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Abstract of The Dissertation

Essays on Macro-Finance Relationships

by
Azamat Abdymomunov

Doctor of Philosophy in Economics

Washington University in St. Louis, 2010

Professor James Morley, Chair

In my dissertation, I study relationships between macroeconomics and financial

markets. In particular, I empirically investigate the links between key macroeco-

nomic indicators, such as output, inflation, and the business cycle, and the pricing

of financial assets. The dissertation comprises three essays.

The first essay investigates how the entire term structure of interest rates is

influenced by regime-shifts in monetary policy.1 To do so, we develop and estimate

an arbitrage-free dynamic term-structure model which accounts for regime shifts in

monetary policy, volatility, and the price of risk. Our results for U.S. data from

1985-2008 indicate that (i) the Fed’s reaction to inflation has changed over time,

switching between “more active” and “less active” monetary policy regimes, (ii)

the yield curve in the “more active” regime was considerably more volatile than in

the “less active” regime, and (iii) on average, the slope of the yield curve in the

“more active” regime was steeper than in the “less active” regime. The steeper yield

curve in the “more active” regime reflects higher term premia that result from the

risk associated with a more volatile future short-term rate given a more sensitive

response to inflation.

1This essay is a joint work with Kyu Ho Kang
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The second essay examines the predictive power of the entire yield curve for

aggregate output. Many studies find that yields for government bonds predict real

economic activity. Most of these studies use the yield spread, defined as the dif-

ference between two yields of specific maturities, to predict output. In this paper,

I propose a different approach that makes use of information contained in the en-

tire term structure of U.S. Treasury yields to predict U.S. real GDP growth. My

proposed dynamic yield curve model produces better out-of-sample forecasts of real

GDP than those produced by the traditional yield spread model. The main source

of this improvement is in the dynamic approach to constructing forecasts versus the

direct forecasting approach used in the traditional yield spread model. Although

the predictive power of yield curve for output is concentrated in the yield spread,

there is also a gain from using information in the curvature factor for the real GDP

growth prediction.

The third essay investigates time variation in CAPM betas for book-to-market

and momentum portfolios across stock market volatility regimes2. For our analysis,

we jointly model market and portfolio returns using a two-state Markov-switching

process, with beta and the market risk premium allowed to vary between “low”

and “high” volatility regimes. Our empirical findings suggest strong time variation

in betas across volatility regimes in most of the cases for which the unconditional

CAPM can be rejected. Although the regime-switching conditional CAPM can still

be rejected in many cases, the time-varying betas help explain portfolio returns

much better than the unconditional CAPM, especially when market volatility is

high.

2This essay is a joint work with James Morley
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Chapter 1

The Effects of Monetary Policy Regime Shifts on

the Term Structure of Interest Rates1

1.1 Introduction

Many empirical studies (e.g. Clarida, Gali, and Gertler (2000); Cogley and Sargent

(2005)) focus mainly on the response of output and inflation to monetary policy

changes. However, only a few studies (e.g. Bikbov and Chernov (2008) and Ang,

Boivin, Dong, and Loo-Kung (2010) hereafter ABDL(2010)) look at the implications

of monetary policy changes for the term structure of interest rates.

As discussed in ABDL(2010), the entire term structure of interest rates may

respond to the changes in monetary policy in two main ways. First, according to

the no-arbitrage condition, the long-term interest rate should be affected by changes

in the short-term interest rate caused by monetary policy. Second, the inflation and

output fluctuations caused by monetary policy may influence term premia. This

effect is supported by many recent studies which provide evidence of the impact

of macroeconomic factors on the term structure of interest rates (e.g. Ang and

Piazzesi (2003); Ang, Bekaert, and Wei (2008); and Bikbov and Chernov (2010)).

1This essay is a joint work with Kyu Ho Kang
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At the same time, as discussed in Bikbov and Chernov (2008), if the entire term

structure of interest rates responds to the changes in monetary policy, then the term

structure may contain more useful information for identifying the monetary policy

regimes as compared to only considering the short rate.

The way monetary policy is conducted can have two potential implications for

long-term interest rates. First, the monetary authority may influence inflation ex-

pectations through aggressively changing the short rate in response to macroeco-

nomic fluctuations. This effect reduces inflation risk premia for long-term interest

rates. Second, a more sensitive short rate in response to macroeconomic fluctua-

tions may cause expectations of a more volatile future short rate, which could result

in higher risk premia for long-term interest rates. Thus, the monetary authority

may face a trade-off between these two opposite effects on long-term interest rates

in their choice of how aggressively to respond to macroeconomic fluctuations.

The main objective of this paper is to analyze effects of monetary policy regime

changes on the entire term structure of interest rates. Specifically, we aim to iden-

tify which of the two above-described effects on long-term rates dominates when

the monetary authority responds aggressively to macroeconomic fluctuations. For

this analysis, we propose an affine no-arbitrage term structure model with regime

shifts in monetary policy, volatility of yield factors, and the market price of risk

governed by three separate Markov-switching processes. This framework enables us

to identify the effects of monetary policy regime shifts on long rates. In our model,

the short-term interest rate, which is considered as the monetary policy instrument,

is set by a Taylor (1993) rule with coefficients switching between two monetary pol-

icy regimes. These regimes are labeled as “more active” and “less active” regimes,

2



depending on how aggressively the monetary authority changes the short rate in

response to inflation and output gap fluctuations.

Our results can be summarized as follows. First, our results indicate that even

during “the Great Moderation” period of the past quarter century, the Fed’s reaction

to inflation has varied over time, switching between “more active” and “less active”

regimes. This result concurs with Sims and Zha (2006) and ABDL(2010), who

conclude that regime shifts of monetary policy should be considered probabilistically

rather than by only a single break in the early 1980s.

Second, monetary policy regime shifts have quantitatively important effects on

the term spread and the volatility of the yield curve. For the sample of U.S. data

from 1985:Q4 to 2008:Q4, the short rate was considerably more volatile in the “more

active” regime than in the “less active” regime, while the average short rates in the

two monetary policy regimes were close to each other. The long-term rate was,

on average, 129 basis points higher in the “more active” regime than in the “less

active” regime, resulting in a steeper slope of the yield curve, on average, in the

“more active” regime. In general, the yield curve was more volatile in the “more

active” regime than in the “less active” regime. These results can be explained by

a more sensitive response of the short rate to inflation fluctuations in the “more

active” regime creating higher risk for the future short rate fluctuations. This risk

drives up long-term yields. Thus, the Fed appears to face a policy trade-off between

a “more active” reaction to the macroeconomic fluctuations and a more volatile yield

curve caused by this reaction. This argument is consistent with Woodford (1999),

who claims that it may be more optimal for the monetary authority to conduct

policies that do not require the short rate to be too volatile.

3



Our study is distinguished in several dimensions from Bikbov and Chernov

(2008) and ABDL(2010), who also investigate the interaction between the term

structure of interest rates and monetary policy. In particular, our model employs

discrete-time regime-switching processes in contrast to ABDL(2010), who describe

monetary policy shifts as continuously changing Taylor rule coefficients. Also, our

model is differentiated from ABDL(2010) by incorporating volatility regime shifts,

which, as indicated by Sims and Zha (2006), is important for evaluating the im-

pact of monetary policy changes on macroeconomic behavior. Unlike Bikbov and

Chernov (2008), who also apply discrete regimes, our model accounts for the regime

shifts in the price of risk that are independent of volatility changes. Duffee (2002)

reports that it is essential to allow for variation in the price of risk independent of

factor volatility for fitting the yield curve and modeling plausible term premium.

Also, our study focuses on the interaction between monetary policy and term struc-

ture dynamics in the post-1985 period in contrast to the longer periods covered

by Bikbov and Chernov (2008) and ABDL(2010). The estimation of the model

over the post-1985 period avoids identifying the monetary policy regimes with the

major oil shocks in the 1970s, the monetary policy “experiment” in 1979, and the

structural break in the monetary policy found by many studies (e.g. Fuhrer (1996)

and Clarida et al. (2000)), which is associated with the beginning of the “Volcker”

disinflation policy.

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 discusses the estimation method. Section 4 presents the empirical results.

Section 5 concludes. The Appendices provide details for the model derivation and

the estimation method.

4



1.2 Model

In this section, we present our model used to quantify effects of monetary policy

regime shifts on the term structure of interest rates. In particular, we develop a

three-factor affine no-arbitrage term structure model with regime shifts in mone-

tary policy response to macroeconomic fluctuations. The model also accounts for

changes in volatility of yield factors and the market price of risk, governed by two

other regime-switching processes. This modeling choice allows us to separate the

identification of monetary policy changes from changes in volatility of yield factors

and the market price of risk. To derive bond prices that account for the effects of

monetary policy regime shifts and satisfy no-arbitrage condition, we make assump-

tions about a monetary policy response function, evolutions of regime processes,

dynamics of factor process, and a stochastic discount factor, described in the fol-

lowing subsections.

1.2.1 Short rate

We assume that the monetary authority use the short rate as their policy instrument

and set it according to the Taylor rule (1993) with coefficients subject to regime

shifts:

rmtt = rmt + αmt (πt − πmt) + βmtgt + ut , (1.2.1)

where rmtt is the short rate, πt is inflation, πmt is the inflation target, gt is the output

gap, rmt is the optimal level of the short rate for the case when inflation and output

gaps are zero, αmt and βmt are policy response coefficients to inflation and output

5



gaps, respectively, and ut is a monetary policy shock. Superscript mt denotes the

monetary policy regime.

In this specification of the policy rule, similarly to ABDL(2010), the monetary

authority is assumed to respond to contemporaneous inflation and output gap, in

contrast to expected inflation and output gap used in some studies on the Taylor

rule (e.g. Clarida et al. (2000)). Sims and Zha (2006) argue that using expected

inflation in the policy rule may result in distorted conclusions because expected

inflation will be measured as a set of all influences on monetary policy and also

it has less variation than current nominal variables, potentially causing spuriously

scaled up response coefficients.

In our specification of the policy rule, the response coefficients to inflation and

output gaps switch between two monetary policy regimes. These monetary policy

regimes mt are governed by a two-state Markov chain with transition matrix

Πm ≡

 1− p12
m p12

m

p21
m 1− p21

m

 , (1.2.2)

where pjkm = Pr[mt = k|mt−1 = j] ∈ [0, 1].

As pointed out by ABDL(2010), if monetary shocks are correlated with infla-

tion and output, then estimation of the standard Taylor rule equation (i.e. equa-

tion (1.2.1) with single regime) does not produce consistent estimates of the re-

sponse coefficients. This correlation may be caused by contemporaneous effect of

the monetary shocks on macroeconomic variables. However, Ang, Dong, and Pi-

azzesi (2007b), Bikbov and Chernov (2008), and ABDL(2010) show that ut can be

6



identified by utilizing the information in the entire term structure of interest rates

through a no-arbitrage restriction.

1.2.2 Factor dynamics

Similarly to many studies on the term structure of interest rates in the macro-

finance literature (e.g., Ang and Piazzesi (2003); Ang et al. (2007b); and Bikbov

and Chernov (2008)), we describe the dynamics of bond prices by three factors

ft = (ut , πt, gt)
′
, two of which are observable macro variables and one is a latent

variable. The latent variable, denoted by ut , is interpreted as a monetary policy

shock in the Taylor rule equation. The factor dynamics are assumed to follow a

regime-dependent Gaussian vector autoregressive process and can be described by

ft+1 − dmt+1 = G (ft − dmt) + Lvt+1εt+1 , εt+1 ∼ N3×1(0, I) , (1.2.3)

where G is 3×3 matrix; Lvt+1 is the lower-triangular Cholesky decomposition of Ωvt+1

matrix that denotes the variance-covariance matrix of the factor shocks, dmt is the

mean of factors within each monetary policy regime. We assume that the factors

volatilities can change their values between “low” and “high” volatility regimes

denoted by vt and governed by a two-state Markov-switching process with transition

probability matrix

Πv ≡

 1− p12
v p12

v

p21
v 1− p21

v

 . (1.2.4)

By setting the persistence parameter matrix G to be regime-independent we avoid

having potential changes in persistence influence the identification of the monetary

7



policy regimes.2

1.2.3 Market price of risk

To model risk premia for long rates, we specify the market price of risk to have

a time-varying form. Similarly to Ang et al. (2008), the market price of risk is

assumed to have the regime-switching and essentially affine in the factors form:

Λlt+1
t = λlt+1

0 + λf ft , (1.2.5)

where λf is a 3× 3 matrix and λlt+1

0 is 3× 1 vector, which switches between “high”

and “low” price of risk regimes denoted by lt and governed by a two-state Markov-

switching process with transition matrix

Πl ≡

 1− p12
l p12

l

p21
l 1− p21

l

 . (1.2.6)

As we show in Section 1.4, accounting for the regime-switching in λlt+1

0 con-

siderably improves the data fitting. It provides grater flexibility for the model to

generate plausible time-variation in risk premium in contrast to the time-variation

in the price of risk that is originated only from the factors. For tractability we

assume that the matrix λf is regime independent.

2The persistence of latent factor and inflation could be assumed to be policy dependent. Watson
(1999) finds that persistence of the short rate increased over the two sample periods: 1965-1978
and 1985-1998. For the sample period considered in our study, preliminary estimates of the model
with regime-switches in persistence parameters indicates that the estimates of these parameters
are close to each other in the two identified monetary policy regimes.

8



1.2.4 Bond Prices

The monetary policy (mt), volatility (vt), and price of risk (lt) regime processes are

assumed to be independent from each other for the sake of tractability. Because

each regime process has two regimes, the aggregate regime process denoted as st

has eight regimes:

st 1 2 3 4 5 6 7 8

lt 1 1 1 1 2 2 2 2

vt 1 1 2 2 1 1 2 2

mt 1 2 1 2 1 2 1 2

(1.2.7)

where the transition probability matrix of the joint process is given by Π = Πl ⊗

Πv ⊗ Πm.

Bond pricing with a no-arbitrage restriction is derived by assuming the existence

of a stochastic discount factor κt,t+1 = κ(ft, st; ft+1, st+1) that establishes a recursion

for pricing bonds of different maturities:

P st
τ,t = E

[
κt,t+1P

st+1

τ−1,t+1|ft, st
]
, (1.2.8)

where P st
t,τ denotes the price of bond at time t in regime st that matures at period

(t + τ) and E is an expectation operator. Note that this expectation is conditional

on the current factors and regimes since they are assumed to be known to agents.

Meanwhile, the future values of the factors and regimes are unknown and follow the

stochastic processes described in the previous subsections, and thus the expectation

9



is over the future uncertainties. However, the whole time path of the factors and

regimes (even the past values of the latent factor and regimes) are not observable

to econometricians and to be estimated.

In order to impose the no-arbitrage condition, we follow Ang et al. (2008) and

assume that the stochastic discount factor has the form3:

κt,t+1 = exp

(
−rstt −

1

2
Λst+1′
t Λst+1

t − Λst+1′
t εt+1

)
, (1.2.9)

where Λst+1
t is given by equation (1.2.5).

The logarithms of bond prices are assumed to be affine in the factors and they

depend on three regime processes:

logP st
τ,t = −Astτ −Bst′

τ ft , (1.2.10)

where Astτ and Bst
τ are regime specific coefficients a the bond of maturity τ .

In order to represent the continuously-compounded short rate as an affine func-

tion of the factors, the Taylor rule equation (1.2.1) is transformed to the form:

rstt = δst0 + δst′f ft , (1.2.11)

where it can easily be seen that δst0 = rst − αstπst and δstf =

(
1 αst βst

)′
.

3In contrast to Dai, Singleton, and Yang (2007) and Ang et al. (2010), our model specification
does not allow us to price the risk of regime shifts explicitly. Explicit pricing the regime-shift risk
in our setting would require assuming a factor process in which the next-period-regime uncertainty
does not affect the conditional distribution of factors ft+1. As discussed in Bansal and Zhou (2002),
the implication of this assumption is not consistent with the evidence reported by Hamilton (1988)
and Gray (1996). These two studies empirically show that the short-rate dynamics are successfully
described as a mixture of conditional Normal distributions.
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To solve for Ajτ and Bj
τ , we substitute for P st

t,τ and P st+1

t,τ−1 in equation (1.2.8)

and, following Bansal and Zhou (2002), we use the law of iterated expectations, the

method of undetermined coefficients, and log-linearization as discussed in Appendix

1.A. The solution has a form of recursive system:

Ajτ = δj0 +
S∑
k=1

pjk
(
Akτ−1 +

(
dk −Gdj − Lkλk0

)′
Bk
τ−1

−1

2
Bk′
τ−1L

kLk′Bk
τ−1

)
(1.2.12)

Bj
τ = δjf +

S∑
k=1

pjk
(
G− Lkλf

)′
Bk
τ−1 (1.2.13)

with the initial conditions given by Aj1 = δj0 and Bj
1 = δjf . Given this recursion, the

continuously-compounded yield for a τ -maturity zero-coupon bond is determined

by

Rst
τ,t = −1

τ
log
(
P st
τ,t

)
= astτ + bst′τ ft , (1.2.14)

where astτ = A
st
τ

τ
, bstτ = B

st
τ

τ
, and Rst

1,t = rstt . This equation and the solution for

astτ and bstτ provide a basis for estimating the model and analyzing the effects of

monetary policy regime shifts on the term structure of interest rates.

In each time period, the sequence of bond pricing by agents can be described as

follows:

Stage 1 At the beginning of time t, agents learn regime st, where the realization of st

depends on st−1 and the transition probabilities;

Stage 2 The regime st determines the corresponding model parameters θst ;

Stage 3 Given θst , the factors ft are generated by regime-specific autoregressive process

11



ft = ff (θst , ft−1) in equation (1.2.3);

Stage 4 Next, given parameters θst , one can calculate the values of Astτ and Bst
τ recur-

sively for all maturities τ based on the recursions in equations (1.2.12) and

(1.2.13);

Stage 5 Finally using ft , Astτ , and Bst
τ the agents price bonds P st

t,τ = fP (ft, A
st
τ , B

st
τ )

as in equation (1.2.10).

1.2.5 Expected Excess Return and Term Premium

This subsection presents the solution for expected excess return and term premium

implied by our model. As is well-known, the term spread, which is a difference

between long-term and short-term yields, can be decomposed into expectation hy-

pothesis and term premium components:

Rst
τ,t − rstt =

[
1

τ

τ−1∑
i=0

Et [rt+i]− rstt

]
︸ ︷︷ ︸

Expectation Hypothesis Component

+
1

τ

τ−1∑
i=1

ERst
τ+1−i,t︸ ︷︷ ︸

Term Premium

, (1.2.15)

where Et denotes an expectation operator conditional on st and ft; ERst
τ+1−i,t denotes

one-period expected excess return for the (τ + 1− i)-period bond in regime st.

The expected excess returns is derived following the approach of Dai et al.

(2007). A risk-neutral agent should be indifferent between two strategies: i) holding

a bond at time t, which matures at time period (t + 1 + τ − 1) and ii) holding one-

period bond at time t and purchasing a bond at time (t + 1) that matures at time

period (t + 1 + τ − 1). After accounting for the risk, the difference between these

12



two strategies represents the expected excess return; and therefore the one-period

expected excess return on the τ -period bond in regime st = j is given by

ERj
τ,t = E[pτ−1,t+1|st = j, ft] + pj1,t − p

j
τ,t , (1.2.16)

where pj1,t ≡ logP j
τ,t. Appendix 1.B provides details of the solution for the expected

excess return which has the form:

ERj
τ,t = −

S∑
k=1

pjk
(
Bk′

τ−1L
kΛkt +

1

2
Bk′

τ−1L
kLk′Bk

τ−1

)
. (1.2.17)

The term premium for τ -period holding is simply the average of the expected excess

returns over all maturities from 2 to τ−periods.

1.3 Estimation

1.3.1 Data

We use quarterly data on yields of zero-coupon bonds and macroeconomic variables

for the sample period of 1985:Q4 to 2008:Q4. The term structure data on eight yields

of 1, 4, 8, 12, 16, 24, 36, and 40 quarter maturities are obtained from Gurkaynak,

Sack, and Wright (2007). The yield for one-quarter Treasury bills is our measure

of the short rate. The measure of inflation is the year on year log difference in the

CPI. We follow Rudebusch and Swanson (2002) and ABDL(2010) and express the
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output gap as a percentage of the potential output as

gt =
1

4

RGDPt −RGDP p
t

RGDP p
t

, (1.3.1)

where RGDPt is real GDP in 2005 constant prices obtained from the St. Louis FED

database and RGDP p
t is potential GDP computed similarly to Ang et al. (2007b)

by applying the Hodrick and Prescott (1997) filter.4 The gap is factored by 1/4

to make estimated coefficients interpretable as coefficients for annualized interest

rates.

1.3.2 Identification restrictions

The factor dynamics and Taylor rule equation (1.2.1) are linked through identifi-

cation restrictions πmt = dmt2 and dmt3 = 0. The latter of the two restrictions is

imposed because the last factor is the output gap and one can reasonably assume

that it has to be targeted at zero independently of the monetary policy regimes.

For identification of the latent factor, dmt1 is restricted to zero in both regimes.

The inflation target πmt and optimal short rate rmt are assumed to be regime-

independent, which is a more reasonable assumption for the sample period under

consideration than if we had included the 1970s. Setting these parameters to be

regime-independent also avoids identifying monetary policy regimes by potential

switching in the mean of inflation and/or the short rate rather than switching in

the policy reaction coefficients. We also set π and r to their sample average values,

4We are not claiming that the HP filter actually captures potential output or the output gap.
However, we assume that it proxies for the Fed’s and the market’s perceptions of the output
gap. This approach is taken in other papers on Taylor rules, such as Cecchetti, Hooper, Kasman,
Schoenholtz, and Watson (2008), which applies the HP filter for real-time data.
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as in Dai et al. (2007), Bikbov and Chernov (2008), and Ang et al. (2008). Clarida

et al. (2000) also restrict the real rate to its sample average to identify the inflation

target.

To reduce the dimension of the parameter space, the variance-covariance matrix

Ωvt is constrained to be a diagonal. In this setting, interactions between factors are

determined by the G matrix. This constraint is not too restrictive given estimation

results of many studies that report statistically insignificant and, in most cases,

relatively small off-diagonal elements of the variance-covariance matrix (e.g. Ang

et al. (2007b), Chib and Kang (2009)).

It is well known that it is hard to estimate the risk parameters in small samples,

and therefore, similarly to Ang, Bekaert, and Wei (2007a), for tractability we also

constrain λf to be a diagonal matrix. This restriction is also in line with the

empirical approach of Dai et al. (2007), who constrained most of the off-diagonal

elements of the λf matrix to zero based on their preliminary estimation results.

In order to label monetary policy regime mt=1 to be “more active” with respect

to response to inflation than regime mt=2, we restrict α1 > α2. To label volatility

regime vt=1 to have higher volatility than in regime vt=2, we restrict Ω1
i,i > Ω2

i,i

for each diagonal element i. We also label market price of risk regime lt=1 to have

higher price of risk of inflation than in regime lt=2 by restricting λ1
0,2 < λ2

0,2 because

more negative value of λst0 is associated with higher price of risk.

The factor dynamics are assumed to be a stationary process by constraining all

eigenvalues of the G matrix to be less than unity in absolute value. The recursion for

Bst
τ is also restricted to be stationary to ensure that the implied yields for long-term
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bonds are non-explosive.

1.3.3 Estimation Method

No-arbitrage term-structure models are known to have a likelihood surface with

many local maxima. The problem becomes more severe in our high dimensional

parameter space. Our statistical inference is Bayesian, and to fit such models we use

the tailored randomized block Metropolis-Hasting (TaRB-MH) algorithm recently

developed by Chib and Ramamurthy (2010). The idea behind this implementation

is to update parameters in blocks where both the number of blocks and the members

of the blocks are randomly drawn within each MCMC cycle. The use of this MCMC

method is essential to improve the mixing of the draws in the context of term

structure models in which there is no natural way of grouping the parameters. For

more details about the TaRB-MH algorithm, see Chib and Ramamurthy (2010).

One important feature of our estimation method is that proposal densities are

constructed from the output of simulated annealing, described in detail in Goffe

(1996). For our problem this stochastic optimization method is more reliable than

the standard Newton-Raphson class of deterministic optimizers due to high irregu-

larity of the likelihood surface.

1.3.4 State Space Form

This subsection provides details for the state space form, which comprises the tran-

sition and measurement equations and is the basis for model estimation. The tran-

16



sition equation of the state space form is given by equation (1.2.3). To derive the

measurement equation, we follow Dai et al. (2007) and assume that one yield, in

particular the 12 quarter maturity yield (R12,t), is priced without error. This yield

is entitled basis yield. We choose the 12 quarter maturity yield to be priced without

error based on the finding in Chib and Kang (2009) that the yields in the middle

of the yield curve have the lowest variance of the measurement errors. As a result,

the pricing equation for this yield has the form:

R12,t = ast12 + bst′12 ft = ast12 + bstu,12ut + bst′m,12mt , (1.3.2)

where

bst12 =

 bstu,12

bstm,12


and mt denotes the vector of macro factors (πt, gt)

′. This assumption allows the

latent factor to be expressed in terms of observable yields and macro variables:

ut =
(
bstu,12

)−1 (
R12t − ast12 − bst′m,12mt

)
. (1.3.3)

Thus,

ft =

 ut

mt

 =

 (
bstu,12

)−1 (
R12t − ast12 − bst′m,12mt

)
mt

 . (1.3.4)
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By denoting the vector of all yields other than R12t by Rt and yt ≡ (Rt, ft)
′, the

measurement equation can be expressed as

yt =

 ast

0


︸ ︷︷ ︸

A
st

+

 b
st

I3


︸ ︷︷ ︸

B
st

ft +

 I7

03×7

 ε̃t , ε̃t ∼ iidN (0,Σ) , (1.3.5)

where Σ is the variance-covariance matrix for the measurement errors, which is

assumed to be a diagonal and regime independent, and ast and b
st

denote the vector

and matrix of all stacked astτ and bst′τ excluding ast12 and bstu,12.

1.3.5 Prior Distribution

We set the prior distributions of the model parameters based on the general ob-

servation that, on average, the yield curve is upward sloping. Following Chib and

Ergashev (2009) we simulate parameters and model-implied yield curves from the

prior distributions to ensure that our prior produces, on average, a reasonably

shaped yield curve. At the same time we set the variances of key parameter distri-

butions to be relatively large so that the distributions cover economically reasonable

values of parameters. The prior for the diagonal elements of G is based on the fact

that interest rates, inflation, and the output gap are all persistent time series. Since

λst0 and Ωst are key parameters determining the term premium, their means are set

based on the simulation outcomes of the model-implied yield curve. Full details of

the prior distributions are provided in Appendix 1.C. To show the prior implied

outcomes, we sample the parameters 25,000 times from the prior distributions and

simulate factor dynamics and yield curves. Figure 1.1 displays median, 2.5%, and
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97.5% quantile surfaces of simulated yield curves and their time series averages.

As Figure 1.1 illustrates, this simulation exercise produces, on average, a slightly

upward-sloping yield curves with substantial variation.
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Figure 1.1: The prior-implied yield curves
The graphs are based on 25,000 simulations of the parameters from the prior distributions. On

the left hand side are the 2.5%, 50%, and 97.5% quantile surfaces of the yield curves. The graph

on the right hand side is the averaged yield curve quantiles from the graph on the left hand side.

1.3.6 Posterior Distribution

The posterior distributions of parameters are simulated by Markov Chain Monte

Carlo (MCMC) methods. The joint posterior distribution to be simulated is de-

scribed by

π (θ,ST |y) ∝ f (y|θ,ST ) f (ST |θ) π (θ) , (1.3.6)

where f (y|θ,ST ) is the likelihood function for data, denoted by y comprising time

series of all yields and macro factors, given all parameters of interest θ and time

series of regimes ST = {st}t=0,1,..,T ; f (ST |θ) is the density function for regime-

indicators given the parameters; π (θ) is the prior density of the parameters.
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The MCMC procedure is discussed in detail in Appendix 1.D and summarized

as follows:

Step 1: Initialize (θ,uT ,ST ); where uT = {ut}t=0...T is the time series of the latent

factor and ST = {st}t=0...T is the time series of regimes;

Step 2: Sample θ conditional on (ST ,FT ,RT ), where FT = {ft}t=0...T is the time

series of factors and RT = {Rt}t=0...T is the time series of yields;

Step 3: Sample ST conditional on (θ,FT ,RT );

Step 4: Compute uT conditional on (θ,ST ,mT ,R12,T ) using equation (1.3.3),

where mT = {mt}t=0...T is the time series of macro factors and R12,T =

{R12,t}t=0...T is the time series of basis yield;

Step 5: Repeat Steps 2-4 (n0 + n) times, then disregard the first n0 iterations,

which are burn-in iterations, and save n draws of the parameters.

1.4 Empirical Results

1.4.1 Model comparisons

To confirm an importance of accounting for regime shifts in the monetary policy,

volatility of yield factors, and market price of risk for fitting the data, we estimate

models with different combinations of regime-processes and conduct model com-

parisons. We compare the model with the three regime-switching processes and

models with all combination of two regime-switching processes out of the three pro-

cesses using the deviance information criterion (DIC) proposed by Spiegelhalter,
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Best, Carlin, and van der Linde (2002).5 Table 1.1 confirms that the model with

the three regime-switching processes is the most supported by the data.The follow-

ing subsections discuss estimation results for this model and analyze the effects of

monetary policy regime shifts on the term structure of interest rates.

Table 1.1: The deviance information criterion (DIC) and Log likelihood

Model DIC LnL
Regimes: mt, vt, lt -11618.7 5830.4
Regimes: mt, vt -11513.6 5675.8
Regimes: mt, lt -11115.7 5608.7
Regimes: vt, lt -11446.8 5696.6

mt, vt, and lt denote regimes of monetary policy, volatility, and the market price of risk, respec-

tively. The model with the smallest value of the DIC is the most supported by the data. LnL

denotes log likelihood evaluated at the mode of the posterior distribution.

1.4.2 Parameter Estimates and Regimes

Table 1.2 reports the parameter estimates of the model. Specifically, the table

reports the posterior means of parameters and their standard deviations in paren-

theses based on 15,000 iterations of the MCMC algorithm beyond a burin-in of 5,000

iterations. To evaluate the efficiency of the MCMC-produced results, we use the

acceptance rates in the MH step of the sampler and the inefficiency factor as dis-

5The deviance information criterion (DIC) is defined as: DIC = 2 1
n

n∑
i=1

D(y, θ(i)) − D(y, θ),

where D(y, θ) = −2 log f(y|θ), θ(i) is the vector of parameters from the posterior distribution, and
θ is the mean of the posterior distribution of parameters. The model with the smallest value of DIC
is the most supported by the data. The Bayesian information criterion (BIC) gives the consistent
result for a model comparison. Alternative criterion for a model comparison, used widely in the
Bayesian literature, is the Bayes factor, which is based on the marginal likelihood. However,
given big values of log likelihoods due to the scale of the data and the model specification used
for this study, the computation of values of likelihoods is numerically infeasible. Therefore, the
majority of methods to compute marginal likelihoods based on values of likelihoods (for example,
harmonic mean estimator) cannot be used for this study. The method for estimating the marginal
log likelihood proposed by Chib and Jeliazkov (2001) is computationally costly for our study.
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cussed in Chib (2001).6 These parameters have, on average, values of 53.7 percent

and 180.0 respectively indicating good mixing.

We start the interpretation of the estimation results with analysis of the param-

eter estimates in the two monetary policy regimes. The inflation coefficients α1 and

α2, which have values of 0.18 and 0.88, respectively, are considerably different in the

two monetary policy regimes. The output gap coefficients β1 =0.63 and β2 =0.75

are also different in the two monetary policy regimes; however, this difference is not

as strong as for the inflation coefficients. Thus, the monetary policy regimes are

mainly identified by switching in the Fed’s reaction to inflation.

These coefficients are not directly comparable to those from a single-equation

Taylor rule that accounts for interest rate smoothing. The single-equation Taylor

rule with interest rate smoothing is specified as a linear combination of the target

rate and past value of the short rate as

rmtt = (1− ρ)
[
r̃mt + α̃mt (πt − πmt) + β̃mtgt

]
+ ρr

mt−1

t−1 + ξt , (1.4.1)

where ξt denotes monetary policy shocks for this specification of the policy rule. It

is easy to see that r̃mt = rmt

(1−ρ)
, α̃mt = αmt

(1−ρ)
, β̃mt = βmt

(1−ρ)
, ut = ρr

mt−1

t−1 + ξt, and it is

easy to show that ρ = G1,1.
7 After this transformation the coefficients α̃1 =3.30 and

6The inefficiency factor is defined as 1 + 2
M∑
k=1

ρ(k), where ρ(k) is the k-order autocorrelation

computed from the sampled distribution and M is a large number, which we set to be 500. Thus,
if the sampler did not mix at all then the inefficiency factor would have a value of 500. Given
this choice for M, empirically, a value of the inefficiency factor of 250 is usually considered as an
upper-bound for a reasonable level of mixing.

7We do not use the specification of the Taylor with smoothing because, in our structure, the
short rate has an affine form in the factors and also the latent factor is identified from the VAR(1)
dynamics rather than from the single short-rate equation.

22



Table 1.2: Parameter estimates

(a) Monetary Policy
α1 α2 β1 β2

0.178 0.882 0.628 0.750
(0.098) (0.164) (0.167) (0.226)

(b) G matrix
G

0.946 0.006 0.016
(0.030) (0.010) (0.026)
-0.039 0.958 0.041
(0.036) (0.023) (0.046)
0.133 0.014 0.838

(0.036) (0.030) (0.039)

(c) Factors’ Volatilities ×400
L1 L2

0.692 0.688 0.411 0.739 1.154 0.668
(0.065) (0.060) (0.053) (0.068) (0.164) (0.097)

(d) Measurement Errors’ Volatilities ×400
σ1 σ2 σ3 σ4 σ5 σ6 σ7

0.438 0.174 0.052 0.026 0.064 0.115 0.132
(0.038) (0.015) (0.004) (0.002) (0.006) (0.009) (0.011)

(e) Market Price of Risks
λ1

0 λ2
0 λf

0.237 -0.342 -0.374 0.193 -0.442 -0.498 0.314 0.733 0.251
(0.060) (0.086) (0.155) (0.076) (0.103) (0.176) (1.997) (1.974) (1.837)

(f) Transition Probabilities
p11
m p22

m p11
v p22

v p11
l p22

l

0.988 0.986 0.943 0.959 0.978 0.975
(0.004) (0.004) (0.016) (0.016) (0.007) (0.009)

The Table reports posterior means and their standard deviations in parentheses based on 15,000

posterior draws beyond 5,000 draws as a burn-in.

α̃2 =16.33 both have values grater than unity, and therefore they do not potentially

create a risk of indeterminacy of the equilibrium.8 Given this result, the regime with

8As discussed in Clarida et al. (2000), if the inflation coefficients are below unity, then increase
in expected inflation causes a decline in the real interest rate. The decline in the real interest
rate leads to growth in aggregate consumption, which consequently leads to further increase in
inflation.
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the smaller inflation coefficient is entitled a “less active” monetary policy regime

and the one with the bigger coefficient, a “more active” regime. The transformed

coefficients for the output gap β̃1 and β̃2 have values of 11.63 and 13.89, respectively.

In our model structure, the policy response coefficients are responsible for fitting the

short rate as well as the long-term interest rate through a no-arbitrage restriction

rather than only the short rate in the single-equation Taylor rule. Therefore, this

model structure can lead to different estimates of the coefficients than those from

the single-equation model.9

Figure 1.2 displays the probabilities of regimes for all three regime processes. In

general, the monetary policy regimes are well-identified and very persistent through-

out the sample period with 99 percent probabilities of staying in the same regime

from quarter to quarter, as reported in Table 1.2. The period from 1986 through

1994 is characterized by the “more active” monetary policy regime. In this period,

inflation was, on average, relatively high and the Fed was adjusting the short rate

relatively close to inflation and output gap dynamics. The period from 1995 through

2000, where the “less active” monetary policy regime prevails, is characterized by

the relatively stable short rate and inflation, while the output gap was steadily in-

creasing in magnitude. At the beginning of 2001, when the recession hit the U.S.

economy, the Fed responded to the decline in output and inflation by reducing the

short rate and switching to the “more active” policy regime, which lasted until 2004.

In the period from 2002 through 2004, inflation remained, on average, relatively low

and the Fed kept the short rate at a low level to accommodate the still low out-

9Although the estimates of the policy response coefficients for inflation and output gap after
transformation are higher than those often reported from a single-equation Taylor rule model,
they are of the same magnitude as those reported by ABDL(2010) for their specification of a
no-arbitrage model.
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put gap. The identification of the monetary policy regime in this period as “more

active” is also affected by the increased term spread. As we noted above, in the

no-arbitrage framework, the Taylor rule coefficients are identified by the short rate

as well as the slope of the yield curve.

Identification of monetary policy as “less active” for the period from the mid-

dle of 2004 through 2005 is also affected by the slope of the yield curve. In this

period, entitled a “conundrum” by then-Fed Chairman Alan Greenspan, the long-

term yields slightly declined while the short rate was steadily increasing from 1

percent to around 4 percent. These dynamics of the yield curve, as discussed by

Rudebusch, Swanson, and Wu (2006) in detail, are perceived to be unusual given

economic expansion, the falling unemployment rate, and the increasing fiscal gap,

which all normally correspond a higher long rate. Similar to Kim and Wright (2005),

our results suggest that the term premium, displayed in Figure 1.3, was low in this

period. While this result suggests that part of the “conundrum” can be related to

a decline in the term premium, full assessment of its contribution to the pricing

anomaly is beyond the scope of this study.10

The volatility estimates of exogenous shocks to all factors, reported in Table

1.2 suggest that identification of the volatility regimes is presumably driven by

the volatility of inflation shocks. The volatility estimates for the inflation shocks

factored by 400 have values of 0.69 and 1.15 - the values with the largest difference in

the two volatility regimes among all factors. The transition probabilities of staying

10Kim and Wright (2005) finds that the decline in term premium is a key factor explaining the
“conundrum”. In contrast, Rudebusch et al. (2006) find that no arbitrage macro-finance models
are not able to explain it. They consider macroeconomic factors other than those included in the
macro-finance models and find that declines in long-term bond volatility may explain a part of
the “conundrum”.
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Figure 1.2: The Probabilities of monetary policy, volatility, and risk
regimes
Graph (a) displays the time series of the short rate, inflation and the output gap; graphs (b), (c),

and (d) display probabilities of regimes in “more active” monetary policy, “high” volatility, and

“high” price of risk, respectively. Shaded areas correspond to NBER recession dates.26



in the same volatility regime are estimated at 94 and 98 percent for the “low” and

“high” volatility regimes, respectively.

The bottom graph of Figure 1.2 displays probabilities of the “high” price of risk

regime based on switching of risk parameters λst+1

0 . While risk parameter Λt,t+1 has

the continuously time-varying component as a function of the factors, one can see

from this graph and Figure 1.3 that the regime-switching of the risk parameters is

closely related to the term spread dynamics, indicating the importance of its regime-

switching for better fitting of the term structure of interest rates. Also, as we pointed

earlier, the model comparisons suggest that accounting for the regime-switching of

the risk parameters considerably improves the data fitting by the model.

Figure 1.3: The Term Premium
The figure displays the model-implied term premium and the term spread for 10-year bonds.

Shaded areas corresponds to NBER recession dates.

1.4.3 Monetary Policy Regimes and the Yield Curve

Figure 1.4 displays the average realized yield curves in the two monetary policy

regimes. The left-hand-side graph demonstrates that the average yield curves in

the two regimes mainly differ in terms of their long rates and slopes. In particular,
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while the average short rates in two regimes are close to each other, the long rate
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Figure 1.4: Average realized yield curves
The graphs are constructed using the term structure of interest rates computed at each iteration

of the posterior distribution and then separately averaging them over the two monetary policy

regimes. Graphs (b) and (c) display the average and 2.5%, and 97.5% quantile yield curves in the

two monetary policy regimes.

in the “more active” regime is, on average, 129 basis points higher than in the “less

active” regime, resulting in a considerably steeper sloped yield curve, on average,

in the “more active” regime. This result suggests that long-term yields are more

sensitive to monetary policy shifts than the short-rate, which is in line with findings
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of ABDL(2010) and can be explained as follows. Because the policy coefficients

switch to higher values in response to greater macroeconomic factor risk in the

“more active” regime, they also magnify this risk for the long-term yields through

a no-arbitrage restriction. The middle- and right-hand-side graphs of Figure 1.4

demonstrate that the short rate in the “more active” regime was considerably more

volatile than in the “less active” regime. The sample standard deviation of the

short rate in the “more active” regime is 2.48 percent compared to 1.39 percent in

the “less active” regime. In general, the yield curve in the “more active” regime

is more volatile than in the “less active” regime with the standard deviations of

the long-term yields of 1.65 and 1.10 percent in the “more active” and “less active”

regimes, respectively. In summary, these results can be explained by a more sensitive

response of the short rate to inflation in the “more active” regime that creates

higher risk for the future short rate fluctuations. This risk drives the higher long-

term rate relative to the short rate. Thus, the Fed faces a policy trade-off between

a “more active” reaction to macroeconomic fluctuations and a more volatile yield

curve caused by this reaction. This argument is consistent with Woodford (1999),

who claims that it may be more optimal for the monetary authority to conduct

policies that do not require the short rate to be too volatile.

To see what effect monetary policy would have had on the term structure of

interest rates if a single regime were maintained throughout the sample, we conduct

a counterfactual analysis. Figure 1.5 displays the short and long rates and the

term spreads generated by fixing parameters to one of the two monetary policy

regimes. Throughout most of the sample, the short rate in the “more active” regime

would have been more volatile than in the “less active” regime. The long rate and
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Figure 1.5: Counterfactual short rates, long rates, and term spreads
The time series of counterfactual interest rates are simulated by fixing parameters to one of the

two monetary policy regimes.
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consequently the term spread would have been higher than the actual ones in those

periods when the regime was “less active”.

1.5 Conclusion

In this paper, we proposed a no-arbitrage affine term structure model with regime

shifts in monetary policy, factor volatilities, and the price of risk. This model

allowed us to quantitatively assess the influence of monetary policy regime shifts on

the entire term structure of interest rates.

We found that, in the “more active” monetary policy regime, the slope of the

yield curve was steeper than in the “less active” regime. Also, the short rate and

the entire yield curve in general were more volatile in the “more active” regime

than in the “less active” regime. The explanation for these results is that a higher

sensitivity of the short rate in response to inflation fluctuations in the “more active”

regime leads to a higher term premium in anticipation of a more volatile future

short rate. These results also suggest that the Fed faces a policy trade-off between

a “more active” reaction to macroeconomic fluctuations and a more volatile yield

curve caused by this reaction.
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Appendices

1.A Bond Pricing

We solve for Ajτ and Bj
τ using the law of iterated expectatios, method of undeter-

mined coefficients, and log-linearization:

P st
t,τ = E

[
exp

(
−rstt −

1

2
Λst+1′
t Λst+1

t − Λst+1′
t εt+1

)
P st+1

τ−1,t+1|ft, st
]

1 = E

[
exp

(
−rjt −

1

2
Λst+1′
t Λst+1

t − Λst+1′
t εt+1

)
P st+1

τ−1,t+1

P j
τ,t

|ft, st = j

]

=
S∑
k=1

pjkE

[
exp

(
−rjt −

1

2
Λk′t Λkt − Λk′t εt+1

)
P k
τ−1,t+1

P j
τ,t

|ft, st = j, st+1 = k

]

=
S∑
k=1

pjkE

exp

 −rjt − 1
2
Λk′t Λkt − Λk′t εt+1

+Ajτ + Bj′
τ ft − Akτ−1 −Bk′

τ−1ft+1

 |ft, st = j, st+1 = k


=

S∑
k=1

pjk

 exp
(
−rjt − 1

2
Λk′t Λkt + Ajτ − Akτ−1 + Bj′

τ ft −Bk′
τ−1µ

j,k
t

)
×E

[
exp
(
−
(
Λk′t + Bk′

τ−1L
k
)
εt+1

)
|ft, st = j, st+1 = k

]
 (1.A.1)

=
S∑
k=1

pjk

exp

 −rjt − 1
2
Λk′t Λkt + Ajτ − Akτ−1 + Bj′

τ ft −Bk′
τ−1µ

j,k
t

+ 1
2

(
Λk′t + Bk′

τ−1L
k
) (

Λk′t + Bk′
τ−1L

k
)′


 (1.A.2)

=
S∑
k=1

pjk exp

 −rjt + Ajτ − Akτ−1 + Bj′
τ ft

−Bk′
τ−1µ

j,k
t + Bk′

τ−1L
kΛkt + 1

2
Bk′
τ−1L

kLk′Bk
τ−1

 (1.A.3)
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≈
S∑
k=1

pjk


−δj0 − δ

j′
f ft + Ajτ − Akτ−1 + Bj′

τ ft

−Bk′
τ−1d

k −Bk′
τ−1G (ft − dj)

+Bk′
τ−1L

k
(
λk0 + λf ft

)
+ 1

2
Bk′
τ−1L

kLk′Bk
τ−1 + 1

 . (1.A.4)

(1.A.1) is transformed into (1.A.2) using the property of moment generating function

for Normally distributed εt+1:

ϕjkt (x) ≡ E [exp (x′εt+1) |ft, st = j, st+1 = k] = exp(
x′x

2
) , x ∈ R3

evaluated at x = −
(
Λk′t + Bk′

τ−1L
k
)′
. Following Bansal and Zhou (2002), (1.A.3) is

transformed into (1.A.4) using log-approximation exp (y) ≈ y + 1 for a sufficiently

small y and substituting for rjt using equation (1.2.11).

Using above result for the bond pricing equation and collecting terms for ft:

0 =
S∑
k=1

{
pjkE

[
exp

(
−rjt −

1

2
Λk′t Λkt − Λk′t εt+1

)
P τ−1
t+1,k

P τ
t,j

|ft, st = j, st+1 = k

]}
− 1

≈
S∑
k=1

pjk

 −δj0 − δj′f ft + Ajτ − Akτ−1 + Bj′
τ ft −Bk′

τ−1d
k −Bk′

τ−1G (ft − dj)

+Bk′
τ−1L

k
(
λk0 + λf ft

)
+ 1

2
Bk′
τ−1L

kLk′Bk
τ−1


=

S∑
k=1

pjk

 −δj0 + Ajτ − Akτ−1 −Bk′
τ−1d

k + Bk′
τ−1Gd

j

+Bk′
τ−1L

kλk0 + 1
2
Bk′
τ−1L

kLk′Bk
τ−1


+

S∑
k=1

pjk
(
−δj′f + Bj′

τ −Bk′
τ−1G + Bk′

τ−1L
kλf
)

ft .

The above identity has to be true for every value of ft , which will be the case only
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if the first and second terms are 0:

0 =
S∑
k=1

pjk

 −δj0 + Ajτ − Akτ−1 −Bk′
τ−1d

k + Bk′
τ−1Gd

j

+Bk′
τ−1L

kλk0 + 1
2
Bk′
τ−1L

kLk′Bk
τ−1


and

0 =
S∑
k=1

pjk
(
−δj′f + Bj′

τ −Bk′
τ−1

(
G− Lkλf

))
.

This leads to the solution for Ajτ and Bj
τ in the form of recursive system:

Ajτ = δj0 +
S∑
k=1

pjk
(
Akτ−1 +

(
dk −Gdj − Lkλk0

)′
Bk
τ−1 −

1

2
Bk′
τ−1L

kLk′Bk
τ−1

)

Bj
τ = δjf +

S∑
k=1

pjk
(
G− Lkλf

)′
Bk
τ−1 .

To derive the initial conditions for Aj0 and Bj
0, we let τ = 0. Given P j

τ,t =

exp(−τrjt ), we have P j
0,t = exp(−0 × rjt ) = 1. From P τ

j,t = exp(−Ajτ − Bj′
τ ft) for

τ = 0 : 1 = P j
0,t = exp(−Aj0 − B

j′
0 ft) has to be true for every ft, therefore Aj0 = 0

and Bj
0 = 0, consequently Aj1 = δj0 and Bj

1 = δjf .

1.B Expected Excess Return

The one-period expected excess return on the n-period bond:

ERj
τ,t = E[pτ−1,t+1|ft, st = j] + pj1,t − p

j
τ,t ,
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where pjτ,t and pj1,t are log prices of bonds derived in the following ways:

pjτ,t = logP j
τ,t = logE

[
exp

(
−rjt −

1

2
Λk′t Λkt − Λk′t εt+1

)
Pτ−1,t+1|ft, st = j

]
= −rjt + log

(
S∑
k=1

pjkE
[

exp

(
−1

2
Λk′t Λkt − Λk′t εt+1

)
P k
t+1,τ−1|ft, st = j, st+1 = k

])

= −rjt + log

 S∑
k=1

pjkE

 exp(−1
2
Λk′t Λkt − Λk′t εt+1

−Akτ−1 −Bk′
τ−1ft+1)|ft, st = j, st+1 = k




= −rjt + log

 ∑S
k=1 p

jk exp
(
−1

2
Λk′t Λkt − Akτ−1 −Bk′

τ−1µ
j,k
t

)
×E

[
exp(−

(
Λk′t + Bk′

τ−1L
k
)
εt+1)|ft, st = j, st+1 = k

]


= −rjt + log

 S∑
k=1

pjk exp

 −Akτ−1 −Bk′
τ−1µ

j,k
t

+Bk′
τ−1L

kΛkt + 1
2
Bk′
τ−1L

kLk′Bk
τ−1




and

pjt,1 = log
(
exp
(
−rjt

))
= −rjt .

Then the expected value of the log price is given by

E[pτ−1,t+1|ft, st = j] =
S∑
k=1

pjkE[pkτ−1,t+1|ft, st = j, st+1 = k]

=
S∑
k=1

pjk
(
−Akτ−1 −B

k′

τ−1E [ft+1|ft, st = j, st+1 = k]
)

=
S∑
k=1

pjk
(
−Akτ−1 −B

k′

τ−1µ
j,k
t

)
.

Next, the expected excess return is derived in the following way:

E[pτ−1,t+1|ft, st = j] + pj1,t − p
j
τ,t
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=
S∑
k=1

pjkt

(
−Akτ−1 −B
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j,k
t

)
− rjt

−

−rjt + log

 S∑
k=1

pjk exp

 −Akτ−1 −Bk′
τ−1µ

j,k
t + Bk′

τ−1L
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+ 1
2
Bk′
τ−1L

kLk′Bk
τ−1



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(
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k′

τ−1µ
j,k
t

)

− log
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τ−1µ

j,k
t + Bk′

τ−1L
kΛkt

+ 1
2
Bk′
τ−1L

kLk′Bk
τ−1


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≈
S∑
k=1
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−Akτ−1 −B

k′

τ−1µ
j,k
t

)

− log
S∑
k=1

pjk

 −Akτ−1 −Bk′
τ−1µ

j,k
t + Bk′

τ−1L
kΛkt

+ 1
2
Bk′
τ−1L

kLk′Bk
τ−1 + 1


≈

S∑
k=1

pjkt

(
−Akτ−1 −B

k′

τ−1µ
j,k
t

)

−
S∑
k=1

pjk

 −Akτ−1 −Bk′
τ−1µ

j,k
t + Bk′

τ−1L
kΛkt

+ 1
2
Bk′
τ−1L

kLk′Bk
τ−1


= −

S∑
k=1

pjk
(
Bk′

τ−1L
kΛkt +

1

2
Bk′

τ−1L
kLk′Bk

τ−1

)
.

To derive the above result, we applied log-linearization for exp (y) and log (x).

The argument of the exponent is a return, which is a sufficiently small number,

therefore it can be approximated as exp (y) ≈ y + 1.
∑S

k=1 p
jk (y + 1) ≡ x is a

number sufficiently close to 1, therefore it can be approximated as log (x) ≈ x− 1.
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1.C Details for the Prior Distributions

First, we describe the approach for estimating the transition probabilities.We esti-

mate the transition probabilities separately for each regime process as functions of

Normally distributed parameters

pjkrg =
1

1 + exp
(
ηjkrg
) , j 6= k , (1.C.1)

which truncates the transition probability values to be within 0 and 1 bounds.

We assume that all parameters, denoted as θ, are distributed independently from

each other. Table 1.3 provides detail for the prior distributions of the parameters.

We set the prior for all variances to be defuse to ensure that the prior implied yield

curve and the factor processes have considerable variations. Parameters Ω1, Ω2, Σ

are reparameterized using coefficients

dΩ =

(
5× 105 5× 105 7× 104

)
(1.C.2)

and

dΣ =

(
7× 105 4× 106 3× 107 6× 107 107 107 107

)
. (1.C.3)
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Table 1.3: Prior distributions

Parameter density mean Std.
α1, α2 normal 0.40 0.40 1.00 1.00
β1, β2 normal 0.30 0.30 1.00 1.00
G normal 0.80 0.00 0.00 0.20 0.10 0.10

0.00 0.80 0.00 0.10 0.20 0.10
0.00 0.00 0.80 0.10 0.10 0.20

λ1
0 normal -0.10 -0.10 -0.10 0.30 0.30 0.30
λ2

0 normal -0.10 -0.10 -0.10 0.30 0.30 0.30
λf normal 1.00 1.00 1.00 2.00 2.00 2.00

η12
m , η

21
m normal 3.48 3.48 0.50 0.50 0.50

η12
v , η

21
v normal 3.48 3.48 0.50 0.50 0.50

η12
λ , η

21
λ normal 3.48 3.48 0.50 0.50 0.50

dΩ × Ω1, dΩ × Ω2 defuse prior 1.10 1.10 0.23 0.23
dΣ × Σ defuse prior 1.00 0.17

All elements of the reparameterized dΩ × Ω1, dΩ × Ω2, and dΣ × Σ matrices have the same prior

means and standard deviations within each matrix stated in the Table, where dΩ and dΣ are

defined by (1.C.2) and (1.C.3).

1.D MCMC Sampling

This Section provides details of the MCMC algorithm summarized in Section 1.3.6

and the construction of the likelihood function.

Step 2: Sampling θ

Parameters θ conditional on (ST ,FT ,RT ) are sampled using the Metropolis-

Hastings (MH) algorithm. Because it is difficult to find an optimal parameter

blocking scheme due to the high dimension of parameter space of the model, we use

the tailored randomized block M-H (TaRB-MH) method developed by Chib and

Ramamurthy (2010). The general idea of this method is in setting a number and

composition of blocks randomly in each sampling iteration. We let the proposal

density q (θi|θ−i,y) for parameters θi in the ith block, conditional on the value of
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parameters in the remaining blocks θ−i to take the form of a multivariate student t

distribution with 15 degrees of freedom

q (θi|θ−i,y) = St
(
θi|θ̂i, Vθ̂i ,15

)
,

where

θ̂i = arg max
θi

ln{f(y|θi, θ−i,ST)π(θi)}

and Vθ̂i =

(
−∂

2 ln{f(y|θi, θ−i,ST)π(θi)

∂θi∂θ′i

)−1

|θi=θ̂i
.

Following Chib and Kang (2009) and Chib and Ergashev (2009), we solve numerical

optimization problem using the simulated annealing algorithm, which has better

performance in this problem than deterministic optimization routines due to high

irregularity of the likelihood surface.

Next, we draw a proposal value θ†i from the multivariate student t distribution

with 15 degrees of freedom, mean θ̂i and variance Vθ̂i . If the proposed value does not

satisfy the model imposed constrains, then it is immediately rejected. The proposed

value, satisfying the constraints, is accepted as the next value in the Markov chain

with probability

α
(
θ

(g−1)
i ,θ†i |θ−i,y

)
= min

 f
(
y|θ†i , θ−i,ST

)
π
(
θ†i

)
f
(
y|θ(g−1)

i , θ−i,ST

)
π
(
θ

(g−1)
i

) St
(
θ

(g−1)
i |θ̂i, Vθ̂i ,15

)
St
(
θ†i |θ̂i, Vθ̂i ,15

) , 1

 ,

where g is an index for the current iteration. The completed simulation of θ in the
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gth iteration with hg blocks produces sequentially updated parameters in all blocks:

π (θ1|θ−1, y,ST ) , π (θ2|θ−2, y,ST ) , ..., π
(
θhg |θ−hg , y,ST

)
.

Now we derive the log-likelihood function conditional on θ and ST , which has the

form:

log f (y|θ,ST ) =
T∑
t=1

log f(yt|It−1, θ,ST ) ,

where It−1 = {yn}t−1
n=0 denotes the information set available for the econometricians

at time t-1. Given the model specification, yt conditional on st−1 = j, st = k, It−1,

and θ is distributed Normally with the mean and variance defined as

yjkt|t−1 ≡ E [yt|st−1 = j, st = k, It−1, θ] = A
k

+ B
k
µj,kt−1

V jk
t|t−1 ≡ V ar [yt|st−1 = j, st = k, It−1, θ] = B

k
LkLk

′
B
k′

+

 Σ 0

0 0


︸ ︷︷ ︸

W

.

Thus, the conditional density of yt becomes

f (yt|st−1 = j, st = k, It−1, θ) =
1

(2π)
10/2 |V jk

t|t−1|1/2

(
−1

2

(
yt − yjkt|t−1

)′
[
V jk
t|t−1

]−1 (
yt − yjkt|t−1

))
. (1.D.1)

Step 3: Sampling regimes ST

Regimes ST are sampled from f (ST |IT , θ) in a single block in backward order.

First, the regime probabilities conditional on It and θ are obtained by applying the
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filtering procedure developed by Hamilton (1989) as follows:

Step 1: Probabilities of regime s0 conditional on available information at time t = 0

and parameters are initialized at unconditional probabilities of regimes de-

noted by psteady−state:

Pr (s0|I0, θ) = psteady−state .

Step 2: The joint density of st−1 and st conditional on information at time t− 1 and

parameters is given by

Pr (st−1 = j, st = k|It−1, θ) = pjk Pr (st−1 = j|It−1, θ) . (1.D.2)

Step 3: Then, the density of yt conditional on information at time t−1 and parameters

is given by

f (yt|It−1, θ) =
∑
j,k

f (yt|st−1 = j, st = k, It−1, θ) Pr (st−1 = j, st = k|It−1, θ) ,(1.D.3)

where the first and second terms are given by equations (1.D.1) and (1.D.2),

respectively.

Step 4: The joint density of st−1 and st conditional on information at time t and

parameters is obtained by using the Bayes rule:

Pr (st−1 = j, st = k|It, θ) =
f (yt, st−1 = j, st = k|It−1, θ)

f (yt|It−1, θ)

=
f (yt|st−1 = j, st = k, It−1, θ) Pr (st−1 = j, st = k|It−1, θ)

f (yt|It−1, θ)
,
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where the first and second terms of the nominator are given by equations

(1.D.1) and (1.D.2) and the denominator is given by equation (1.D.3).

Step 5: By integrating out regime st−1 we obtain the probabilities of regime st condi-

tional of information at time t and parameters:

Pr (st = k|It, θ) =
∑
j

Pr (st−1 = j, st = k|It, θ) .

Next, the regimes are drawn backward based on regime probabilities. In partic-

ular, regime sT is sampled from Pr (sT |IT , θ) and then for t from T-1 to 1 regimes

are sampled from probabilities computed sequentially backward as

Pr (st = j|It, st+1 = k, θ) =
Pr (st+1 = k|st = j) Pr (st = j|It, θ)
n∑
j=1

Pr (st+1 = k|st = j) Pr (st = j|It, θ)
,

where n is the total number of regimes.

42



Chapter 2

Predicting Output Using the Entire Yield Curve

2.1 Introduction

There are numerous papers which explore the question: “What information does the

yield spread contain about future real economic activity?” These studies are based

on the intuition that, when agents price assets, they take into account expectations

about future states of the economy, and therefore interest rates potentially contain

useful information about future economic growth. Estrella and Hardouvelis (1991)

find evidence that the U.S. government bond yield spread contains information

about future U.S. real economic activity at horizons of up to four years. Estrella

and Mishkin (1997) confirm that the yield spread has the predictive power for real

economic activity in the United States and in a number of European countries.

Wheelock and Wohar (2009) provide a comprehensive survey of the literature on

the predictive power of the term spread for output growth.

In most of the previous literature on the predictive power of yield curve for

real economic activity, researchers have considered simple OLS regressions of future

output on a yield spread defined as the difference between a specific long-term

government bond rate and a short-term T-bill rate. Although this approach has the
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advantage of its simplicity, it does not have enough flexibility to use the information

contained in the entire term structure of interest rates.

In this paper, I propose an approach to predicting output based on information

contained in the entire yield curve. In particular, I examine the predictive power

of the yield curve for real output by jointly modeling real GDP growth and yield

curve using the dynamic yield curve model proposed by Diebold and Li (2006)

(hereafter DL(2006)). This model, which I refer to as the “NS dynamic yield curve

model” for the purpose of this study, is based on the Nelson and Siegel (1987)

three-latent-factor framework. The choice of the NS dynamic model for this study

is driven by its relative parsimony compared to other yield curve models and its good

out-of-sample forecasting performance for future yields. The model describes the

entire term structure of interest rates using only three factors. DL(2006) introduce

dynamics to the evolution of these factors and show that the NS dynamic model

has more accurate in-sample fit and produces better forecasts of future yields at

long horizons relative to other simple models. In terms of predicting output, the

NS dynamic model has two advantages over the yield spread framework: (i) the

model contains information about the entire term structure of interest rates and (ii)

real GDP growth can be modeled jointly with yields in a parsimonious way using

the endogenously-defined three factors. Another potential choice of term structure

modeling would be the affine arbitrage-free class of models, which is popular in

finance literature. However, as reported by Duffee (2002), arbitrage-free models

produce poor out-of-sample forecasts of future yields.

Ang, Piazzesi, and Wei (2006) (hereafter APW(2006)) study the predictive

power of the short-term yield and yield spread for real GDP growth using an affine
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arbitrage-free dynamic yield curve model. Their approach is based on modeling real

GDP growth jointly with an exogenously-defined short-term yield and yield spread

and imposing no-arbitrage constraints on the pricing of bonds. They find, in con-

trast to the previous findings in the literature on the predictive power of the yield

curve for output, that the short-term interest rate has more predictive power for

the GDP growth than the yield spread. The authors also report that imposing no-

arbitrage restriction only marginally improves forecasts of GDP. Huang, Lee, and

Li (2006) also analyze the gains from using information in the entire yield curve for

output and inflation in their forecast combination study. They find that combining

forecasts, where each individual forecast uses information in the yield curve, can

improve forecasts of output growth and inflation. Chauvet and Senyuz (2009) con-

struct a common factor from information in the yield curve to improve forecasts of

output and recessions.

The focus of my analysis is to find out whether forecasting output using the

entire yield curve is better than using a yield spread forecasting model. For this

analysis, I perform pseudo out-of-sample forecast comparisons for real GDP growth

based on root mean square errors (RMSEs) for the NS dynamic yield curve model

and the yield spread model based on OLS regressions of the GDP growth on a yield

spread. I consider various versions of the dynamic yield curve model in which real

GDP growth is explained by different yield factors in order to analyze marginal

impact of each of the factors on the forecasting performance.

I find that the dynamic yield curve model significantly improves out-of-sample

forecasts of real GDP growth at all horizons relative to the yield spread model. The

main source of this improvement can be attributed to the dynamic way yield factors
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and real GDP growth are modeled. Although the predictive power of the yield curve

for output is concentrated in the yield spread, there is also a gain from extracting

more information from the entire yield curve relative to a specific exogenously-

defined yield spread. In particular, there is a gain from using information in the

curvature factor for the long horizon prediction.

The rest of this paper is organized as follows. Section 2 describes the data.

Section 3 motivates and presents the traditional yield spread model and reports the

predictive power of this model for output. Section 4 describes the dynamic yield

curve model. Section 5 reports estimation results for the dynamic yield curve model.

Section 6 reports out-of-sample forecasting results and compares various versions of

the dynamic yield curve and yield spread models. Section 7 concludes.

2.2 Data

The raw interest rate data are monthly-average yields on U.S. government bonds for

maturities 3, 6, 12, 24, 36, 60, 84, 120 months obtained from the FRED database.1

The yields are constant maturity rates, except for the 3 and 6 month maturities that

are secondary market rates.2 Yield data for the maturities 3, 12, 36, 60, 120 months

1Gurkaynak et al. (2007) is another source of publicly available data on the term structure
of interest rates, which has yields for long-term bonds. These data are constructed using the
Svensson (1994) model, which is an extension of the Nelson and Siegel (1987) model. Since the
model used for my study is also based on the Nelson and Siegel (1987) model, I opt not to use
these data in order to avoid fitting the data with the approach used to generate data in the first
place.

2I use secondary market rate data for the 3 and 6 month maturities because the constant
maturity rate data for these maturities are available for a substantially shorter sample period
than the sample period that I consider for this study. I compared the secondary market 3 and 6
month maturity yield series with the constant maturity rate series for the common sample period
and found that the dynamics of the series are close to each other. Therefore, this heterogeneity in
data should not significantly affect my results.
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cover the period of 1953:04 to 2007:12, for 6 months from 1959:01 to 2007:12, for 24

months from 1976:07 to 2007:12, for 84 months from 1969:07 to 2007:12.3 Monthly

data on yields are transformed to quarterly frequency by using observations from the

last month of each quarter. Quarterly data on real GDP from 1952:Q1 to 2007:Q4

are also from the FRED database. Real GDP data are seasonally adjusted and

chained in 2000 prices. Annualized real GDP growth is calculated as the difference

of natural log output multiplied by 400. Table 2.1 reports descriptive statistics for

the yields and real GDP growth.

Table 2.1: Descriptive statistics for yields and RGDP growth

Maturities (months) Period Mean Std. Dev. Min. Max. ADF
3 1953-M04 : 2007-M12 5.11 2.79 0.64 16.30 -2.69
6 1959-M01 : 2007-M12 5.63 2.68 0.92 15.52 -2.12
12 1953-M04 : 2007-M12 5.67 2.96 0.82 16.72 -2.04
241 1976-M07 : 2007-M12 6.89 3.15 1.23 16.46 -1.21
36 1953-M04 : 2007-M12 6.07 2.82 1.47 16.22 -1.92
60 1953-M04 : 2007-M12 6.26 2.75 1.85 15.93 -1.77
841 1959-M07 : 2007-M12 7.41 2.56 2.84 15.65 -1.25
120 1953-M04 : 2007-M12 6.46 2.68 2.29 15.32 -1.60

RGDP growth 1953-Q2 : 2007-Q4 3.14 3.66 -11.02 15.46 -10.51*

RGDP growth is calculated as the difference of natural log output multiplied by 400. The Aug-
mented Dickey-Fuller (ADF) unit root test is based on SIC lag selection. The critical values for
rejection of hypothesis of a unit root are: -3.44 at 1 percent level and -2.87 at 5 percent level. The
hypothesis that yields have unit roots cannot be rejected at 5 percent level. The hypothesis that
real GDP growth has a unit root is rejected at the 1 percent level, denoted by an asterisk.

/1 Average yields of 24 and 84 month bonds are higher than those of 36 and 120 month, respec-

tively, because of the difference in sample periods.

3The data on yields have different staring dates; however, I do not extrapolate yields with
shorter sample periods to the same beginning date, as the focus of this study is predictive power
of yields on output using available information.
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2.3 Motivation

The standard explanations for why a yield spread might predict economic growth are

focused on monetary policy and the expectation hypothesis. Under the expectation

hypothesis, the term structure of interest rates is determined by agents’ expectations

of future short-term interest rates. Therefore, current long-term interest rates are

averages of expected future short-term rates. If a monetary contraction sends the

current short-term rate higher than the expected future short-term interest rate,

then today’s investment and consumption will decline causing a decline in future

economic growth. Conversely, if a monetary expansion produces low current short-

term interest rates leading to higher economic growth in future, then future short-

term interest rates are expected to increase.

Harvey (1988) proposes another explanation for why the slope of yield curve

and future economic activities can be related, which is based on the theory of

smoothing intertemporal consumption and the real term structure of interest rates.

In this setting, if agents expect that future economic activity will decline, then they

have incentive to save in the current period by selling short-term assets and buying

bonds which will pay off in the low-income period. This will lower the yields for the

bonds that will mature in the future and increase the short rate. Thus, in theory

the yield curve contains information about future economic growth.

The term premium for holding long-term bonds is also a component that con-

tributes to the determination of the term structure of interest rates in addition to

the expectation factor. APW(2006) suggest that the expectation hypothesis com-

ponent of the term structure of interest rates is the main driving force for output
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predictability. Hamilton and Kim (2002) suggest that the term premium, in addi-

tion to the expectation component, is also important for output prediction.

Most previous studies of predictive power of the yield curve for real economic

activity have employed OLS regressions of future real GDP growth rate on the yield

spread, defined as the difference between interest rates on the long-term (10 year)

treasury bond and the short-term (3 month) treasury bill:

gt,t+k = α0,k + α1,k (yt (120)− yt (3)) + εt εt ∼ N
(
0, σ2

ε

)
(2.3.1)

where gt,t+k is the annualized real GDP (RGDP) growth rate defined as

gt,t+k = 400/k (lnRGDPt+k − lnRGDPt) (2.3.2)

where yt (120) and yt (3) are interest rates on the 10-year treasury bond and the

3-month treasury bill, respectively.

Figure 2.1 plots the yield spread defined as above, along with the annualized

real GDP growth rate over subsequent four quarters. It is evident that real GDP

growth and the yield spread are positively correlated. The correlation coefficient is

0.41.

Table 2.2 reports the estimation results for the OLS regressions of future real

GDP growth on the yield spread according to equation (2.3.1), the spread and one

lag of real GDP growth, the short rate only (defined as the 3-month T-bill interest

rate), and the spread and the short rate for the period from 1953:Q2 to 2007:Q4.

The estimates for the yield spread coefficient from the yield spread regression are
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Figure 2.1: Real GDP growth and Yield Spread
This figure displays the subsequent four-quarter real GDP growth rate and the yield spread,

defined as the difference between interest rates on the 10-year Treasury bond and the 3-month

Treasury bill. Shaded areas correspond to NBER recession dates.

statistically significant for all horizons up to 12 quarters ahead and the adjusted-

R2s are considerably higher for 4 and 8 quarter horizons than for 1 and 12 quarter

horizons. The estimates for the yield spread coefficient remain robust to controlling

for one lag of real GDP growth, with an increase in the adjusted-R2 only at the one

quarter horizon. This increase can be explained by short-term persistence of real

GDP growth. I also consider the explanatory power of the short-term interest rate

for future real GDP growth. Although the short-term interest rate is statistically

significant in the regression with the short-term rate only, the adjusted-R2 of this

regression is lower than for the regression model with the yield spread only. The

yield spread remains strongly statistically significant after controlling for the short-

term rate up to 8 quarters ahead, while short-term rate remains significant only
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Table 2.2: Parameter estimates for OLS regressions of k-quarter-ahead
annualized RGDP growth on the yield spread

k Spread R
2

Spread gt−1 R
2

yt (3) R
2

Spread yt (3) R
2

α1,k α1,k α2,k α3,k α1,k α3,k

1 0.600 0.606 0.171 -0.263 0.640 -0.184
(0.239) 0.03 (0.227) (0.067) 0.06 (0.123) 0.04 (0.276) (0.133) 0.07

4 0.757 0.756 -0.007 -0.276 0.704 -0.189
(0.188) 0.15 (0.189) (0.051) 0.14 (0.097) 0.10 (0.230) (0.094) 0.21

8 0.556 0.554 -0.029 -0.173 0.474 -0.113
(0.136) 0.16 (0.137) (0.039) 0.16 (0.081) 0.09 (0.170) (0.077) 0.18

12 0.313 0.310 -0.032 -0.086 0.255 -0.054
(0.119) 0.08 (0.121) (0.030) 0.09 (0.071) 0.03 (0.138) (0.070) 0.07

Sample period: 1953:Q2-2007:Q4. Newey and West (1987) heteroskedasticity and autocorrelation

consistent standard errors are in parentheses. The spread is defined as the difference between

yields on the 10-year bond and the 3-month Treasury bill. The short rate is defined as the yield

on the 3-month Treasury bill, denoted as yt(3); α1,k, α2,k, and α3,k denote the coefficients from

respective OLS regressions; gt−1 is one lag of the annualized continuously-compounded real GDP

growth rate; R
2

denotes adjusted-R2.

at 4 quarter ahead. These results, which are in line with previous findings on the

predictive power of yield spread for output, confirm that the yield spread may be

used to predict real output.

2.4 Model

2.4.1 The Dynamic Yield Curve Model

I consider the three-latent-factor dynamic yield curve model developed by DL(2006)

based on the Nelson and Siegel (1987) framework. In this NS dynamic yield curve
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model, yields are represented by the following functional form:

yt (τ) = β1,t+β2,t

(
1− exp (−λtτ)

λtτ

)
︸ ︷︷ ︸

L2(τ,λ)

+β3,t

(
1− exp (−λtτ)

λtτ
− exp (−λtτ)

)
︸ ︷︷ ︸

L3(τ,λ)

(2.4.1)

where yt (τ) is an interest rate of zero-coupon bond with maturity τ at period

t; β1,t, β2,t, β3,t are three latent dynamic factors interpreted as level, slope, and

curvature of the yield curve; and λt is a parameter responsible for fitting yield

curve at different maturities. Small values of λt fit the yield curve better at long

maturities, while large values produce a better fit at short maturities. In this paper,

I follow DL(2006) and, for simplicity, estimate λt as a time-invariant parameter.

Therefore, its time subscript is dropped in further discussions. L2 (τ, λ) and L3 (τ, λ)

denote the loadings for factors β2,t and β3,t, respectively. The loading for factor β1,t

is 1.

The choice of the NS dynamic model is motivated by its parsimony and good out-

of-sample forecasting performance for the future yields. The alternative yield curve

model to consider for this study would be the affine arbitrage-free class of yield curve

models. However, as reported by Duffee (2002), arbitrage-free yield curve models

perform poorly out-of-sample. Also, APW(2006), who study predictive power of the

yield curve for output, find that imposing no-arbitrage restriction improves GDP

forecasting only marginally over a VAR model. As will be shown in the empirical

section, the NS dynamic model does better relative to a VAR model.

In the NS framework, the entire panel of yields is modeled by three latent factors
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with imposed structure of loadings as follows:



yt (τ1)

yt (τ2)

...

yt (τn)


=



1 L2 (τ1, λ) L3 (τ1, λ)

1 L2 (τ2, λ) L3 (τ2, λ)

...
...

...

1 L2 (τn, λ) L3 (τn, λ)




β1,t

β2,t

β3,t

+



εt (τ1)

εt (τ2)

...

εt (τn)


(2.4.2)

εt v Nn (0,Σ)

Similarly to DL(2006) and Diebold, Rudebusch, and Aruoba (2006) (hereafter

DRA(2006)), the measurement errors of yields of different maturities are assumed

to be independent from each other. Therefore, the variance-covariance matrix of

measurement errors in this equation, denoted as Σ, is a diagonal.

The latent factors are modeled as Gaussian first-order autoregressive processes:

βi,t = µi + φiβ1,t−1 + ut ut v N
(
0, σ2

i

)
for i ∈ {1, 2, 3} (2.4.3)

where σ2
i denotes the variance of error-term for the factor process βi,t.

In their study of the relationship between macro variables and the yield curve,

DRA(2006) assume that the factors are governed by a VAR(1) process, allowing

for interaction between all three factors and macro variables, and between their

shocks. However, DL(2006) report that a model with a VAR(1) factor process

forecasts yields poorly compared to a simple AR(1). My result suggests that a

model based on independent factor processes also forecasts output better than a

model with a VAR(1) factor process.

DL(2006) show that this general model can generate all possible yield curve
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shapes, has good in-sample fit, and forecasts future yields better out of sample than

other models at 6 months or longer horizons. They also show that the β1,t factor is

highly correlated with yields of different maturities. Therefore, it is interpreted as

level factor; −β2,t is highly correlated with the yield spread; and β3,t is correlated

with the curvature. In this model, all three latent factors are assumed to be sta-

tionary. As will be shown next, this model is also flexible in terms of incorporating

macro variables.

2.4.2 The Dynamic Yield Curve Model with Real GDP

growth

This subsection describes how to incorporate real GDP growth into the NS dynamic

yield curve model. Since output growth is correlated with yields and yields are

described by three factors, output growth should be correlated with the yield factors

of the model.4 Therefore, I modify the yield curve model to jointly model yields

with real GDP growth rate using the three yield factors. Previous analysis suggested

that adding lagged real GDP growth improves forecasts of output, and therefore

the modified model also controls for one lag of the real GDP growth rate. After

4DRA(2006) find evidence of interactions between the yield curve and macro variables based on
analysis of impulse response functions and variance decompositions. They do not study forecasting
performance of the macro-yield-curve model. They model macro variables as additional factors in
the state dynamics of the yield curve model.
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this modification, equation (2.4.2) has the following form:



yt (τ1)

yt (τ2)

...

yt (τn)

gt


=



0

0

...

0

µg


+



1 L2 (τ1, λ) L3 (τ1, λ)

1 L2 (τ2, λ) L3 (τ2, λ)

...
...

...

1 L2 (τn, λ) L3 (τn, λ)

γ1 γ2 γ3




β1,t

β2,t

β3,t



+



0

0

...

0

γ4gt−1


+



εt (τ1)

εt (τ2)

...

εt (τn)

εt (g)


(2.4.4)

εt v Nn+1

(
0, Σ̃

)

where gt denotes real GDP growth defined as

gt = 400 (lnRGDPt − lnRGDPt−1)

In this specification, output growth only enters into equation (2.4.4) while the

factor dynamics equations remain the same as before. Thus, in this setting, real

GDP growth is modeled only by the latent factors, which are mainly identified by

the term structure of interest rates due to the rich panel of yields. This approach

focuses on the one-way interaction from yields to macro variables. An alternative

way of incorporating output growth into the yield curve model would be to follow

DRA(2006) and add output growth to the factor process as an additional factor.
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This specification would allow for two-way interaction between output growth and

other yield factors. However, preliminary results suggested that the forecasts pro-

duced by such a model were inferior to those produced by the model in equation

(2.4.4).

2.5 In-sample Results

Estimation of the dynamic yield curve model is based on quarterly yield data for

the sample period from 1953:Q2 to 2007:Q4. I estimate the model using a one-

step Kalman filter maximum-likelihood procedure, which produces more efficient

inferences than those from the two-step estimation procedure applied by DL(2006)

and APW(2006).

The estimates of the factor process parameters, reported in Table 2.3, suggest

that β1,t is a very persistent series with an autoregressive coefficient of 0.98 and a

standard deviation for its shocks of 0.51. β2,t and β3,t are less persistent and more

Table 2.3: Parameter estimates for the factor processes

φi µi σi
for β1,t 0.981 0.112 0.514

(0.012) (0.082) (0.026)

for β2,t 0.822 -0.293 0.875
(0.038) (0.086) (0.044)

for β3,t 0.784 0.027 1.222
(0.043) (0.077) (0.064)

Sample period: 1953:Q2-2007:Q4. The parameters are denoted according to equation (2.4.3).

Standard errors of estimates are reported in parentheses.

volatile than the level factor. The Augmented Dickey-Fuller (ADF) tests for unit
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roots in β1,t, β2,t, β3,t suggest that β1,t may have unit root with p-value 0.575 while

β2,t, β3,t appear to be stationary with p-values 0.002 and <0.001, respectively. The

ADF tests for unit roots in all yields, reported in the last column of Table 2.1,

indicate that all yields may have unit roots.

Cointegration tests using the Johansen (1998) method suggest that the yields are

cointegrated with each other.5 Based on these results, I also considered a version

of the model where yields are assumed to be cointegrated unit root processes.6

Forecast results for real GDP growth in the stationary and unit root specifications

are close to each other and there is no dominant model; therefore, I focus only on

the model with the stationary specification in the remaining analysis.7

Table 2.4 reports estimates of the factor loadings for real GDP growth in the

dynamic yield curve model. In contrast to the estimation results for the yield spread

model, all estimates of the factor loadings for real GDP growth are statistically

insignificant, although they are economically significant given their point estimates

are considerably different from zero. The negative sign of the slope coefficient γ2

for real GDP growth is consistent with the interpretation of β2,t as minus the slope

of the yield curve.

The estimate of the coefficient for the lagged real GDP growth rate, denoted

as γ4, is statistically significant and its value is comparable with the estimate in

AR(1) model suggesting that the autocorrelation component remains important

5The cointegration test suggests that elements of the vector of 3, 12, 36, 120 month yields are
cointegrated with each other at a 5 percent level.

6In the unit root specification, it is assumed that β1,t is unit root process by restricting φ1 to
unity.

7The unit root dynamic yield curve model produces lower RMSEs of yields than the stationary
model at long horizons. Forecasting performances of the models for real GDP growth relative to
each other are mixed.
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Table 2.4: Parameter estimates for RGDP growth

γ1 γ2 γ3 γ4 µg
-0.145 -0.344 0.253 0.303 0.303
(0.109) (0.190) (0.162) (0.064) (0.064)

Sample period: 1953:Q2-2007:Q4. The parameters correspond to equation (2.4.4). Standard

errors of estimates are reported in parentheses.

Table 2.5: Statistics for measurement errors of yields and RGDP growth

maturity Dynamic Model OLS AR(1)
and RGDP Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

3 -0.01 1.02
12 0.16 1.02
36 0.01 0.84
60 -0.01 0.75
120 0.02 0.63

RGDP growth
1 quarter ahead 0.01 3.41 0.00 3.55 0.00 3.48
4 quarter ahead 0.07 2.20 0.00 2.16 0.06 2.30
8 quarter ahead 0.10 1.57 0.00 1.48 0.09 1.64
12 quarter ahead 0.10 1.28 0.00 1.48 0.09 1.64

Sample period: 1953:Q2-2007:Q4. The dynamic yield curve and the yield spread models include

one lag of real GDP growth. OLS denotes a regression of RGDP growth on the yield spread and

one lag of RGDP growth.

after controlling for the yield factors.

Table 2.5 reports statistics for the measurement errors of yields and real GDP

growth based on the in-sample fit of the dynamic yield curve model, OLS yield

spread model, and an AR(1) model. All these models control for one lag of real

GDP growth.

The dynamic yield curve model has a better fit for real GDP growth at the one-

quarter horizon, while the OLS yield spread model has a better fit at most of the

other horizons. The fit of real GDP growth by the OLS yield spread model at long
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horizons is explained by the forecasting specification of the model and the nature

of OLS regression, which is to minimize squared residuals. Specifically, the OLS

yield spread model has an advantage in terms of in-sample fit over the dynamic

yield curve model, because the former is a forecasting model at targeted horizons,

while the dynamic yield curve model fits the current data.8 Meanwhile, both the

dynamic yield curve model and the OLS yield spread model have a better fit than

the univariate autoregressive model because they nest the AR(1) model.

2.6 Out-of-sample Forecasting Results

2.6.1 Forecasting Procedure and Notation

Pseudo out-of-sample forecasts of real GDP growth are performed for the period

from 1990:Q1 through 2007:Q4. The forecast performance of models is compared

using root mean square errors (RMSEs) relative to a benchmark model. Following

Stock and Watson (2003), I use the RMSEs for the AR(1) model at different horizons

as benchmarks.

The RMSE statistic for the dynamic yield curve model is generated using the

following procedure. First, the parameters of the state-space model are estimated

using Kalman filter method and then yields and real GDP growth are forecasted

8To check this point, I estimated a dynamic yield curve model with the specification changed
to be similar to a direct forecasting model. Even with a forecasting specification at one period
ahead and iterating for longer horizon forecasts, the in-sample fit for the forecasting dynamic
yield curve model improved over the results of the OLS yield spread models for most horizons.
Despite the obvious advantage of the forecasting specification of the dynamic yield curve model,
I use the contemporaneous version of the model for this study as it uses all available current
information for out-of-sample forecasting. Also, out-of-sample forecasting results suggest that the
contemporaneous model outperforms the model with a forecasting specification.
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for 1 to 12 quarters ahead. Next, one more observation is added to the in-sample

data and the estimation and forecasting are repeated. This procedure produces 73-k

observations of k-quarter-ahead out-of-sample forecasts for k from 1 to 12 quarter

horizons.

For the forecast performance comparisons at a given horizon, I use a cumulative

real GDP growth averaged for the whole horizon rather than marginal one-period

forecasts at that horizon. This choice of the forecast comparison is explained by

the iterative approach to constructing forecasts using the NS dynamic yield curve

model. For this approach, the quality of forecasts at a given horizon depends directly

on the quality of the forecasts at all previous periods.

I compare the out-of-sample forecast performance of the two classes of models:

the NS dynamic yield curve models and the OLS yield spread models. For each class

of models, I consider several specifications of the models with different explanatory

variables for real GDP growth. I denote the class of dynamic yield curve models

as NS and the class of yield spread models as PR, which stands for “predictive

regression”. To denote the specification of a model in each class of models, the

explanatory variables used to model real GDP growth are listed in parentheses. For

example, the notation NS(g(β2, β3, gt−1)) means that this is the NS dynamic yield

curve model with real GDP growth modeled by β2,t, β3,t factors and one lag of real

GDP growth gt−1.
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2.6.2 Forecasts of Real GDP Growth

In this subsection, I analyze effects of different explanatory factors for the real GDP

growth forecasts. Table 2.6 reports RMSE results for different versions of the NS

dynamic yield curve and the OLS yield spread models.

The dynamic yield curve model with lagged real GDP growth has lower RMSEs

than models without lagged real GDP growth. Most of the improvement is observed

at short horizons. Similarly, adding lagged real GDP growth in the OLS yield spread

model improves forecasts at short horizons. The positive effect of the autoregressive

component in the short-term horizon forecasts reflects the short-term persistence of

real GDP growth.

The RMSEs for models with a curvature factor β3,t are smaller than for models

without this factor at long horizons. At short horizons, RMSEs for both models are

close to each other. Although the gain at the long horizon from adding the curvature

factor to the slope factor for real GDP growth forecasting is relatively small, it still

extracts additional information contained in yield curve for real GDP modeling,

while the OLS yield spread model does not contain this information. This result

concurs with Huang et al. (2006) who find some usefulness of the curvature factor

for forecasting output in their study of forecast combination using information in

the yield curve.

Adding the level factor β1,t as an explanatory variable for real GDP growth in

the dynamic yield curve model produces lower RMSEs at short horizons. However,

as will be shown below, this result is not robust to the choice of the out-of-sample
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Table 2.6: Out-of-sample forecasts of RGDP growth rates: Root Mean
Square Error Ratios. Out-of-sample period 1990:Q1-2007:Q4

Forecast horizon k-quarters ahead
1 4 8 12

Dynamic Yield Curve Models
NS(g(β2)) 1.046 1.048 1.022 1.007
NS(g(β2, gt−1)) 1.009 1.010 1.002 0.996
NS(g(β2, β3, gt−1)) 1.006 1.014 0.996 0.981
NS(g(β1, β2, β3, gt−1)) 0.999 1.008 1.013 1.021

VAR(Spread, gt−1) 1.007 1.016 1.013 1.012

Yield Spread Models
PR(Spread) 1.130 1.365 1.366 1.197
PR(Spread, gt) 1.076 1.323 1.382 1.208
PR(Shrt.Rate, Spread, gt) 1.099 1.420 1.525 1.307

NS and PR denote the dynamic yield curve and OLS yield spread models, respectively. The

denominators are the RMSEs for an AR(1) model. The lowest RMSE ratios within each class of

models are in bold.

period. Also, at long horizons, adding the level factor has a negative effect on the

forecasting performance of the model. Similarly, adding the short rate to the yield

spread model increases the RMSEs.

2.6.3 Does the Dynamic Yield Curve Model Forecast Out-

put better than the Yield Spread Model?

To answer the question of whether the dynamic yield curve model improves fore-

casts of real GDP growth over the OLS yield spread model, I compare RMSEs

for the following pairs of models with comparable explanatory variables for real

GDP growth: NS(g(β2)) and PR(Spread); NS(g(β2, gt−1)) and PR(Spread, gt);

NS(g(β2, β3, gt−1)) and PR(Spread, gt). Table 2.6 reports noticeably lower RM-

SEs for the dynamic yield curve models than for OLS yield spread models at all
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horizons. The Diebold and Mariano (1995) (hereafter DM(1995)) test of forecast

accuracy comparison, reported in Table 2.7, suggests that these differences in RM-

SEs are statistically significant.9 This result remains robust to controlling for lagged

real GDP growth in both models. Thus, the dynamic yield curve model outperforms

the OLS yield spread model in forecasting real GDP growth.

Table 2.7: Diebold-Mariano tests for comparative forecast accuracy

Models Forecast horizon k-quarters ahead
1 4 8 12

NS(g(β2)) -0.756 -1.439 -0.863 -0.308
against PR(Spread) (0.025) (0.032) (0.011) (0.047)

NS(g(β2,gt−1)) -0.584 -1.373 -0.951 -0.343
against PR(Spread, gt) (0.013) (0.021) (0.004) (0.021)

NS(g(β2,β3,gt−1)) -0.606 -1.357 -0.964 -0.366
against PR(Spread, gt) (0.023) (0.026) (0.004) (0.021)

NS(g(β2,β3,gt−1)) 0.052 0.053 -0.009 -0.028
against AR(1) (0.660) (0.673) (0.889) (0.441)

PR(Spread, gt) 0.658 1.410 0.955 0.338
against AR(1) (0.040) (0.042) (0.010) (0.061)

NS and PR denote the dynamic yield curve and OLS yield spread models, respectively. The null

hypothesis of the test is that the mean of square loss-differential of two models is zero, against

alternative that it is not zero. Negative (positive) value of the estimate indicates that the first

model produces more (less) accurate forecasts than compared model. The p-values for the test

are reported in parentheses. The test is based on the Newey and West (1987) heteroskedasticity

and autocorrelation consistent standard errors.

Given that the dynamic NS model with real GDP growth modeled by the slope

factor outperforms the yield spread model with a direct forecasting approach at all

horizons, there are two potential sources for the forecast improvement. In particular,

the improvement could originate from i) an iterative forecasting scheme versus the

9While there are several tests of forecast accuracy (e.g. West (1996) and Giacomini and White
(2006)), the choice of the Diebold and Mariano (1995) test for this study is explained by the focus
on out-of-sample performance and simplicity of the test application.
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direct forecasting approach used in the yield spread model, and/or ii) from using

an endogenously estimated slope factor versus a particular observable yield spread.

To check these two possibilities, I evaluate out-of-sample forecasts using a simple

VAR(1) model with an observable term spread and real GDP growth as variables:

 Spreadt

gt−1

 =

 µs

µg

+

 a11 0

a21 a22


 Spreadt−1

gt−2

 (2.6.1)

The RMSEs for the VAR model, denoted as V AR (Spread, gt−1) and reported

in Table 2.6, are considerably smaller than those from the yield spread model

PR(Spread, gt). Thus, the dynamic approach for forecasting real GDP appears

to be the main source of the forecast improvement over the direct forecasting ap-

proach. As noted earlier, the OLS regression for a targeted forecasting horizon may

cause overfitting of in-sample data due to the “least squares” nature of the infer-

ences. This point is supported by the fact that the yield spread model performs

considerably worse than the dynamic yield curve model in out-of-sample forecasts,

while it has the best in-sample fit. Thus, poor out-of-sample performance of the

yield spread model indicates that the yield curve is less useful for GDP forecasting

than suggested by the in-sample OLS regression.

In addition, while the RMSEs for the V AR (Spread, gt−1) and NS(g(β2, gt−1))

models are close to each other at the short horizons, the NS dynamic yield curve

model outperforms the VAR at long horizons. Thus, there is also a gain from

using the endogenously-estimated slope factor versus the observable yield spread.

Modeling real GDP growth by endogenously determined factors avoids the problem

of dependence of results on the choice of the maturities for the yield spread.

64



2.6.4 Do the Dynamic Yield Curve and Yield Spread Mod-

els Forecast Output Better than an AR(1)?

It is important to note that the yield spread model cannot beat the AR(1) model

in the out-of-sample period and the dynamic NS yield curve model improves fore-

casts over the AR(1) model only marginally at long horizons. The DM(1995) test,

reported in Table 2.7, suggests that the AR(1) model produces significantly smaller

forecast errors than the OLS yield spread model. The differences in RMSEs for

the dynamic yield curve model and the AR(1) model are small in magnitude and

statistically insignificant. These results can be explained in two ways.

Table 2.8: Out-of-sample forecasts of RGDP growth rate: Root Mean
Square Error Ratios. Different in-sample and out-of-sample periods

Forecast horizon k-quarters
1 4 8 12

In-Sample period: 1953:Q2-1997:Q4; Out-of-sample period 1998-2007
NS(g(β2, gt−1)) 1.002 0.997 0.990 0.988
NS(g(β2, β3, gt−1)) 0.994 0.998 0.978 0.959
NS(g(β1, β2, β3, gt−1)) 0.997 1.045 1.068 1.107
PR(Spread, gt) 1.045 1.251 1.235 1.152

VAR(Spread, gt−1) 1.000 1.007 1.010 1.021

In-Sample period: 1985:Q1-1997:Q4; Out-of-sample period 1998-2007
PR(Spread, gt) 1.008 1.036 1.030 0.935

In-Sample period: 1953:Q2-1970:Q4; Out-of-sample period 1971-1984
PR(Spread, gt) 0.981 0.805 0.741* 0.909

NS and PR denote the dynamic yield curve and OLS yield spread models, respectively. Denomi-

nators are RMSEs for the AR(1) model from respective samples. One asterisk indicates statistical

significance of forecast improvements compared to the AR(1) model at 5 percent level based on

the Diebold-Mariano (1995) test.

First, there is some evidence for structural instability in the yield curve and

output relationship reported in the literature. Haubrich and Dombrosky (1996)
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and Dotsey (1998) find a decline in predictive ability of the yield curve for output

in the period after 1985. Estrella, Rodrigues, and Schich (2003), using the test

for unknown break date, also find some evidence of structural instability in the

yield spread and industrial production relationship in 1983. To analyze the effect

of this structural instability on the forecast performance of the OLS yield spread

model, I perform out-of-sample forecasts of real GDP using the in-sample period

from 1985:Q1 to 1997:Q4. The beginning of this period is chosen based on the

previous literature and the end of period is extended from 1989:Q4, used in my

previous analysis, to 1997:Q4 to allow for a sufficient number of observations for

in-sample estimation. It leaves the period 1998-2007 for out-of-sample forecasts.

The first two panels in Table 2.8 report RMSE ratios for the period 1998-2007 from

the OLS yield spread model based on two in-sample periods: 1953:Q2-1997:Q4 and

1985:Q1-1997:Q4. The RMSEs for the OLS yield spread model based on the post

1985 in-sample period is noticeably smaller, suggesting a possible structural break

in the relationship between the yield curve and output. However, the yield spread

model still cannot improve real GDP forecasts relative to the AR(1) model at most

of horizons.

I also estimate the dynamic yield curve model based on the sample period of

1953-1997 and perform out-of-sample forecasts for the period of 1998-2007. Al-

though this sample period change does not fully address structural change in pa-

rameters, it should still reduce any bias of parameter estimates given that the sample

period contains more post regime-shift observations.10 Even after this partial ad-

10Forecasting using the dynamic yield curve model based on the in-sample period 1985-1997
is not performed due to the high number of model parameters relative to the small number of
in-sample observations. The large standard errors of parameter estimates based on this short
in-sample period overweigh the potential benefit from just using the post-structural-break data.
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justment in parameters for a possible regime shift, the dynamic yield curve model

forecasts output better than the AR(1) model at all horizons.11 The dynamic yield

curve model also outperforms the OLS yield spread model at most of horizons.

Second, the predictive power of the yield spread for output is mainly concen-

trated in periods of large changes in economic conditions. Previous research findings

show that the yield spread is a relatively good predictor of recessions (e.g.Estrella

and Mishkin (1996) and Estrella and Mishkin (1998)). Meanwhile, the AR(1) model

has a good predictive performance in periods of low volatility. The period 1990-

2007 had considerably more observations with relatively low volatility in real GDP

growth than in previous years. Even the two recessions within this period were

not as deep as those in preceding years. Thus, the AR(1) model has an advan-

tage over the yield models in this out-of-sample period. The results are opposite if

1971-1984 is considered as the out-of-sample period for the OLS yield spread model.

This period is characterized by high volatility in the business cycle and substantial

changes in real GDP growth. The ratios of RMSEs for the OLS yield spread model

to those for the AR(1) model, reported in the third panel of Table 2.8, suggest that

the OLS model produces better forecasts than the AR(1) model in periods of large

fluctuations in real GDP. Since the dynamic yield curve also uses yield information

for predicting output, presumably it would have outperformed the AR(1) model in

that out-of-sample period.12

11The DM(1995) test of forecast accuracy suggests statistical insignificance of all improvements
over AR(1) model performance, which might be related to weak power due to the short out-of-
sample period.

12A similar comparison for the period 1970-1990 with the dynamic yield curve model is not
preformed because of the short in-sample size relative to the number of parameters in the dynamic
yield curve model. The model estimation based on this short in-sample period would produce
highly inefficient parameter estimates, negatively affecting the quality of forecasts.
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Unlike the 1998-2007 period, the ”Great Recession” in 2007-2009 involved large

movements in real GDP. The question then is whether the yield curve information

improves forecasts of real GDP over the benchmark AR(1) model for this period.

In order to answer this question, I consider predictions of real GDP implied by the

NS dynamic model, the yield spread model, and the AR(1) model for the period

of 2007:Q1-2009:Q4. Figure 2.2 displays the one-year-ahead and two-year-ahead

forecasts of log real GDP for the period of 2007-2009 using three models: AR(1),

PR(Spread, gt), and NS(g(β2, β3, gt−1)). None of the thee models predicts the severe

decline in real GDP prior to the occurrence of the recession. However, the NS

dynamic model and the yield spread model performed better than the AR(1) model.

The RMSE ratios for the NS dynamic yield curve model relative to those for the

AR(1) model for the period of 2007-2009 have values of 0.944 and 0.875 for 4-

quarter and 8-quarter-ahead, respectively. The RMSE ratios for the yield spread

model have values of 0.976 and 0.879 for 4-quarter and 8-quarter-ahead, respectively.

These results suggest that the NS dynamic model predicted real GDP in this period

better than the yield spread model. Also, these results confirm that the yield curve

is more useful for forecasting output when there are large changes in output than

when it is relatively stable.

2.7 Conclusion

Most studies that investigate the predictive power of the yield curve for real GDP

growth consider a simple direct forecasting structure with yield spread as the pre-

dictive variable. In this paper, I have considered a different approach. In particular,

I have jointly modeled real GDP growth and yields using the dynamic three-factor
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Figure 2.2: Forecasts of Real GDP for 2007-2009
This figure displays the 4-quarter-ahead and 8-quarter-ahead forecasts of logarithm of real GDP
in 2005 prices for the period of 2007-2009 using three models: AR(1), PR(Spread, gt), and
NS(g(β2, β3, gt−1)). All forecasts are based on in-sample periods starting from 1985:Q1 and ending
4 quarters and 8 quarters prior to the forecasted period.

yield curve model.

My empirical findings suggest that the dynamic yield curve model produces

better out-of-sample forecasts of real GDP growth than the traditional yield spread

model. This result is mainly attributed to the dynamic structure of the yield curve

model. Although the predictive power of yield curve is concentrated in the yield

spread, there is also a gain from extracting more information from the term structure

of interest rates versus an exogenously-defined yield spread used in the yield spread

model. In particular, there is a gain from using information in the curvature factor

for the long horizon prediction. In general, through, the yield curve is less useful

for out-of-sample prediction of real GDP than the predictive power suggested by

in-sample OLS regression analysis.
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Chapter 3

Time Variation of CAPM Betas across Market

Volatility Regimes1

3.1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965)

remains a benchmark asset pricing models in the academic literature. According

to the CAPM, the risk of an asset is measured by its “beta”, which is the covari-

ance between the asset’s return and the return on the market portfolio per unit of

variance for the market return. A number of studies (e.g., Fama and French (1992,

1993, 1996)) have examined the CAPM with constant betas (i.e., the unconditional

CAPM) and reported that the model performs poorly and is unable to explain cer-

tain asset pricing anomalies. In particular, they find that the unconditional CAPM

cannot explain why i) portfolios of small firms outperform those of large firms (the

“size” effect), ii) portfolios of firms with high Book-to-market (B/M) ratios outper-

form those for firms with low B/M ratios (the “B/M” effect), and iii) portfolios of

firms with relatively high returns in the past year outperform those for firms with

relatively low past returns (the “Momentum” effect).

1This essay is a joint work with James Morley
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One of the explanations for the failure of the CAPM is its assumption that beta

for a given portfolio and the market risk premium are constant over time. Many

papers report that betas are time varying (e.g., Jagannathan and Wang (1996);

Lettau and Ludvigson (2001); Fama and French (1997, 2006); Lewellen and Nagel

(2006); and Ang and Chen (2007)). Jagannathan and Wang (1996) show that

“alpha” from test regressions for the unconditional CAPM, where “alpha” corre-

sponds to the expected excess return for the portfolio over what would be predicted

by the unconditional CAPM, is theoretically related to the covariance between a

time-varying beta and a time-varying market risk premium. They and several other

studies (e.g., Lettau and Ludvigson (2001)) argue that capturing this covariance

can help to explain the size and B/M anomalies.

In order to estimate time variation in CAPM betas, most previous studies use

rolling windows of historical data, as proposed by Fama and MacBeth (1973). How-

ever, Lewellen and Nagel (2006) argue that these studies of the conditional CAPM

based on cross-sectional regressions do not impose important theoretical restrictions

in the estimation of the covariance between beta and the market risk premium.

Also, Ang and Kristensen (2010) argue that the Fama and MacBeth (1973) method

produces inconsistent estimates of the standard errors for average and conditional

alphas. To address these limitations, some papers (e.g., Ang and Chen (2007) and

Adrian and Franzoni (2009)) study the conditional CAPM by modeling time vari-

ation in betas as stationary latent variables. This is the approach we take in this

paper, except that we model large and discrete changes in betas rather than assum-

ing smooth and continuous changes, as has been previously done in the literature.

In particular, we focus on investigating time variation in betas for the B/M and mo-
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mentum portfolios across states of the economy corresponding to discrete changes

in the level of stock market volatility and the market risk premium.

Our consideration of discrete changes in CAPM betas is motivated by numerous

previous studies that find large discrete changes in the level of stock market volatil-

ity. For example, Hamilton and Susmel (1994) find that most of the ARCH effects

in weekly stock returns vanish at the monthly horizon and the remaining persistent

low frequency changes in volatility can be captured by a discrete Markov-switching

process that appears somewhat related to discrete changes in business cycle phases

between periods of expansion and recession.2 Thus, if low frequency changes in

volatility are abrupt and priced by market participants, one might expect the mar-

ket risk premium to change in a discrete way too. Then, according to the idea of

the conditional CAPM, if any changes in beta coincide with the discrete changes

in market volatility, they could explain the empirical failure of the unconditional

CAPM.

For our analysis, we follow Turner, Startz, and Nelson (1989) and Kim et al.

(2004) by assuming that i) stock market volatility follows a two-state Markov-

switching process, with the market risk premium varying across these “low” and

“high” volatility regimes and ii) the processing of information about the prevailing

volatility regime generates a volatility feedback effect that needs to be accounted for

in order to reveal a positive underlying relationship between market volatility and

2Schwert (1989); Chu, Santoni, and Liu (1996); Schaller and van Norden (1997); Assoe (1998);
Kim, Nelson, and Startz (1998); Kim, Morley, and Nelson (2001, 2004); Hess (2003); and May-
field (2004), among many others, have modeled monthly stock return volatility using a Markov-
switching specification, with high volatility regimes typically corresponding to periods of recession
and low volatility regimes typically corresponding to periods of expansion. Perez-Quiros and Tim-
mermann (2000) and Guidolin and Timmermann (2008) also find evidence of discrete changes in
stock return risk across business cycle phases. Huang (2000) considers a Markov-switching beta
for a single stock, but he does not relate it to market volatility regimes or business cycle phases.
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the market risk premium. According to the idea of volatility feedback, an exogenous

and persistent increase in the volatility of market news leads to additional return

volatility as stock prices adjust in response to higher future expected returns.3

We then jointly model the market return and the conditional CAPM, with time

variation in beta driven by the market volatility regimes.

The Markov-switching specification for the conditional CAPM has two benefits

over the traditional approaches taken in the literature. First, we do not have to find

exogenous variables to try to identify time variation in the market risk premium,

thus helping us to avoid any data mining concerns with an instrumental variables

approach. Second, the timing of changes in beta, which correspond to changes in

the market risk premium, is determined directly by the data, rather than imposed

exogenously. For example, this has a benefit over a rolling window approach, which

will naturally smooth out discrete changes in beta and the results for which will

depend highly on the choice of window length.

Consistent with the basic idea of the conditional CAPM, our empirical findings

suggest strong time variation in betas across market volatility regimes in most of

the cases for which the unconditional CAPM can be rejected. For “value” portfolios

of stocks for firms, which have relatively high B/M ratios, and “winner” portfolios

of stocks, which have relatively strong returns over the previous year, the regimes

alternate between periods of low market volatility/high beta and periods of high

market volatility/low beta. For “loser” portfolios of stocks, which have relatively

weak returns over the previous year, the regimes alternate between periods of low

3French, Schwert, and Stambaugh (1987), Turner et al. (1989), Campbell and Hentschell (1992),
and Kim et al. (2004), among many others, account for volatility feedback to study the relationship
between stock returns and volatility.
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market volatility/low beta and periods of high market volatility/high beta. Al-

though the regime-switching conditional CAPM can still be rejected in many cases,

the time-varying betas help explain portfolio returns much better than the uncon-

ditional CAPM, especially when market volatility is high.

The rest of this paper is organized as follows. Section 2 presents the model.

Section 3 describes the data and reports the empirical results. Section 4 concludes.

3.2 Model

According to the Sharpe-Lintner Capital Asset Pricing Model (CAPM), the ex-

pected excess return on a portfolio of assets over a risk-free rate depends on a

simple measure of the portfolio’s risk relative to the market portfolio:

E [ri,t] = βiE [rm,t] , (3.2.1)

where ri,t is the excess return for portfolio i, rm,t is the market excess return, and

βi is the measure of the portfolio’s risk defined as

βi =
cov (ri,t, rm,t)

var (rm)
. (3.2.2)

Fama and French (1992) examine the performance of the unconditional CAPM

and find that estimated betas do not explain variation in average returns across

different portfolios. One of the explanations for the failure of the CAPM is its

assumption that the market risk premium and beta are both constant over time.
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Relaxing this assumption we get the conditional CAPM, which holds period by

period:

Et−1 [ri,t] = βi,t−1Et−1 [rm,t] . (3.2.3)

In this equation, subscript t−1 indicates that everything in the model is conditional

on information available to market participants in the previous period. Following

Jagannathan and Wang (1996) and applying iterated expectations on both sides of

equation (3.2.3), we get

E [ri,t] = βiE [rm,t] + cov(βi,t−1, Et−1 [rm,t]), (3.2.4)

where βi is the unconditional expectation of beta. Thus, it is straightforward to see

that the unconditional CAPM would fail if beta were correlated with the market

risk premium.

Lewellen and Nagel (2006) analytically decompose the covariance term in equa-

tion (3.2.4) and compute the upper bound of this term based on various assumptions

about parameter values. However, equation (3.2.4) and the proposed upper bound

of the covariance are valid only if beta is stationary. Instead, if beta were an inte-

grated process, then the unconditional expectation of beta and the covariance term

in equation (3.2.4) would not exist, which means that the upper bound could not

be computed. In this case, the failure of the unconditional CAPM would increase

as the number of observations goes to infinity. In this paper, we assume beta is

stationary. However, by allowing it to follow a Markov-switching process, we can

capture very persistent changes in beta.

The conditional CAPM requires specifying the information available to market
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participants when they form conditional expectations of the market risk premium

and beta. In this paper, we assume that market participants know that risk changes

in a discrete way, distinguishing only between “good” and “bad” states of the econ-

omy related to market volatility. Following many studies, including Turner et al.

(1989) and Kim et al. (2004), we model states of the economy with a two-state

Markov-switching variance for the market excess return:

εm,t ∼ N
(

0, σ2
m,Sm,t

)
, (3.2.5)

σ2
m,sm,t = σ2

m,0 (1− Sm,t) + σ2
m,1Sm,t , σ2

m,0 < σ2
m,1, (3.2.6)

Pr [Sm,t = 0|Sm,t−1 = 0] = qm and Pr [Sm,t = 1|Sm,t−1 = 1] = pm, (3.2.7)

where εm,t denotes the market news at time t, σ2
Sm,t

is the variance of εm,t, Sm,t is a

Markov-switching state variable that takes value 0 in the low volatility regime and

1 in the high volatility regime, and qm and pm are continuation probabilities for the

regimes.

In this two-state specification of market volatility, one possible informational

assumption is that market participants perfectly observe the current state of market

volatility. Under this assumption, the period-by-period market risk premium can

be expressed as

E [rm,t|Sm,t] = µm,0 + µm,1Sm,t, (3.2.8)

where µm,0 denotes the market risk premium in the low volatility regime and µm,1

determines the marginal effect of the high volatility regime on the market risk

premium. However, consistent with past findings, we find a negative estimate for

µm,1 in our empirical analysis. This result runs contrary to the theoretical positive
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relationship between risk and return, suggesting that, although market participants

react to information inherent in the true volatility regimes, they may take time to

process information about the prevailing volatility regime.

Campbell and Hentschell (1992) and Kim et al. (2004), among many others,

account for volatility feedback, which helps to reveal a positive relationship between

volatility and return. According to the idea of volatility feedback, an exogenous

and persistent increase in the volatility of market news generates additional return

volatility as stock prices adjust in response to higher future expected returns. We

follow Kim et al. (2004) and consider a Markov-switching model of the market excess

return with volatility feedback, which is specified as

rm,t = E [rm,t|Sm,t−1] + fm,t + εm,t, (3.2.9)

where

E [rm,t|Sm,t−1] = µm,0 + µm,1 Pr [Sm,t = 1|Sm,t−1] , (3.2.10)

fm,t = δ {Sm,t − Pr [Sm,t = 1|Sm,t−1]} . (3.2.11)

The fm,t term captures an unpredictable volatility feedback effect on the mar-

ket return due to period-by-period revisions in future expected returns, where

E [fm,t|Sm,t−1] = 0. The δ coefficient in the volatility feedback term is related

to the other model parameters based on a discounted sum of log-linear future ex-

pected returns, as shown in Kim et al. (2004). Specifically, the coefficient is equal

to δ =
−µm,1
1−ρλ , where λ = pm + qm − 1 and ρ denotes the parameter of linearization

for the log-linear present value model, which is the average ratio of the stock price
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to the sum of the stock price and the dividend and, in practice, has the value of

0.997, as reported in Kim et al. (2004). In this specification, it is assumed that

market participants observe the previous volatility regime Sm,t−1 at the beginning

of the current period, but learn about the current volatility regime Sm,t during the

current period.

Similar to the market excess return, we assume that the portfolio excess return

is specified as

ri,t = E [ri,t|Sm,t−1] + fi,t + εi,t, (3.2.12)

where E [ri,t|Sm,t−1] is defined by the conditional CAPM, fi,t is the volatility feed-

back term for the portfolio return, and εi,t is news about portfolio i. Because the

conditional CAPM time-varying beta may covary with the time-varying market risk

premium, which in our setting takes on two discrete values conditional on the mar-

ket volatility regimes, we allow for different values of beta in these two regimes.4

Thus, the regime-switching conditional CAPM is given by

E [ri,t|Sm,t−1] = βi,Sm,t−1E [rm,t|Sm,t−1] , (3.2.13)

where βi,Sm,t−1 takes on two values depending on the market volatility regime at

period t − 1.5 Also, substituting for ri,t and rm,t in equation (3.2.13) based on

4An alternative approach would be to assume that beta has its own Markov-switching process.
However, from the theory of the conditional CAPM, the relevant issue for the failure of the
unconditional CAPM is whether beta covaries with the market risk premium, which in this case
is driven by market volatility. Therefore, for simplicity, we consider a specification with common
regimes for beta and market volatility.

5The beta used to price a portfolio depends on expectations of Sm,t. Thus, the beta will
depend on the sensitivity of the portfolio to market news in both regimes, with the weights on the
two regimes depending on the continuation probabilities for the Markov-switching state variable.
Analytically, given fixed continuation probabilities, this assumption is equivalent to specifying beta
to be a function of Sm,t−1, as this will capture the weighted-average sensitivity for the portfolio
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equations (3.2.12) and (3.2.9), we can show that

E [fi,t|Sm,t−1] = βi,Sm,t−1E [fm,t|Sm,t−1] = 0,

which is consistent with the CAPM notion that the expected excess return for a

portfolio depends only on its beta and the market risk premium.

Based on equations (3.2.9) and (3.2.13), our joint model of market and portfolio

excess returns is given as follows:

rm,t = µm,0 + µm,1 Pr [Sm,t = 1|Sm,t−1]

+δ {Sm,t − Pr [Sm,t = 1|Sm,t−1]}+ εm,t (3.2.14)

ri,t = αi,Sm,t−1 + βi,Sm,t−1rm,t + ut (3.2.15)

εm,t ∼ N
(

0, σ2
m,Sm,t

)
and ut ∼ N

(
0, σ2

i,Si,t

)
,

where ut denotes idiosyncratic news for portfolio i, which according to the CAPM

should be uncorrelated with market news. In this model, the regime-switching

process for market volatility and the alpha and beta for portfolio i is driven by a

common unobservable state variable Sm,t that takes on discrete values of 0 in the low

market volatility regime and 1 in the high market volatility regime. If the conditional

CAPM holds, αi,Sm,t−1 = 0 in both regimes. In addition to regime-switching market

volatility, we also control for heteroskedasticity in the residual for the portfolio

return by assuming that the variance σ2
i,Si,t

of idiosyncratic news ut follows a two-

state Markov-switching process that is assumed to be independent of the process

for market volatility. It should be noted that, in principle, we could consider more

conditional on Sm,t−1.
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regimes for the Markov-switching parameters in the model. However, as we show

in the empirical analysis, the residual diagnostics suggest that two-regime processes

are sufficient to address heteroskedasticity in the residuals for the sample period

under consideration. Meanwhile, given the Markov-switching structure, we estimate

the model by applying maximum likelihood based on the procedure developed by

Hamilton (1989).

3.3 Empirical results

3.3.1 Data

We consider monthly data for stock returns on value-weighted decile portfolios of

all stocks listed on the NYSE, AMEX, and NASDAQ sorted separately by book-

to-market ratios (B/M portfolios) and by the previous year’s returns (Momentum

portfolios).6 The B/M portfolios are constructed at the end of June each year based

on the ratio of the book equity of stocks for the previous fiscal year to their market

capitalization in December of the previous year. The portfolios are formed annually

by sorting stocks using decile breakpoints of B/M ratios for the NYSE stocks only.

Momentum portfolios are constructed each month using the previous 11-month-

return decile breakpoints for NYSE stocks. The portfolio returns are value-weighted

monthly average returns on the stocks in deciles. We define the “market” return

by considering the return on a value-weighted portfolio of all stocks listed on the

NYSE, AMEX, and NASDAQ. All returns are continuously compounded in excess

6We are grateful to Kenneth French for making these data available at his data library at
dhttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/. Detailed description
of portfolio formation are provided in Fama and French (2006).
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of the continuously compounded one-month Treasury bill rate and expressed in

percentage terms. Most previous empirical studies only consider data for July 1963

and afterwards in order to focus on a period for which the unconditional CAPM

fails to explain B/M and momentum effects (e.g., Ang and Chen (2007) find that

the unconditional CAPM cannot be rejected for B/M portfolios over the longer

sample period of 1926-2001). Therefore, we consider the sample period of July 1963

to December 2007 in our analysis. For this sample period, we do not observe a

strong size effect for portfolio returns double-sorted by size and B/M ratios, which

is common way of sorting portfolios in the literature, so we consider the overall

B/M sorting.7

Table 3.1 reports summary statistics for the returns on B/M and momentum

portfolios and estimates for the unconditional CAPM regression model. The results

suggest a pattern of increasing average returns with increasing B/M ratios and mo-

mentum. Based on the estimated alphas, the unconditional CAPM can be rejected

for the last five deciles of the B/M portfolios and for the first two and last three

deciles of the momentum portfolios.

7By considering overall B/M-sorted portfolios, we are following Ang and Chen (2007). Although
the average returns for the largest size portfolios are always smaller than average returns for other
size portfolios, the average returns for size portfolios other than largest size portfolio are not always
decreasing with size. Also, preliminary analysis, not reported to conserve space, suggests that the
unconditional CAPM cannot be rejected for the size-sorted portfolios for the sample period of
July 1963 to December 2007.
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Table 3.1: Summary statistics for book-to-market and momentum portfo-
lios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: B/M portfolios
ri 0.24 0.35 0.41 0.44 0.41 0.53 0.60 0.64 0.69 0.77 0.53
std.dev. (5.14) (4.72) (4.69) (4.62) (4.37) (4.32) (4.22) (4.22) (4.56) (5.27) (4.40)

αi -0.17 -0.04 0.02 0.08 0.07 0.19 0.29 0.32 0.35 0.40 0.58
std.error (0.10) (0.07) (0.07) (0.10) (0.10) (0.08) (0.11) (0.11) (0.11) (0.16) (0.23)

βi 1.09 1.03 1.02 0.98 0.91 0.90 0.84 0.84 0.90 0.98 -0.11
std.error (0.03) (0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.05) (0.07)

Panel B: Momentum portfolios
ri -0.59 0.07 0.24 0.31 0.23 0.33 0.37 0.59 0.64 0.99 1.58
std.dev. (7.29) (5.81) (4.95) (4.57) (4.29) (4.43) (4.35) (4.40) (4.82) (6.20) (6.16)

αi -1.10 -0.35 -0.12 -0.04 -0.11 -0.02 0.03 0.24 0.27 0.53 1.64
std.error (0.18) (0.14) (0.11) (0.11) (0.09) (0.06) (0.07) (0.08) (0.09) (0.14) (0.26)

βi 1.36 1.12 0.97 0.93 0.90 0.93 0.91 0.92 1.00 1.21 -0.15
std.error (0.07) (0.06) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.11)

Data are for the value-weighted portfolios sorted into deciles of B/M ratios and the previous 12-

month returns for the sample period of July 1963 to December 2007. HML denotes a “High minus

Low” portfolio; ri denotes the average excess return for portfolio i. Sample standard deviations for

excess returns are reported in parentheses. Estimates of αi and βi for the unconditional CAPM

regression model are based on OLS. Newey and West (1987) heteroskedasticity and autocorrelation

consistent standard errors are reported in parentheses for α and β. Statistically significant alphas

at the 5% level are in bold.

3.3.2 Regime-switching volatility and the estimated market

risk premium

Table 3.2 reports estimates for regime-switching volatility and market risk premium

based on the model of the market return given in equation (3.2.14). In this case,

the model is estimated separately from consideration of portfolio returns and we

consider both a restricted version of the model without volatility feedback (i.e.,

δ = 0) and a version that allows for volatility feedback. The model without volatility

feedback has a negative estimated market risk premium in the high volatility regime.
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Notably, whether or not the market risk premium is actually negative, its estimate

is significantly lower in the high volatility regime than in the low volatility regime.

This result does not accord with a basic theoretical positive relationship between

risk and return.8 However, after accounting for volatility feedback, the estimates

are consistent with a positive relationship. Meanwhile, a likelihood ratio (LR) test

rejects the restricted model without volatility feedback with a p-value of <0.001

based on an asymptotic χ2(1) distribution, suggesting that volatility feedback is an

important feature of stock returns. Also, the estimates for market volatility are

quite different across the two regimes. Thus, taken together, these results provide

evidence of significant time variation in the market risk premium related to changes

in market volatility.

Table 3.2: Parameter estimates for regime-switching volatility and market
risk premium

Model µm,0 µm,1 δ σm,0 σm,1 qm pm logL
Model without 0.95 -1.61 3.07 5.91 0.96 0.93 -1512.07
volatility feedback (0.21) (0.85) (0.20) (0.48) (0.02) (0.05)

Model with 0.24 0.76 -7.61 2.72 5.21 0.96 0.94 -1505.87
volatility feedback (0.22) (0.27) (1.20) (0.31) (0.41) (0.02) (0.02)

The model for the market return is described by equation (3.2.14), where δ = 0 for the version of

the model without volatility feedback. The standard error for the volatility feedback parameter

estimate was obtained using the Delta method. logL denotes the log likelihood.

Despite the differences in estimates of the market risk premium for the two

models, the estimates related to volatility are quite similar. Also, smoothed prob-

abilities of the volatility regimes for both models are similar, with a correlation of

0.90, suggesting that the regimes are mainly identified by changes in variance rather

8Breen, Glosten, and Jagannathan (1989), Campbell (1987), Nelson (1991), and Glosten, Ja-
gannathan, and Runkle (1993), among many others, find a negative relationship between market
volatility and the market risk premium. Glosten et al. (1993) argue that market participants may
not require a larger risk premium in more risky periods because they may need to save relatively
more for a future that may be even riskier.
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than by changes in the mean of excess returns. However, given the significance of

the feedback parameter, the remaining analysis in this paper is based on models

with volatility feedback.

Figure 3.1: Monthly stock market returns and smoothed probabilities of
the high volatility regime

Returns are continuously compounded monthly value-weighted returns for all stocks listed on the

NYSE, AMEX, and NASDAQ in excess of continuously compounded one-month Treasury bill

yields for the sample period of July 1963 to December 2007. Shaded areas correspond to NBER

recessions.

In terms of the volatility regimes, the estimates of the continuation probabilities

suggest that both regimes are very persistent, with 96% and 94% month-to-month

probabilities of remaining in the low and high volatility regimes, respectively. From

Figure 3.1, which displays the smoothed probabilities of the high volatility regime

over the sample period, we observe that the periods of high stock market volatility

include all of the NBER recessions and major stock market crashes.
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3.3.3 Regime-switching betas for book-to-market portfolios

Do the betas for the B/M portfolios vary across market volatility regimes? To test

for a regime-switching beta for a given portfolio, we consider another LR test. In

this case, the LR test statistic is constructed based on the likelihood for a restricted

version of the joint model of market and portfolio returns described by equations

(3.2.14) and (3.2.15) in which alpha is allowed to be regime switching and beta is

assumed to be constant across volatility regimes relative to the likelihood for a less

restrictive version of the model in which both alpha and beta are allowed to be

regime switching. Because both models have Markov-switching market volatility

under the null hypothesis, they are nested without nuisance parameters and the LR

statistic should have an asymptotic χ2(1) distribution. The test results, reported in

Table 3.3, support regime-switching betas for most of the B/M portfolios. Amongst

the B/M portfolios for which the unconditional CAPM is rejected, the LR tests

support regime-switching betas for all but the 7th decile portfolio at the 10% level.

Notably, the LR tests support regime-switching betas for the 9th and 10th decile

portfolios at the 1% level. The LR tests also support regime-switching betas for

three of the B/M portfolios for which the unconditional CAPM cannot be rejected.

It should be noted that the fact that the LR tests cannot reject a constant beta

for the 2nd, 4th, and 7th decile portfolios only suggests that the betas for these

portfolios do not have large changes over the market volatility regimes, but they

may still be time varying. However, importantly for the conditional CAPM, they

appear not be time varying in a way that corresponds to changes in the market risk

premium.

85



Table 3.3: Likelihood ratio tests for regime-switching betas and residual
diagnostics for book-to-market portfolios

Low 2 3 4 5 6 7 8 9 High HML
LR stat. 11.40 3.75 12.55 0.27 12.01 3.42 0.13 3.27 6.61 15.14 18.47
p-value (0.00) (0.05) (0.00) (0.60) (0.00) (0.06) (0.72) (0.07) (0.01) (0.00) (0.00)

Residual diagnostic tests: portfolio return with constant beta and variance
ARCH-LM 0.67 23.24 21.40 89.49 40.68 7.08 26.48 19.20 15.15 17.05 9.78
p-value (0.41) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

JB stat. 4.76 26.61 376.77 492.48 245.81 199.24 322.26 343.62 136.31 139.05 35.52
p-value (0.09) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Residual diagnostic tests: portfolio return with regime-switching beta and variance
ARCH-LM 1.21 1.13 0.18 0.66 0.25 2.12 1.35 0.51 0.71 0.06 0.29
p-value (0.27) (0.29) (0.67) (0.42) (0.62) (0.15) (0.25) (0.47) (0.40) (0.80) (0.59)

JB stat. 0.86 7.15 9.32 1.39 0.12 0.12 0.95 3.60 1.81 10.10 6.11
p-value (0.65) (0.03) (0.01) (0.50) (0.94) (0.94) (0.62) (0.17) (0.40) (0.01) (0.05)

To test for a regime-switching β, we use likelihood ratio (LR) test statistics constructed based on

the likelihood for the joint model of market and portfolio returns with regime-switching α and

constant β (null) and the likelihood for the model with regime-switching α and β (alternative).

The residual diagnostic tests are conducted for the residuals in the portfolio return equation of

the joint model. The ARCH-LM statistics are constructed using R2 from an auxiliary regression

of squared standardized residuals on their lag and have a χ2(1) asymptotic distribution under the

null of no ARCH effects. The Jarque and Bera (1980) (JB) test statistics of Normality of residuals

have a χ2(2) asymptotic distribution under the null of Normality. HML denotes a “High minus

Low” portfolio.

The residual diagnostics, also reported in Table 3.3, suggest that, after account-

ing for time variation in beta and a regime-switching variance, there are no remain-

ing significant ARCH effects in the portfolio residuals and, for the most of the B/M

portfolios, conditional Normality cannot be rejected based on the Jarque and Bera

(1980) test. These results are consistent with Hamilton and Susmel (1994). They

find that most of the ARCH effects in weekly stock returns die out at the monthly

horizon and the remaining volatility changes that persist over longer period of time

can be captured by a Markov-switching process. For comparison, the residuals for

the unconditional CAPM regression model exhibit strong ARCH effects and Nor-

mality is strongly rejected.
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Table 3.4: Estimates for the regime-switching model of market and port-
folio returns for book-to-market portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Regime-switching alphas
αi,0 -0.13 -0.16 -0.12 0.00 -0.02 0.15 0.29 0.22 0.25 0.29 0.41
std.error (0.10) (0.07) (0.06) (0.05) (0.04) (0.10) (0.10) (0.15) (0.12) (0.16) (0.25)

αi,1 -0.13 0.16 0.33 0.05 0.00 0.09 -0.12 0.28 0.25 0.24 0.42
std.error (0.19) (0.33) (0.13) (0.13) (0.05) (0.15) (0.19) (0.39) (0.16) (0.23) (0.36)

Panel B: Regime-switching betas
βi,0 1.00 1.10 1.09 1.04 1.04 0.99 0.90 0.93 1.13 1.21 0.24
std.error (0.03) (0.02) (0.02) (0.03) (0.03) (0.03) (0.04) (0.03) (0.05) (0.04) (0.07)

βi,1 1.16 1.01 0.97 1.02 0.89 0.91 0.93 0.81 0.84 0.75 -0.38
std.error (0.03) (0.07) (0.02) (0.02) (0.02) (0.03) (0.04) (0.09) (0.04) (0.05) (0.07)

Panel C: Other parameters
µm,0 0.15 0.27 0.29 0.24 0.21 0.30 0.29 0.27 0.32 0.30 0.23
std.error (0.23) (0.22) (0.22) (0.22) (0.34) (0.20) (0.21) (0.21) (0.19) (0.19) (0.20)

µm,1 0.94 0.96 1.00 0.75 0.69 0.73 0.80 0.86 0.42 0.73 0.80
std.error (0.32) (1.20) (0.37) (0.26) (0.28) (0.23) (0.30) (0.38) (0.19) (0.24) (0.25)

δ -7.25 -6.72 -7.42 -7.63 -7.94 -8.02 -7.58 -7.34 -6.75 -6.67 -6.54
std.error (1.16) (4.48) (1.27) (1.22) (1.09) (1.26) (1.41) (1.37) (1.46) (1.19) (1.16)

σm,0 2.75 2.89 3.06 2.69 2.57 2.80 2.86 2.94 2.96 2.91 2.83
std.error (0.22) (0.50) (0.21) (0.30) (0.18) (0.27) (0.20) (0.41) (0.18) (0.18) (0.18)

σm,1 5.18 5.54 5.61 5.19 5.02 5.27 5.37 5.45 5.28 5.41 5.33
std.error (0.37) (1.37) (0.42) (0.40) (0.26) (0.37) (0.35) (0.52) (0.33) (0.31) (0.33)

σi,0 1.12 1.14 1.18 1.24 1.41 1.35 1.40 1.52 1.79 2.32 3.41
std.error (0.10) (0.05) (0.04) (0.06) (0.06) (0.07) (0.08) (0.10) (0.10) (0.10) (0.16)

σi,1 2.10 2.43 3.22 3.68 3.80 3.16 3.87 3.72 4.37 5.15 6.24
std.error (0.09) (0.31) (0.45) (0.39) (0.57) (0.41) (0.44) (0.48) (0.71) (0.70) (0.59)

Data are for value-weighted book-to-market decile portfolios for the sample period of July 1963

to December 2007. HML denotes a “High minus Low” portfolio. Panels A and B report alphas

and betas from the regime-switching model of market and portfolio returns described by equations

(3.2.14) and (3.2.15). Statistically significant alphas at the 5% level are in bold.

For each of the B/M portfolios, Table 3.4 reports estimates for the regime-

switching model of market and portfolio returns described by equations (3.2.14)

and (3.2.15). The estimates of the betas for the three portfolios with the high-

est B/M ratios (i.e., “value” portfolios) vary considerably across the two market

volatility regimes; in particular, the betas for these portfolios in the low volatility
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regime are higher than in the high volatility regime. This result appears contrary

to some theoretical models (e.g. Zhang (2005)) that suggest betas for value portfo-

lios should be higher during bad times when marginal utility is high than in good

times. However, our findings are similar to Ang and Kristensen (2010), who find

using nonparametric estimates that betas for value portfolios are higher during

bad times than in good times. Our findings are also consistent with Lakonishok,

Shleifer, and Vishny (1994), who report that betas for value portfolios are higher

(lower) than betas for growth portfolios (i.e., portfolios with low B/M ratios) in

good times (bad times). They explain the B/M anomaly by “contrarian” invest-

ment behavior, whereby certain market participants overinvest in stocks that are

“underpriced” and underinvest in stock that are “overpriced”. By contrast, Petkova

and Zhang (2005) find a positive relationship between betas for value portfolios and

the market risk premium. However, as discussed by Ang and Kristensen (2010),

this result is presumably driven by the specification of both beta and the market

risk premium as linear functions of the same instrumental variables. Meanwhile,

our finding that the dispersion of betas for B/M portfolios is considerably higher

in the high volatility regime than in the low volatility regime is consistent with

the theoretical findings in Gomes, Kogan, and Zhang (2003), who show that the

dispersion of conditional betas should be countercyclical to the business cycle.

From Table 3.1, the unconditional CAPM can be rejected for the value portfo-

lios, while we find that the regime-switching alphas for these portfolios are closer to

zero in both regimes. The beta for the 1st decile portfolio also demonstrates statis-

tically significant regime switching; however, its beta is lower in the low volatility

regime than in the high volatility regime. Although the alphas for the 2nd, 7th,
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and 9th decile portfolios remain statistically significant at the 5% level in the low

volatility regime, only the alpha for the 3rd decile portfolio is statistically significant

in the high volatility regime. We note that, for the 2nd and 3rd decile portfolios, the

unconditional CAPM regression model has economically and statistically insignifi-

cant alphas, while the regime-switching model has statistically significant alphas in

one of the regimes. This result illustrates that, while CAPM may appear to hold

unconditionally, it could still fail in some states of the economy.

Table 3.5: Long-run expected alphas for book-to-market portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Alphas for the unconditional CAPM regression model
αi -0.17 -0.04 0.02 0.08 0.07 0.19 0.29 0.32 0.35 0.40 0.58
std.error (0.10) (0.07) (0.07) (0.10) (0.10) (0.08) (0.11) (0.11) (0.11) (0.16) (0.23)

Panel B: Long-run expected alphas for the regime-switching model
αi -0.13 -0.05 0.00 0.02 -0.01 0.13 0.14 0.24 0.25 0.27 0.42
std.error (0.08) (0.06) (0.06) (0.04) (0.03) (0.07) (0.09) (0.09) (0.09) (0.11) (0.18)

Panel A repeats estimates of α from the unconditional CAPM regression model, also reported

in Table 3.1, for comparison purposes. HML denotes a “High minus Low” portfolio. Panel

B reports estimates of long-run expected alphas for the regime-switching model of market and

portfolio returns described by equations (3.2.14) and (3.2.15). The long-run expected alpha for

each portfolio is constructed as the weighted average of alphas in the two market volatility regimes,

with weights equal to the steady-state probabilities of each regime. The standard errors for these

expected alphas are computed using the Delta method.

Table 3.5 reports estimates of the long-run expected alphas for the B/M port-

folios. These long-run alphas are computed as weighted-averages of alpha in the

two market volatility regimes, with weights equal to the steady-state probabilities

of the regimes. The estimates suggest that the values of most of the long-run alphas

are closer to zero than the alphas for the unconditional CAPM regression model,

although some of them are still statistically significant. To be clear, then, we do not

claim that the conditional CAPM explains the entire behavior of excess returns for

the B/M portfolios; point estimates of alphas for the last three portfolios are still

89



large. Yet, we find evidence that portfolios with high B/M return premia demon-

strate strong time variation of betas in the two market volatility regimes. We also

find that accounting for time variation in the betas for the B/M portfolios over

different states of the economy helps to explain some of the excess returns not cap-

tured by the unconditional CAPM. For example, the long-run expected alpha for

the “High minus Low” portfolio strategy declined from 0.58 for the unconditional

CAPM regression model to 0.42 for the regime-switching model.

Figure 3.2: CAPM fitted excess returns versus average realized excess
returns for book-to-market portfolios

The returns are expressed as annualized percentages. The left scatter plot displays points with

the average realized excess returns on the horizontal axis and the fitted excess returns from the

unconditional CAPM on the vertical axis. The scatter plot in the middle (on right) displays points

with the average realized excess returns conditional on smoothed probabilities of the high market

volatility regime being lower (higher) than 0.5 on the horizontal axis and the fitted excess returns

in the low (high) volatility regime from the regime-switching conditional CAPM on the vertical

axis. The fitted excess return for each portfolio at low (high) market volatility regime is computed

as an average of fitted excess returns calculated as a product of estimated betas in a previous

period regime and realized market excess returns for observations with smoothed probabilities of

high market volatility lower (higher) than 0.5. The straight lines on the graphs are 45 degree lines

from the origins.

Figure 3.2 illustrates the relative performance of the unconditional CAPM and

the regime-switching conditional CAPM for the B/M portfolios. If the CAPM pro-
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vided a useful qualitative prediction for the behavior of returns, then one should ob-

serve points scattered along the 45 degree line, which corresponds to excess returns

fitted by the CAPM being equal to average realized excess returns. As reported in

many studies (e.g., Fama and French (1992), Jagannathan and Wang (1996)), the

unconditional CAPM performs very poorly. The unconditional CAPM predicts flat

excess returns for the B/M portfolios, while the average realized excess returns vary

significantly across the portfolios.9 The correlation coefficient between the excess

returns predicted by the unconditional CAPM and average realized excess returns

for the different portfolios has a value of -0.67, confirming the poor performance of

the unconditional CAPM.

The performance of the regime-switching conditional CAPM for the B/M port-

folios is different across the two regimes. Although there is not much visual improve-

ment in the regime-switching conditional CAPM performance in the low volatility

regime, there is an apparent improvement in the high volatility regime, where we

can observe a fairly linear relationship between the CAPM-predicted excess returns

and the average realized excess returns. The correlation coefficients between the

excess returns fitted by the conditional CAPM and the average realized excess re-

turns for different B/M portfolios have values of 0.05 and 0.97 in the “low” and

“high” market volatility regimes, respectively. This result suggests that, in the high

volatility regime at least, the regime-switching conditional CAPM provides a much

better qualitative prediction for excess returns on the B/M portfolios than provided

by the unconditional CAPM.

9The fitted excess returns for B/M portfolios in high market volatility regime are negative
because they are computed based on realized market excess returns (see details in the note to
Figure 3.2), which are negative. We use realized market excess returns to compute fitted excess
returns because we compare them with actual realized excess returns of portfolios.
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Although there is some variation in the evidence for regime-switching betas

across different B/M portfolios, the estimates of parameters related to the market

return when considered jointly with the different B/M portfolios are in the same

range as those for a model of the market return with regimes identified using only

market volatility and not jointly estimated with portfolio betas. The correlation

coefficients between smoothed probabilities of the high volatility regime for the

market-only model and the joint market/CAPM model for the different deciles of

the B/M portfolios range from 0.81 to 1.00. This finding suggests that the regimes

are mainly identified by changes in market volatility rather than by changes in the

betas. Figure 3.3 displays portfolio excess returns and smoothed probabilities of

the high market volatility regime for the 1st, 5th, and 10th B/M decile portfolios.

Consistent with the regimes being identified by changes in market volatility, the

smoothed probabilities appear quite similar to those in Figure 3.1 and to each other

across the different portfolios.

Figure 3.3: Monthly returns for selected book-to-market portfolios and
smoothed probabilities of the high market volatility regime

Returns are continuously compounded monthly value-weighted returns for B/M portfolios in excess

of continuously compounded one-month Treasury bill yields for the sample period of July 1963 to

December 2007. Shaded areas correspond to NBER recessions.
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3.3.4 Regime-switching betas for momentum portfolios

For the analysis of the momentum portfolios, we proceed as before with the B/M

portfolios. The LR tests for the null hypothesis of a constant beta, the results for

which are reported in Table 3.6, support regime-switching betas at the 5% level for

all but the 6th decile portfolio. Indeed, the tests are significant at the 1% level in

the majority of cases. Thus, there is evidence for regime-switching betas for all of

the momentum portfolios for which the unconditional CAPM can be rejected, as

well as for some of the portfolios for which it cannot be rejected.

Table 3.6: Likelihood Ratio tests for regime-switching betas and residual
diagnostics for momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

LR stat. 7.09 55.03 51.94 21.44 4.13 2.40 5.97 6.41 72.25 39.83 16.16
p-value (0.01) (0.00) (0.00) (0.00) (0.04) (0.12) (0.01) (0.01) (0.00) (0.00) (0.00)

Residual diagnostic tests: portfolio return with constant beta and variance
ARCH-LM 36.83 54.50 94.40 64.79 5.71 44.45 32.61 27.92 29.20 14.62 31.73
p-value (0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

JB stat. 435.49 372.53 293.57 501.56 2433.05 701.79 1200.03 110.67 362.54 173.62 380.92
p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Residual diagnostic tests: portfolio return with regime-switching beta and variance
ARCH-LM 2.82 8.69 0.01 0.05 0.02 0.93 0.56 0.58 0.22 0.11 0.89
p-value (0.09) (0.00) (0.90) (0.82) (0.88) (0.33) (0.46) (0.45) (0.64) (0.74) (0.35)

JB stat. 31.12 34.10 3.85 1.21 2.88 1.41 1.57 1.85 122.89 7.87 32.40
p-value (0.00) (0.00) (0.15) (0.55) (0.24) (0.49) (0.46) (0.40) (0.00) (0.02) (0.00)

To test for a regime-switching β, we use likelihood ratio (LR) test statistics constructed based on

the likelihood for the joint model of market and portfolio returns with regime-switching α and

constant β (null) and the likelihood for the model with regime-switching α and β (alternative).

The residual diagnostic tests are conducted for the residuals in the portfolio return equation of

the joint model. The ARCH-LM statistics are constructed using R2 from an auxiliary regression

of squared standardized residuals on their lag and have a χ2(1) asymptotic distribution under the

null of no ARCH effects. The Jarque and Bera (1980) (JB) test statistics of Normality of residuals

have a χ2(2) asymptotic distribution under the null of Normality. HML denotes a “High minus

Low” portfolio.
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The residual diagnostic tests, also reported in Table 3.6, suggest that, for most

of the momentum portfolios, there are no remaining ARCH effects in the portfolio

residuals. The Normality of the residuals cannot be rejected for the majority of the

portfolios based on the Jarque and Bera (1980) test and the test statistics for other

portfolios declined considerably relative to those for the unconditional CAPM re-

gression model. Again, the residuals for the unconditional CAPM regression model

exhibit strong ARCH effects and their Normality is strongly rejected.

Table 3.7 reports estimates for the regime-switching model of the market and

portfolio returns for each of the momentum portfolios. The estimates of the betas

for most of the momentum portfolios vary considerably across the two volatility

regimes. Betas for the four portfolios of stocks, which have relatively strong returns

in the previous year (the “winner” portfolios), are higher in the low volatility regime

than in the high volatility regime. By contrast, betas for the four portfolios of stocks,

which have relatively weak returns in the previous year (the “loser” portfolios), are

lower in the low volatility regime than in the high volatility regime. Jegadeesh

and Titman (1993) find that the profitability of short-term “winners-minus-losers”

strategy cannot be explained by systematic risk of the trading strategy or delayed

stock price reactions to information about a common factor. They and Fama and

French (1996) suggest a possible explanation for momentum anomaly is that in-

vestors underreact to short-term past information and overreact to long-term past

information.

Table 3.8 reports estimates of the long-run expected alphas for the momentum

portfolios. Unlike with the B/M portfolios, we do not observe tangible improve-

ments compared to the unconditional CAPM. Therefore, we do not argue that the
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Table 3.7: Estimates for the regime-switching model of market and port-
folio returns for momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Regime-switching alphas
αi,0 -0.36 -0.15 -0.13 -0.12 -0.02 -0.13 -0.08 0.26 0.19 0.59 1.08
std.error (0.18) (0.10) (0.08) (0.08) (0.05) (0.07) (0.08) (0.09) (0.09) (0.14) (0.34)

αi,1 -1.96 -0.69 0.05 0.14 -1.04 0.40 0.12 0.12 0.32 0.39 2.50
std.error (0.24) (0.22) (0.28) (0.20) (0.41) (0.31) (0.13) (0.13) (0.13) (0.26) (0.44)

Panel B: Regime-switching betas
βi,0 1.13 0.91 0.85 0.86 0.90 0.96 1.03 1.04 1.20 1.34 0.36
std.error (0.05) (0.03) (0.03) (0.02) (0.02) (0.03) (0.03) (0.06) (0.03) (0.04) (0.09)

βi,1 1.35 1.49 1.23 1.13 1.03 1.03 0.91 0.86 0.82 0.82 -0.41
std.error (0.05) (0.05) (0.03) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.06) (0.14)

Panel C: Other parameters
µm,0 0.22 0.38 0.28 0.19 0.13 0.22 0.27 0.41 0.32 0.36 0.23
std.error (0.22) (0.19) (0.23) (0.18) (0.26) (0.24) (0.21) (0.20) (0.19) (0.18) (0.23)

µm,1 0.68 0.91 1.16 1.27 3.16 1.53 0.89 0.66 0.66 1.00 0.84
std.error (0.23) (0.28) (0.38) (0.37) (1.64) (0.81) (0.29) (0.38) (0.20) (0.34) (0.25)

δ -7.79 -6.24 -6.13 -5.41 -6.47 -5.90 -6.50 -4.84 -5.26 -6.16 -6.42
std.error (1.24) (1.10) (1.10) (1.06) (1.74) (1.36) (1.23) (2.07) (1.11) (1.16) (1.56)

σm,0 2.64 3.25 3.28 3.24 3.45 3.13 2.87 3.03 2.99 3.35 2.88
std.error (0.17) (0.15) (0.15) (0.16) (0.16) (0.18) (0.27) (0.18) (0.16) (0.15) (0.30)

σm,1 5.04 5.82 5.91 5.97 7.01 6.14 5.48 5.86 5.64 6.01 5.30
std.error (0.25) (0.40) (0.47) (0.49) (0.84) (0.67) (0.46) (0.41) (0.33) (0.46) (0.49)

σi,0 2.23 1.45 1.35 1.30 1.21 1.13 1.30 1.15 1.45 2.01 3.90
std.error (0.12) (0.10) (0.07) (0.06) (0.05) (0.04) (0.06) (0.07) (0.06) (0.16) (0.30)

σi,1 6.46 3.94 4.61 4.38 3.64 3.66 4.82 2.56 4.40 4.60 9.59
std.error (0.45) (0.25) (0.40) (0.45) (0.39) (0.34) (0.68) (0.23) (0.71) (0.45) (0.98)

Data are for value-weighted momentum decile portfolios for the sample period of July 1963 to

December 2007. HML denotes a “High minus Low” portfolio. Panels A and B report alphas and

betas from the regime-switching model of market and portfolio returns described by equations

(3.2.14) and (3.2.15). Statistically significant alphas at the 5% level are in bold.

regime-switching conditional CAPM explains the failure of the unconditional CAPM

for the momentum portfolios. However, as shown in Figure 3.4, allowing for changes

in beta still helps the CAPM in terms of its qualitative predictions. In particular,

similar to Figure 3.2 for the B/M portfolios, Figure 3.4 illustrates the relative per-

formance of the unconditional CAPM and the regime-switching conditional CAPM
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Table 3.8: Long-run expected alphas for momentum portfolios

Low 2 3 4 5 6 7 8 9 High HML

Panel A: Alphas for the unconditional CAPM regression model
αi -1.10 -0.35 -0.12 -0.04 -0.11 -0.02 0.03 0.24 0.27 0.53 1.64
std.error (0.18) (0.14) (0.11) (0.11) (0.09) (0.06) (0.07) (0.08) (0.09) (0.14) (0.26)

Panel B: Long-run expected alphas for the regime-switching model
αi -1.17 -0.28 -0.09 -0.06 -0.12 -0.02 -0.01 0.22 0.23 0.55 1.64
std.error (0.22) (0.10) (0.08) (0.07) (0.06) (0.06) (0.06) (0.08) (0.07) (0.12) (0.26)

Panel A repeats estimates of α from the unconditional CAPM regression model, also reported in

Table 3.1, for comparison purposes. HML denotes a “High minus Low” portfolio. Panel B reports

estimates of long-run expected alphas for the regime-switching model of market and portfolio

returns described by equations (3.2.14) and (3.2.15). The long-run expected alpha of each portfolio

is constructed as the weighted average of alphas in the two market volatility regimes, with weights

equal to the steady-state probabilities of each regime. The standard errors for these expected

alphas are computed using the Delta method.

for the momentum portfolios. As with the B/M portfolios, the unconditional CAPM

predicts nearly the same excess returns for the various momentum portfolios, while

there is significant variation in average realized excess returns across the portfolios.

When the two volatility regimes are considered separately, there appears to be a

positive linear relation between the excess returns fitted by the conditional CAPM

and the averaged realized excess returns.10

The correlation coefficient between the excess returns fitted by the unconditional

CAPM and average realized excess returns for the different portfolios has a value

of -0.39, confirming a similarly poor performance of the unconditional CAPM as

was found for the B/M portfolios. Meanwhile, the correlation coefficients between

the excess returns fitted by the conditional CAPM and the average realized excess

returns for different momentum portfolios have values of 0.71 and 0.95 in the “low”

10The 1st decile portfolio appears to be an outlier from the linear relationship in both volatility
regimes. However, the average returns for this portfolio are negative, while it has the highest
volatility amongst all momentum portfolios. Because this portfolio comprises assets under financial
stress and limited borrowing, we should probably not expect the CAPM to explain the returns for
this decile.
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and “high” market volatility regimes, respectively. Thus, the regime-switching con-

ditional CAPM provides much better qualitative predictions for excess returns on

the momentum portfolios than provided by the unconditional CAPM.

Figure 3.4: CAPM fitted excess returns versus average realized excess
returns for momentum portfolios

The returns are expressed as annualized percentages. The left scatter plot displays points with

the average realized excess returns on the horizontal axis and the fitted excess returns from the

unconditional CAPM on the vertical axis. The scatter plot in the middle (on right) displays points

with the average realized excess returns conditional on smoothed probabilities of the high market

volatility regime being lower (higher) than 0.5 on the horizontal axis and the fitted excess returns

in the low (high) volatility regime from the regime-switching conditional CAPM on the vertical

axis. The fitted excess return for each portfolio at low (high) market volatility regime is computed

as an average of fitted excess returns calculated as a product of estimated betas in a previous

period regime and realized market excess returns for observations with smoothed probabilities of

high market volatility lower (higher) than 0.5. The straight lines on the graphs are 45 degree lines

from the origins.

Given the lack of improvement in the long-run expected alphas, it might seem

surprising that there is such an improvement in the qualitative predictions of the

conditional CAPM. This result can be explained by the fact that the alphas, while

apparently not equal to zero, are responsible for only relatively small portions of

the overall portfolio returns. By contrast, variation in the market return explains

sizable portions of the portfolio returns, especially in the high volatility regime.
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In this sense, the conditional CAPM, while not strictly holding for all portfolios,

appears to provide a reasonable approximation of asset pricing behavior.

The correlation coefficients between smoothed probabilities of the high volatil-

ity regime from the market-only model and the joint market/CAPM model for

different deciles of the momentum portfolios range from 0.53 to 0.96. Evidently,

in some cases, changes in betas are not so strongly related to changes in market

volatility. In principle, to resolve this issue, we could consider a joint model that

imposes the same market volatility regimes for all momentum portfolios. However,

in practice, this is not feasible since it is important to allow for heteroskedasticity

in idiosyncratic news for each portfolio, which would require incorporating 211 (i.e.,

2048) regime processes in the joint model for all momentum portfolios. In some

cases, then, the joint market/CAPM model for each momentum portfolio identi-

fies regimes as joint market volatility/beta regimes rather than as market volatility

regimes. For the “loser” portfolios (1st, 2nd, 3rd, and 4th deciles), the joint market

volatility/beta regimes are identified as low volatility/low beta and high volatil-

ity/high beta regimes. For the “winner” portfolios (7th, 8th, 9th, and 10th deciles),

the regimes are identified as low volatility/high beta and high volatility/low beta.

Figure 3.5 displays the excess portfolio returns and smoothed probabilities of the

high market volatility regime for the 1st, 5th, and 10th momentum decile portfolios.

Although changes in beta for the 1st momentum decile portfolio do not appear to

significantly alter the identification of volatility regimes, as the smoothed probabil-

ities are similar to those in Figure 3.1, changes in beta appear to strongly affect the

identification of regimes for the 5th and 10th momentum decile portfolios. This lack

of correspondence may also explain why the regime-switching conditional CAPM
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can still be rejected for a majority of the momentum portfolios.

Figure 3.5: Monthly returns for selected momentum portfolios and
smoothed probabilities of the high market volatility regime

Returns are continuously compounded monthly value-weighted returns for momentum portfolios

in excess of continuously compounded one-month Treasury bill yields for the sample period of July

1963 to December 2007. Shaded areas correspond to NBER recessions.

3.4 Conclusion

In this paper, we allowed for time variation in Capital Asset Pricing Model

(CAPM) betas for book-to-market and momentum portfolios according to a two-

state Markov-switching process driven by stock market volatility. Our empirical

findings suggest strong time variation in betas across volatility regimes in most of

cases for which the unconditional CAPM can be rejected. Somewhat supportive

of the regime-switching conditional CAPM, we found that accounting for this time

variation in betas helps explain some of the portfolio excess returns that are not

captured by the unconditional CAPM. Thus, although the regime-switching condi-

tional CAPM can still be rejected in many cases, it provides much better qualitative

predictions about the relationship between risk and return compared to the uncon-

ditional CAPM, especially when market volatility is high.
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