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Abstract 
Recently, a new parcel delivery method has been emerged, which involves Unmanned Aerial Vehicles, 

also known as drones, assisting traditional trucks in last-mile delivery across logistic networks. This 

method generally combines a truck and one drone or more to handle the delivery processes to 

customers. And this paper tends to calculate the optimal route of this drone-assisted delivery system, 

the objective is to minimize the operational time and energy cost. I developed a heuristic solution 

approach which implements an effective Genetic Algorithm to solve and simulate this delivery system of 

practical size, this program can automatically generate the on-screen best route results and show the 

total operational time and energy cost. 
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1. Introduction 
During the past few years, the commercial use of drones has been more frequent, and the technology 

for drones and the relative delivery network has also increased rapidly. Therefore, the necessity of 

studying the effectiveness and result of this drone-assisted delivery system is existential.  This new 

distribution model is the use of a regular delivery truck that collaborates with drones to support parcel 

delivery. The drones have the advantages such as flexibility and speed which the trucks do not have. In 

addition, the long-range transportation ability and high capacity of trucks are not available in drones. 

Thence, there are complementary advantages when using drones to assist parcel delivery. 

Some companies are experimenting and examining the new technology of drones to support the mails 

and parcels delivery. Amazon Prime Air has planned to use multirotor Miniature UAV to automatically 

carry packages from Amazon order fulfillment center to customers’ locations within 30 minutes of 

ordering. And China’s biggest internet retailer—Alibaba, said it had begun testing drone-based deliveries 

to hundreds of customers.  



 

 

 

 

 

 

 

Figure 1. Amazon’s Prime Air UAV and Alibaba’s drone 

I have researched and investigated some related literature, in every logistics activity, operational costs 

and time play important roles in the overall business cost. Hence, minimizing these costs by optimizing 

min-time and min-energy drone-assisted delivery system (DADS) is a vital objective of every company 

involved in transport and logistics activities. 

 

2. Related Literature 
I am aware of several related literature on the Traveling Salesman Problem (TSP) and Vehicle Routing 

Problem (VRP), while these publications are not very suitable for this new truck-drone tandem delivery 

system. We call this new distribution method the Traveling Salesman Problem with Drone (TSP-D). 

Perhaps there are different names and for this kind of problem. But in general, this problem aims to find 

an optimal route for both trucks and drones, that minimize the total joint time to complete the delivery 

tasks of all packages.  

Solution approaches Literature 

Integer linear programming Agatz et al. (2016); Murray & Chu (2015) 

Approximation algorithms Agatz et al. (2016) 

Dynamic programming Bouman et al. (2017) 

Simple heuristics Murray & Chu (2015); Ha & Deville et al. (2015) 

Simulated annealing Ponza (2016) 

Genetic algorithms Ferrandez & Harbison et al. (2016) 

Table 1. Solution approaches proposed for different literature 

Table 1 summarizes the present solution procedures and approaches that have been studied for several 

slightly variants of the TSP-D. 

Murray & Chu (2015) called the problem ͞Flying Sidekick Traveling Salesman Problem͟, which developed 

a mixed integer linear programming (MILP) formulation and a simple heuristic solution to solve this TSP-

D problem. They first find the best route for the truck as a typical TSP. Then, they run a relocation 

procedure which will check each node’s possibility for drone service. Ponza (2016) extended Murray & 

Chu (2015)’s work by proposing a Simulated Annealing approach to solve the problem. 



Agatz et al. (2016) presented a MILP formulation and developed several Route first-cluster second 

approximation heuristic algorithms to solve the TSP-D. Bouman et al. (2017) extended Agatz et al. 

(2016)’s study and raised an exact solution which formed on dynamic programming. Their work can 

resolve the problem of practical size.  

Ferrandez & Harbison et al. (2016) used K-means clustering and Genetic algorithm to investigate the 

effectiveness and compare the difference between the truck-drone tandem delivery system and stand-

alone truck delivery network. 

 

3. Problem Description 
The DADS can be modeled as a set of N customers and one Distribution Center (D.C.), each customer 

should only be served by either a traditional delivery truck or an unpiloted drone. The determining 

factors are the available flight range of drones and the parcels’ size, because the drone can carry this 

package only if its size is small enough to fit in the cargo box, and the drones are battery-driven, which 

means they have a restriction on their flight range. 

The driver-operated truck will carry the drone and packages, then depart from the D.C.. After delivering 

all packages to the customers, the truck and the drone can return to the D.C. independently or in 

tandem. During the delivery process, the truck and the drone can also travel independently or in tandem. 

While working independently the drone is launched from the truck and served a nearby customer with 

one package, when the drone is in service, the truck should continue its delivery. Then the drone must 

return to the truck and recharge or change the battery and pick up a package for next delivery task. The 

launch points and the reunion points must be one of the customer locations. While working in tandem 

the drone will be carried by truck, which can conserve the energy cost of the drone.  

 

Figure 2.1. The optimal route for TSP                                Figure 2.2. The optimal route for TSP-D 

Fig.2.1 is an example of the traditional TSP with standalone truck delivery, and the Fig.2.2 is an example 

of drone-assisted delivery. The white point means this customer is served by truck, the green point 

means it is served by drone. The black line is the truck transportation route, the red line represents the 



drone departure route while the blue line represents the drone arrival route. Apparently, during these 

sections, ܦ. <−.ܥ  ʹ, ͵ −>  ͳ ܽ݊݀ ͳ −> .ܦ   .the truck and the drone transport in tandem ,.ܥ

 

3.1. Notation  

The DADS is defined on a graph which is a square areaሺݏ ×  ሻ, the D.C. (denoted by 0) is located at theݏ

mid-bottom ሺݏ/ʹ,Ͳሻ of this square. The set of customers ܰ݉ݑ = { ଵܰ, … , ௡ܰ} represents all places that 

need to be delivered.  

    • ܿ݋ܮ = ,଴ܥ} ,ଵܥ … , ௡} represents the customer locations matrix, each row ሺ݊ܥ =  ሻݐ݊ݑ݋݉ܽ ݎ݁݉݋ݐݏݑܿ

of the matrix respectively means one customer’s abscissa (x-coordinate) and ordinate (y-coordinate). 

Denoted by ܥ௜ ⊆ ܿ݋ܮ = ሺݔ௜, ,௜ሻݕ ଴ܥ  = ሺs/ʹ,Ͳሻ.      • 𝑃݌݋ = {𝑃ଵ, … , 𝑃𝑝} represents the population matrix, each row ሺ݌ = ͷሻ of the matrix means a possible route of the truck and the drone. 𝑃௜ ݂݋ ݈݁݌𝑖ݐ݈ݑ݉ ܽ ݏ𝑖 ݌ ݀݊ܽ,ݐ݊ݑ݋݉ܽ ݊݋𝑖ݐ݈ܽݑ݌݋݌ ⊆ 𝑃݌݋ ={Ͳ + 𝑃݁݉ݑܰ ݀݁ݐݑ݉ݎ + Ͳ } ሺ݁. ݃.  ݊ = ͳͲ, 𝑃௜ = {Ͳ, ͵, ͸, ʹ, ͳ, Ͷ, ͺ, ͻ, ͹, ͳͲ, ͷ, Ͳ}ሻ. Since the truck and the 

drone always leave the D.C. with packages, and both the truck and the drone need to return to D.C. 

after delivery processes, I add ͞0͟ i.e. D.C to the beginning and the end of 𝑃௜. 
    • ݐݏ𝑖ܦ = [݀଴,଴ ڮ ݀଴,௡ڭ ⋱ ௡,଴݀ڭ ڮ ݀௡,௡] represents the distant matrix, ݀௜,௝ means the distant between the ௜ܰ  and 

௝ܰ ∈ is a ሺሺ݊ ݐݏ𝑖ܦ And .݉ݑܰ + ͳሻ × ሺ݊ + ͳሻሻ matrix, ݀௜,௝ = √ሺݔ௜ − ௝ሻଶݔ + ሺݕ௜ −  .௝ሻଶݕ

    • ௧݁ݐݑ݋ܴ = ଴,଴ݐܴ] ڮ ڭ଴,௡+ଵݐܴ ⋱ 𝑝,଴ݐܴڭ ڮ  𝑝,௡+ଵ] represents the truck-route matrix, each row means a completeݐܴ

route of truck, and this matrix has ݌ rows. Originally, ܴݐ௜,௝ = 𝑃௜,௝ = 𝑟ܰ ∈ 𝑟ܰ  ,݉ݑܰ  is a random number 

from ܰ݉ݑ, because 𝑃௜,௝ ∈ 𝑃݌݋, which is generated stochastically.  

    • Similarly, ܴ݁ݐݑ݋ௗ = [ܴ݀଴,଴ ڮ ܴ݀଴,௡+ଵڭ ⋱ 𝑝,଴ܴ݀ڭ ڮ ܴ݀𝑝,௡+ଵ] represents the drone-route matrix. Furthermore, I will 

assign each node of the row as either the truck-served or the drone-served due to its feasibility for 

drone-assisted. Reassign the corresponding points in both ܴ݁ݐݑ݋௧  and ܴ݁ݐݑ݋ௗ. Because the ܴ݁ݐݑ݋௧  and ܴ݁ݐݑ݋ௗ  are corresponding row by row, the same rows of them will indicate one complete 

delivery process for the truck and the drone.     • ܶ𝑖݉݁ = ,ଵݐ} … , ௠} ሺ݉ݐ = 𝑖ݐܽݎ݁ݐ𝑖ݎܾ݁݉ݑ݊ ݊݋ሻ represents the operational time history set, each 

element of this set indicates the corresponding time of each iteration.      • ݕ݃݊ܧ = {݁ଵ, … , ݁௠} represents the energy cost history set, each element of this set indicates the 

corresponding energy cost of each iteration.  • ௧݈݋ܵ = ,଴ݐܵ} ,ଵݐܵ … , ௜ݐܵ  ,௡+ଵ} represents the optimal solution of the truck-routeݐܵ  = ௕,௜ݐܴ ௧݁ݐݑ݋ܴ∋ , ܾ means the 𝑖݊݀݁ݔ of the best row among the whole ܴ݁ݐݑ݋௧ matrix. And the determining factor 



is either the ݐ௕ ݎ݋ ݁௕, while analyzing the min-time delivery system, I choose the 𝑖݊݀݁ݔ of minimal ݐ௕; 

while analyzing the min-energy delivery system, I choose the index of minimal ݁௕ .  • Similarly, ݈ܵ݋ௗ = {ܵ݀଴, ܵ݀ଵ, … ,  ܵ݀௡+ଵ} represents the optimal solution of the drone-route. 

 

3.2. Assumptions and Constraints 

There are some assumptions and constraints to ensure this D-A delivery system can be developed 

successfully: 

1. Only one truck and one drone will participate in all delivery processes. 

2. The truck and the drone can only visit customers locations and D.C.. 

3. Each customer must be served by either the truck or the drone, which means all nodes could 

only be touched once (except D.C. which will be touched twice). 

4. After departing from the truck, the drone can only serve one customer, then it needs to return 

to the truck. The recharge or change battery time will not be concerned. 

5. The truck can visit one or two customers while the drone is in the delivery task. 

6. All launching places and reunion places must be at the customers’ locations, not any 

intermediate locations. 

7. After returning to the truck, the drone can be launched at the same location, which means a 

node can be a reunion point and the next service launching point.  

8. The truck and the drone can return to the D.C. independently or in-tandem. 

9. The truck and the drone can leave the D.C. independently or in-tandem. 

10. When we calculate the total operational time of the delivery processes, we will only sum the 

time spent on the road (i.e. neglect the time spent at customers and the deployment time of 

drone). At each reunion points, we will choose the longer time between the truck and the drone 

for the summation, in this case, the waiting time has already been considered. 

11.  We will only calculate the energy cost on road for both the truck and the drone. If either the 

truck or the drone arrives early at a reunion point, it will wait till the other one shows up. 

 

3.3. Objective 

The objective of this DADS optimization is to find a min-time route and a min-energy route for the 

delivery processes. 

Thence, there are two cost functions:  

௜ݐ .1 ∈ ܶ𝑖݉݁ = ,𝑃௜,௝ۃ ݊݋𝑖ݐܿ݁ݏ ℎܿܽ݁ ݎ݋݂) 𝑃௜,௝+ଵۄ: 𝑃௜) ∑ ሺ݀௨,௩/ܵ݌ሻ௡+ଵ଴ , u means the first point 𝑃௜,௝ and v means the second point 𝑃௜,௝+ଵ of this section. ܵ݌ means the speed (i.e. kilometer per 

hour) of the truck or the drone, choosing whoever's speed depends on the delivery option of 

this section. 

2. ݁௜ ∈ ݕ݃݊ܧ = ,𝑃௜,௝ۃ ݊݋𝑖ݐܿ݁ݏ ℎܿܽ݁ ݎ݋݂) 𝑃௜,௝+ଵۄ: 𝑃௜) ∑ ሺ݀௨,௩ × ሻ௡+ଵ଴݋ܥ  means the unit energy ݋ܥ .

cost (i.e. fuel/battery consumption per kilometer) of the truck or the drone. Similarly, choosing 

whoever’s unit energy cost depends on the delivery option of this section. 

 



4. Heuristic Solution  

4.1. Effective Genetic Algorithm 

In reference to Ferrandez & Harbison et al. (2016)’s publications, an efficient Genetic Algorithm (GA) has 

been modified and implemented into the DADS program, which can relatively reduce the solving time of 

the program for a large practical problem. The basic ideas of this efficient GA are: 

1. Divide the ܴ݁ݐݑ݋ into ሺ𝑃/ͷሻ parts (denoted by ܨ𝑖݁ݒ = [ ܴ௜,଴ ڮ ܴ௜,௡+ଵڭ ⋱ ௜+ହ,଴ܴڭ ڮ ܴ௜+ହ,௡+ଵ]), the GA will be 

proceed in groups of five populations.  

2. Find the optimum from every 5 populations, set it as temporary best route (denoted by ݈݈ܽܿ݋ = ݉𝑖݊ሺܴ݁ݐݑ݋ሻ). 

3. Utilize effective GA to mutate the ݈݈ܽܿ݋, and generate a new ܨ𝑖݁ݒ with different five delivery 

routes. 

4. Exchange the original part of the ܴ݁ݐݑ݋ with the new ܨ𝑖݁ݒ. 

5. Iterate step 1 to step 4, until all parts in the ܴ݁ݐݑ݋ have been changed. 

Pseudocode that implements the effective GA is proposed in Algorithm 1. 

Algorithm 1: effective Genetic Algorithm 

Data: ܨ𝑖݁ݒ, three randomly selected locaiton ௔ܰ , ௕ܰ ܽ݊݀ ௖ܰ , 𝑖݂ ௔ܰ ݕ݈݊݋ < ௕ܰ < ௖ܰ; 

Result: new 𝑃݌݋; 

while 𝑖 <  do ݌

      for(∀ݓ݋ݎ ⊆  (݁ݒ𝑖ܨ

          𝑖ݐℎ row: keep it unchanged; 

          ሺ𝑖 + ͳሻݐℎ row: ݂݈𝑖݌ሺݓ݋ݎሻ, reverse a short segment ۃ ௔ܰ , ௕ܰۄ’s order of this ݓ݋ݎ; 
          ሺ𝑖 + ʹሻݐℎ row: ݂݈𝑖݌ሺݓ݋ݎሻ, reverse a short segment ۃ ௕ܰ , ௖ܰۄ’s order of this ݓ݋ݎ; 
          ሺ𝑖 + ͵ሻݐℎ row: ݌ܽݓݏሺݓ݋ݎሻ, swap the position of ௔ܰ and ௕ܰ; ሺ𝑖 + Ͷሻݐℎ row: ݈ݏ𝑖݀݁ሺݓ݋ݎሻ, slide a short segment ۃ ௔ܰ , ௕ܰۄ one space left, and replace  the 

position of ௕ܰ with ௔ܰ. Then switch ଵܰ with  ௡ܰ. 𝑖 = 𝑖 + ͷ; 
  Return: new ܨ𝑖݁ݒ;  

      new 𝑃݌݋{𝑃௜, … , 𝑃௜+ସ} = new ܨ𝑖݁ݒ; 

Return: new 𝑃݌݋; 

 

For instance, if the first row in ܨ𝑖݁ݒ is {Ͳ, ͵, ͸, ʹ, ͳ, Ͷ, ͺ, ͻ, ͹, ͳͲ, ͷ, Ͳ} , and ௔ܰ = ʹ,  ௕ܰ = ͸ ܽ݊݀ ௖ܰ = ͻ. 
Then after being mutated by GA, ܨ𝑖݁ݒ would be like this: 

݁ݒ𝑖ܨ = [  
  Ͳ, ͵, ͸, ʹ, ͳ, Ͷ, ͺ, ͻ, ͹, ͳͲ, ͷ, ͲͲ, ͵, ͺ, Ͷ, ͳ, ʹ, ͸, ͻ, ͹, ͳͲ, ͷ, ͲͲ, ͵, ͸, ʹ, ͳ, Ͷ, ͳͲ, ͹, ͻ, ͺ, ͷ, ͲͲ, ͵, ͺ, ʹ, ͳ, Ͷ, ͸, ͻ, ͹, ͳͲ, ͷ, ͲͲ, ͷ, ʹ, ͳ, Ͷ, ͺ, ͵, ͻ, ͹, ͳͲ, ͸, Ͳ]  

  
 

Clearly, the effective GA can validly complete the functions of traditional Genetic Algorithm with using 

relatively short time. 



4.2. Procedure 

The procedure and specific algorithms of this DADS have been proposed here, where the pseudocodes 

of main functions are provided in Algorithm 2 and Algorithm 3, and the framework for the heuristic 

approach of the DADS is presented in Flowchart 1. 

Algorithm 2: Initialize Algorithm  

Data: ܰ݉ݑ, ݊, ,݌   ;ݏ
Result: ܿ݋ܮ,  ;݌݋𝑃 ݀݊ܽ ݐݏ𝑖ܦ

for(∀ ܥ௜ ⊆ ,ܿ݋ܮ 𝑖 ∈ ݊) 

௜ܥ     = ሺݔ௜, ௜ሻݕ = ሺݏ × ,ሺͲ,ͳሻ݉݋݀݊ܽݎ ݏ ×  ;ሺͲ,ͳሻሻ݉݋݀݊ܽݎ

Return: ܿ݋ܮ;  

for(∀݀௜,௝ ⊆  (ݐݏ𝑖ܦ

    ݀௜,௝ = √ሺݔ௜ − ௝ሻଶݔ + ሺݕ௜ −  ;௝ሻଶݕ
Return: ܦ𝑖ݐݏ; 

for(∀𝑃௜ ⊆ 𝑃݌݋) 

    𝑃௜ =  ;ሻ݉ݑሺܰ݁ݐܽݐݑ݉ݎ݁݌
Return: 𝑃݌݋; 

 

Algorithm 2’s role is to complete the initialization phase, and prepare for further analyzation. Note that 

the Permutate formulation can generate a permutation from 1 to n, which can represent a random 

delivery route, 𝑃݌݋ will contain  ݌ random delivery routes. Next, use Algorithm 3 to analyze each node ∈ 𝑃௜, check its feasibility for drone-assisted.  

Algorithm 3: Feasible Algorithm  

Data: ܦ𝑖ݐݏ, 𝑃݌݋, ܴܽ݊݃݁ (Drone flight range), ,(Waiting time for truck) ܽݐ݈݁ܦ ݇ = Ͳ;   
Result: ܴ݁ݐݑ݋, ܶ𝑖݉݁ ܽ݊݀ ݁ݐݑ݋ܴ ;ݕ݃݊ܧ = 𝑃݌݋; 

for(∀ 𝑖 ∈  (݌

  for(∀ ܴ௞ ∈ ,݁ݐݑ݋ܴ ݇ ∈ ݊) 

         if (݀௞,௞+ଵ + ݀௞+ଵ,௞+ଶ) < ܴܽ݊݃݁ 

           ܴ௞= drone launch point; 

           ܴ௞+ଵ= drone-assisted node; 
                  if ሺ݀௞+ଶ,௞+ଷ/ܵ݌ሻ <  ܽݐ݈݁ܦ

                       ܴ௞+ଶ= truck-served node; 

                       ܴ௞+ଷ= drone reunion point; 

                  else  ܴ௞+ଶ= drone reunion point; 

             else ܴ௞+ଵ = truck-served node;         

௜ݐ        ∈ ܶ𝑖݉݁ = ݐ +  ;݌ܵ/݀

       ݁௜ ∈ ݕ݃݊ܧ = ݁ + ݀ ×  ;݋ܥ
       Return: ܴ݁ݐݑ݋; 

Return: ܶ𝑖݉݁ ܽ݊݀ ݕ݃݊ܧ; 

 

Algorithm 3 can return the ܴ݁ݐݑ݋௧ & ܴ݁ݐݑ݋ௗ, and according to ܶ𝑖݉݁ ܽ݊݀ ݕ݃݊ܧ, the min-time and min-

energy route (݈ܵ݋௧ & ݈ܵ݋ௗ) will be selected from the ܴ݁ݐݑ݋௧ & ܴ݁ݐݑ݋ௗ. Then plot these ݈ܵ݋s which are 

the best route for this iteration. 



Flowchart 1: 

 

The flowchart 1 above shows the main steps of the DADS program: 

a) Used 𝐽ܽܽݒ𝑇𝑀 to develop an Application, which can randomly generate n locations, and 

according to the distant matrix, select the optimal route (݈ܵ݋௧  ௗ) for the Truck and the݈݋ܵ & 

Drone. 

b) The fitness values of this system are Operational Time and Energy Cost. 

c) First, used Initialize Algorithm to produce original matrices: ܿ݋ܮ,  .݌݋𝑃 ݀݊ܽ ݐݏ𝑖ܦ

d) Second, used Feasible Algorithm to determine the feasibility of deploying a drone for each 

location. 

e) Third, selected and plotted the optimal route from each iteration due to required criteria. 

f) Last, used effective GA to optimize the delivery route and generate new 𝑃݌݋ for next iteration. 

The iteration stop criteria is that the values of ܶ𝑖݉݁ ܽ݊݀ ݕ݃݊ܧ have converged. 

 

5. Results 
To study and analyze the realistic problem, some parameters of the DADS have been pre-defined: 

Factor Notation Value 

Size (operational space) ܵ 25 km 

No. Customers ܰ(20:5:40) ݉ݑ 

Population 𝑃500 ݌݋ 

Truck Speed ܵ݌௧ 40 km/h 

Drone Speed ܵ݌ௗ 50 km/h 

Truck Unit Energy ݋ܥ௧ 0.325 MJ/h 

Drone Unit Energy ݋ܥௗ 0.00324 MJ/h 

Drone Flight Range ܴܽ݊݃݁ 10 km 

Table 2. Initialization parameters 

 



In Table 2, the operational space of the delivery system is 25 km × 25 km; the number of customers is 

investigated starting at 20 locations, then incremented by 5 locations to a maximum number of 40 

(denoted by 20:5:40); the number of population for this heuristic approach is 500; the speed of truck is 

held constant at 40 km/h, and the speed of drone is 50 km/h; the unit energy cost of truck is 325 kJ/h, 

and the unit energy cost of drone is 3.24 kJ/h (data sources: Ferrandez & Harbison et al. (2016)); the 

available flight range (i.e. total flying distance for a full-charged drone) for drone is 10 km.  

Experiments are conducted on various numbers of customers to gain the optimal solutions. Here are 

some sample results for different numbers of customers:

 

Figure 3.1. Optimal delivery route for 20 customers 

 

Figure 3.2. Optimal delivery route for 25 customers 



 

Figure 3.3. Optimal delivery route for 30 customers 

 

Figure 3.4. Optimal delivery route for 35 customers 



 

Figure 3.5. Optimal delivery route for 40 customers 

As shown in Figure 3, the optimal route for the truck and the drone is drawn with different colored lines. 

In the ܯ𝑖݊ݕ݃݊ܧ case, the black line represents the route of the truck, the blue line represents the 

departure route of the drone, while the red line represents the arrival route of the drone; In the ܯ𝑖݊ܶ𝑖݉݁ case, the route of the truck is still represented by black line, the departure route of the drone 

is indicated by green line and the arrival route of the drone is indicated by yellow line. 

The performance criteria of experiments include the total delivery time, total energy cost and runtime of 

each experiment. The table and figure below show the performance results for each experiment. 

No. 

Customers 

Runtime 

(s) 

𝑴𝒊࢔𝑻𝒊࢓𝒆 

(h) 

𝑴𝒊࢔𝑬࢔𝒈𝒚 

(GJ) 

20 97 2.2664825 0.599591157 

25 110 2.5152285 0.71833282 

30 154 2.8634615 0.81764237 

35 220 3.114807 0.868213164 

40 257 2.8504555 0.70995195 

Table 3. Discrete customers number 



 

Figure 4. Influence of different customers’ numbers 

From the Fig.4. above, we can indicate that the running time of this program is positively correlated with 

customers size. And due to the fact that the locations of customers are generated randomly, the ܯ𝑖݊ܶ𝑖݉݁ and ܯ𝑖݊ݕ݃݊ܧ may vary unpredictably.  

Particularly, the last experiment (i.e. n=40) shows that its total time and total energy cost of the delivery 

system is less than the smaller amount of customers' (i.e. n=30 or 35). Because the customer's locations 

are unpredictable, maybe when n is larger, these customers are located closely and compactly than the 

case when n is smaller; and the program also neglects the waiting time of the delivery processes, both 

above can lead to a reduction of total time or total energy cost. In our case, we can see when n=40, 

customers are located densely, while when n=35, they are located more dispersedly. In result of that, no 

matter how optimal the delivery route is, the total time of n=35 is always larger than n=40. 

 

 

6. Conclusion and Future Research 
In this optimization of DADS project, I analyzed the scenario of a drone-assisted delivery system. Some 

past researches proved drone-assisted delivery is faster than truck standalone delivery, because the 

advantages of drones can offset the disadvantages of trucks. Hence, I developed a program to calculate 

the operational time and energy cost, and select the best solution of delivery route on the basis of ܯ𝑖݊ܶ𝑖݉݁ and ܯ𝑖݊ݕ݃݊ܧ.  

Additionally, this program can optimize the delivery route based on the heuristic method-Genetic 

Algorithm, which can ensure the results are infinitely close to the global optimum. Owing to the 

deployment of effective GA, the program can solve the large-sized practical problem within a related 

short time, yet only has minimal influence on the quality of overall solutions. 
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Future research may aim to: 

1. Simulate the logistics system using two or more drones; 

2. Update the program to include the consideration of waiting time, and propose a reasonable 

model to evaluate the waiting penalties; 

3. Improve this program to get a better performance when analyzing the larger practical size of 

scenario, and in the meanwhile reduce the runtime of the program by optimizing its structure.  

4. Implement Google Map API to my program, to solve the realistic problem; 
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