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High Fidelity Conceptual Design of a Supersonic Aircraft 

Daniel G. Donahue 
Washington University in St. Louis, April 2018 

 
Abstract: 

This paper discusses a method to find an optimum design for a supersonic aircraft. The problem 

approached was optimizing the Lift-to-Drag ratio of an aircraft travelling at supersonic speeds. This was 

done through the use of Computer Aided Design (CAD) and Computational Fluid Dynamic (CFD) software. 

By setting up an initial model and allowing for several of the dimensions to be variable, a variety of aircraft 

shapes could be made to represent different design models. These models represented a population that 

could be optimized using a genetic algorithm. This paper utilized a Particle Swarm Optimization scheme, 

which led the population towards a converged solution. Stopping criteria was established to provide a 

stopping point for the population evolution and was met after four iterations.  

 

Introduction: 

A need for a high fidelity conceptual 

design process is ever growing in the aerospace 

engineering industry. The faster a design can go 

from paper, to a feasible and useful concept, the 

less the overall project will cost. Faster 

production of a feasible design also allows for 

more analysis by engineers to ensure the aircraft 

is safer and more reliable. Being able to optimize 

this early portion of the design process would 

enable engineers to perform more analysis on a 

preliminary design by attaining a feasible 

conceptual design in a timely manner. 

Historically conceptual design has been 

done by the way of pen and paper. By using free 

body diagrams and historical efficiency and 

sizing factors, engineers have been able to 

design planes that are still flying today. Advances 

in computational power have been able to 

improve the conceptual design process through 

the use of source panel and vortex lattice models 

to get an idea of aircraft performance. Newer 

design methods include the use of CAD and CFD 

software. By generating three-dimensional 

models and analyzing the flow around them, 

engineers can extract the aerodynamic 

coefficients and determine the performance of 

the aircraft. By determining an optimum design 

quickly, a program can reduce conceptual design 

costs and focus on the safety and reliability of 

the production aircraft. 

This paper discusses a particle swarm 

optimization scheme to find an optimum 

aerodynamic solution. Particle swarm 

optimization is a type of genetic algorithm that 

begins with an initial generation and then 

creates a new generation that is guided by the 

best value of a fitness function. The scheme 

developed for this paper is outlined in the Model 

Summary section and an example of the 

optimization scheme in work is provided in the 

Results section.  

 

Background/Related Work: 

 The idea behind this paper and problem 

came from a research project that the author 

worked during undergraduate studies at Iowa 

State University. This research addressed a 

similar task of designing a transportation aircraft 

and pulled from different areas of multi-

disciplinary analysis and optimization 

methodologies. One of the students who 

collaborated on that research project went on to 



write their Master’s thesis on the subject 

(Watson). 

 Other areas of engineering design 

optimization have called for the use of CAD and 

CFD software in combination. However, the 

majority of these studies have been on a 

component-based scale (IndiaCADworks). 

Setting up simulations and creating the correct 

geometry takes a lot of computational time and 

therefore it is typically limited to only optimizing 

an airfoil or wing at most. The scope of this paper 

was to address the macroscopic concept of 

optimizing for the entire platform. Namely, 

optimizing the shape of an aircraft for peak 

performance. Some recent research has looked 

into this macroscopic view while utilizing both 

CAD and CFD software but admits that it is 

limiting the results by ignoring some of the 

viscous effects that should be present in the flow 

field simulations (Ronzheimer). This reduces the 

fidelity of the optimized design, something that 

this paper wishes to address by studying a high-

fidelity conceptual design process. 

 

Model Summary: 

 The problem discussed is contained 

within a highly non-linear, continuous design 

space that is a function of the aircraft geometry. 

In order to put a bound on the scope of the 

design space, only eight parameters were 

allowed to be variable within the design and are 

outlined below. The design space can be 

considered highly non-linear as the aerodynamic 

interactions around the model are not easily 

predicted without running multiple turbulent 

based CFD cases, which was done for this paper. 

However, it can be assumed that the design 

space is continuous as there must be continuous 

geometry that defines the three-dimensional 

aircraft. As this problem contains a large design 

space, the particle swarm optimization scheme 

developed is considered to be heuristic, and a 

near-local maximum can be determined at best. 

No global optimum for the fitness function can 

be obtained with this method due to the 

complexity of the problem. 

 To conduct the particle swarm 

optimization analysis, an initial three-

dimensional model was created in the 

SolidWorks CAD software. After completing a 

baseline design, a Design Table was created and 

used to map eight variable dimensions to the 

aircraft model. Four of these variables were 

mapped to the Wing and four were mapped to 

the V-Tail. These became the eight design 

variables used during the optimization process. 

Each of the design variables were allowed to vary 

between maximum and minimum values. 

 

Variables used to describe the Wing: 

𝑅𝑜𝑜𝑡 𝐶ℎ𝑜𝑟𝑑 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑛):  360 ≤ 𝑥1 ≤ 480  

𝑇𝑖𝑝 𝐶ℎ𝑜𝑟𝑑 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑛):  120 ≤ 𝑥2 ≤ 360 

𝑆𝑝𝑎𝑛 (𝑖𝑛):   360 ≤ 𝑥3 ≤ 720  

𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝐶ℎ𝑜𝑟𝑑 𝑆𝑤𝑒𝑒𝑝 (𝑑𝑒𝑔):  80 ≤ 𝑥4 ≤ 110 

 

Variables used to describe the V-Tail: 

𝑇𝑎𝑖𝑙 𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙 (𝑑𝑒𝑔):  20 ≤ 𝑥5 ≤ 50 

𝐶ℎ𝑜𝑟𝑑 𝐿𝑒𝑛𝑔𝑡ℎ (𝑖𝑛):  120 ≤ 𝑥6 ≤ 240 

𝑆𝑝𝑎𝑛 (𝑖𝑛):  120 ≤ 𝑥7 ≤ 240 

𝐿𝑒𝑎𝑑𝑖𝑛𝑔 𝐸𝑑𝑔𝑒 𝑆𝑤𝑒𝑒𝑝 (𝑑𝑒𝑔):  90 ≤ 𝑥8 ≤ 120 

 

The SolidWorks Design Table was then 

used to create ten models using the Excel RAND() 

function. Using this function (1), each of the 

eight design variables could have a random value 

that fell between each their respective minimum 

and maximum bounds. Renderings of the aircraft 

model are shown below for the minimum and 

maximum bounds. The first rendering showing a 

model with all of the minimum inputs and the 



second rendering showing a model with all of the 

maximum inputs. 

 

𝑥𝑖,𝑛,0 = 𝑥𝑖,𝑀𝐼𝑁 + 𝜉(𝑥𝑖,𝑀𝐴𝑋 − 𝑥𝑖,𝑀𝐼𝑁)        

𝑤ℎ𝑒𝑟𝑒  𝜉 = 𝑅𝐴𝑁𝐷(0,1) 𝑓𝑟𝑜𝑚 𝐸𝑥𝑐𝑒𝑙         (1) 

𝑥𝑖,𝑛,𝑚 =   𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒;   𝑤𝑖𝑡ℎ 𝑖 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟, 

𝑛 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑎𝑛𝑑 𝑚 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟    

 

 

Figure 1: Renderings of Minimum Bounds on 

Design Variables 

 

 

Figure 2: Renderings of Maximum Bounds on 

Design Variables 

 These initial ten models were used as 

the first population, referred to as Gen0 or 

Generation 0 and tabulated in Appendix A. The 

initial population was exported from SolidWorks 

in a Parasolid Binary format (*.x_t) and loaded 

into the ANSYS Fluent CFD software. Each model 

was then evaluated at three different angles of 

attack; 0 degrees, 4 degrees, and 8 degrees. All 

evaluations were done with a Spalar-Almaras, 

Turbulent Transition SST, 𝑘 − 𝜔 solver at 1.5 

Mach number and assumed 45kft altitude. 

Output for each angle of attack (𝛼) included Axial 

Force (A), Normal Force (N), and in some cases 

Pitching Moment. This pitching moment was 

dropped in the later generations to save time as 

it was not used in the scope of this paper. Each 

CFD output was tabulated in an Excel worksheet 

and used a transformation to determine the Lift 

and Drag forces on the model, 

 

𝐿 = 𝑁 ∗ cos (𝛼) − 𝐴 ∗ 𝑠𝑖𝑛(𝛼)            (2) 

𝐷 = 𝑁 ∗ 𝑠𝑖𝑛(𝛼) + 𝐴 ∗ 𝑐𝑜𝑠(𝛼)            (3) 

 

Realizing that Drag can be modeled as a second 

order polynomial of Lift, the Lift-to-Drag ratio 

could then be modeled as such, 

 

𝐿

𝐷
= 𝑐1𝛼2 + 𝑐2𝛼 + 𝑐3                          (4) 

 

Which could then be evaluated to find a 

maximum Lift-to-Drag ratio for each model. 

 

 

Angle of Attack (deg) 

Figure 3: Graph Showing Second Order 

Approximation for L/D 

L/D 



 

Once each model had been evaluated in 

the generation, the maximum of all models was 

determined and set the best design for that 

generation. Finding the maximum Lift-to-Drag 

ratio for the generation was the fitness function 

for the optimization scheme, 

𝐹𝑏,𝑚 = 𝑀𝑎𝑥 ((
𝐿

𝐷
)

𝑀𝐴𝑋
 𝑜𝑓 𝐷𝑛,𝑚) → 𝑥𝑖,𝑏,𝑚                (5) 

𝑤ℎ𝑒𝑟𝑒 𝐷𝑛,𝑚 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑚𝑜𝑑𝑒𝑙 𝑛 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚 𝑎𝑛𝑑 𝐹𝑏,𝑚 

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑑𝑒𝑠𝑖𝑔𝑛 𝑓𝑟𝑜𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚 𝑎𝑛𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑠  

 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑑𝑒𝑠𝑖𝑔𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑥𝑖,𝑏,𝑚, 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

The best design variables, 𝑥𝑖,𝑏,𝑚, from 

the previous generation were then used to 

advance the design variables for the next 

generation through the Design Table, 

 

𝑥𝑖,𝑛,𝑚+1 = 𝑥𝑖,𝑛,𝑚 + 1.1𝜉(𝑥𝑖,𝑏,𝑚 − 𝑥𝑖,𝑛,𝑚)                 (6) 

 

A factor of 1.1 was applied to the 

advancement function (6) to allow for mutations 

that could bring future generations past the 

previous best designs’ variables. Once the next 

generation’s design variables were determined, 

the process was repeated to determine the next 

best Lift-to-Drag ratio. This process became the 

particle swarm optimization method used to 

advance towards an optimum solution. To 

determine if an optimum solution had been 

found, stopping criteria was set with, 

 

𝜖 =  
𝐿/𝐷𝑀𝑎𝑥 − 𝐿/𝐷𝐴𝑣𝑔

𝐿/𝐷𝑀𝑎𝑥
 ≤ 0.01              (7) 

 

This stopping criterion shows convergence 

towards an optimum solution by setting a small 

error between a generations’ maximum and 

average Lift-to-Drag ratio. 

Results: 

 In total, four generations were 

evaluated. This included the initial Gen0 and 

three following generations. The fourth 

generation, Gen3, met the stopping criteria of 

𝜖 = 0.006 ≤ 0.01 and therefore the iterations 

commenced. As the generations evolved, the 

average Lift-to-Drag maximum increased for the 

population. This was an expected result from the 

particle swarm optimization method chosen. 

The overall maximum Lift-to-Drag was held 

constant for the first three generations, which 

was a product of the initial generation containing 

a random model near the optimum Lift-to-Drag 

ratio. Results from each generation are 

tabulated in Table 1 and plotted in Figure 4. 

Individual results are tabulated in Appendix B. As 

mentioned before, the optimum found is not 

considered to be a local or global maximum, but 

rather a near-local maximum for the fitness 

function of the particle swarm optimization. 

 

 

Table 1: Generation Results 



 

Figure 4: Graph Showing Generational 

Advancement to Optimum Solution 

 

 Data collection proved to be a laborious 

task for this problem. In total, around 384 

processor-hours were required to run all of the 

CFD cases. This was done by utilizing 8 

computers in one of the computer labs in 

Washington University for 8 hours straight. The 

geometry updates were very quick once the CFD 

data had been collected and therefore isn’t 

accounted for in the above time estimate. Ways 

to combat this are detailed in the Continuing 

Work section. 

 In conclusion, a particle swarm 

optimization scheme was developed and used to 

optimize aircraft performance for a supersonic 

transportation vehicle. Although the results used 

an abundance of computational power, the 

scheme worked as desired and showed that 

optimization methods could be used to 

determine a high-fidelity conceptual design.   

 

Continuing Work: 

 If a more optimum solution were 

desired, the generation population sizes could 

be increased to allow for more data points. Also, 

the convergence criteria could be set to a lower 

value, requiring more generations to converge. 

To do this the author suggests using automation 

on top of this optimization. By writing scripts to 

automate the CAD and CFD process, the process 

could be made to be hands-off. 

This project could be taken a step 

further by including more design variables to 

better describe the shape of the aircraft. 

Different types of aircraft models could also be 

tested to optimize the aircraft shape. This could 

include different tail and wing shapes. On top of 

this, Finite Element Analysis (FEA) could also be 

used to optimize the structure even more. 

Through CFD the aerodynamic loads on the 

aircraft can be determined, FEA could then be 

run to see what types of materials should be 

used or help define the interior structure of the 

aircraft. 
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Appendix A: 

This Appendix A contains the SolidWorks Design Tables for each generation along with renderings 

for each of the models within the population. A star is provided on the renderings to show which model 

had the highest lift-to-drag ratio. 

 

 

Table 2: Design Table for Generation 0 

 

 

 

Figure 5: Renderings of Generation 0 with Maximum Lift-to-Drag Ratio for Each Model 

 

 

 



 

 

Table 3: Design Table for Generation 0 

 

 

 

 

Figure 6: Renderings of Generation 1 with Maximum Lift-to-Drag Ratio for Each Model 

 

 

 

 

 

 



 

 

Table 4: Design Table for Generation 0 

 

 

 

 

Figure 7: Renderings of Generation 2 with Maximum Lift-to-Drag Ratio for Each Model 

 

 

 

 

 

 

 



 

 

Table 5: Design Table for Generation 0 

 

 

 

 

Figure 8: Renderings of Generation 3 with Maximum Lift-to-Drag Ratio for Each Model 

 

 

  



Appendix B: 

This Appendix B shows the forces output from the CFD computations. They are then converted 

from Normal and Axial force into Lift and Drag. Graphs are also provided with the trend lines used to 

calculate the maximum lift-to-drag ratio for each model. 

 

Figure 9: Generation 0 Data and Max L/D Calculation 



 

 

Figure 10: Generation 1 Data and Max L/D Calculation 

 



 

Figure 11: Generation 2 Data and Max L/D Calculation 

 



 

Figure 12: Generation 3 Data and Max L/D Calculation 
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