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Abstract
Safety-critical embedded systems such as autonom-
ous vehicles typically have only very limited compu-
tational capabilities on board that must be carefully
managed to provide required enhanced functional-
ities. As these systems become more complex and
inter-connected, some parts may need to be secured
to prevent unauthorized access, or isolated to ensure
correctness.

We propose the multi-phase secure (MPS) task
model as a natural extension of the widely used
sporadic task model for modeling both the tim-
ing and the security (and isolation) requirements

for such systems. Under MPS, task phases re-
flect execution using different security mechanisms
which each have associated execution time costs for
startup and teardown. We develop corresponding
limited-preemption scheduling algorithms and as-
sociated pseudo-polynomial schedulability tests for
constrained-deadline MPS tasks; evaluation shows
that these are efficient to compute for bounded
utilizations. We empirically demonstrate that the
MPS model successfully schedules more task sets
compared to non-preemptive approaches.
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1 Introduction17

In today’s interconnected world, the security of real-time systems has emerged as a primary18

concern, e.g., [27, 18, 20, 17, 26, 29, 22], given the widespread integration of electronic devices into19
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various aspects of daily life. However, the implementation of security measures often introduces20

additional resource requirements, such as increased computational overhead, or imposes specific21

constraints on application behaviors; for example, this could involve necessitating computation22

that requires isolation or cannot be preempted.23

For example, control flow integrity (CFI) checks may be needed to ensure correct program24

execution. However, such checks, which require CPU time in addition to normal code execution,25

must be carried out at specific time points (e.g., after branching) and allowing for preemption26

may result in an arbitrary computation being performed but not detected. As another example, a27

task that is responsible for taking sensor readings may need to execute in isolation in order to to28

ensure that another task cannot deduce when an event of interest occurs [22].29

Since implementing security measures requires some of the same resources that the real-time30

tasks need to advance their execution, a co-design approach that explicitly considers security31

cost/requirements along with real-time requirements is potentially more effective at managing32

limited computational resources. For instance, trusted execution environments (TEEs) provide33

isolation of code and data in hardware at the expense of startup and teardown costs (in the order34

of microseconds for Arm Cortex-M [21] and hundreds of microseconds or even tens of milliseconds35

for Arm Cortex-A [23]). A scheduling approach that does not consider this specific security-driven36

overhead may elect to switch between the secure world (i.e., executing in TEE) and the normal37

world (no TEE) indiscriminately. This may result in an excessive amount of overhead and cause38

deadline misses. A security-cognizant scheduler, on the other hand, would make judicious decisions39

based on both security and real-time requirements, e.g., by bundling up multiple TEE executions40

and executing them one immediately after the other so as to have to pay for startup and teardown41

cost only once [23].42

A recent ISORC paper [6] proposed and developed algorithms that are able to provide provable43

correctness of both the timing and some security properties. We believe that such a scheduling-44

based approach to achieving security in safety-critical systems is possible, and indeed, necessary45

in embedded systems that are particularly cost- and SWaP-constrained and hence need to be46

implemented in a resource-efficient manner. However, we consider it unlikely that a ‘one size fits47

all’ solution exists; instead, security-cognizant scheduling must first explicitly identify the kinds of48

threats that are of concern by precisely defining a threat model, and design scheduling strategies49

that can be proved to be resistant to attacks under the identified threat model. We consider50

the research in [24] to be particularly noteworthy in this regard, in their explicit and methodical51

modeling of different threats in the context of the sporadic task model, and their analysis of52

vulnerabilities of current strategies (including security-agnostic fixed-priority scheduling [1] and53

the randomization-based schedule obfuscation approaches, e.g., the one in [30]) to such threats.54

Security-Cognizant Scheduling. We believe the methodology formalized and used in [24] holds55

great promise as a means of integrating security and timing correctness concerns within a common56

framework. This methodology was articulated in [6] as follows: security for safety-critical real-time57

embedded systems can be achieved by (i) explicitly representing specific security considerations58

within the same formal frameworks that are currently used for specifying real-time workloads,59

thereby extending notions of correctness to incorporate both the timing and the security aspects;60

and (ii) extending previously-developed techniques for achieving provable timing correctness to61

these models, thus assuring that both timing and security properties are correct.62

This Work. This paper extends our prior work in [5], which applied the methodology63

articulated in [6] to the following problem in system design for real-time + security. We consider64

computer platforms upon which multiple different security mechanisms (such as TEEs, encryp-65

tion/decryption co-processors, FPGA-implemented secure computations, etc.) co-exist. Depending66

upon their security requirements, different pieces/parts of the (real-time) code may need to use67
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different security mechanisms at different times. We therefore assume that the code is broken68

up into phases, with different consecutive phases needing to use different security mechanisms —69

the security mechanism used by each phase is specified for the phase. We assume that there is a70

startup/teardown overhead cost (for data communication, initialization, etc.) expressed as an71

execution duration, associated with switching between different security mechanisms. I.e., there is72

a time overhead associated with switching between the execution of different phases.73

Contributions. As in our prior work [5], we formalize the workload model discussed above74

as the Multi-Phase Secure (MPS) task model, with multiple independent recurrent processes75

of this kind that are to execute upon a single shared preemptive processor. We start out in76

Section 4 assuming that each recurrent process is represented using the widely-used 3-parameter77

sporadic task model [3]; later in Section 5, we will consider a generalization that models conditional78

execution within each recurrent process. For both models, we represent the problem of ensuring79

timeliness plus security as a schedulability analysis problem, which we then solve by adapting80

results obtained in prior work (e.g., [4, 8, 10, 25, 11]) on limited-preemption scheduling.81

This paper extends, corrects, and clarifies our prior results in [5]. Sections 4 and 5 introduce82

pseudo-polynomial schedulability analysis for sets of MPS tasks, improving the execution time of83

the associated algorithms, especially for tasks with implicit deadlines. With these improvements,84

we are able to evaluate larger sets of tasks with more realistic ranges of periods. We also address85

inconsistencies in [5] between the theoretical model and its implementation by using a continuous-86

time representation of the algorithms. These are reflected in the new results in Section 6, which87

more clearly demonstrate the advantages of our approach over non-preemptive schedulers.88

We emphasize that although the design of these models are motivated by security considerations89

– they arose out of some security-related projects that we are currently working on – we are proposing90

a scheduling model and associated algorithms, not a complete solution to a particular security91

problem. That is, although our model draws inspiration from security concerns, it (i) does not92

claim a perfect match to all security requirements; and (ii) it should have applicability beyond the93

security domain – indeed, we suggest that the results presented in this paper be looked upon as a94

generalization of the rich body of real-time scheduling theory literature on limited-preemption95

scheduling.96

Organization. The remainder of this manuscript is organized as follows. After briefly discussing97

some related scheduling-theory results in Section 2, we formally define the MPS sporadic tasks98

model in Section 4, and provide both pre-runtime analysis and a run-time scheduling algorithm99

for MPS sporadic task systems upon preemptive uniprocessor platforms. In Section 5 we further100

generalize the workload model to be able to represent conditional execution, and extend the101

algorithms of Sec. 4 to become applicable to this more general workload model as well. We have102

performed some schedulability experiments to evaluate the effectiveness of our algorithms – we103

report on these experiments in Section 6. We conclude in Section 7 by pointing out some directions104

in which we intend to extend this work, and by placing our results within a larger context on the105

timing- and security-aware synthesis of safety-critical systems.106

2 Some Real-Time Scheduling Background107

2.1 The Sporadic Task Model [3]108

In this model, recurrent processes are represented as sporadic tasks τi = (Ci, Di, Ti). Each task109

has three defining characteristics: worst-case execution requirement (WCET) Ci, relative deadline110

Di, and period (minimum inter-arrival duration) Ti. The sporadic task τi generates a series of jobs,111

with inter-arrival times of at least Ti. Each job must be completed within a scheduling window,112

LITES
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which starts at the job’s release time and ends Di time units later, and the job’s execution time is113

limited to Ci units. A sporadic task system Γ is made up of multiple independent sporadic tasks.114

We assume without loss of generality that tasks are indexed in non-decreasing relative deadline115

order (i.e., if i < j then Di ≤ Dj).116

Processor Demand Analysis (PDA). A sporadic task system can be scheduled optimally by117

the Earliest Deadline First (EDF) [19] scheduling algorithm, given a preemptive uniprocessor. To118

determine whether a specific task system can be correctly scheduled by EDF, Processor Demand119

Analysis (PDA) [7] can be utilized. PDA is a necessary and sufficient algorithm that is also120

optimal. The key idea of PDA is built upon the demand bound function (dbf). Given an interval121

length of L such that L ≥ 0, the dbf for a sporadic task τi can be represented by dbfi(L): the122

maximum possible aggregate execution time required by jobs of task τi such that they arrive in L123

and have deadlines before L. The following equation was derived in [3] to compute its value:124

dbfi(L) = max
(⌊

L−Di

Ti

⌋
+ 1, 0

)
× Ci (1)125

For a task system τ to be correctly scheduled by EDF, the following was derived in [3] as a126

necessary and sufficient condition for all L ≥ 0:127 [(∑
τi∈Γ

dbfi(L)
)
≤ L

]
(2)128

The Testing Set. A naïve application of PDA requires testing the validity of Equation 2 for all129

intervals. However, a more efficient approach, outlined in [3], involves checking only values of L130

that follow the pattern L ≡ (k × Ti + Di) for some non-negative integer k and some τi ∈ Γ.131

Furthermore, it suffices to test such values that are less than the least common multiple of all132

the Ti parameters. The collection of all such values of t for which it’s necessary to verify that133

Condition 2 holds true in order to confirm EDF-schedulability is referred to as the testing set for134

the sporadic task system Γ, often denoted as T (Γ).135

It is worth noting [3] that, in general, the size |T (Γ)| of the testing set T (Γ) can be exponential136

in the representation of τ . However, it has been proven [2, Theorem 3.1] that for bounded-137

utilization task systems —i.e., systems Γ that fulfill the additional requirement that
∑

τi∈Γ Ui ≤ c138

for some fixed constant c strictly less than 1— it is sufficient to check a smaller testing set with139

pseudo-polynomial cardinality relative to the representation of Γ, consisting of all values of the140

form L ≡ (k × Ti + Di) not exceeding141

min
(

P, max
(

Dmax,
1

1− U
·

n∑
i=1

Ui · (Ti −Di)
))

(3)142

where P is the least common multiple of all Ti, and Dmax is the maximum of all Di parameters.143

We note that for bounded-utilization implicit-deadline tasks —those for which Ti = Di for every144

task τi— this bound reduces to Dmax. In this extension, we apply this smaller testing set to our145

scheduling algorithms for MPS tasks.146

Since we can check Condition 2 in linear (Θ(n)) time for any given value of t, these observations147

imply that we can perform an exponential-time EDF-schedulability test for general task systems148

and a pseudo-polynomial-time one for bounded-utilization systems.149

Unfortunately, the general problem is NP-hard in the strong sense [12, 15, 14], and the150

bounded-utilization variant is NP-hard in the ordinary sense [13]. Therefore, it’s unlikely that we151

will discover more efficient schedulability tests.152
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2.2 Limited-Preemption Scheduling153

The limited-preemption sporadic task model, as introduced by Baruah et al. [4], adds to the task154

specification τi = (Ci, Di, Ti, βi) a chunk-size parameter βi in addition to the regular parameters155

Ci, Di, and Ti. This parameter βi indicates that each job of task τi may need to execute156

non-preemptively for up to βi time units.157

To schedule tasks in the limited-preemption sporadic task model, the limited-preemption EDF158

scheduling algorithm was proposed [4, 8]. Like its preemptive counterpart, the limited-preemption159

EDF algorithm prioritizes jobs based on their (absolute) deadlines. If a job of task τi with160

remaining execution time e is executing and a new job with an earlier deadline arrives, then τi’s161

job may execute for an additional min(e, βi) time units before incurring a preemption.162

Baruah and Bertogna [4, 8] showed that a task system is not schedulable under the limited-163

preemption EDF model if and only if either of the following conditions are true:164

∃L : L ≥ 0 :
∑
τi∈Γ

dbfi(L) > L (4)165

or166

∃τi : ∃L : 0 ≤ L < Di : βi +
∑

τj∈Γ,j ̸=i

dbfj(L) > L (5)167

Noting that dbfi(L) = 0 when L < Di, we combine and invert the two conditions, giving a168

necessary and sufficient condition for successfully scheduling a limited-preemption sporadic task169

system Γ upon a single preemptive processor using the limited-preemption EDF algorithm:170

∀L,


(∑

τi∈Γ
dbfi(L)

)
+

(blocking due to limited preemption)︷ ︸︸ ︷
max

{τi|Di>L}

{
βi

}
≤ L

 (6)171

Unlike the exact test for preemptive uniprocessor EDF-schedulability (Equation 2), Equation 6172

contains an additional term on the left-hand side of the inequality that accounts for blocking due173

to later-deadline (and hence lower-priority) jobs. Specifically, the maxτi|Di>L βi term is a blocking174

term that captures the potential delay caused by lower-priority jobs that were already executing175

at the start of the interval, for a duration of up to their chunk size. Since we assume that all tasks176

have non-negative execution time, this blocking term is always non-negative.177

In this extension to the prior work in [5], we use a continuous-time representation of the blocking178

term in Equation 6. The prior work used a discrete-time representation, maxτi|Di>L βi − 1, which179

requires both task periods and execution times to be represented as integers. This introduces180

several challenges. First, it is more difficult to reason about the effect of inserting preemption181

points; blocking times (chunk sizes) must also be represented as integers, but the number of182

“chunks” might not evenly divide the execution time. Second, there is a tradeoff when choosing183

the precision at which to represent execution time units. If the unit of time is coarse, then the184

execution time of each phase and its corresponding startup/teardown time must be rounded up.185

If the unit of time is very short —such as a single processor tick— to achieve higher precision,186

then the testing set grows rapidly as the representations of the task periods become larger. By187

using continuous time, this extension removes these limitations, and modifies the expression to188

allow execution times to take any non-negative real value.189

Based on this observation, the Processor Demand Analysis (PDA) algorithm has been extended190

to apply to limited-preemption systems as well [4]. The extension is straightforward: Equation 6191

replaces Equation 2 in the algorithm, and the algorithm proceeds as usual.192

LITES
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However, we note that Expression 6 cannot hold true for values of L of the form193

0 ≤ L < min
(

Dmin, max
{τi}
{βi}

)
(7)194

where Dmin = mini{Di}, suggesting incorrectly that a set of tasks is not EDF schedulable if195

any task has non-zero blocking time. In the next section of this extension, we present a corrected196

condition that addresses this issue, which we then apply to scheduling of MPS tasks in Section 4.197

3 The Corrected Limited-Preemption EDF Schedulability Condition198

In this section, we present a correction to the condition of Baruah and Bertogna [4, 8] for EDF199

schedulability of limited-preemption tasks.200

3.1 The Problem201

As discussed in the prior section, in [4, 8], Baruah and Bertogna claimed as a necessary and sufficient202

condition for scheduling a limited-preemption sporadic task system upon a single preemptive203

processor using EDF that204

∀L,


(∑

τi∈Γ
dbfi(L)

)
+

(blocking due to limited preemption)︷ ︸︸ ︷
max

{τi|Di>L}

{
βi

}
≤ L

 (8)205

where βi is the blocking due to limited preemption induced by task τi.206

From the definition of the demand bound function dbfi(L) in Equation 1, we observe that207

dbfi(L) = 0 for L < Di. Then for L < Dmin (i.e., L < Di for all tasks τi), the above condition208

requires L ≥ maxτi|Di>L{βi}; as we are already considering the case that L < Dmin, this can be209

simplified to L ≥ maxτi
{βi}.210

This implies that for values of L such that L < Dmin, the above condition cannot hold true if211

L does not also exceed βi for all tasks τi. More simply, the condition cannot hold true for values212

of L of the form shown in Expression 7. Because processor demand analysis requires that the213

condition hold true for all values of L ≥ 0, this would deem any set of limited-preemption214

tasks with non-zero blocking time to be unschedulable by EDF.215

3.2 The Correction216

As this is obviously not true – i.e., there are limited-preemption task sets that are schedulable by217

EDF, we now set out to correct the above condition. We do so by pointing out a subtlety to the218

proof in [4] of the condition in Expression 6.219

That proof constructs the blocking time condition by defining a minimal unschedulable set of
jobs for which ta represents the earliest arrival time of those jobs and tf is the time at which the
first deadline miss occurs. In this system, there is exactly one job with a deadline after tf ; we
let τj be the task that generates this job. If t1 is the time at which that job begins to execute
non-preemptively and t2 is when it stops executing, then [4, Equation 4] states that

n∑
i=1,i̸=j

dbf(τi, tf − t1) > tf − t2

The proof in [4] then claims that t2 − t1 ≤ qj , since qj is an upper bound on the nonpreemptive
execution time. We observe that since t2 ≤ tf , it also follows that t2 − t1 ≤ tf − t1. We can
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therefore combine these inequalities to make the statement that t2 − t1 ≤ min(qj , tf − t1). In light
of this, we modify the rest of the proof in [4]. Now, it follows that

n∑
i=1,i̸=j

dbf(τi, tf − t1) + min(qj , tf − t1) > tf − t2 + (t2 − t1)

We then replace the expression tf − t1 with a time L. Since tf < Dj , it follows that L < Dj ;
the dbf of τj will therefore be zero at L and we can rewrite the condition as:

n∑
i=1

dbf(τi, L) + min(qj , L) > L

This condition checks whether some task τj causes excessive blocking at times L < Dj ; to220

determine if the system is schedulable, we can therefore test whether the following condition holds221

for any task τi at any time L ≥ 0, considering blocking times from just those tasks for which222

L < Di:223 (∑
τi∈Γ

dbfi(L)
)

+ min
(

L, max
{τi|Di>L}

{βi}
)
≤ L (9)224

Then when L < Dmin, the dbf for each task is 0, so the condition will always be satisfied.225

Furthermore, when L ≥ Dmin,
∑

i dbf(Li) > 0, and so the condition cannot be satisfied when226

min(L, maxi βi) ≥ L. We can therefore begin the testing set of our implementation at Dmin, and227

only check the blocking time when determining whether the condition is violated.228

4 Systems of Multi-Phase Secure (MPS) Sporadic Tasks229

In this section we extend the sporadic task model to consider the setting where the workload of230

each task comprises an ordered sequence of different phases, with each phase required to use a231

different security mechanism. Therefore, switching between phases incurs some teardown/startup232

overhead, which translates to an additional execution duration. We are given a system of multiple233

such independent tasks that are to be scheduled upon a shared preemptive processor. Note that if234

an executing task is preempted within a phase, the assumption that the tasks in the system are235

independent of one another implies that we must conservatively assume that the preempting task236

may be executing using a different security mechanism; hence, the teardown/startup overhead237

may be incurred again. When a phase of a task is selected for execution we assign it responsibility238

for taking care of both the startup that must happen at that point in time, and the subsequent239

teardown that occurs when it either completes execution or is preempted by a higher-priority task.240

Hence a phase with execution duration c that is preempted k times is responsible for (and hence241

should have been budgeted for) a total execution duration of242

c + (k + 1)× (startup cost + teardown cost) (10)243

4.1 Task Model244

We have a task system Γ comprising N independent recurrent tasks τ1, τ2, . . . , τN , to be scheduled245

upon a single preemptive processor. The task τi is characterized by a period/inter-arrival separation246

parameter Ti and a relative deadline Di ≤ Ti . The body of the task – the work that must be247

executed each time the task is invoked – comprises ni phases, denoted vi,1, vi,2, . . . , vi,ni
, that248

must execute in sequence upon each job release of the task:249

LITES
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vi,1 vi,2 vi,3 . . . . . . vi,ni

250

As previously discussed, we assume that successive phases are required to execute using different251

security mechanisms (i.e., vi,j and vi,j+1 execute using different security mechanisms for all j,252

1 ≤ j < ni). Let c(vi,j) denote the WCET of phase vi,j , and q(vi,j) denote the sum of the startup253

cost and the teardown cost associated with the security mechanism within which phase vi,j is to254

execute. The aggregate WCET of all phases of this task during its execution is thus given by the255

following expression256

ni∑
j=1

(
c(vi,j) + q(vi,j)

)
257

However, suppose that during some execution of task τi the j’th phase is preempted kj times for258

each j, 1 ≤ j ≤ ni; as discussed above (Equation 10), the cumulative WCET of all phases of this259

task during this execution is then given by the expression260

ni∑
j=1

(
c(vi,j) + (kj + 1)× q(vi,j)

)
261

The figure below depicts a 2-phase job, denoted by vi,1 and vi,2, which is preempted once in the262

first phase and twice in the second phase. The shaded region denotes the startup and teardown263

costs for each phase of the job.264

vi,1 vi,2

x x x

vi,1a vi,1b vi,2a vi,2b vi,2c

265

4.2 Overview of Approach266

Given a task system Γ comprising multiple independent MPS tasks to be scheduled upon a267

single preemptive processor, we will first execute a schedulability analysis algorithm to determine268

whether this system is schedulable, i.e., whether we can guarantee to schedule it to always meet all269

deadlines, despite the costs incurred by startup/teardown. This schedulability analysis algorithm270

essentially constructs a limited-preemption task τ̂i corresponding to each task τi, and determines271

whether the resulting limited-preemption task system can be scheduled by the limited-preemption272

EDF scheduling algorithm [4, 8] to always meet all deadlines. If so, then during run-time the273

original task system is scheduled using the limited-preemption EDF scheduling algorithm, with274

chunk-sizes as determined for the corresponding constructed limited-preemption tasks. We point275

out that if a chunk-size βi is determined for the limited-preemption task τ̂i, then the j’th phase276

of τi’s jobs will execute in no more than ⌈c(vi,j)/(βi − q(vi,j))⌉ contiguous time-intervals (i.e., it277

would experience at most (⌈c(vi,j)/(βi − q(vi,j))⌉ − 1) preemptions); equivalently, the cumulative278

WCET of all the phases of each of task τi’s jobs will be no more than279

ni∑
j=1

(
c(vi,j) +

⌈
c(vi,j

βi − q(vi,j)

⌉
× q(vi,j)

)
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Assumption of Fixed-Preemption Points. We make the conservative assumption that once280

the chunk-size is determined for each task then the preemption points in the code are statically281

determined prior to run-time. That is, once the chunk-size βi is determined for a task τi, a282

preemption is statically inserted into the task’s code after the code has executed non-preemptively283

for no more than βi time units; this is referred to as the fixed-preemption point model [28]. Once284

τi’s program reaches this statically-placed preemption point, the security mechanism for the task’s285

current phase must286

1. complete a teardown (e.g., a flush of the cache, or ending a TEE session) to ensure task287

execution integrity during preemption;288

2. invoke the operating system’s scheduler to see if there are any high-priority tasks awaiting289

execution; and290

3. upon resuming execution as the highest-priority task the security mechanism must perform a291

startup (e.g., starting a new TEE session from the task’s last executed instruction).292

Since the preemption points are statically inserted into the code, we must perform the293

teardown/startup for a phase each time a preemption point is encountered (even if there is no294

other task active in the system at that time). While clearly this approach suffers from potentially295

performing unnecessary preemptions, it is often used in safety-critical settings due the precise296

predictability that fixed-preemption points provide. In future work, we will explore the floating297

preemption point model and other models that would permit the system to avoid unnecessary298

preemptions and teardowns/startups.299

4.3 The Schedulability Test300

We now describe our schedulability test. As discussed above, our approach is to construct for301

each task τi a corresponding limited-preemption task τ̂i. This limited-preemption task is assigned302

the same relative deadline parameter value (i.e., Di) and the same period parameter value (i.e.,303

Ti) as τi; its WCET Ĉi and its chunk-size parameter βi are computed as described below, and in304

pseudo-code form in Algorithm 1.305

We introduce integer variables cnt(vi,j) for each i, 1 ≤ i ≤ n, and for each j, 1 ≤ j ≤ ni, to306

denote the maximum number of contiguous time-intervals in which the j’th phase of τi may need307

to execute. Then Ĉi, the WCET of each job of task τ̂i, can be written as308

Ĉi
def=

ni∑
j=1

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)
(11)309

where the second term within the summation represents the maximum preemption overhead (the310

startup cost plus the teardown cost) that is incurred by the j’th phase of task τi.311

It remains to specify the values we will assign to the cnt(vi,j) variables. We will start out312

assuming that each phase of each task τi executes non-preemptively – i.e., in one contiguous time-313

interval. We do this by initially assigning each cnt(vi,j) the value 1; we will describe below how314

the cnt(vi,j) values are updated if enforcing such non-preemptive execution may cause deadlines315

to be missed. With each cnt(vi,j) assigned the value 1, it is evident that the largest duration for316

which task τi will execute non-preemptively is equal to maxni
j=1 {c(vi,j) + q(vi,j)}; we initialize the317

chunk-size parameters —the βi values— accordingly: for each task τi,318

βi ←
nimax

j=1
{c(vi,j) + q(vi,j)} (12)319

In this manner, we have instantiated the parameters for one limited-preemption task τ̂i corres-320

ponding to each task τ ∈ Γ. We must now check whether the limited-preemption task system321
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Algorithm 1 The Preprocessing Algorithm for Systems of MPS Sporadic Tasks (see Section 4)

Input:
(
Γ
)

1 for each task τi ∈ Γ do //Initially, assume that no preemption is needed
2 for j ← 1 to ni do
3 cnt(vi,j)← 1
4 βi ← max1≤j≤ni

(c(vi,j) + q(vi,j))

5 //The testing set T (Γ)1 is all t ≡ Di + k · Ti, t ≤ Dmax for some task τi and some k ∈ N.
for td iterating in increasing order over T (Γ)1 do

6 Compute ∆(td) as per Eqn 13 //This represents the slack in the schedule at td

7 if ∆(td) < 0 then //Check whether previously-assigned chunk sizes causes deadline miss
8 return the system is not schedulable

9 for each τi for which Di > td do
10 if (βi > ∆(td)) then //Must reduce the value of βi

11 βi ← ∆(td)
12 for j ← 1 to ni do //For each phase of τi, ensure that it doesn’t block too much
13 if βi > q(vi,j) then //There is sufficient time in chunk to do task execution
14 cnt(vi,j) ← minκ∈N such that c(vi,j )

κ + q(vi,j) ≤ βi //Break c(vij ) into small enough
pieces

15 else
16 return the system is not schedulable

17 if system utilization > 1 then
18 return the system is not schedulable

19 if all tasks have implicit deadlines Di = Ti then
20 return the system is schedulable

21 //For systems of constrained-deadline tasks, the testing set T (Γ)2 is all t ≡ Di + k · Ti,
Dmax < t and not exceeding the bound defined in Expression 3 for some task τi and some k ∈ N.
for td iterating in increasing order over the testing set T (Γ)2 do

22 Compute ∆(td) as per Eqn 13
23 if ∆(td) < 0 then
24 return the system is not schedulable

25 return the system is schedulable

Γ̂ = {τ̂1, τ̂2, . . . , τ̂N} so obtained is schedulable using the limited-preemption EDF scheduling322

algorithm [4, 8]. We do so by checking whether Equation 9 holds for values of t in the testing323

set T (Γ̂), considered in increasing order. First, we split T (Γ̂) into two sets, T (Γ̂)1 containing all324

values up to and including Dmax ≡ maxτi
Di, and T (Γ̂)2 containing all values thereafter. Then,325

we initialize td to denote the smallest value in T (Γ̂)1, and perform the following steps.326

1. If Equation 9 is satisfied for td, we set td to be the next-smallest value in T (Γ̂)1, and repeat327

this step.328

2. If Equation 9 is violated for td and the first term in the LHS of Equation 9 is > td, then we329

conclude that the system is not schedulable and return.330

Suppose, however, that a violation of Equation 9 occurs due to the blocking term in Equation 9.331

That is, the first term in the LHS of Equation 9 is ≤ td when Equation 9 is instantiated with332

t← td, but the sum of the first and second terms exceeds td. For this to happen, it must be333

the case that some τ̂i with Di > td is blocking “too much;” we must reduce the amount of334

blocking each such task can cause (i.e., reduce its βi parameter). Below, we describe how to335

do so.336
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3. Let ∆(td) denote the amount of blocking that can be tolerated at td without causing a deadline337

miss:338

∆(td) def= td −
∑

τ̂k∈Γ̂

dbf(τ̂k, td) (13)339

As discussed above, each τ̂i with Di > td must ensure that its blocking term, βi, is no greater340

than ∆(td). For each such task with βi currently greater than ∆(td), we may need to increase341

cnt(vi,j), the number of contiguous time-intervals in which its j’th phase may execute for each342

of its phases vi,1, vi,2, . . . , vi,ni
, in the following manner:343

cnt(vi,j)← min
κ∈N

such that
c(vi,j)

κ
+ q(vi,j) ≤ ∆(td) (14)344

That is, we reduce blocking in order to satisfy Equation 9 for td by potentially increasing the345

number of preemptions (and thereby incurring additional teardown/startup overhead). In346

prior work [5], we assumed that tasks had integer execution times and hence used βi − 1 as347

the blocking term; here, we use continuous time and therefore do not subtract a time segment.348

4. Such additional overhead must be accounted for; this requires that Ĉi, the WCET parameter349

of the limited-preemption task τ̂i, must be updated (i.e., potentially increased) by recomputing350

it using Equation 11 (reproduced below):351

Ĉi ←
ni∑

j=1

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)
352

(Notice that since some of the cnt(vi,j) values may have increased, the value of Ĉi may also353

increase.)354

5. Recall that we have been checking the validity of Equation 9 for values of td in T (Γ̂)1, the355

partial testing set of Γ, considered in increasing order. Since we are currently considering td,356

we have therefore already validated that Equation 9 previously held for values of t < td in the357

testing set. The crucial observation now is that the increase in the value of Ĉi for any i with358

Di > td does not invalidate Equation 9 for any t < td, because the increased Ĉi values only359

contribute to the cumulative demand (the first term in the LHS of Equation 9) for values of360

t ≥ td. Hence, we do not need to go back and re-validate Equation 9 for values of t smaller361

than td.362

6. Having thus modified the cnt(vi,j) variables (as in Equation 14) in order to ensure that363

Equation 9 is satisfied by Γ̂ for td, we update the value of td to the next-smallest value in364

T (Γ̂)1, and return to Step 1 above.365

7. Once td reaches Dmax, there are no remaining tasks with Di > td, and so we are done366

updating the cnt variables. At this point, we check if the total utilization of the system,367 ∑n
i=1

W CET (τi)
Ti

> 1. If it is, the system cannot be scheduled.368

8. For an implicit-deadline system with U ≤ 1, we prove in Lemma 2 that the slack will never369

be < 0 at any later time. Therefore, we know that the system is schedulable and can return370

immediately.371
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9. For a constrained-deadline system, we check the slack at each remaining point td in the testing372

set T (Γ̂)2 up to and including the testing set’s upper bound, described by Expression 3. If the373

slack is found to be < 0, the system is unschedulable, and we return immediately. Otherwise,374

is system is deemed to be schedulable.375

Computational Complexity. The number of iterations of the for-loops of Lines 5 and 21376

dominate the computational complexity; the other loops in the algorithm are polynomial in the377

number of tasks or number of vertices in a chain. The number of iterations of Line 5 is proportional378

to Dmax; for implicit-deadline systems, this is the only loop that executes. For constrained-deadline379

systems, the combined number of iterations for both loops is the number of testing set points. In380

general, for constrained-deadline sporadic task systems scheduled on a single processor, the testing381

set can be exponential in the number of tasks, but is psuedo-polynomial as long as the utilization382

is bounded by a fixed constant strictly less than 1 [2]. For MPS sporadic tasks, the utilization383

can change as we add preemption points. However, because we only continue to add preemption384

points as the testing set is traversed up to Dmax, the testing set remains pseudo-polynomial in385

size unless the utilization reaches exactly 1, in which case it becomes exponential (bounded by the386

least-common multiple of the task periods).387

Proof of Correctness/Optimality. We now provide formal arguments that our approach for388

chains yields a correct assignment of βi values for all tasks (Theorem 1) and is optimal in the389

sense that if the approach returns the system is not schedulable, then there is no assignment390

of βis that would cause the system to become schedulable (Theorem 2).391

Before we prove the two main theorems of the section, we prove a useful invariant for the for-loop392

in Line 5 of Algorithm 1. The remainder of this section assumes the fixed-preemption model where393

a preemption is always taken at a fixed-preemption point (i.e., incurring the teardown/startup394

costs). In this model, it can be shown that Equation 9 remains a necessary and sufficient condition395

for limited-preemption EDF schedulability. However, under other preemption models where we396

may skip/delay preemptions, Equation 9 is only a sufficient condition. Thus, only the correctness397

theorem will hold, and we leave an investigation of optimality for these more dynamic settings to398

future research.399

▶ Lemma 1. At the beginning of each iteration of the for-loop at Line 5 with td being the current400

testing set interval considered, the following statements hold:401

1. For any t < td, Equation 9 is satisfied for the current set of βi values.402

2. For any τi ∈ Γ such that Di ≤ td, the value of βi set by the algorithm is maximum (over all403

possible schedulable chunk-size configurations of Γ).404

Proof: Lemma 1 is, as expected, proved by induction.405

Initialization: Initially td equals Dmin; the minimum deadline is the first non-zero value of the406

dbf function for all tasks. Thus, Statement 1 is true since at all prior timepoints the first term of407

Equation 9 is zero and Equation 9 reduces to L ≤ L per the arguments in Section 3.2. Statement 2408

is also vacuously true since β1 is set to its largest possible value max1≤j≤n1 (c(v1,j) + q(v1,j)) by409

the previous loop and does not affect schedulability as τ1 cannot block any other task (by nature410

of having the smallest relative deadline).411

Maintenance: Let us consider the current testing-set point td. Let tc be the testing-set point412

considered in the previous iteration of the for-loop. Assume that Statements 1 and 2 were true at413

the beginning of the for-loop for point tc; we will show that the statements will hold for td.414

For Statement 1, we must show that Equation 9 is not invalidated when we execute the for-loop415

for tc. As was previously argued, for t < tc, the dbf values are unchanged as any changes made416
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to βi values in the iteration for tc only affect the Ĉi of tasks with Di > tc. Thus, Statement 1417

continues to hold for all t < tc by assumption. We only need to show that the previous iteration418

will set the corresponding β values such that Equation 9 will also be true at tc. However, this419

obviously holds since for each τi with Di > tc, either βi already satisfied Equation 9 (and does420

not change) or it is set by Line 11 of Algorithm 1 to the largest value that satisfies Equation 9 for421

the current values of β.422

Statement 2 follows from the last observation of the previous paragraph and by the assumption423

that β values for all τi with Di ≤ tc are set to their maximum value by assumption and cannot424

change at tc or after. Therefore, the Ĉi values that contribute to the dbf in Equation 9 at tc are425

as small as possible. It therefore follows that any τj with tc ≤ Dj ≤ td has either already had it’s426

βj value set to the largest possible to satisfy Equation 9 for some t < tc or has its value set to the427

largest possible to satisfy Equation 9 at tc.428

Termination: Let td be the last testing set interval considered by the for loop in Line 5. During429

the execution of the loop, the algorithm may return the system is not schedulable. In the430

case that not schedulable is returned, Statements 1 and 2 hold for all testing set intervals up to431

(and including) td, but not necessarily after td. If the algorithm completes execution of the loop432

without returning, the Statements 1 and 2 are guaranteed to hold for all testing set intervals in433

T (Γ̂)1 (by properties of testing-sets for Equation 9 and that the last testing set point must be at434

least DN ). □435

▶ Lemma 2. In an implicit-deadline task system, Equation 9 will be satisfied at all points436

L > Dmax if U ≤ 1.437

Proof: By contradiction. Consider some td > Dmax in the testing set at which Equation 9
fails to hold. At this point, there are no tasks where Di > td, and so Equation 9 becomes∑

τi∈Γ dbfi(td) ≤ td. From the definition of the dbf:

∑
τi∈Γ

max
(⌊

td −Di

Ti

⌋
+ 1, 0

)
· Ci > td

Since for an implicit-deadline task system, Di = Ti for all tasks τi,∑
τi∈Γ

max
(⌊

td

Ti

⌋
, 0
)
· Ci > td

From which it follows that ∑
τi∈Γ

max
(

td

Ti
, 0
)
· Ci > td

As td and Ti are both positive: ∑
τi∈Γ

td

Ti
· Ci > td

which implies that U > 1. □438

▶ Theorem 1. If the schedulability test returns the system is schedulable, then assignment439

of βi values by the algorithm in Algorithm 1 ensures that the task system meets all deadlines when440

scheduled by limited-preemption EDF.441

Proof: The termination argument of Lemma 1 argues that Statement 1 and therefore Equation 9442

hold for all testing set points in T (Γ̂)1. If the system is an implicit-deadline system, then by the443

check in line 17, the system utilization must be ≤ 1; by Lemma 2, Statement 1 will continue to444
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hold for all points in T (Γ̂)2. If the system is a constrained-deadline system, the loop in Line 21445

will complete and return the system is schedulable if and only if Equation 9 holds for all446

points in T (Γ̂)2.447

Since Equation 9 is sufficient (and necessary for the fixed-preemption model), the task system448

Γ is schedulable by limited-preemption EDF when the assigned chunk-sizes βi are used. □449

▶ Theorem 2. If the schedulability test returns the system is not schedulable, then there450

does not exist an assignment of βi values such that Equation 6 is satisfied.451

Proof: If the system is not schedulable is returned while processing a testing-set interval452

td in T (Γ̂)1 then either ∆(td) < 0 or βi < q(vi,j) for some i and j. In either case, Statement 2453

of Lemma 1 implies that the βi’s set prior to td are as large as possible with respect to t < td454

for Equation 9. Therefore, if ∆(td) < 0 is true, it is not possible to find another assignment of455

βi’s to make this false. Otherwise, if βi < q(vi,j), the fact that βi was set to its maximum value456

means there does not exist a larger possible βi to successfully fit task execution into given the457

startup/teardown costs q(vi,j) of the phase vi,j .458

If the system is not schedulable is returned while processing a testing-set interval td in459

T (Γ̂)2, then Equation 9 is false for some td ∈ T (Γ̂)2. The right-side term of equation 9 considers460

only tasks where Di > L; as T (Γ̂)2 begins past Dmax, there can be no tasks matching this461

condition and therefore no assignment of βi that would reduce the right-side term. Per Statement462

2 of Lemma 1, each βi has already been maximized when considering T (Γ̂)1; reducing some βi463

can only increase the number of preemption points required and therefore increase the dbf of464

some task in the left-side term of Equation 9. Therefore, there is no alternative assignment of β’s465

that would reduce the left side of Equation 9 and cause the system to become schedulable. □466

5 Systems of Conditional MPS Sporadic Tasks467

In Section 4 we considered recurrent tasks representing ‘linear’ workflows: each task models a piece468

of straight-line code comprising a sequence of phases that are to be executed in order. In many469

event-driven real-time application systems, however, the code modeled by a task may include470

conditional constructs (“if-then-else” statements) in which the outcome of evaluating a condition471

depends upon factors (such as the current state of the system, the values of certain external472

variables, etc.), which only become known at run-time, and indeed may differ upon different473

invocations of the task. Hence the precise sequence of phases that is to be executed when a task474

is invoked is not known a priori. It is convenient to model such tasks as directed acyclic graphs475

(DAGs) in which the vertices represent execution of straight-line code, and a vertex representing a476

piece of straight-line code ending in a conditional expression has out-degree > 1 – see Figure 1 for477

an example. In this figure the vertex a denotes a piece of straight-line code that ends with the478

execution of a conditional expression. Depending upon the outcome of this execution, the code479

represented by either the vertex b or the vertex c executes, after which the code represented by480

the vertex d is executed. In this section, we briefly explain how our proposed Multi-Phase Secure481

(MPS) workload model may be further extended (i.e., beyond the aspects discussed in Section 4)482

to accommodate recurrent tasks that may include such conditional constructs.483

5.1 Model484

We now provide a more formal description of the conditional MPS sporadic task model. Each task485

τi is characterized by a 3-tuple (Gi, Di, Ti) where Di and Ti are the relative deadline and period,486

and Gi is a DAG: Gi = (Vi, Ei) with Ei ⊊ Vi × Vi. Each vertex vi,j ∈ Vi represents a phase of487
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a

b

c

d

(5, 2)

(3, 3)

Figure 1 Each vertex characterized by a pair of values; the former one representing the WCET of the
node/phase, c(v) and the latter one representing the sum of the startup and teardown cost, q(v). We
assume that the code represented by vertices a and d execute using the same security mechanism, whereas
the code represented by vertices b and c each execute using a distinct different mechanism.

computation, which must execute using a specified security mechanism. The interpretation of each488

edge (vi,j , vi,k) ∈ E depends upon the outdegree (i.e., the number of outgoing edges) of vertex vi,j :489

1. If this outdegree = 1, then the edge denotes a precedence constraint: vertex vi,k may only490

begin to execute after vertex vi,j has completed execution.491

2. If this outdegree is ≥ 2, then all the outgoing edges from vi,j collectively denote the choices492

available upon the execution of a conditional construct: after vi,j completes execution, exactly493

one of the vertices vi,k for which (vi,j , vi,k) ∈ E becomes eligible to start executing. It is494

not known beforehand which one this may be, and different ones may become eligible upon495

different invocations of the task.496

A WCET function c : Vi → N is specified, with c(vi,j) denoting the WCET of node vi,j ∈ Vi.497

An overhead function q : Vi → N is specified, with q(vi,j) denoting the startup/teardown cost498

associated with the security mechanism using which vertex vi,j is to execute.499

A Simplifying Assumption. In this paper, we assume that during the execution of an invocation500

of task τi the teardown cost associated with the security mechanism of vi,j , and the startup cost501

associated with the security mechanism of vi,k, is always paid upon traversing an edge (vi,j , vi,k).502

This will indeed be the case if the indegree of vi,j is equal to 1 – in our model, there is no reason503

to split out a piece of straight-line code that executes using the same security mechanism into504

two separate nodes. However, for the case that the indegree of vi,j is greater than 1 it is possible505

that some of the predecessor vertices of vi,j , which represent pieces of code that may conditionally506

lead to the execution of vertex vi,j , are to execute using the same security mechanism as vertex507

vi,j . Since both vertices execute using the same security mechanism upon traversing such an508

edge during run-time, there is no need to pay the teardown and start-up costs between them509

and our simplifying assumption represents a conservative over-approximation; we leave the task510

of eliminating such over-approximation to future work. (We point out here that getting rid of511

this simplifying assumption would also require us to move away from fixed-preemption point512

model [28] — the assumption, stated in Section 4, that preemption points are statically assigned513

prior to run-time.)514

A Subtlety. We now highlight an issue, not present during the consideration of linear workflows in515

Section 4, that arises when we are dealing with conditional code. As stated above, it is not known516

prior to run-time which of the branches through the conditional code will be taken during run-time517

(and this may differ upon different invocations). Since hard-real-time systems are required to meet518

their deadlines under all circumstances that may legally occur during run-time, during pre-runtime519

schedulability analysis one makes the conservative assumption that each invocation of the task520
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takes the “longest” path —the one with maximum cumulative execution requirement— through521

the DAG.522

Standard algorithms are known for identifying the longest path through a DAG that have run-523

ning time linear in the representation of the DAG. Under limited-preemption scheduling, however,524

identifying the path through the DAG that has maximum cumulative execution requirement is525

not entirely straightforward. Let us consider again the example DAG of Figure 1.526

If the chunk size βi for this task were ≥ 7, then both branches can be executed non-preemptively.527

The upper branch incurs a cost of 5 + 2 = 7 while for the lower branch the cost is 3 + 3 = 6;528

therefore, the upper branch is the computationally more expensive one.529

Now suppose βi = 4. Then the upper branch may need to execute in ⌈5/(4−2)⌉ or 3 contiguous530

pieces, for a cumulative cost of 5 + 3 × 2 = 11. The lower branch may need to execute in531

⌈3/(4− 3)⌉ or 3 contiguous pieces, for a cumulative cost of 3 + 3× 3 = 12, and is hence the532

more expensive branch.533

This example illustrates that the computationally most expensive path through a DAG that534

represents conditional execution depends upon the value of the chunk size parameter (the βi535

parameter of the task). And as we saw in Section 4, our approach to scheduling MPS sporadic536

tasks has been to convert each task to a limited-preemption sporadic task; our procedure for doing537

so (Algorithm 1) repeatedly changes the values of the βi parameters of the tasks. As we attempt538

here to adapt the techniques of Section 4 to schedulability analysis of conditional MPS tasks, we539

must remain cognizant of this fact and account for it in the schedulability analysis algorithms540

that we will develop here.541

5.2 Overview of Approach542

Given task system Γ comprising multiple independent conditional MDS tasks to be scheduled543

upon a single preemptive processor, we will adopt an approach similar to the one described in544

Section 4:545

As in Section 4, we will first execute a schedulability analysis algorithm that constructs a546

limited-preemption task τ̂i corresponding to each task τi ∈ Γ, and determines whether the547

resulting limited-preemption task system can be scheduled by the limited-preemption EDF548

scheduling algorithm [4, 8] to always meet all deadlines.549

If so, then during run-time we will schedule the original task system using the limited-550

preemption EDF scheduling algorithm, with chunk-sizes as determined for the constructed551

limited-preemption tasks.552

In defining the mapping from the given set of conditional MPS sporadic tasks to limited-preemption553

sporadic tasks, we must be cognizant of the issue identified above —that changing the value554

of βi may change the cumulative worst-case execution time associated with τi— and adapt the555

algorithm of Section 4 accordingly; below we describe how we do so.556

The Schedulability Test. The schedulability test, which is an adaptation, to deal with the557

issue identified above, of the one discussed in Section 4, is presented in pseudo-code form in558

Algorithm 2; we discuss it briefly below. As in Section 4, limited-preemption task τ̂i is assigned559

the same relative deadline parameter value (i.e., Di) and the same period parameter value (i.e.,560

Ti) as τi; its WCET Ĉi and its chunk-size parameter βi are computed as described below.561

We introduce integer variables cnt(vi,j) for each i, 1 ≤ i ≤ n, and for each j such that vi,j ∈ Vi,562

to denote the maximum number of contiguous time-intervals in which the j’th phase of τi executes.563

Then Ĉi, the WCET of each job of task τ̂i, can be written as564

Ĉi
def= max

(all paths P in Gi)

∑
vi,j∈P

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)
(15)565
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Algorithm 2 The Preprocessing Algorithm for Systems of Conditional MPS Sporadic Tasks (see
Section 5)

Input:
(
Γ
)

26 for each task τi =
(
Gi = (Vi, Ei), Di, Ti

)
in Γ do

27 for each vertex vi,j ∈ Vi do
28 cnt(vi,j)← 1
29 βi ← maxvi,j∈Vi

(c(vi,j) + q(vi,j))

30 for td iterating in increasing order over T (Γ̂)1 do
31 Compute ∆(td) as per Eqn 13

32 if ∆(td) < 0 then
33 return the system is not schedulable
34 for each task τi =

(
Gi = (Vi, Ei), Di, Ti

)
for which Di > td do

35 if (βi > ∆(td)) then
36 βi ← ∆(td)

37 for each vertex vi,j ∈ Vi do
38 cnt(vi,j)← minκ∈N such that c(vi,j)

κ + q(vi,j) ≤ βi

39 if utilization > 1 then
40 return the system is not schedulable

41 if constrained-deadline system then
42 for td iterating in increasing order over T (Γ̂)2 do
43 Compute ∆(td) as per Eqn 13

44 if ∆(td) < 0 then
45 return the system is not schedulable

46 return the system is schedulable

Notice the difference with Equation 11 in Section 4: since the “longest” path (i.e., the one with566

maximum cumulative execution requirement) may change as βi changes, Ĉi is computed as the567

maximum cumulative WCET over all paths in the DAG. (We point out that a change in βi gets568

reflected in Equation 15 as a change in the values assigned to the cnt(vi,j) variables.) As previously569

stated, this computation takes time linear in the representation of the DAG.570

As with linear tasks, once we reach Dmax (the end of T (Γ)1), the βi value of each task, and571

therefore the value of Ĉi is fixed. Therefore, the claim from Lemma 2 continues to hold, and572

for implicit-deadline task systems, we can continue to perform a simple utilization check on the573

system rather than testing the remainder of the testing set.574

6 Empirical Evaluation575

In the previous sections, we have developed algorithms to introduce preemptions into the execution576

of the phases of multi-phase secure tasks. While these preemptions reduce the blocking that577

higher-priority phases/jobs experience at runtime, they come at a cost – increased overhead due578

to the additional teardown/startup costs that must be performed before and after every inserted579

preemption. Thus, while the limited-preemption approach proposed in this paper theoretically580
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dominates the non-preemptive approach (i.e., each phase is executed non-preemptively and581

preemptions are permitted only between phases of a task), it is unclear how much schedulability582

improvement on average we can expect a system designer to obtain from using our proposed583

approach. In this section, we provide an initial empirical analysis on that topic via the application584

of the schedulability tests of Section 4 (over chains respectively) over synthetically-generated585

tasks systems. We compare the proposed schedulability tests with existing limited-preemption586

scheduling where each phase of a task is executed fully non-preemptively.587

In this work, we limit our scope to evaluating linear task sequences; while we believe our588

algorithm should achieve similar results for schedulability improvements and performance on a589

DAG-based conditional task model, we defer further evaluation, analysis, and refinement of the590

conditional model to future work.591

6.1 Experimental Setup592

The evaluation was conducted using a C++ simulation. All tests were performed on a a593

server with two Intel Xeon Gold 6130 (Skylake) processors running at 2.1 GHz, and with 64GB of594

memory. Multiple task sets were evaluated in parallel; each task set was given a single thread on595

which to run. We evaluate task sets for many parameter variations, including task count, number596

of phases per task, and utilization. For each combination of parameters, we generate 1000 random597

task systems using the UUniFast algorithm [9], first to assign a total utilization Ci

Ti
to each task598

and then to distribute the task’s total allotted time Ci between the execution times c(vi,j) and599

startup/teardown overhead q(vi,j
) for each of its phases. We note that compared to the prior work600

in [5] that this paper extends, we have adjusted this distribution to be more consistent and to be601

independent of the number of phases in the task. We then evaluate each task set against three602

algorithms: chains, the algorithm presented in section 4, phase NP, in which there is a static603

preemption point between each phase but no additional preemption points can be inserted, and604

fully NP, in which the entire task runs as a single non-preemptive chunk.605

We evaluate both implicit-deadline and constrained-deadline task systems. In an implicit-606

deadline system, Di = Ti for each task. In a constrained-deadline system, we choose a random607

value for each Di that is uniformly distributed between the task’s execution time and its period608

Ti.609

For implicit-deadline systems, we evaluate U at increments of 0.1 in [0, 1]. We note that,610

compared to the prior version of this work in [5], the improvement to the testing set described611

in Section 4 allows us to evaluate these systems in a reasonable amount of time even for large612

numbers of tasks; to understand the impact of this optimization, we also test the exponential set613

presented in the original version on systems with 8 tasks or fewer and compare their execution614

times. For constrained-deadline systems, the testing set is bounded by a term that is determined615

in part by a factor 1
1−U ; as U → 1, the testing set size becomes very large and becomes infeasible616

to evaluate. We therefore limit our evaluation of constrained-deadline systems to utilizations in617

[0, 0.9].618

6.2 Simulation Results619

Schedulability of Implicit-Deadline Systems. Figure 2 shows the schedulability ratio of each620

of the three tests described above — chains, phase NP, and fully NP. For each test, tasks with621

low utilization are all schedulable, but schedulability decreases as the utilization of the system622

increases. By inserting additional preemption points, the chains algorithm is able to obtain a623

schedulability improvement over a phase NP approach on these higher-utilization tasks. Once624

utilization reaches 1, it is not possible to insert any preemption points, as inserting a preemption625
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Figure 2 Schedulability ratio of implicit-deadline tasksets with 3 tasks each and 10–30ms periods. On
the left, tasks are randomly assigned 1–4 phases; on the right, 1–6.

point would increase the startup/teardown overhead and cause the utilization to exceed 1; therefore,626

the chains algorithm does not lead to a schedulability improvement. Tasks with 1-6 phases have a627

slightly higher schedulability ratio than tasks with 1-4 phases; we explore this effect more in the628

paragraph below.629

Figure 3 shows the impact of various parameters of the task system on the schedulability ratio630

using the chains algorithm and 10-30ms periods. In Figure 3a, tasks are randomly assigned 1-4631

phases, while the utilization and tasks per taskset are varied. In Figure 3c, the number of tasks is632

held constant at 3, and each taskset is assigned a fixed number of phases, varying from 2 to 20633

phases per task. In Figure 3e, the utilization is held constant at 0.9. As in Figure 2, increasing634

utilization reduces the schedulability ratio. Here, it is clearly visible that increasing the number of635

tasks or number of phases per task improves the schedulability ratio. When these parameters are636

increased, the system’s total execution time is divided among more tasks or among more phases,637

so that each task has a lower blocking time. The reduction in blocking time makes the system638

more likely to be schedulable.639

For completeness, we also evaluate the performance of the algorithm on a wider 1–1000ms640

period range, using both a uniform distribution of periods within this range, as well as the641

log-uniform distribution recommended in [16]. Figure 4 shows how the schedulability of these task642

sets compares to the tasksets with 10-30ms periods. The schedulability of the sets with the wider643

period range is much lower; in particular, tasksets containing a task with a small period are less644

likely to be schedulable. We hypothesize that this is due to these high-frequency tasks having645

less ability to expand their execution time as preemption points are inserted. This trend is also646

apparent in Figure 5; unlike tasks with 10–30ms periods, increasing the number of tasks increases647

the probability of generating a high-frequency task and therefore causes the schedulability ratio to648

decrease.649

Schedulability of Constrained-Deadline Systems. Figure 6 shows the schedulability ratio650

for each of the three scheduling algorithms on constrained-deadline tasksets, in which all other651

task parameters follow the same configuration as Figure 2. In a constrained-deadline system, the652

chains algorithm is also able to obtain a schedulability improvement over a phase NP approach, by653

inserting additional preemption points to reduce the blocking time. As the tasks in these systems654

have shorter deadlines than the implicit-deadline systems, all three algorithms obtain a lower655

schedulability ratio.656
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(a) Implicit deadlines, 1–4 phases. (b) Constrained deadlines, 1–4 phases.

(c) Implicit deadlines, 3 tasks per set. (d) Constrained deadlines, 3 tasks per set.

(e) Implicit deadlines, utilization 0.9. (f) Constrained deadlines, utilization 0.9.

Figure 3 Schedulability ratio of chains algorithm when varying taskset parameters. All tasks have
periods selected uniformly from 10–30ms.
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Figure 4 Comparison of the effect on schedulability of changing the period range of the generated
tasks. Each set contains 3 implicit-deadline tasks with 1–4 phases.

The right column of Figure 3 shows the effect of varying different taskset parameters for the657

constrained-deadline task sets, which otherwise have the same parameter configurations as the658

implicit-deadline systems. For constrained-deadline tasks, the schedulability ratio is generally659

lower, and the effect of increasing the phase count is smaller. Increasing the number of tasks has660

only a very small effect on the schedulability ratio. We hypothesize that, although increasing the661

task count still tends to reduce the system’s blocking times, it also increases the probability that662

one or more tasks will have a tightly-constrained deadline, which reduces the chance that the663

system will be schedulable.664

Performance. In our prior work [5], tasks with 6 or more tasks took over 24 hours to run,665

and were therefore infeasible to evaluate. In this work, we rewrite the original Python-based666

simulation using C++, and correct an implementation issue with the original construction of the667

hyperperiod-bounded testing set. These changes lead to significant performance improvements on668

their own.669

In this work, we also introduce an optimization for implicit-deadline task systems that allows670

us to avoid testing timepoints past Dmax. In Figure 7, we analyze the impact of this optimization.671

Using the full, exponential testing set from the prior work, our implementation is able to test672

tasksets with 6 tasks in only a few seconds, but the time needed still scales exponentially with the673

number of tasks; past eight tasks per set, the analysis once again takes an unreasonable amount674

of time to run. Using the optimization for implicit-deadline systems, evaluating schedulability is675

orders of magnitude faster, and the evaluation times also become more consistent for each taskset.676

This optimization allows us to determine the schedulability ratio for systems of up to 20 tasks,677

the results of which are displayed in Figure 3. As the time needed to determine schedulability678

now scales much more slowly with respect to the number of tasks, we believe that evaluating even679

larger task sets is also possible.680

In Figure 8, we evaluate the performance of determining schedulability of constrained-deadline681

task sets using the pseudo-polynomial bound on the testing set identified in [3]. Compared to the682

full hyperperiod testing set, running the evaluation with this testing set is much faster. However,683

we note that it is still slower than the optimized implicit-deadline bound from Figure 7. Moreover,684

the distribution of execution times exhibits high variability. Perhaps most importantly, our685

evaluation is on task sets where U = 0.9, at which the pseudo-polynomial bound is still reasonably686

small. As shown in Figure 9, when U → 1, the size of the pseudo-polynomial set approaches the687
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(a) Implicit deadlines, 1–4 phases. (b) Implicit deadlines, 3 tasks per set.

(c) Implicit deadlines, utilization 0.9.

Figure 5 Schedulability ratio of chains algorithm when varying taskset parameters. All tasks have
periods selected from 1–1000ms using a log-uniform distribution.

hyperperiod set, and it becomes increasingly less feasible to iterate over the entire testing set.688

7 Conclusions689

We believe that the concurrent consideration of timing and security properties within a single unified690

framework is an effective means of extending the rigorous approach of real-time scheduling theory691

to guaranteeing appropriately-articulated security properties in resource-constrained embedded692

systems. In real-time scheduling theory, pre run-time verification of timing correctness is performed693

using models of run-time behavior; these models are carefully crafted for specific purposes: e..g,694

the sporadic task model [3] has been designed to represent recurrent processes for which it is safe695

to assume a minimum duration between successive invocations and for which timing correctness is696

defined as the ability to meet all deadlines.697
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Figure 6 Comparison of schedulability ratios. Each set has 3 constrained-deadline tasks with periods
selected uniformly from 10–30ms. On the left, tasks are randomly assigned 1–4 phases; on the right, 1–6.

Figure 7 Time to test schedulability of sets of 3 implicit-
deadline tasks with 10–30ms periods, 1–4 phases, and
utilization of 0.9, either testing up to the hyperperiod or
stopping at Dmax. Note the logarithmic scale.

Figure 8 Time to test schedulability of sets of 3
constrained-deadline tasks, with 10–30ms periods, 1–4
phases, and utilization of 0.9, using the psuedo-polynomial
testing set bound from [3]. Note the logarithmic scale.

Our algorithm, which we first introduced in [5], extends the sporadic task model, and a698

generalization that allows for the modeling of conditional code, in a security-cognizant manner, to699

deal with a particular kind of security model. For the specific model that we have proposed, we700

have developed algorithms that are able to provide provable correctness of both the timing and701

the security properties that are considered.702

In this extension to our original work, we have reduced the execution time complexity of our703

algorithm, and demonstrated that in an implicit-deadline task system, it can run quickly even for704

large numbers of tasks. In combination with a more efficient implementation of the algorithm, this705

allowed us to evaluate larger and more complex task systems. We have also illustrated the scaling706

properties of the algorithm’s execution time for both constrained- and implicit-deadline systems,707

and shown how its ability to schedule tasks is affected by varying their properties. Finally, we have708

clarified several details of our algorithm and have provided a more complete demonstration of the709
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Figure 9 Comparison of the sizes of the hyperperiod and pseudo-polynomial testing sets. For each
utilization, we generated 100 sets of 5 constrained-deadline tasks with periods from 10–30, and 1–4 phases.

improved schedulability offered by our algorithm over a phase or fully non-preemptive approach.710

Although the work described in this manuscript arose out of our related projects in embedded711

systems security, we emphasize that we are not claiming that our algorithms solve any security712

problems; rather, they solve a scheduling problem that may arise from a class of security problems713

for which an adequate protective response gives rise to execution environments with bounded-cost714

startup/teardown operations. As future work, we intend to evaluate these scheduling models in715

conjunction with real-world attack/defense models.716

On the other hand, we believe that our results are relevant beyond just security considerations:717

that they may, in fact, be considered to be further contributions to the real-time scheduling718

theory literature dealing with limited-preemption scheduling. They may also be extended to other719

limited-preemption scheduling frameworks, e.g., for multi-core platforms.720
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