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D-LOG AND FORMAL FLOW
FOR ANALYTIC ISOMORPHISMS OF N-SPACE

DAVID WRIGHT AND WENHUA ZHAO

Abstract. Given a formal map F = (F1, . . . , Fn) of the form z+higher-order
terms, we give tree expansion formulas and associated algorithms for the D-Log

of F and the formal flow Ft. The coefficients that appear in these formulas can
be viewed as certain generalizations of the Bernoulli numbers and the Bernoulli
polynomials. Moreover, the coefficient polynomials in the formal flow formula
coincide with the strict order polynomials in combinatorics for the partially
ordered sets induced by trees. Applications of these formulas to the Jacobian
Conjecture are discussed.

1. Introduction

This work began as an effort to link and extend the results of [W2] and [Z],
placing them in a common framework. Both of these papers deal with the formal
inverse F−1 of a system of power series F = (F1, . . . , Fn); both give formulas for F−1

in terms of F , the former being a tree formula, the latter an exponential formula.
This quest has led to a host of interesting connections, algorithms, formulas, and
relationships with combinatorics, Bernoulli numbers, and Bernoulli polynomials.

The former paper deals with tree formulas as they apply to formal inverse,
a thread which is also the main thrust of [BCW], [W1], [W2], and [CMTWW].
It has combinatoric connections with generating functions and enumeration tech-
niques for trees. The general goal of power series inversion (sometimes called
“reversion”, perhaps to distinguish functional inverse from multiplicative inverse)
is as follows. Let F = (F1, . . . , Fn) with Fi ∈ C[[z1, . . . , zn]] for each i and
Fi = z1 + terms of degree ≥ 2. One seeks formulas for the unique G1, . . . , Gn ∈
C[[z1, . . . , zn]] for which Gi(F ) = zi, for i = 1, . . . , n. Perhaps the first of these
was the Lagrange Inversion Formula (see [St2], Chapter 5), which dealt with the
case n = 1, and which was generalized (under a certain restrictive hypothesis) to
all n by I. J. Good [Go] in 1960. Good then uses his formula for problems of enu-
merating certain trees. In fact, Good’s formula had been discovered and published
by Jacobi in 1830 [Ja]. Another paper which appeared in 1960 was that of G. N.
Raney [R], who also related formal inverse to trees. Raney’s work was generalized
in [CMTWW], which also utilized the work of Jacobi. A general inversion formula
was given by Abhyankar and Gurjar in 1974 [A], and this is the source from which
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3118 DAVID WRIGHT AND WENHUA ZHAO

the tree formula of [BCW] was derived, with the hope of applying it to the Jacobian
Conjecture. Other treatments of the subject of inversion are [HS], [Ge], and [Jo].

The tree formula of [BCW] expresses the formal inverse F−1 as an infinite Q-
linear combination of certain power series PT ∈ C[[z]], which are constructed using
finite rooted trees T . This construction will be reviewed in §2 and a new (and
quick) proof of the inversion formula, using the tools developed in this paper, will
be presented in §5 (Theorem 5.1).

Amongst the results of the latter paper is the realization of F by an expression
F = exp(A) · z, where A = A(z), called the D-Log of F , is a differential operator
uniquely determined by F and yielding the formal inverse as F−1 = exp(−A) · z.
Furthermore, the formal flow Ft = exp(tA) · z encodes all powers F [n] with n ∈ Z
of the formal map F . The D-Log and the formal flow will be reviewed in §3.

A primary goal was to show that the D-Log A can also be expressed as a Q-linear
combination of the power series PT . This goal was attained, yielding a tree formula
for the D-Log. Moreover, we discovered that the rational coefficients φT of this
expression can be generated by an elegant recurrence relationship and possess some
intriguing combinatorial properties. For example, the Bernoulli numbers appear
amongst these coefficients.

This situation is placed in a larger context which incorporates formal inverse
by considering the formal flow Ft = exp(tA) · z, where t is an indeterminate. For
n ∈ N, setting t = n gives the n-fold composition F ◦ · · · ◦ F , and setting t = −n
gives the n-fold composition F−1 ◦ · · · ◦ F−1. The system Ft can be written as a
Q[t]-linear combination of the power series PT , producing for each rooted tree T a
polynomial ψT (t) having φT as the coefficient of t. Among these polynomials are
the binomial polynomials

(
t
m

)
, for all positive integers m. We give an algorithm

for calculating ψT (t) using the difference operator ∆. This formula is used to
establish the relationship of certain ψT (t)’s with the Bernoulli polynomials Bm(t)
via an integration formula. It is shown that ψT (t) also provides an interesting
combinatorial connection: It coincides with the strict order polynomial Ω̄(P, t) (see
[St1], Chapter 4) for P = T , which, for t = m ∈ Z+, counts the number of strict
order-preserving maps from any partially ordered set P to the totally ordered set
with m elements.

Acknowledgments. We would like to thank Professor John Shareshian for inform-
ing us of Theorem 4.5, and also Professor Steve Krantz for a helpful conversation
on flow of analytic maps.

2. Tree Operations

2.1. Notation. By a rooted tree we mean a finite 1-connected graph with one
vertex designated as its root. The 1-connectivity provides the notion of distance
between two vertices, which is defined as the number of edges in the unique geodesic
connecting the two. The height of a tree is defined to be the maximum distance
of any vertex from the root. In a rooted tree there are natural ancestral relations
between vertices. We say a vertex w is a child of vertex v if the two are connected
by an edge and w lies further from the root than v. In the same situation, we say
v is the parent of w. Note that a vertex may have several children, but only one
parent. The root is the only vertex with no parent. A vertex is called a leaf if
it has no children. When we speak of isomorphisms between rooted trees, we will
always mean root-preserving isomorphisms.
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With these notions in mind, we establish the following notation.
(1) We let T be the set of isomorphism classes of all rooted trees and, for m ≥ 1

an integer, we let Tm be the set of isomorphism classes of all rooted trees
with m vertices. The latter is a finite set.

(2) For any rooted tree T , we set the following notation:
• rtT denotes the root vertex of T .
• E(T ) denotes the set of edges of T .
• V (T ) denotes the set of vertices of T .
• L(T ) denotes the set of leaves of T .
• v(T ) (resp. l(T )) denotes the number of the elements of V (T ) (resp.
L(T )).
• h(T ) denotes the height of T .
• αT denotes the number of the elements of the automorphism group

Aut(T ).
• For v ∈ V (T ) we denote by αT,v the size of the stabilizer of v in

Aut(T ). Similarly, for e ∈ E(T ), we write αT,e for the size of the
stabilizer of e in Aut(T ).
• For e ∈ E(T ) we denote by ve and v′e the two (distinct) vertices that

are connected by e, with ve being the one closest to the root.
• For v ∈ V (T ) we denote by v+ the set of vertices that are children of
v.
• For v ∈ V (T ) we define the height of v to be the number of edges in

the (unique) geodesic connecting v to rtT . The height of T is defined
to be the maximum of the heights of its vertices.
• For v1, . . . , vr ∈ V (T ), we write T \{v1, . . . , vr} for the graph obtained

by deleting each of these vertices and all edges adjacent to these ver-
tices.

(3) A rooted subtree of a rooted tree T is defined as a connected subgraph of T
containing rtT , with rtT ′ = rtT . In this case we write T ′ ≤ T . If T ′ 6= T , we
write T ′ < T . If T ′ < T , we write T \T ′ for the graph obtained by deleting
all vertices of T ′ and all edges adjacent to its vertices.

(4) For any k ≥ 1, we denote by Ck the rooted tree of height k − 1 having k
vertices, and by Sk the rooted tree of height 1 having k leaves. We also set
S0 = ◦, the rooted tree with one vertex. We refer to the trees Ck as chains
and the Sk as shrubs.

2.2. Power Series Given by a Rooted Tree. Let C[[z1, . . . , zn]] = C[[z]] denote
the ring of formal power series in n variables z1, . . . , zn over the complex numbers1

C. For i = 1, . . . , n we will write Di for the differential operator ∂
∂zi

. The operators
D1, . . . , Dn are commuting derivations acting on the ring C[[z]].

Given a vector of power series F = (F1, . . . , Fn) ∈ C[[z]]n, we write Fi = zi +Hi

for i = 1, . . . , n, or just F = z + H .2 In most applications the power series H =
(H1, . . . , Hn) will involve only monomials of total degree 2 and higher, and we will
often take H to be homogeneous of degree d ≥ 2. However, these assumptions are

1In this paper C can always be replaced by any Q-algebra.
2We should here acknowledge that in almost every other treatment of this subject the system

F is written as z−H, which yields nicer looking formulas for the formal inverse of F . The reason
for our choice is that the formulas involving the D-Log and formal flow, which will be developed
in §3, come out better when we write F = z +H.
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3120 DAVID WRIGHT AND WENHUA ZHAO

not necessary for what follows here. We will associate to each rooted tree a power
series in n variables based on F (equivalently, on H).

For T ∈ T, a labeling of T in the set {1, . . . , n} is a function f : V (T ) →
{1, . . . , n}. A rooted tree T with a labeling f is called a labeled rooted tree, denoted
(T, f). Given such, and given F = z+H as above, we make the following definitions,
for v ∈ V (T ):

(1) Hv = Hf(v);
(2) Dv = Df(v);
(3) Dv+ =

∏
w∈v+ Dw;

(4) PT,f =
∏
v∈V (T )Dv+Hv.

Finally, we define systems of power series PT = (PT,1, . . . , PT,n) and PT = (PT,1, . . . ,
PT,n) by summing over all labelings of T having a fixed label for the root

PT,i =
∑

f :V (T )→{1,...,n}
f(rtT )=i

PT,f ,

PT,i =
1
αT

PT,i

for i = 1, . . . , n.
One notes that the systems of power series PT and PT are dependent on the

integer n and the system H = (H1, . . . , Hn) ∈ C[[z]]n. They can be viewed as
objects which determine functions C[[z1, . . . , zn]]n → C[[z1, . . . , zn]]n for all n ≥ 1.
We will write PT (H) and PT (H) when we need to emphasize this dependence, or
when we are dealing with more than one system H .

2.3. Stable Linear Independence. We begin by establishing an important in-
dependence property of the objects {PT |T ∈ T}.

Definition 2.1. We say that rooted trees T1, . . . , Tk are stably linearly dependent
if there exist c1, . . . , ck ∈ C such that

∑k
i=1 ciPTi = 0 for any integer n ≥ 1 and

any homogeneous polynomial system H = (H1, . . . , Hn) in n variables. Otherwise,
we say that Ti are stably linearly independent.

Remark 2.2. If H is homogeneous of degree d and if T ∈ Tm, then PT (H) is
homogeneous of degree (d − 1)m + 1. Thus if we partition {T1, . . . , Tk} according
to the number of vertices in a tree, then T1, . . . , Tk are stably linearly independent
if and only if each partition is a stably linearly independent set of trees.

Lemma 2.3. Suppose that
∑k

i=1 ciPTi(H) = 0 for any integer n ≥ 1 and any
homogeneous polynomial system H in n variables. Then

∑k
i=1 ciPTi(H) = 0 for

any system of power series H = (H1, . . . , Hn) in n variables.

Proof. We first prove it for any polynomial H (not necessarily homogeneous) in n
variables by introducing a new variable zn+1 and homogenizing H using zn+1. Call
the resulting homogeneous system H̄ . Setting H̃ = (H̄,Hn+1 = 0), we have

k∑
i=1

ciPTi(H, z) =
k∑
i=1

ciPTi(H̃, z)|zn+1=1 = 0,

which proves the lemma for H a polynomial system. For an arbitrary system of
power series H we note that if T is a tree with r edges, the homogeneous summands
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of degree ≤ d in PT (H) depend only on the homogeneous summands of H having
degree ≤ d+ r. Taking r to be the maximum of the numbers of edges in T1, . . . , Tk,
then all terms of degree ≤ d in

∑k
i=1 ciPTi(H) depend only the homogeneous sum-

mands of H having degree ≤ d+r. Taking Ĥ to be the polynomial truncation of H
of degree d+ r, we see that

∑k
i=1 ciPTi(H) and

∑k
i=1 ciPTi(Ĥ) coincide up through

degree d. Since the latter is zero (Ĥ being a polynomial system) and d is arbitrary,
we must have

∑k
i=1 ciPTi(H) = 0. �

Theorem 2.4. Any rooted trees Ti (i = 1, 2, . . . , k) with Ti � Tj for any i 6= j are
stably linearly independent.

Before giving the proof we will define a polynomial system depending on a rooted
tree. Given a rooted tree T with m vertices, we create variables z1, . . . , zm. Label
the edges e2, . . . , em and assign each variable zi with 2 ≤ i ≤ m to the edge ei.
Label the vertices as follows: v1 = rtT , and for i = 2, . . . ,m let vi be the vertex of
ei that is farthest from the root. For each vertex vi ∈ V (T ), we define Hi to be the
product of all the variables assigned to the edges connecting vi with its children.
(Thus if vi is a leaf, we have Hi = 1.) Set HT = (H1, . . . , Hm). We have

Lemma 2.5. Let T and T ′ be two rooted trees with the same number of vertices.
Then

PT ′(HT ) =

{
(0, . . . , 0) if T � T ′,

(αT , 0, . . . , 0) if T ∼= T ′.

Proof. The following facts are not difficult to verify and provide a sketch of the
proof: Each coordinate HT,i of HT is a monomial that is linear or constant with
respect to each variable zi. Each coordinate is constant with respect to z1. Each
variable zi with i ≥ 2 appears in precisely one coordinate HT,j , and i 6= j. PT ′ (HT )
is a homogeneous system of degree zero, and must be equal to either 0 or 1. If a
labeling f : V (T ′)→ {1, . . . ,m} is not bijective, then PT ′,f = 0 since it would entail
differentiating two different coordinates HT,i and HT,j with respect to the same
variable, or differentiating some HT,i twice by the same variable, or differentiating
some HT,i by zi, all of which give zero. Moreover, if f(rtT ′) 6= 1, then PT ′,f = 0,
since it would entail differentiation by z1, and therefore PT ′(HT ) is zero except
possibly in the first coordinate.

With this it is not hard to show that, if f : V (T ′)→ {1, . . . ,m} is a labeling for
which PT ′,f 6= 0, then the function V (T ′) → V (T ) defined by w 7→ vf(w) gives an
isomorphism of ϕ : T ′ → T . Finally, the group AutT acts freely and transitively on
the set of labelings f : V (T )→ {1, . . . ,m} for which PT,f 6= 0. The lemma follows
easily from these statements. �

Proof of Theorem 2.4. Suppose that
∑k

i=1 ciPTi(z) = 0 with c1 6= 0. Choose H =
HT1 . Then there must exist j 6= 1 such that PTj (HT1 ) 6= 0. By the lemma above,
we have T1

∼= Tj. �

If H = (H1, . . . , Hn) is a system of power series such that each Hi has only terms
of degree d and higher, the power series PT has only terms of degree (d−1)v(T )+1
and higher. Hence if d ≥ 2, a sum of the form

∑
T∈T cTPT makes sense, since only

finitely many terms contribute to any specified homogeneous summand. With this
observation, we state the following consequence of stable linear independence.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3122 DAVID WRIGHT AND WENHUA ZHAO

Corollary 2.6. Suppose we have a collection {cT } ⊂ C indexed by the rooted trees
T ∈ T such that

∑
T∈T cTPT = 0 for any integer n ≥ 1 and any system of power

series H = (H1, . . . , Hn) with H having only terms of degree ≥ 2. Then cT = 0 for
all T ∈ T.

Proof. We consider systems H that are homogeneous polynomial systems of degree
d ≥ 2. In this case PT is homogeneous of degree (d−1)v(T )+1. So the homogeneous
summands of

∑
T∈T cTPT are the finite sums

∑
T∈TN cTPT forN ∈ N; so these must

be zero. By Theorem 2.4 applied to the finite set of trees TN , we must have cT = 0
for all T ∈ TN . �

Recall that we are writing Di for the operator ∂
∂zi

. We will denote by D the
column vector (D1, . . . , Dn)t. We now define a differential operator on C[[z]] for
each T ∈ T.

Definition 2.7. For T ∈ T, we denote by DT the differential operator PTD =∑n
i=1 PT,iDi. We will write DT for the operator PTD = 1

αT
DT .

2.4. Tree Surgery. We will now discuss some “surgical” procedures on trees.
Given T ∈ T and e ∈ E(T ), the removal of the edge e from T gives a discon-
nected graph with two connected components which are trees. We denote by Te
the component containing rtT , and by T ′e the other component. We give Te and T ′e
the structure of rooted trees by setting rtTe = rtT and rtT ′e = v′e.

Given rooted trees T and T ′ and v ∈ V (T ), we denote by

T ′(v T

the tree obtained by connecting rtT ′ and v by a newly created edge, and setting
rt(T ′(vT ) = rtT . We will refer to the newly created edge as the connection edge
of T ′ (v T . Note that for any tree T and edge e ∈ E(T ) we have an obvious
isomorphism T ∼= (T ′e(ve Te) which is the identity on Te and T ′e.

Given e, f ∈ E(T ), we say “f lies below e”, and write e � f , if f ∈ E(Te). This
merely says that f remains when we “strip away” e and T ′e. One can easily see that
this relation is not transitive. However, if we write

e1 � · · · � er ,
for e1, . . . , er ∈ E(T ), we will mean by this that ei � ej if i < j.

A sequence ~e = (e1, . . . , er) ∈ E(T )r with e1 � · · · � er determines a sequence
of subtrees T~e,1, . . . T~e,r+1 as follows: Set T~e,1 = T ′e1 and let S2 = Te1 , noting that
e2, . . . , er ∈ E(S2). For i = 1, . . . , r, assume that T~e,1, . . . , T~e,i−1, Si are defined with
ei, . . . , er ∈ E(Si). Set T~e,i = (Si)′ei and Si+1 = (Si)ei . Finally, set T~e,r+1 = Sr+1.

For any integer r ≥ 1 and T ∈ T, create an indeterminate Y (r)
T . Denote this set

of variables (for all T and r) by Y . Extend the action of the operators DT and DT

to C[[z]][Y ] by making each indeterminate of Y a constant.

Lemma 2.8. Let r,m ≥ 1 be integers and S ∈ T. Then∑
(T1,...,Tr)∈Tr

v(T1)+···+v(Tr)+v(S)=m

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(r)
Tr

DTr

]
PS

=
∑
T∈Tm

∑
~e=(e1,...,er)∈E(T )r

e1�···�er
T~e,r+1∼=S

Y
(1)
T~e,1
· · ·Y (r)

T~e,r
PT .(2.1)
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Proof. Note that both sums are finite. So the expression makes sense for any
H ∈ C[[z]]n.

We first consider the case r = 1. For T ′ ∈ T we have

DT ′PS =
∑

v∈V (S)

P(T ′(vS) .

Hence ∑
T ′∈T

v(T ′)+v(S)=m

Y
(1)
T ′ DT ′PS =

∑
T ′∈T

v(T ′)+v(S)=m

∑
v∈V (S)

Y
(1)
T ′ P(T ′(vS)

=
∑
T∈Tm

∑
T ′∈T

∑
v∈V (S)

(T ′(vS)∼=T

Y
(1)
T ′ P(T ′(vS) .

For a fixed T ∈ Tm we wish to count the occurrences of PT in the last expression.
Toward this end, for T ′ ∈ T, let

IT,T ′,S = {v ∈ V (S) | (T ′(v S) ∼= T },
JT,T ′,S = {ē ∈ E(T )/Aut (T ) |T ′e ∼= T ′, Te ∼= S (for any e in ē)}.

We will define a function Φ : IT,T ′,S → JT,T ′,S as follows: Given v ∈ IT,T ′,S,
choose an isomorphism ϕ : (T ′ (v S)

∼=−→ T , and let e be the image under ϕ of
the connection edge in T ′ (v S. Letting ē be the class of e in E(T )/Aut (T ), we
clearly have ē ∈ JT,T ′,S . To see that ē is independent of the choice of ϕ, suppose
γ : (T ′ (v S)

∼=−→ T sends the connection edge to f ∈ E(T ). Then γϕ−1(e) = f ,
hence f̄ = ē in E(T )/Aut (T ). Therefore, we have a well-defined function Φ, which
is obviously surjective.

We claim that for v ∈ IT,T ′,S the orbit of v under Aut (S) is precisely the fiber
of v under Φ. It is clear that if w ∼ v by the action of Aut (S), then (T ′ (w

S) ∼= (T ′ (v S) ∼= T , with the first isomorphism taking one connection edge
to the other, which shows that w ∈ IT,T ′,S. Choosing appropriate isomorphisms
(T ′ (w S)

ρ−→ (T ′ (v S)
ϕ−→ T , we see that the image e of the connection edge

of T ′(v S under ϕ is also the image of the connection edge of T ′(w S under ϕρ,
hence Φ(w) = Φ(v). Moreover, if w ∈ IT,T ′,S is any element for which Φ(w) = Φ(v),
then we have isomorphisms

(T ′(w S)
γ−→ T

ϕ←− (T ′(v S)

such that the same e ∈ E(T ) is the image of both connection edges. (This can be
achieved after modifying by an automorphism of T .) It follows that γ−1ϕ : (T ′(v

S) → (T ′ (w S) carries one connection edge to the other; so it restricts to an
automorphism of S sending v to w. Hence w ∼ v. Therefore, the above sum can
be written as ∑

T∈Tm

∑
T ′∈T

∑
v∈IT,T ′,S

Y
(1)
T ′ PT

=
∑
T∈Tm

∑
T ′∈T

∑
ē∈JT,T ′,S

sTe(ve)Y
(1)
T ′ PT
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=
∑
T∈Tm

∑
ē∈E(T )/Aut (T )

Te∼=S

sTe(ve)Y
(1)
T ′e
PT

where sTe(ve) is the orbit size of ve under the action of AutTe, for some (any)
e ∈ E(T ) representing ē. The number of edges representing ē is αT /αT,e. Hence
the inner sum can be altered to run over all e ∈ E(T ) at the cost of dividing by
αT /αT,e, yielding ∑

T∈Tm

1
αT

∑
e∈E(T )
Te∼=S

αT,e sTe(ve)Y
(1)
T ′e
PT .

An automorphism of T fixing e ∈ E(T ) restricts to an automorphism of T ′e and an
automorphism of Te fixing ve. Conversely, given the latter pair we get a unique
automorphism of T preserving e. It follows that αT,e = αT ′eαTe,ve . Also we have
sTe,ve = αTe/αTe,ve . Incorporating these facts and putting together the above
equalities, we get∑

T ′∈T
v(T ′)+v(S)=m

Y
(1)
T ′ DT ′PS =

∑
T∈Tm

1
αT

∑
e∈E(T )
Te∼=S

αT ′eαSY
(1)
T ′e
PT .

Dividing the equation by αS and substituting 1
αR
Y

(1)
R for Y (1)

R for each R ∈ T yields∑
T ′∈T

v(T ′)+v(S)=m

Y
(1)
T ′ DT ′PS =

∑
T∈Tm

∑
e∈E(T )
Te∼=S

Y
(1)
T ′e

PT ,

which is precisely the assertion of the lemma for r = 1.
For r ≥ 2 we apply induction as follows:∑

(T1,...,Tr)∈Tr
v(T1)+···+v(Tr)+v(S)=m

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(r)
Tr

DTr

]
PS

=
∑
T1∈T

Y
(1)
T1

DT1

∑
(T2,...,Tr)∈Tr−1

v(T2)+···+v(Tr)+v(S)=m−v(T1)

[
Y

(2)
T2

DT2

]
· · ·
[
Y

(r)
Tr

DTr

]
PS .

Applying induction and a substitution of variables Y (i+1)
t for Y (i)

t to the inner sum,
this equals∑

T1∈T
Y

(1)
T1

DT1

∑
R∈Tm−v(T1)

∑
~e=(e1,...,er−1)∈E(R)r−1

e1�···�er−1
T~e,r∼=S

Y
(2)
T~e,1
· · ·Y (r)

T~e,r−1
PR

=
∑

T1,R∈T
v(T1)+v(R)=m

Y
(1)
T1

DT1

∑
~e=(e1,...,er−1)∈E(R)r−1

e1�···�er−1
T~e,r∼=S

Y
(2)
T~e,1
· · ·Y (r)

T~e,r−1
PR

=
∑
R∈T

 ∑
T1∈T

v(T1)+v(R)=m

Y
(1)
T1

DT1PR

 ∑
~e=(e1,...,er−1)∈E(R)r−1

e1�···�er−1
T~e,r∼=S

Y
(2)
T~e,1
· · ·Y (r)

T~e,r−1
.
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Now we apply the case r = 1 to the bracketed expression to obtain

∑
R∈T

 ∑
T∈Tm

∑
e∈E(T )
Te∼=R

Y
(1)
T ′e

PT

 ∑
~e=(e1,...,er−1)∈E(R)r−1

e1�···�er−1
T~e,r∼=S

Y
(2)
T~e,1
· · ·Y (r)

T~e,r−1

·
∑
T∈Tm

∑
R∈T

∑
e∈E(T )
Te∼=R

∑
~e=(e1,...,er−1)∈E(R)r−1

e1�···�er−1
T~e,r∼=S

Y
(1)
T ′e
Y

(2)
T~e,1
· · ·Y (r)

T~e,r−1
PT

=
∑
T∈Tm

∑
~e=(e1,...,er)∈E(T )r

e1�···�er
T~e,r+1∼=S

Y
(1)
T~e,1
· · ·Y (r)

T~e,r
PT

which completes the proof. �

Suppose the system of power series H = (H1, . . . , Hn) has the property that each
Hi involves only monomials of degree ≥ 2 in z1, . . . , zn. Then one easily verifies
that for T ∈ T, PT involves only monomials of degree ≥ v(T ) + 1. It follows that
for a monomial M in z of degree m, DT ·M involves only monomials of degree
≥ m+ v(T ). Therefore, infinite sums such as

∑
T∈T PT and

∑
T∈TDT make sense

in this situation. The following two corollaries of Lemma 2.8 are based on this
observation. The equations in both corollaries take place in the ring C[Y ][[z]],
where Y represents the infinite set of variables {Y (i)

T |T ∈ T, i ∈ Z+}.

Corollary 2.9. Suppose that the system of power series H involves only monomials
of degree ≥ 2. Let r ≥ 1 be an integer and S ∈ T. Then∑

(T1,...,Tr)∈Tr

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(r)
Tr

DTr

]
PS

=
∑
T∈T

∑
~e=(e1,...,er)∈E(T )r

e1�···�er
T~e,r+1=S

Y
(1)
T~e,1
· · ·Y (r)

T~e,r
PT .(2.2)

Proof. We simply sum (2.1) over all m ≥ 1, noting the convergence of the sums by
the observations above. �

Corollary 2.10. Suppose the system of power series H involves only monomials
of degree ≥ 2. Let k ≥ 2 be an integer. Then∑

(T1,...,Tk)∈Tk

[
Y

(1)
T1

DT1

]
· · ·
[
Y

(k−1)
Tk−1

DTk−1

] [
Y

(k)
Tk

PTk

]
=

∑
T∈T

v(T )≥2

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

Y
(1)
T~e,1
· · ·Y (k)

T~e,k
PT .(2.3)

Proof. We apply Corollary 2.9, multiplying both sides of (2.2) by Y
(r+1)
S , setting

k = r + 1, summing over all S ∈ T. Note that the singleton tree contributes 0 in
(2.2) for any r ≥ 1, and thus the qualifier v(T ) ≥ 2 in (2.3). �
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3. D-Log and Formal Flow

We will henceforth be restricting our attention to systems of power series F =
(F1, . . . , Fn) ∈ C[[z]]n of the form Fi = zi+Hi with Hi involving only monomials of
degree 2 and higher, for i = 1, . . . , n. We refer to this condition by saying “F is of
the form identity plus higher.” Such a system determines a C-algebra automorphism
of C[[z]], namely the automorphism that sends zi to Fi for i = 1, . . . , n.

3.1. The D-Log. The following proposition appears as Proposition 2.1 in [Z].

Proposition 3.1. For any F = (F1, F2, . . . , Fn) ∈ C[[z]]n of the form identity plus
higher, there exists a unique system of power series

a = (a1, a2, . . . , an) ∈ C[[z]]n

involving only monomials of degree 2 and higher such that, letting A = aD =∑n
i=1 aiDi, we have

exp(A) · z = F(3.1)

where

exp(A) =
∞∑
k=0

Ak

k!

and z = (z1, . . . , zn).

The reader will easily verify that the infinite sum exp(A) ·Q makes sense for any
Q ∈ C[[z]]n due to the fact that, for any integer d ≥ 0, only finitely many terms
Ak

k! · Q contribute to the degree d homogeneous summand. This is due to the fact
that a involves only terms of degree 2 and higher.

Remark 3.2. It is well known that the exponential of a derivation on any Q-algebra,
when it makes sense, is an automorphism of that algebra. Any subring lying in
the kernel of the derivation will be fixed by this automorphism. It follows from
this fact, the comment above, and Proposition 3.1 that exp(A) is the C-algebra
automorphism of C[[z]] that sends zi to Fi, for i = 1, . . . , n.

Definition 3.3. We call the unique system of power series a = (a1, a2, . . . , an)
obtained above the Differential Log or D-Log of the formal system F .

3.2. Coefficients φT of the D-Log.

Theorem 3.4. There exists a unique set of rational numbers {φT } indexed by the
set of rooted trees T ∈ T, such that

a =
∑
T∈T

φTPT .(3.2)

These numbers satisfy, and are uniquely determined by, the following properties:

φT = 1 when v(T ) = 1 (i.e., T = ◦, the singleton tree),

φT = −
v(T )∑
k=2

1
k!

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1φT~e,2 · · ·φT~e,k when v(T ) ≥ 2 .(3.3)
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The latter formula can be restated as
v(T )∑
k=1

1
k!

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1φT~e,2 · · ·φT~e,k = 0 .(3.4)

(Here we must interpret the k = 1 summand as φT .)

Proof. Let us define φT by (3.3) and set a′ =
∑

T∈T φTPT , A′ = a′D. Then
A′ =

∑
T∈T φTDT . We have

exp(A′) · z =
∞∑
k=0

A′
k

k!
· z

=
∞∑
k=0

1
k!

(∑
T∈T

φTDT

)k
· z

= z +
∞∑
k=1

1
k!

∑
(T1,...,Tk)∈Tk

[φT1DT1 ] · · · [φTkDTk ] · z

= z +
∑
T∈T

φTDT · z +
∞∑
k=2

1
k!

∑
(T1,...,Tk)∈Tk

[φT1DT1 ] · · · [φTkDTk ] · z.

Using the fact that DT · z = PT :

= z+
∑
T∈T

φTP +
∞∑
k=2

1
k!

∑
(T1,...,Tk)∈Tk

[φT1DT1 ] · · ·
[
φTk−1DTk−1

]
[φTkPTk ] .

Applying Corollary 2.10, substituting Y (i)
Ti

= φTi :

= z+
∑
T∈T

φTPT +
∞∑
k=2

1
k!

∑
T∈T

v(T )≥2

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1 · · ·φT~e,kPT .

Letting S be the singleton tree:

= z+φSPS +
∑
T∈T

v(T )≥2

v(T )∑
k=1

1
k!

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1 · · ·φT~e,k

PT .

Since PS = H , and, by definition, φS = 1 and the sum in parentheses is 0:

= z +H = F.

By the uniqueness property of a we must have a′ = a. The uniqueness of the
expression (3.2) for a follows from Theorem 2.4. �

Chains and Shrubs. Two special types of trees are the “chains” and the “shrubs”,
mentioned in §2. Given an integer n ≥ 1 we let Cn ∈ Tn be the chain with n
vertices, which is the unique rooted tree in Tn of height n − 1. For n ≥ 0 we let
Sn ∈ Tn+1 be the shrub with n+1 vertices, which is the unique rooted tree in Tn+1
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of height ≤ 1 (equality holds unless n = 0). Note that C1 = S0 = ◦ , the singleton
tree.

By using the recurrence formula (3.3), we can calculate φT for chains and shrubs
as follows. Consider the generating functions

c(x) =
∞∑
n=1

φCnx
n,

s(x) =
∞∑
n=0

φSn
xn

n!
.

Then we have:

Corollary 3.5. The generating functions c(x) and s(x) are given by

(a) c(x) = ln(1 + x),(3.5)

(b) s(x) =
x

ex − 1
.(3.6)

In particular, we have φCn = (−1)n−1 1
n for all n ≥ 1 and φSn = bn, where

b0, b1, b2, . . . are the Bernoulli numbers 3 defined by x
ex−1 =

∑∞
n=0 bn

xn

n! .

Proof. (a) According to (3.3) we have

c(x) = x−
∞∑
n=2

v(Cn)∑
k=2

1
k!

∑
~e=(e1,...,ek−1)∈E(Cn)k−1

e1�···�ek−1

φT~e,1φT~e,2 · · ·φT~e,k

 xn.

Noting that v(Cn) = n and each T~e,j is also a path:

= x−
∞∑
n=2

n∑
k=2

1
k!

∑
(i1,...,ik)∈Nk
i1+···+ik=n

k∏
j=1

φCij x
ij

= x−
∞∑
n=2

(
n∑
k=2

1
k!

(coefficient of xn in c(x)k)

)
xn

= x−
∞∑
n=2

(
coefficient of xn in

n∑
k=2

1
k!
c(x)k

)
xn

= x−
∞∑
n=2

(
coefficient of xn in

∞∑
k=2

1
k!
c(x)k

)
xn

= x−
∞∑
n=2

1
n!
c(x)n

= x− (ec(x) − c(x)− 1).

3This indexing and signage differs from an alternate definition of the Bernoulli numbers as the
sequence B1, B2, . . . defined by

x

ex − 1
= 1− 1

2
x+

∞∑
n=1

(−1)n−1 Bn

(2n)!
x2n .

Thus the relationship is Bn = (−1)n−1b2n for n ≥ 1.
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Solving for c(x) in the equation c(x) = x− (ec(x) − c(x) − 1) gives (3.5).
(b) Again by (3.3) we have

s(x) = 1−
∞∑
n=1

v(Sn)∑
k=2

1
k

∑
~e=(e1,...,ek−1)∈E(Sn)k−1

e1�···�ek−1

φT~e,1φT~e,2 · · ·φT~e,k

 xn

n!
.

Noting that v(Sn) = n + 1 and precisely one T~e,j is a shrub with all others being
singletons:

= 1−
∞∑
n=1

(
n+1∑
k=2

1
k!

(k − 1)!
(

n

k − 1

)
φSn−k+1

)
xn

n!

= 1− x−1
∞∑
n=1

n+1∑
k=2

φSn−k+1

xn−k+1

(n− k + 1)!
xk

k!
(3.7)

= 1− x−1

( ∞∑
r=0

φSr
xr

r!

)( ∞∑
s=2

xs

s!

)
= 1− x−1s(x)(ex − x− 1).(3.8)

Solving for s(x) in the equation s(x) = 1− x−1s(x)(ex − x− 1) gives (3.6). �
3.3. Polynomial Coefficients ψT (t) of Formal Flow. Let us first recall the
formal flow Ft = exp(tA) · z and some of its properties. See [Z] for more details.

Definition 3.6. Given an indeterminate t, define the system Ft ∈ C[t][[z]]n by

Ft = exp(tA) · z .(3.9)

It is called the formal flow generated by F .

It is easy to verify that Ft ∈ C[t][[z]]n. Therefore, a specialization t = α, for
any α ∈ C (or α in any C-algebra), makes sense. According to Proposition (3.1),
setting t = 1 in Ft recovers F .

The following proposition shows that t behaves as an exponent for F .

Proposition 3.7. Let t and s be indeterminates. Then

Fs+t = Ft ◦ Fs.
Hence setting t = n in Ft, for n ∈ N, gives the n-fold composition F ◦ · · · ◦ F , and
setting t = −n gives the n-fold composition F−1 ◦ · · · ◦ F−1 of the formal inverse.
In particular,

Ft|t=−1 = F−1 .

Proof. We have

Fs+t = exp((s+ t)A) · z = exp(sA+ tA) · z
= exp(sA) · exp(tA) · z = exp(sA) · Ft.

We use the fact that exp(sA) is a C-algebra automorphism of C[s, t][[z]] (see Remark
3.2):

= Ft(exp(sA · z)) = Ft(Fs)
= Ft ◦ Fs.

�
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Thus Ft can be viewed as the “formal t-th power of F”.
The system Ft can be expressed in terms of the tree expressions PT as follows:

Theorem 3.8. There exists a unique set of polynomials {ψT (t) ∈ Q[t]} indexed by
the set of rooted trees T ∈ T such that

Ft = z +
∑
T∈T

ψT (t)PT .(3.10)

These polynomials are given by the formula

ψT (t) =
v(T )∑
k=1

tk

k!

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1φT~e,2 · · ·φT~e,k .(3.11)

(Again we must interpret the k = 1 summand as φT .)

Proof. According to Theorem 3.4 the D-Log of F is given by a =
∑

T∈T φtPT .
Hence we have A = aD =

∑
T∈T φtPTD =

∑
T∈T φTDT (see Definition 2.7).

Therefore,

Ft = exp(tA) · z =
∞∑
k=0

tk

k!
Ak · z

= z +
∞∑
k=1

tk

k!

(∑
T∈T

φTDT

)k
· z

= z +
∞∑
k=1

tk

k!

∑
(T1,...,Tk)∈T

[φT1DT1 ] · · · [φTkDTk ] · z

= z +
∞∑
k=1

tk

k!

∑
(T1,...,Tk)∈T

[φT1DT1 ] · · · [φTk−1DTk−1 ][φTkPTk ].

Now we apply Corollary 2.10 to the k ≥ 2 summands:

= z +
∞∑
k=1

tk

k!

∑
T∈T

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1 · · ·φT~e,kPT

= z +
∑
T∈T

v(T )∑
k=1

tk

k!

∑
~e=(e1,...,ek−1)∈E(T )k−1

e1�···�ek−1

φT~e,1 · · ·φT~e,k

PT .

This gives the desired result. The uniqueness of ψT follows from applying stable
linear independence (Corollary 2.6) to each power of t in (3.10). �

Lemma 3.9. For any T ∈ T, we have
(1) if T is the singleton, we have ψT (t) = t.
(2) ψT (0) = 0.

(3) ψT (1) =

{
1 if v(T ) = 1,
0 if v(T ) ≥ 2.

(4) ψ′T (0) = φT .
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Proof. All statements above follow immediately from (3.11), except the assertion
ψT (1) = 0 when v(T ) ≥ 2, which is exactly (3.4). �

Forests. The formula (3.11) defines a unique polynomial ψT (t) for each rooted
tree T . A forest is the disjoint union of finitely many rooted trees. We extend the
definitions of φP and ψP (t) to any forest P as follows:

Definition 3.10. For any forest P that is the disjoint union of rooted trees
T1, . . . , Tk, we define φP to be φT1 if k = 1 and 0 otherwise. Define ψP (t) =∏k
i=1 ψTi(t).

Lemma 3.11. Let T be a rooted tree with v(T ) ≥ 2. For any proper rooted subtree
T ′ of T we have

ψT\T ′(t) =
v(T )−1∑
k=1

tk

k!

∑
~e=(e1,...,ek)∈E(T )k

e1�···�ek
T~e,k+1=T ′

φT~e,1φT~e,2 · · ·φT~e,k .(3.12)

Proof. Let T [j] (j = 1, 2, . . . , d) be the connected components of T \T ′, and let
e0
j be the edge of T that connects T [j] with T ′. Note that from fixed sequences
ej,1 � ej,2 � · · · � ej,kj ∈ E(T [j]) with k1 + k2 + · · · + kd = k − d, appended by
the edges e0

j , we can get
(

k
(k1+1),(k2+1),··· ,(kd+1)

)
= k!

(k1+1)!(k2+1)!···(kd+1)! different
sequences e1 � e2 � · · · � ek ∈ E(T ) such that Tk+1 = T ′. Therefore,

v(T )−1∑
k=1

tk

k!

∑
~e=(e1,...,ek)∈E(T )k

e1�···�ek
T~e,k+1=T ′

φT~e,1φT~e,2 · · ·φT~e,k

=
v(T )−1∑
k=1

tk

k!

∑
(k1,...,kd)∈Nd

k1+k2+···+kd=k−d

k!
(k1 + 1)!(k2 + 1)! · · · (kd + 1)!

·
d∏
j=1

∑
~ej=(ej,1,...,ej,kj )∈E(T [j])kj

ej,1�···�ej,kj

φTej,1φTej ,2 · · ·φTej ,kj+1

=
d∏
j=1

v(T [j])−1∑
kj=0

tkj+1

(kj + 1)!

∑
~ej=(ej,1,...,ej,kj )∈E(T [j])kj

ej,1�···�ej,kj

φTj,1φTj,2 · · ·φTj,kj+1

= ψT [1](t)ψT [2](t) · · ·ψT [d](t) .

The last equality follows from (3.11). �

The lemma above allows us to prove the following theorem. If we let ∅ be the
empty tree and define P∅ = z, then Theorem 3.8 can be seen as the special case
S = ∅ of the theorem below.
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Theorem 3.12. For any rooted tree S, we have

exp (tA) · PS = PS +
∑
T∈T

∑
T ′<T
T ′∼=S

ψT\T ′(t)

PT .(3.13)

Proof.

exp(tA) · PS =
∞∑
k=0

tk

k!
Ak · PS

=
∞∑
k=0

tk

k!

(∑
T∈T

φTD

)k
· PS

= PS +
∞∑
k=1

tk

k!

∑
(T1,...,Tk)∈Tk

[φT1DT1 ] · · · [φTkDTk ] · PS .

Apply Corollary 2.9, substituting Y (i)
Ti

= φTi :

= PS +
∞∑
k=1

tk

k!

∑
T∈T

v(T )≥1

∑
~e=(e1,...,ek−1)∈E(T )k

e1�···�ek
T~e,k+1∼=S

φT~e,1 · · ·φT~e,kPT

= PS +
∑
T∈T

v(T )≥1


v(T )−1∑
k=1

tk

k!

∑
~e=(e1,...,ek)∈E(T )k

e1�···�ek
T~e,k+1∼=S

φT~e,1 · · ·φT~e,k

PT

=
∑
T∈T

∑
T ′≤T
T ′∼=S

ψT\T ′(t)

PT .

The last equality follows from Lemma 3.11. �
Proposition 3.13. For any rooted tree T , we have

(a)

ψ′T (t) = φT +
∑

e∈E(T )

φTe,1ψTe,2(t),(3.14)

(b)

ψ′T (t) = φT +
∑
S<T

φS ψT\S(t)(3.15)

or, in other words,

ψ′T (t) = ψ′T (0) +
∑

e∈E(T )

ψ′Te,1(0)ψTe,2(t)

= ψ′T (0) +
∑
S<T

ψ′S(0)ψT\S(t).(3.16)
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Proof. (a) Applying the chain rule and Theorem 3.8, we have

∂

∂t
Ft =

∂

∂t
(exp (tA) · z)

= A · exp (tA) · z

=

(∑
T∈T

φTDT

)
·
(
z +

∑
T∈T

ψT (t)PT

)
=
∑
T∈T

φTPT +
∑

(T1,T2)∈T2

φT1ψT2(t)DT1PT2 .

Applying Corollary 2.10 with k = 2, setting Y (1)
T = φT , Y (2)

T = ψT (t) for all T ∈ T:

=
∑
T∈T

φTPT +
∑
T∈T

∑
e∈E(T )

φTe,1ψTe,2(t)PT

=
∑
T∈T

φT +
∑

e∈E(T )

φTe,1ψTe,2(t)

PT .

But we also have, by Theorem 3.8,

∂

∂t
Ft =

∑
T∈T

ψ′T (t)PT .(3.17)

Comparing the coefficient of PT , and appealing to stable linear independence—
specifically, Corollary 2.6—we get (3.14). (We use the fact that polynomial func-
tions that agree at all α ∈ C must be equal.)

(b)

∂

∂t
Ft =

∂

∂t
exp (tA) · z

= A · exp(tA) · z
= exp(tA) ·A · z
= exp(tA) · a.

Applying Theorem 3.4:

= exp(tA) ·
∑
S∈T

φSPS

=
∑
S∈T

φS exp(tA) · PS .
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Applying Theorem 3.12:

=
∑
S∈T

φSPS +
∑
S∈T

φS
∑
T∈T

∑
T ′<T
T ′∼=S

ψT\T ′(t)

PT

=
∑
T∈T

φTPT +
∑
T∈T

(∑
S<T

φSψT\T ′(t)

)
PT

=
∑
T∈T

(
φT +

∑
S<T

φSψT\T ′(t)

)
PT .

Comparing this with (3.17), and again employing Corollary 2.6, we get (3.15). �

An interesting consequence of the proposition above is the following recurrence
formula for φT in terms of the number of the leaves of T .

Proposition 3.14. For any rooted tree T , suppose that the root rtT has d children,
i.e., d =

∣∣rt+T
∣∣. Then

l(T )∑
r=0

∑
{v1,v2,...,vr}⊆L(T )
v1,v2,...,vr distinct

φT\{v1,v2,...,vr} = δd,1φT\{rtT }.(3.18)

Proof. From (3.14), setting t = 1, we get

ψ′T (1) =

{
φT + φT\{rtT } if d = 1,
φT if d ≥ 2

(3.19)

since, by Lemma 3.9, ψT2(1) = 0 except when T2 is the singleton. From (3.15),
setting t = 1, we get

ψ′T (1) = φT +
l(T )∑
r=1

∑
{v1,v2,...,vr}⊆L(T )
v1,v2,...,vr distinct

φT\{v1,v2,...,vr}(3.20)

since ψT\S(1) = 0 except when T \S is the disjoint union of finitely many singletons.
Comparing (3.19) and (3.20) gives (3.18). �

Before leaving this subsection, we will do some calculations on the polynomials
ψT (t) for the chains Cn and shrubs Sn.

Consider the generating functions C(t, x) =
∑∞

n=0 ψCn(t)xn (set ψC0(t) = 1) and
S(t, x) =

∑∞
n=0 ψSn(t)x

n

n! .

Corollary 3.15. The generating functions C(t, x) and S(t, x) are given by
(a)

C(t, x) = exp (t ln(1 + x)) = (1 + x)t(3.21)

or, in other words,

ψCn(t) =
(
t

n

)
=
t(t− 1) · · · (t− n+ 1)

n!
.(3.22)
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(b)

S(t, x) =
ext − 1
ex − 1

.(3.23)

Proof. (a) By Theorem 3.8 and Corollary 3.5 we have

C(t, x) = 1 +
∞∑
n=1

v(Cn)∑
k=1

tk

k!

∑
ē=(e1,...,ek−1)∈E(Cn)k−1

e1�···�ek−1

φTe,1φTe,2 · · ·φTe,kxn

= 1 +
∞∑
n=1

n∑
k=1

tk

k!

∑
(m1,m2,...,mk)∈(Z+)k
m1+m2+···+mk=n

(−1)m1

m1

(−1)m2

m2
· · · (−1)mk

mk
xn

= et(−x+x2
2 −···+

(−x)m

m +··· )

= exp (t ln(1 + x)) .

(b) Similarly, we have

S(t, x) =
∞∑
n=0

v(Sn)∑
k=1

tk

k!

∑
ē=(e1,...,ek−1)∈E(Sn)k−1

e1�···�ek−1

φTe,1φTe,2 · · ·φTe,k
xn

n!
.

Noting that all but one of φTe,2 , . . . , φTe,k are singletons, the remaining one being
Sn−k+1:

=
∞∑
n=0

n+1∑
k=1

tk

k!
(k − 1)!

(
m

k − 1

)
bn−k+1

xn

n!

= x−1
∞∑
n=0

n+1∑
k=1

(xt)k

k!
bn−k+1

xn−k+1

(n− k + 1)!
.

Replacing n by n− 1:

= x−1
∞∑
n=1

n∑
k=1

(xt)k

k!
bn−k

xn−k

(n− k)!

= x−1(ext − 1)
x

ex − 1

=
ext − 1
ex − 1

.(3.24)

�

Remark 3.16. The formulas of Corollary 3.15 can also be easily derived from Theo-
rem 4.2 in the next section. But we think the calculations above are more intriguing.

4. The Main Theorem

4.1. Main Theorem on ψT (t). In the last section, we defined the polynomial
ψT (t), for each rooted tree T (see Theorem 3.8). For each rooted forest P , i.e., the
disjoint union of finitely many rooted trees Ti (i = 1, 2, . . . , k), we also defined ψP
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(see Definition 3.10). Recalling from §2.1 the definition of a rooted subtree, we are
now ready to prove the following main theorem.

Theorem 4.1. Let t and s be indeterminates. For T ∈ T we have

ψT (t+ s) = ψT (t) + ψT (s) +
∑
T ′<T

ψT\T ′(t)ψT ′ (s)(4.1)

where the last sum runs over all proper rooted subtrees T ′ of T .

Proof. Clearly exp((t+ s)A) · z = exp (tA) · exp (sA) · z. So we have

z +
∑
T∈T

ψT (t+ s)PT = exp((t+ s)A) · z = exp (tA) · exp (sA) · z

= exp (tA) ·
(
z +

∑
T∈T

ψT (s)PT

)

= exp(tA) · z + exp(tA) ·
(∑
T∈T

ψT (s)PT

)
= z +

∑
T∈T

ψT (t)PT +
∑
T∈T

ψT (s) (exp(tA) · PT ) .

Applying Theorem 3.12 to exp(tA) · PT :

= z +
∑
T∈T

ψT (t)PT+
∑
T∈T

ψT (s)

PT +
∑
S∈T

∑
S′<S
S′∼=T

ψS\S′(t)

PS



= z +
∑
T∈T

ψT (t)PT+
∑
T∈T

ψT (s)PT +
∑
S∈T

∑
T∈T

∑
S′<S
S′∼=T

ψS\S′(t)ψT (s)

PS

= z +
∑
T∈T

ψT (t)PT+
∑
T∈T

ψT (s)PT +
∑
S∈T

∑
S′<S

ψS\S′(t)ψS′(s)PS .

Replacing S by T in the last summation:

= z +
∑
T∈T

ψT (t)PT +
∑
T∈T

ψT (s)PT +
∑
T∈T

∑
T ′<T

ψT\T ′(t)ψT ′ (s)PT .

According to Corollary 2.6 and an easy specialization argument, the theorem follows
by comparing the coefficients of PT in the above equation. �

The difference polynomial of g(t) ∈ C[T ] is defined to be the polynomial ∆g(t) =
g(t+1)−g(t). The following special case of the theorem above, which gives a formula
for the difference polynomial of ψT (t), is most useful to us.

Theorem 4.2. For any tree T with v(T ) ≥ 2, we have

∆ψT (t) = ψT1(t)ψT2 (t) · · ·ψTd(t)
= ψT\{rtT }(t)

where Ti, i = 1, 2, . . . , d are the connected components of T \{rtT }.
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Proof. This follows form Theorem 4.1 by setting s = 1 in (4.1) and appealing to
Lemma 3.9, which says that ψT (1) = 0 unless T is the singleton, in which case
ψT (1) = 1. �

Theorem 4.3. For any tree T with v(T ) ≥ 2, we have
(a)

∆ψT (t) =
l(T )∑
r=1

∑
{v1,v2,...,vr}⊆L(T )
v1,v2,...,vr distinct

ψT\{v1,v2,...,vr}(t).(4.2)

(b)

ψT\{rtT }(t) =
l(T )∑
r=1

∑
{v1,v2,...,vr}⊆L(T )
v1,v2,...,vr distinct

ψT\{v1,v2,...,vr}(t)(4.3)

where Ti, i = 1, 2, . . . , d are the connected components of T \{rtT }.

Proof. Clearly, (b) follows from (a) and Theorem 4.2. For (a), switch t and s and
set s = 1 in 4.1 to get

ψT (t+ 1) = ψT (t) + ψT (1) +
∑
T ′<T

ψT\T ′(1)ψT ′(t).

By Lemma 3.9, we have ψT (1) = 0 and ψT\T ′(1) = 0, unless T \T ′ is a disjoint
union of singletons, in which case ψT\T ′(1) = 1. Therefore,

ψT (t+ 1)− ψT (t) =
l(T )∑
r=1

∑
{v1,v2,...,vr}⊆L(T )
v1,v2,...,vr distinct

ψT\{v1,v2,...,vr}(t)

as desired. �

4.2. Algorithm for ψT (t). From Theorem 4.2 we get the following algorithm for
computing ψT (t). Here, for h(t) ∈ C[t], ∆−1h(t) is defined to be the unique poly-
nomial g(t) ∈ C[t] such that ∆g(t) = h(t) and g(0) = 0.
Algorithm. For any fixed rooted tree T , we sign a polynomial Nv(t) to each vertex
v of T as follows:

(1) For each leaf v of T , set Nv(t) = t.
(2) For any other vertex v of T , define Nv(t) inductively starting from the high-

est level by Nv(t) = ∆−1(Nv1(t)Nv2(t) · · ·Nvk(t)), where vj , j = 1, 2, . . . , k,
are the distinct children of v.

Then for each vertex v of T , Nv(t) = ψT+
v

(t), where T+
v is the subtree of T rooted

at the vertex v. In particular, we have ψT (t) = NrtT (t). �
The following example applies this algorithm to the shrubs Sn to show that the

polynomials ψSn(t) are closely related to the Bernoulli polynomials Bn(t) defined
by xetx

ex−1 =
∑∞

n=0Bn(t)x
n

n! . (Compare this with (b) of Corollary 3.15.)

Example 4.4. Let v1, . . . , vn be the leaves of the shrub Sn. Following the al-
gorithm, we first assign the polynomial t to each leaf vi. The next step in the
algorithm gives

ψSn(t) = ∆−1(tn).(4.4)
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One of the fundamental properties of the Bernoulli polynomials Bn(t) is

∆Bn(t) = Bn(t+ 1)−Bn(t) = ntn−1 ,(4.5)

and from this and the fact that ∆ commutes with d
dt one easily derives

d

dt
Bn+1(t) = (n+ 1)Bn(t) .(4.6)

From (4.5) and (4.6) we get

∆−1(tn) =
∫ t

0

Bn(u)du =
Bn+1(t)−Bn+1(0)

n+ 1
.(4.7)

Putting together equations (4.4) and (4.7), we obtain this relationship between
ψSn(t) and Bn+1(t),

ψSn(t) =
∫ t

0

Bn(u)du =
Bn+1(t)−Bn+1(0)

n+ 1
.

4.3. Combinatorial Property of ψT (t). After the main part of this work was
done, Professor John Shareshian pointed out to us that the polynomial ψT (t) for
rooted trees coincides with the strict order polynomial Ω̄(P, t) for finite posets
(partial ordered sets) P in combinatorics (see Chapters 3 and 4 in [St1]). We first
recall the polynomial Ω̄(P, t) associated with a finite poset, and then we show that,
when P is the poset of the set V (T ) of vertices of a rooted tree T with the natural
partial order induced by ancestry (the root being the unique smallest element), we
have ψT (t) = Ω̄(P, t).

Any rooted tree corresponds in this way to a unique finite poset, and a finite
poset P corresponds to a rooted tree precisely when it satisfies these two criteria:

(1) P has a unique smallest element, and
(2) any interval in P is totally ordered.
For any n ∈ N, the chain Cn gives the totally ordered poset with n elements. (We

can view it as the set {1, 2, . . . , n} with the natural order of the positive integers.)
For any poset P , we say that a map f : P → Cn is strict order-preserving if
f(a) < f(b) in Cn whenever a < b in P . It is well known that there exists a unique
polynomial Ω̄(P, t) such that Ω̄(P, n) equals the number of strict order-preserving
maps f from P to Cn for all n ∈ N. This, then, is the theorem shown to us by John
Shareshian.

Theorem 4.5. For any rooted tree T , we have

ψT (t) = Ω̄(T, t)(4.8)

(where, on the right, T is viewed as a finite poset as described above).

Proof. It is obvious that when T is the singleton, Ω̄(T, t) = t. Hence it is enough
to show that Ω̄(T, t) also satisfies the recursion formula of Theorem 4.2. More
precisely, we will show that, in the notation of Theorem 4.2, we have

∆Ω̄(T, n) = Ω̄(T, n+ 1)− Ω̄(T, n) = Ω̄(T1, n)Ω̄(T2, n) · · · Ω̄(Td, n)

for any n ∈ N.
Note that ∆Ω̄(T, n) equals the number of strict order-preserving maps f from

T to Cn+1 = {1, 2, . . . , n + 1} such that f(rtT ) = 1. But this number is also the
same as the number of strict order-preserving maps g from T \{rtT } to Cn, which
is Ω̄(T1, n)Ω̄(T2, n) · · · Ω̄(Td, n). �
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Remark 4.6. It is interesting that the strict order polynomial Ω̄(T, t) for the finite
posets induced by rooted trees T can be defined in a totally different way, namely,
according to the formula (3.11) of Theorem 3.8. In fact, this realization of the
strict order polynomial can be generalized to an arbitrary finite poset P . This
generalization and its consequences will be discussed in the upcoming paper [SWZ].

5. Some Applications

For a formal automorphism F = (F1, F2, . . . , Fn) = z + H of the form identity
plus higher, we give a restatement and new proof of the tree formula for the formal
inverse first proved in [BCW] and [W2].

Theorem 5.1. For any rooted tree T , we have ψT (−1) = (−1)v(T ). Hence the
formal inverse F−1 of F is given by4

F−1 = z +
∑
T∈T

(−1)v(T ) PT .(5.1)

Proof. The formula (5.1) follows from ψT (−1) = (−1)v(T ) by Proposition 3.7 and
Theorem 3.8.

It is well known in combinatorics (see [St1]) that the strict order polynomials
satisfy Ω̄(T,−1) = (−1)v(T ), from which the result follows, in light of Theorem 4.5.
For completeness, we give a direct proof here.

We use the mathematical induction on v(T ). The case for v(T ) = 1 is trivial.
(ψT (t) = t in this case.) Suppose v(T ) ≥ 2. By Theorem 4.2, setting t = −1, we
have

ψT (0)− ψT (−1) = ψT1(−1)ψT2(−1) · · ·ψTd(−1)

where Ti, i = 1, 2, . . . , d are the connected components of T \{rtT }. We have
ψT (0) = 0, and by induction we may assume the theorem holds for T1, . . . , Td.
Hence

ψT (−1) = −(−1)vT1+vT2+···+vTd = (−1)v(T ).

�

It is known that the Jacobian conjecture (see [BCW] for a statement of this
famous problem) is equivalent to the assertion that∑

T∈TN

PT = 0(5.2)

for N >> 0 whenever H is a homogeneous polynomial system (of degree ≥ 2) and
the Jacobian determinant |(DjFi)| is (everywhere) nonzero. In fact, this follows
from Theorem 5.1, since when H is homogeneous the polynomials

∑
T∈TN PT , for

fixed N , are the homogeneous summands of F−1 (see Remark 2.2). When H is
homogeneous, the condition |(DjFi)| = 1 is known to be equivalent to the nilpotence
of the Jacobian matrix JH = (DjHi) (see [BCW]). Thus the following result
presents an intriguing statement for comparison.

4The formula as given in [BCW] and [W2] did not include the factor (−1)v(T ). It appears here
because of our choice in writing F = z +H instead of F = z −H.
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Proposition 5.2. Assume H is homogeneous of degree ≥ 2. For any rooted tree,
let hT,k be the number of vertices of height k. Suppose that (JH)k = 0. Then∑

T∈TN

hT,mPT = 0(5.3)

for any N ∈ N and m ≥ k.

Proof. Suppose that degH = d ≥ 2. It follows from Euler’s formula that JH ·(zt) =
(dH)t, from which we get 1

d (JH)k ·(zt) = (JH)k−1 ·Ht = 0. (Here the superscript t

denotes transpose, converting a row to a column so that the matrix multiplications
make sense.) For any integer m ≥ 1, a straightforward calculation shows that the
chain Cm has the property PCm = JHm−1 · Ht. Therefore, PCm = 0 for m ≥ k,
and we have

0 = exp (−A) · PCm .

By Theorem 3.12, setting S = Cm and t = −1 in (3.13):

=
∑
T∈T

 ∑
T ′≤T
T ′∼=Cm

ψT\T ′(−1)

 PT .

By Theorem 5.1:

=
∑
T∈T

 ∑
T ′≤T
T ′∼=Cm

(−1)v(T\T ′)

PT

=
∑
T∈T

(−1)v(T )−mhT,mPT .

In particular, for any N ∈ N, we have∑
T∈TN

(−1)N−mhT,mPT = (−1)N−m
∑
T∈TN

hT,mPT = 0,

which gives (5.3). �

The proposition above shows that, for a fixed homogeneous polynomial system
H , the polynomials PT are in some sense quite linearly dependent on each other.

Finally, let us point out that the formal flow Ft gives a formal flow between F
and the identity map id , i.e., Ft|t=1 = F and Ft|t=0 = id , having the additional
properties Ft(0) = 0 and JFt(0) = In. It is an open question in complex analysis
whether, for any local analytic map F , such an analytic flow exists. The usual
approach to this question is to show that F is linearizable, i.e., it is conjugate to
a linear map. But when F is linearizable the question is still open, even for the
one-variable case. (There are many partial results for this problem.) So it is of
interest that the formal solution to this question is given by the very clean formula
(3.10) of Theorem 3.8. But the question of when Ft is locally convergent is still
open.
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