in the PNS environment that create a 

permissive environment for axon regeneration.  We found that components of the mTOR 

pathway, Akt and S6 ribosomal protein, are rapidly phosphorylated in Schwann cells 

within minutes to hours following sciatic nerve injury.  Injury-induced S6 

phosphorylation in Schwann cells was abolished by rapamycin, indicating that mTOR is 

active following damage.  Mechanical trauma to purified Schwann cells in vitro was not 

sufficient to activate Akt or S6 phosphorylation, suggesting that reciprocal signaling 

between axons and Schwann cells is important for the activation of this pathway.   

 While the morphological and functional responses that occur in Schwann cells 

following peripheral nerve injury have been described, the signaling pathways that 

mediate these events are not well known.  Thus, it will be valuable to determine the 

function of mTOR activation in Schwann cells in the context of nerve injury.  In the 

injured peripheral nerve Schwann cells perform a number of tasks, including de-

myelination, phagocytosis, proliferation, and synthesis and release of growth factors and 

extracellular matrix proteins.  An in vitro myelinating Schwann cell-DRG co-culture 

system may offer assays to rigorously test the necessity of the mTOR pathway in each of 

these processes.  Furthermore, it is unknown whether these Schwann-cell mediated 

events are necessary for nerve regeneration itself.  If mTOR activation is required for any 

of these events, genetic ablation of mTOR components in Schwann cells could provide a 
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valuable tool to test the necessity of Schwann cell processes in peripheral nerve 

regeneration.  It is likely that that cross-talk between axons and its myelinating Schwann 

cells is essential both for injury signaling and the regenerative response.        

 In this thesis, we explored multiple components of peripheral nerve injury 

signaling: transport of local injury signals by axonal vesicles, enhancement of intrinsic 

growth capacity in the cell body, and response of Schwann cells that myelinate the 

damaged axon.  We found that the mTOR pathway is activated in both DRGs and 

Schwann cells after injury, and that in DRGs, this pathway plays an essential role in the 

enhancement of axonal growth capacity.  The mTOR pathway is unlikely to be the only 

signal that mediates nerve regeneration; several classes of signaling pathways may act in 

concert to orchestrate a robust regenerative response.  In fact, recent proteomic studies 

estimate that over 900 phosphoproteins and 4500 transcripts are involved in the injury 

response [8].  Additionally, it is likely that extrinsic cues derived from Schwann cells also 

cooperate with intracellular growth pathways for optimal regrowth.  Identification of 

multiple components and signaling pathways that regulate nerve regeneration in both 

neurons and Schwann cells may unravel new therapeutic targets to promote PNS and 

CNS recovery from injury.  
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