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A DENSITY MATRIX view of the DOUBLE WELL PROBLEM

A State-to-State View

We have a system that consists of matter and a radiaiton field. Becaude these are

coupled, one sees photon emission into the radiation field while the matter

“decays” to

lower lying states. We will describe the dynamics of this system, treating he coupling

between the field and matter perturbatively.

The unperturbed states

Suppose the matter has energy eigenstates

Pn =3 Ey,

and that the field has a vacuum state
i) — 0

and single photon states
Qg — hwg

The matter and field will, to simplify the notation, both be considered ond-dimesional.

The label ¢ on the 1-photon states is the momentum of the photon. wg =
denote the Hamiltonian of the matter end the field.

Picture the system as phaving two kinds of states. The states

(I’O ’pn

correspond to matter in the nt" energy eigenstate and no excitation in the
states have energies Ey,. The states

Pqtm

cq. Let H

lield. These

have energies Eyy -+ fiwg. The collection of these states will be taken as a basis set.

The perturbation

The states listed are not actually energy eigenstates because of a coupl

the matter and field. There will be an additional term in the Hamiltonian,

-

V=odk

ing between
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because of this coupling. d is the dipole moment of the matter and £ is tlTe electric field

riated with the EM field.

e-dependent perturbative analysis ‘

The
sent

can

witl

uu
sim
this
con
has

The actual state of the system at time ¢ can be represented

V(1) = 3 an(t)e Bt D0dy + 3 cmg(t) e~ iBmthug)t/hg, B
n

m4q {
|

an(t) and cmg(t) are the amplitudes of ¥ in the basis set (in an interTction repre-

ation). The equation of motion
|
i 5’116'5—'*} = (H + V)(t) |

be resolved in the basis set into the equations

mq
i
dinn :(T/}mw"/’n)
Eq =(Dq|EDg) = (D0lERq)”
These equations will now be solved with the initial conditions

|
cmq(0) =0, all m, q. |

In :jle real system, the number of single photon states grows with the sizq of the “vac-

" In the infinite vacuum limit, only one photon states will be produged. We have
Hlified the description of the dynamics by implicitly ignoring multi—phI:uton states, but
will be carried one step further: This no-photon initial condition will be applied ~
‘inuously in time. This is a little tricky, but the experiment we’re tryiFg to model

no photon-photon memory. ;

From (2), i
|
|

. t
Cmq(t) = %Eq Z dmn ] d'r an(']")ez(Em'*'hqu" En)'r/h
i
0
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which we insert into (1) to get

. 1 (B —F
an(t) = —13 Y En= Bt/ g
Lm

t
5 I 8q|2 c—wqt/h / dr ag(7) i En+hewg—Eq)T /N
1 0

The 1D Field Model

The one-dimensional (scalar) field model gives a collection of modes for
large vacuum limit,

h
2wepe

;|‘sq|2 Flwq) =zq;|<q>q|£@0)|2 Flwg) = [ duoquq £

The resonance condition, the condition that makes
¢
[ dr ae(T)ei(Enﬁhwq—Eg)r/h
1]

large, is

h

Wq

So we can replace the wg in (3) with

1

S

DensityMatrix

(3)

which, in the

D(E) representing the density of states with photon energy £ in the radiafion field.
Since D(E) = 0 for E < 0, only photon emission is possible, only matter de-excitation is

possible.

With this representation for the field,

Z ei(E’l-Em)t/ﬁ' dnmdeD(Ee - Em)

Lm

t
deae(T)ei(E,,let)T/ﬁ/dwe—iw(t—'r)
0

an(t) = —
n(t) 21regh2c
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The integral over w in (4) gives 2wd(t — 7) so the integration over 7 can b trivially eval-
uated. (Almost trivially. Only half the d- function is picked up!) The upshot is that

1 i(En—
o 3 e En=EOR 4 dy ¢ D(Ey — Em) ag(t)
2ehc p o !

an(t) = -

Now we only apply this for very short times: times for which

GEn—E)t/h o 1

We {then reinitialize the system (sweep out any photon components) and tun again. The
conclusion is that

fln(t) = - ! E: dan(EE = Em) dme ag(t)

260&26

holds for all times. If

1
W.e = domD(Er — Eq) dp e,
ne 260?120; nmD(E¢ — Em) dig

then
an(t) = — Z Whea(t) (5)
4

(5) just represents a set of linear first order differential equations for the quantities
{an(t)}. The actual time evolution will be a linear superposition of variofis modes, each
of which has a single first order decay constant. Similar pictures describe single chain
polymerization kinetics or stochastic nuclear decay schemes. '

Obgerve Something .

Let € correspond to some mechanical property of the system. Since i;he state
chahges with time, the expected value for @ will change in time. ’

Q(t) =(T ()| Q¥ (2)) |
= Z an(t)* et Eut/h Qnm am(t)e—iEmt/h

£ T onglt) e Ethentihg,, Cmq(t)e—i(Eerhuq)z/iL
TN

I =3 Qnm e (En=Ew)t/h {an(t)* am(t) + D _ cng(t)* emq(
n,m q

T
S
N —
—
o
S
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If the expression in braces in (6) were of the form by (¢)* bim(t), then (6
the conventional form

Q1) = (¥(1)|QP(®))
with p
T,D(t) — e—!Hmt/h an(t) d)na
Hj; = the Hamiltonian of the matter.

But the expression in the braces does not have this form because the expe
volves a mixture of states with different photon numbers. The universe of|

) would have

rtation in-
field -+ matter

has a state function, but the subsystem of matter alone can not be characterized with a

state function.

The Density Matrix

But the expected value of Q will always be a linear combination of the¢ matrix ele-

ments Qmn. The mechanical system can always be characterized by givin
cients pnm(t) in the expression

Q(t) = r;z Qmn pum (t)

Since € could be anything, the ppm(t) are the generic answer to “What is
the mechanical systemn?”

the coefli-

the state of

If we imagine that the coeflicients ppm(t) are the matrix elements of some operator

p(t), then ) .
Q) = 3 Qumnpun(t) = 3 [@a0)], . = Tr(Qp(®)]

(7)

p(t) is the matter’s density matrix and (6) identifies it’s explicit represent:tttion,

!

pmn(t) = elEn—Em)t/h {an(t)* am(t) + %jc,,q(t)*c,,,q(t)}l

|

(8)

Since pmn(t)* = pum(t), p(t) is Hermitian. We want to continuously inv:é{e the “no-

photon” conditions, however, so we replace (8) with |

pmn(t) = eH{Bn—Bmt/h g (1% ap (t)

The Equation of Motion

(9)
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'We started with a system that consisted with two parts, but shifted t

em. Can we describe the dynamics of the mechanical subsystem alon

pnm(t) evolve in time:

() == (Bn — Bm) € Fa=Emt /M a,(6)" am(2)
+ etBn=Bm)th (o, (1% i (£) + an(t)* am(t)}
=2 (B = En) B0 Bt IR 0, (1) am ()

£
=%(En — Em) pma(t)

= 3 [Wine pea(t) € En=BOUR 4 g (1) Wiyl B
7

an operator equation, this is

PO _ Liary, o) - [P0 20 + ) D)

f‘l(t) . eiﬂut/fl We—iHMt/ﬁ
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Db questions

ut just one part. The equations of motion (1-2) describe the dynamics of the entire

?

Since we know the equations of motion for the a,(t), we can calculatg how rapidly
|

— B Emd R | 5™ Wop an(8)* ag(t) + 3 Wagae(t)” dnlt)
e |

;c/n]
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